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ABSTRACT

Quantum error correction is a critical component for scaling up quantum computing.
Given a quantum code, an optimal decoder maps the measured code violations to
the most likely error that occurred, but its cost scales exponentially with the system
size. Neural network decoders are an appealing solution since they can learn from
data an efficient approximation to such a mapping and can automatically adapt to
the noise distribution. In this work, we introduce a data efficient neural decoder
that exploits the symmetries of the problem. We characterize the symmetries of the
optimal decoder for the toric code and propose a novel equivariant architecture that
achieves state of the art accuracy compared to previous neural decoders.

1 INTRODUCTION

Quantum computers have exponential advantage compared to classical computers for quantum physics
simulations and for breaking certain cryptosystems. They can also provide speed ups for optimization
and searching problems. These advantages are guaranteed only for fault tolerant architectures and
quantum error correction is a critical component to build a fault tolerant quantum computer.

The prototypical example of a quantum code is the toric code (Kitaev, 2003), where qubits are placed
on the edges of a torus and the logical qubits are associated with operations along the non-contractible
loops of the torus. This model (or rather its variant with open boundaries) has been implemented
in current hardware (Krinner et al., 2022; Zhao et al., 2022; Google Quantum AI, 2022) and is a
standard benchmark for developing new decoders.

The decoding problem aims at correcting the errors that occurred in a given time cycle. Exact
optimal decoding is computationally intractable (Iyer & Poulin, 2013), and a standard approach in
the literature is to devise handcrafted heuristics (Dennis et al., 2002; Delfosse & Nickerson, 2021)
that give a good tradeoff between time and accuracy. The downside of these is however that they are
tailored to a specific code or noise model. Neural decoders have been proposed to overcome these
limitations, by learning from data how to adapt to experimental setups. Neural network decoders
also benefit from quantization and dedicated hardware that allow them to meet the time requirements
for decoders to be useful when deployed (Overwater et al., 2022). Several works therefore studied
neural decoders for the toric code. Pure neural solutions are however limited to small system sizes
(Krastanov & Jiang, 2017; Wagner et al., 2020) or low accuracy (Ni, 2020). Solutions that combine
neural networks with classical heuristics can reach large systems but are limited in their accuracy by
the underlying heuristics (Meinerz et al., 2021). We discuss related work in App. 4.1 and properties
of decoders in App. 4.3.

In this work, we show how to improve the performance of neural decoders by designing an equivariant
neural network that approximates the optimal decoder for the toric code. Our contributions are as
follows:

∗Equal contribution.
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• We characterize the geometric symmetries of the optimal decoder for the toric code.
• We propose an equivariant neural decoder architecture. The key innovation is a novel twisted

version of the global average pooling over the symmetry group.
• We benchmark a translation equivariant model against neural and non-neural decoders. Our

model achieves state of the art accuracy compared to previous neural decoders.

2 SYMMETRIES OF THE TORIC CODE DECODER

We provide a short introduction to Toric code construction in App. 4.2.

2.1 MAXIMUM LIKELIHOOD DECODING

Let us denote by p(E) the probability for an error E to occur, and assume that p is known. To
correct an (unknown) error E we first measure its syndrome σ. This is a binary vector of size
2L2, whose i-th entry is 1 if E anticommutes with the i-th stabilizer and zero otherwise. The
decoding problem is then to reconstruct the error given the syndrome. It is rather easy to pro-
duce an error that is compatible with a syndrome. In fact, note that syndromes always come
in pairs at the end of the error paths, as shown in figure 1 by looking at the error paths a or
c. Note that all operators on an error path, except the ones on the endpoints, intersect twice or
zero times any member of stabilizer group, and thus commute with it. Thus a simple decoding
strategy is to return error paths that join syndromes in pairs. Any such paths will produce an er-
ror which has the correct syndrome. However, there are many possible errors compatible with a
syndrome since since both stabilizer and logical operators have trivial syndrome since they com-
mute with all stabilizers. For example, the error c, d or a, b have the same syndromes in figure 1.

b

a

d

c

Figure 1: a and b are two pos-
sible errors (phase flip paths) that
give rise to the same syndrome, here
represented by blue dots. Similarly,
c, d are two possible errors (bit flip
paths) with the same syndrome, rep-
resented by red dots.

To understand what constitutes an optimal reconstruction we
argue as follows. First, we note that stabilizer errors do not
need to be corrected since by definition they act trivially on
the logical qubits, and so two errors E and E′ are equivalent if
they differ by a stabilizer operator. However, logical operators
do change the logical state, and the optimal decoding strategy
is then to choose the most likely logical operator. The like-
lihood of a logical operator is to be computed by taking into
account that any of the possible errors that are compatible with
the syndrome and the logical operator content but differ by a
stabilizer could have occurred.

Formally, let us define the vector L = (X̄1, X̄2, Z̄1, Z̄2).
There are 16 possible logical operators corresponding to the
4 binary choices of acting or not with La, for a = 1, . . . , 4.
Similarly to the syndrome, we define the logical content of
an error E as the four-dimensional binary vector ω(E,L),
L = (X̄1, X̄2, Z̄1, Z̄2). This allows us to detect whether any
of the logical operators are part of E. (Note that one needs to
swap the first two entries of γ with the last two entries to reconstruct the logical operator content of
E due to the commutation relations. For example, E = X̄1, has ω(E,L) = (0, 0, 1, 0).) Then we
consider the probability mass of all errors compatible with σ and γ:

p(γ, σ) =
∑
E∈P

p(E)δ(ω(E,S), σ)δ(ω(E,L), γ), (1)

where P is the set of possible errors and S is a vector with all Z and X stabilizers. From the
discussion above, the sum is effectively over all possible 22L

2

stabilizer operators – all the possible
products of plaquette and vertex operators. The most likely γ will then allow us to obtain the optimal
reconstruction, so maximum likelihood decoding amounts to solving the following optimization
problem:

max
γ∈{0,1}4

p(γ|σ) . (2)
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In the following we shall consider the i.i.d. noise called depolarizing noise, which is a standard choice
for benchmarking quantum error correction codes (Nielsen & Chuang, 2000):

p(E) =
∏
e∈E

π(Ee) , π(E) =

{
1− p E = 1

p/3 E ∈ {X,Z,XZ} . (3)

with E the set of edges of the lattice. The number p is in [0, 1] and we give the same probability p/3
to the events corresponding to the errors X,Z,XZ.

2.2 SYMMETRIES OF THE CODE
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Figure 2: Left column: the list of symmetries of the toric code decoder and their action on the vertices
and plaquettes. Right column: non-trivial action of those symmetries on the logical operators. Purple
dots indicate the paths α, β in the formulas below the pictures. We assume odd L and rotations are
performed around the center vertex of the lattice, while horizontal flips are done around the vertical
middle line.

3 MACHINE LEARNING APPROACH

3.1 DATA GENERATION AND LOSS FUNCTION

We now set up the task of learning the logical error probabilities p(γ|σ) introduced in section 2.1.
The goal is to amortize the cost of maximum likelihood decoding via training a low complexity neural
network. We are given a noise model equation 3 p(E) from which we can sample errors E1, E2, . . .
and compute syndrome σ = ω(E,S) and logical components γ = ω(E,L). The pairs (γ, σ)’s are
distributed according to equation 1 and taken to be inputs and outputs of a supervised learning task.
We thus aim at learning a map p̂ that maps a syndrome σ ∈ {0, 1}2L2

to a probability distribution
over a categorical variable with 24 = 16 values. We learn this map by minimizing the cross entropy
loss Eσ∼p(σ)Eγ∼p(γ|σ)(− log p̂(σ)γ) The minimizer of this loss function satisfies p̂(σ)γ = p(γ|σ).
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Decoder L p : 0.155 0.166 0.178 0.18

UFML (7, 63) (0.5; 0.6) < 0.6 < 0.45 < 0.2

MWPM 17 0.55 0.43 0.31 0.29
(17, 32) 17 0.77 0.66 0.52 0.49
(17, 64) 17 0.82 0.72 0.57 0.55
(19, 128) 17 0.82 0.72 0.58 0.55
(17, 128) 17 0.85 0.75 0.61 0.59

MWPM 19 0.55 0.42 0.29 0.28
(17, 32) 19 0.75 0.63 0.47 0.45
(17, 64) 19 0.82 0.70 0.54 0.52
(19, 128) 19 0.84 0.72 0.57 0.55
(17, 128) 19 0.85 0.74 0.59 0.57

MWPM 21 0.55 0.41 0.28 0.26
(17, 32) 21 0.70 0.56 0.40 0.38
(17, 64) 21 0.77 0.63 0.46 0.44
(17, 128) 21 0.83 0.70 0.53 0.51
(19, 128) 21 0.83 0.71 0.55 0.53

Table 1: Logical accuracy of decoders over depolarising noise for L : 17, 19, 21 and noise levels
around thresholds of competitive decoders. All END decoders were trained with noise probability
0.17 and denoted in the table by (L, ch): training lattice size and the number of channels in the first
block of CNN body. All St.d. ≤ 0.002, sample size 106. UFML is the method of (Meinerz et al.,
2021) which is the best neural decoder in the literature, and MPWM the minimum weight perfect
matching decoder (Dennis et al., 2002).

3.2 GENERAL THEORY OF EQUIVARIANT ARCHITECTURES

We discuss the symmetry action introduced in theorem 4.1. Let us suppose that as in the theorem 4.1
we have a vector-valued function f(σ) and a symmetry action (ρgf)(σ) =Mg(σ)f(g

−1 · σ). For ρ
to be a well defined symmetry action (group homorphism) we need ρgρh = ρgh for any g, h in the
symmetry group G. As shown in App. 4.6, this leads to the following relations:

Mgh(σ) =Mg(σ)Mh(g
−1 · σ) . (4)

The dependency of M on σ, the input to the function on which M acts on, makes the problem more
complicated than those typically considered in the machine learning literature on equivariance (Weiler
& Cesa, 2021). In fact, typically one considers functions f : Vin → Vout, with Vin, Vout input and
output linear representations of G.

In our case instead, the output representation matrix Mg(σ) depends on the input σ, and therefore we
cannot immediately use the standard theory of equivariant neural networks (Weiler & Cesa, 2021),
which prescribes an alternation of layers with different linear representations of the group. Instead,
we solve the problem of parametrizing the invariant function p of theorem 4.1 by projecting a general
function onto the G-invariant subspace by symmetrizing over the group action.
Proposition 3.1. Consider the group action (ρgf)(σ) =Mg(σ)f(g

−1 · σ) on a function f : Rd →
Rℓ. If ϕ : Rd → R|G| ⊗ Rℓ is G-equivariant, ϕh,γ(g−1 · σ) = ϕgh,γ(σ), then the following is
invariant:

f̂(σ) =
1

|G|
∑
h∈G

Mh(σ)ϕh(σ) . (5)

The key innovation of our construction is to twist the sum by the matrix Mg(σ) which ensures the
right equivariance. App. 4.7 contains details of the implementation of Mg(σ) for the translation
group, and shows that we can compute the function f̂ defined in proposition 3.1 efficiently in O(L2).

3.3 EXPERIMENTS (APP. 4.8 CONTAINS DETAILS )

In Table 1 (3) we compare our method against the literature in terms of the logical accuracy. This
is estimated as the fraction of correct reconstructions that a decoder produces over an ensemble of
errors. We compared our method against MWPM (Dennis et al., 2002), the most popular decoder for
the toric code, and (Meinerz et al., 2021), the best neural decoder in the literature.
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4 APPENDIX

4.1 RELATED WORK

Popular handcrafted decoders for the toric code are the minimum weight perfect matching (MWPM)
decoder (Dennis et al., 2002) and the union find decoder (Delfosse & Nickerson, 2021). These
decoders however treat independently bit and phase flip errors, and they do not count correctly
degenerate errors. For these reasons they are practically fast but have limited accuracy. Not dealing
with degenerate errors impacts also their equivariance as discussed in details in Appendix 4.3.
Decoders based on tensor network contraction (Bravyi et al., 2010; Chubb, 2021) achieve the highest
threshold for the toric code. Their runtime however increases quickly with the bond dimension that
controls the accuracy of the approximation and they are difficult to parallelize compared to neural
networks. Also, contrary to ML methods, they cannot adapt automatically to different noise models.

Several papers have investigated neural networks for quantum error correction, however none of them
studies the problem from an equivariance lens. (Krastanov & Jiang, 2017) uses a fully connected
architecture; (Wagner et al., 2020) imposes translation invariance by to zero-centering the syndrome
and uses a fully connected layer on top; (Ni, 2020) uses a convolutional neural network which
does not represent the right equivariance properties of the optimal decoder. Appendix 4.3 contains
details of these architectures and the results obtained in these papers. (Meinerz et al., 2021) obtains
the largest system size and threshold among neural decoders by combining a convolutional neural
network backbone with a union find decoder. In our work we show that our model, which does not
rely on a handcrafted decoder, achieves higher accuracy.

From the perspective of equivariant architectures (Cohen & Welling, 2016; Weiler & Cesa, 2021),
our work studies a generalized form of equivariance, where the output representation depends on
the values of the inputs to the neural network. To the best of our knowledge, this type of symmetry
properties for a neural network have not been considered before.

Finally, neural decoders for classical error correction were discussed as a form of generalized belief
propagation in (Satorras & Welling, 2021). However classical and quantum error correction are
fundamentally different (Iyer & Poulin, 2013), and these results do not directly translate to the
quantum case. See (Liu & Poulin, 2019) for an attempt which however does not achieve good
accuracy for the toric code.

4.2 THE TORIC CODE

In this section we review the necessary background on the toric code. Recall that a qubit |ψ⟩ is a
superposition of 0 and 1 bits, which are denoted by |0⟩ and |1⟩: |ψ⟩ = α |0⟩ + β |1⟩. A quantum
error correction code aims at correcting two types of errors on qubits: bit flip errors X , and phase
flip errors Z, which act as: X(α |0⟩+ β |1⟩) = β |0⟩+ α |1⟩ and Z(α |0⟩+ β |1⟩) = α |0⟩ − β |1⟩.
We also recall that the space of n qubits is that of superpositions of the 2n possible bit strings of n
bits. We denote by Ei an error that acts only on the i-th qubit. Ei can take four values: 1, X, Z,XZ,
corresponding to no-error, bit-flip, phase-flip, or combined phase and bit flip. It turns out that the
ability to correct these discrete set of errors is enough to correct general errors. We refer the reader to
(Nielsen & Chuang, 2000) for details on quantum error correction.

4.2.1 ERROR PATHS

The toric code protects against errors by encoding logical qubits in topological degrees of freedom
related to the non-contractible cycles of a torus (Kitaev, 2003). This is done as follows. We start
by placing physical qubits on the edges of a L× L square lattice embedded on a torus. Errors are
then associated with paths that traverse the edges corresponding to the qubits affected by errors. For
reasons that will become clear later, we associate Z errors to paths on the lattice, and X errors to
paths on the dual lattice. This is illustrated in figure 3. Here a represents a Z error on the edges
traversed by the paths, while b represents a X errors on the edges traversed by the dual path.
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Figure 3: Toric code square lattice with periodic boundary conditions. Blue paths are Z errors, red
paths on the dual lattice areX errors. c, d areX- and Z-stabilizers, while Ci, C

∗
i are logical operators

corresponding to non-contracbtle loops around the torus.

4.2.2 STABILIZERS AND CODE SPACE

We now consider certain combinations of bit and phase flips called X- and Z-stabilizers. For each
plaquette of the lattice, we define a Z-stabilizers as the product of phase flips on the edges around the
plaquette. Similarly, for each vertex of the lattice, a X-stabilizer is defined as the product of bit flips
around a vertex. This is illustrated in figure 3 by the cycles c and d. Note that Z-stabilizers are not all
independent. In fact if we take the product of two neighbouring plaquettes, the error on the shared
edge disappears, since flipping twice is identical to no flipping: Z2 = 1. If we take the product of
Z-stabilizers over all the plaquettes, each edge is counted twice and so all errors disappear. This
means that out of the L2 Z-stabilizers, only L2 − 1 are independent. Similarly, for X-stabilizers.
The toric code is then defined as the subspace of the 2L2 qubits that is preserved by the stabilizer
operators. Concreately, if |ψ⟩ is a vector in the 22L

2

-dimensional space of the physical qubits and
Si a stabilizer, the code subspace is defined by Si |ψ⟩ = |ψ⟩ for all i. Note that S2

i = 1 for each
stabilizer, so Si has ±1 eigenvalues, and imposing the constraint Si |ψ⟩ = |ψ⟩ reduces the dimension
of the space of the qubits by half. Since we have 2(L2 − 1) independent stabilizers, the logical space
has dimension 22L

2

/22(L
2−1) = 22, which means that the toric code encodes two logical qubits for

any L. We thus see that an error-free code vector lives in a 4 dimensional vector space. If errors are
introduced, this code vector will develop components in the complement of this code space. The goal
of error correction is to find the most likely projection back onto the code subspace.

4.2.3 LOGICAL OPERATORS

We denote logical X and Z operators acting on the logical qubits by X̄1, X̄2, Z̄1, Z̄2. These operators
are defined by the paths denoted by C∗

1 , C
∗
2 , C1, C2 respectively in figure 3. To verify this statement,

we need to check the commutation relations of these operators. First, we note that X and Z errors
commute if they act on different qubits and anti-commute if they act on the same qubit: XZ = −ZX .
Thus if we have a Z error string a and a X error string b, they commute if they cross an even number
of times (so that we have an even number of −1’s) and anti-commute if they cross an odd number of
times (so that we have an odd number of −1’s). For example, the errors represented by the paths a, b
in figure 3 anticommute. We can then check that a X-stabilizer always commutes with a Z-stabilizer,
since they always cross at either 0 or 2 edges. Similarly, we can check that logical operators commute
with stabilizers for a similar reason, but are independent of them – i.e. they cannot be written as
products of stabilizers – and thus preserve the logical space but act non-trivially on it, as required to
logical operators. Also, we can check that X̄i anti-commutes with Z̄i for i = 1, 2 since they cross on

8
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a single edge. We introduce the notation ω(E,E′) to denote whether two errors E,E′ anti-commute
(ω(E,E′) = 1) or commute (ω(E,E′) = 0).

4.3 EQUIVARIANCE PROPERTY OF TORIC CODE DECODERS IN THE LITERATURE

4.3.1 CLASSICAL DECODERS

We first discuss classical, i.e. non-neural, decoders.

The maximum weight perfect matching decoder (MWPM) is the standard decoder for the toric
code (Dennis et al., 2002). It treats X and Z syndromes independently and returns the minimum
(Hamming) weight error consistent with the syndrome, a problem which can be solved using the
Blossom algorithm in O(n3) time, but on average, it takes O(n) time (Fowler et al., 2012). This
decoder is popular because of its simplicity, but it has two main drawbacks: first, it treats X and
Z error independently; second, it does not account for the degeneracy of errors due to the trivial
action of the stabilizer (Duclos-Cianci & Poulin, 2010). Here we also show that it does not respect
the equivariance properties of the maximum likelihood decoder under translations, see also (Wagner
et al., 2020) where the authors point out that MWPM is not translation invariant. We note that the
root cause for this failure is the ambiguity of minimum weight decoding for a string of syndromes,
which is translation invariant, while the error string returned by the MWPM decoder is not, since it is
obtained by breaking the ambiguity by an arbitrary choice, which is not modified after a translation.
Note that degeneracy also can lead to a breaking of the symmetry in the maximum likelihood decoder.
In fact, if two logical classes γ, γ′ are such that p(γ|σ) = p(γ′|σ) are this value is the largest
logical probability, then it does not matter which one we return. This ambiguity can also lead to a
non-translation equivariant result of the maximum likelihood decoder.

Now we discuss the union find decoder (Delfosse & Nickerson, 2021). Like MWPM, union find also
treats X and Z independently – which leads to suboptimal decisions – and is a based on a two-stage
process: first, during the syndrom validation step errors are mapped onto erasure errors, namely losses
that occur for example when a qubit is reinitialized into a maximally mixed state; then, one applies
the erasure decoder. The latter simply grows a spanning forest to cover the erased edges starting from
the leaves, and flips qubits if it encounters a vertex with a syndrome. The syndrome validation step
creates a list of all odd clusters, namely clusters with an odd number of non-trivial syndromes. This
is done by growing odd clusters until two meet so that their parity will be even. We note that the
syndrome validation step respects the symmetries of the square lattice as does the erasure decoder.
The union find decoder d thus returns a recovery E for a syndrome σ so that d(Tσ) = Td(σ) for a
translation T , leading to the right equivariance expected from a maximum likelihood decoder. This
decoder is also very fast, practically O(L2), but the heuristics used leads to a suboptimal performance
w.r.t. the MWPM decoder.

The tensor network decoder achieves state of the art results for the threshold probability of the toric
code (Bravyi et al., 2014; Chubb, 2021). It does so by approximating directly the intractable sum
over the stabilizer group that is involved in computing the logical class probabilities. The runtime
is O(n log n + nχ3) where n = L2 and χ is the so-called bond dimension, which is the number
of singular values kept when doing an approximate contraction of tensors. Near the threshold we
expect this to grow with the system size, but in practice modest values (e.g. χ = 6 for the surface
code in (Bravyi et al., 2014) with L = 25) give good results over a range of noise probabilities. The
symmetries of the decoder will depend on the approximate contraction procedure. Those used in
(Bravyi et al., 2014; Chubb, 2021) create a one dimensional matrix product state along a sweep line
on a planar embedding of the Tanner graph of the code. This procedure breaks the translational
invariance of the decoder due to the finite χ, and in these works it was applied only to the surface
code, namely the code with boundaries. We believe that an equivariant contraction procedure might
lead to an even more efficient tensor network decoder.

4.3.2 NEURAL DECODERS

(Krastanov & Jiang, 2017) introduces the machine learning problem of predicting the error given a
syndrome with a neural network for the toric code. The architecture used is a fully connected network
that does not model any symmetries of the toric code. It obtains threshold 16.4 and studies lattices up
to L = 9.

9
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(Wagner et al., 2020) explicitly investigates the role of symmetries for neural decoders. It uses a high
level decoder architecture, where an input syndrome σ is first passed to a low level decoder which is
not learnable and returns a guess for the error, f(σ), which will correspond to a given logical class.
The syndrome is also passed to a neural decoder that as in our setting predicts the logical probability.
This is then combined with the underlying decoder to make a prediction for the error. In formulas,
called the neural prediction p̂(γ|σ), the logical probabilities returned by the high level decoder is

γ̂(σ) = argmax
γ

p̂(γ|σ) + ω(L, f(σ)) . (6)

To take into account symmetries, the authors modify this setup by introduce a preprocessing step to
deal with translations and mirror symmetries. For translations for example they define equivalence
classes of syndromes related by translations. For each class they define an algorithm that centers the
syndrome σ to pick a representative, say [σ] and pass that as input to both the low level decoder and
neural network. By construction, denoted by T the translation operator, one has [σT ] = [σ]. Then
the output of the low level decoder is obtained by undoing the translation on the output of the low
level decoder on [σ]. Let us call this modified low level decoder f̃(σ) and the translation applied
to produce the representative Tσ : [σ] = σTσ. Then f̃(σ) = f([σ])T−1

σ and this means that f̃(σ)
is translationally equivariant by construction: f̃(σT ) = f([σ])T−1

σT = f([σ])(T−1Tσ)
−1 = f̃(σ)T .

The neural network has input [σ] and the modified high level decoder used in this paper is:

γ̂(σ) = argmax
γ

p̂(γ|[σ]) + ω(L, f̃(σ)) . (7)

Note that we get the correct behavior under translations, see 4.2: (Note that T−1 appears w.r.t. equa-
tion 23 since we are considering the equation written as p(γ|σ′) = p(γ′′|σ))

γ̂(σT ) = argmax
γ

p̂(γ|[σT ]) + ω(L, f̃(σ)T ) (8)

= argmax
γ

p̂(γ|[σ]) + ω(LT−1, f̃(σ)) (9)

= argmax
γ

p̂(γ|[σ]) + ω(L, f̃(σ)) + ρstab(T
−1)ω(H, f̃(σ)) (10)

= γ̂(σT ) + ρstab(T
−1)σ . (11)

While the pipeline proposed in this paper is manifestly equivariant under translations, it requires
additional computational cost to preprocess the data, and uses a fully connected network. Further,
the authors could only show improvements w. r. t. MWPM decoder for L = 3, 5, 7, when using as
underlying decoder MWPM itself, which adds additional runtime.

(Ni, 2020) implements a neural decoder for large distance toric codes L = 16, 64. The decoder is
only tested for bit flip noise, where it performs on par, or lower, to MWPM. Large distance is achieved
by using convolutional layers to downscale the lattice, in a similar fashion to a renormalization group
decoder. The architecture is a a stack of CNN blocks each downsampling by half the lattice size, till
the system has size 2× 2. Downsampling is done by a convolutional layer with filter size [2, 2] and
stride [2, 2]. The output marginal probabilities for logical classes are then produced by a dense layer
on the outputs the CNN blocks: p(γ0|σ), p(γ1|σ) where γi ∈ F2 corresponds to acting with X̄i or
not. Note that the marginal probabilities will have a transformation law inherited by that of the joint,
namely for translations ρlogi(T ) = 1, we have p(γi + ρstab(T )i:σ|σT ) = p(γi|σ). The authors did
not discuss whether the architecture they propose has this symmetry property. We conjecture that
the architecture in this paper does not have the right symmetry under translations. In fact, we expect
that a CNN – the architecture proposed is a CNN apart from the periodic boundary conditions in the
convolutions – can approximate only a translation invariant function, in our case p(γi|σT ) = p(γi|σ),
and a function with the equivariance properties required by the actual logical probabilities.

(Meinerz et al., 2021) uses a CNN backbone which processes patches of the lattice to produce the
probability that the central qubit of the patch has an error, and then adds on top a union find decoder
to deal with correlations beyond the size of the patch that the neural network sees. Using a CNN (and
assuming periodic padding), the system is equivariant under translations, and so is the union find
decoder, so the whole procedure amounts to a decoder d(Tσ) = Td(σ) for a translation T , leading
to the right equivariance expected from a maximum likelihood decoder. While relying on the union
find decoder for long range correlations allows one to scale to large lattices (up to L = 255), it also
limits its accuracy, which leads to a threshold probability of 0.167.

10
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4.4 EQUIVARIANCE PROPERTIES

The goal of this section is to derive the equivariance properties of the toric code maximum likelihood
decoder. To start, we define a symmetry of the code as the a transformation g that preserve the group
of stabilizers, namely that acts as a permutation of the stabilizers. Since the logical subspace is
defined by Si |ψ⟩ = |ψ⟩ , ∀i, this definition is natural since the logical subspace does not change if
we permute the stabilizers. We call the set of all code symmetries the automorphism group of the
code.

If we denote with prime the transformed quantities, we have

S′
i = Sgi . (12)

For example, if g is the horizontal translations of the lattice by one unit to the right, it acts on the Z
stabilizers SZ’s as:

SZ
p = p −→ (SZ)′p = gp , (13)

and similarly for the X stabilizers SX . We call the set of all code symmetries the automorphism
group of the code.

The automorphism group of the toric code is generated by the symmetries of the square lattice, namely
horizontal and vertical translations, 90◦ rotations and horizontal flips, together with the duality map
which switches primal to dual lattice as well as X with Z. The left column of figure 4 shows the
action of each of these symmetries on the vertices and plaquettes, defining the permutation of the
associated stabilizers. Logical operators also need to be permuted among themselves up to stabilizers:

L′
a = Lga

∏
p∈αg

a

SZ
p

∏
v∈βg

a

SX
v , (14)

where as above L = (X̄1, X̄2, Z̄1, Z̄2), ga is a permutation of the four elements, and αg
a and βg

a
are some g-dependent paths on the primal and dual lattice respectively. The right column of figure
4 shows the non-trivial action of the generators of the automorphism group of the toric code on
the logical operators. For example, focusing on the rotation by 90◦ row, we see that ga acts as the
permutation (1234) → (2143).

After discussing the symmetries of the toric code, we now consider the noise distribution. We call a
transformation g a symmetry of the noise model if it leaves the noise distribution invariant: p(E′) =
p(E). To present the equivariance result, we find it notationally convenient to see the probability
p(γ|σ) as the σ-dependent tensor p(σ) with 4 indices, p(σ)γ1,γ2,γ3,γ4

= p(γ1, γ2, γ3, γ4|σ). The
permutation part a→ ga for a = 1, 2, 3, 4 of equation 14 acts on a tensor tγ1,γ2,γ3,γ4

as the operator
Pg:

(Pgt)γ1,γ2,γ3,γ4
= tγg1,γg2,γg3,γg4

. (15)

With αg
a and βg

a as in equation 14 we define the following quantity:

(∆gσ)a =
∑
p∈αg

a

σZ
p +

∑
v∈βg

a

σX
v (16)

with σZ (σX ) the syndrome of SZ (SX ). With these definitions, we are ready to enunciate the
equivariance properties of the maximum likelihood decoder.

Theorem 4.1. If g is a symmetry of the code and of the noise model, with action as in equation 12
and equation 14, then the logical probability tensor is invariant under the following action

(ρgp)(σ) =Mg(σ)p(g
−1 · σ) , (17)

(g · σ)i = σgi , Mg(σ) = P−1
g Rg

1(σ)R
g
2(σ)R

g
3(σ)R

g
4(σ) , (18)

where Rg
a(σ) acts as identity if ∆g(g

−1 · σ)a = 0 mod 2 and as the flip t···γa··· 7→ t···(1−γa)··· if
∆g(g

−1 · σ)a = 1 mod 2. Pg and ∆g(σ) are defined in equation 15 and equation 16.

11
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Y

v2¯
SXv
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Figure 4: Left column: the list of symmetries of the toric code decoder and their action on the vertices
and plaquettes. Right column: non-trivial action of those symmetries on the logical operators. Purple
dots indicate the paths α, β in the formulas below the pictures. We assume odd L and rotations are
performed around the center vertex of the lattice, while horizontal flips are done around the vertical
middle line.
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Proof. See Appendix 4.5

As a corollary of theorem 4.1, we see that the symmetries of the toric code discussed above (transla-
tions, rotations, mirrors and duality) are also symmetries of the maximum likelihood decoder when
we have the depolarizing noise of equation 3.
Example 4.1. For concreteness, we here give the explicit formulas for the transformation Mg(σ) in
the case of translations. Referring then to figure 4, if g is the horizontal translation by one unit to
the right, then Pg, R

g
1, R

g
4 act as identity – recall that Rg

1, R
g
4 are associated to X̄1, Z̄2 which do not

change. Let us now introduce coordinates on the lattice such that v = (0, 0) is the middle vertex
(assuming L odd for simplicity), and label other vertices with numbers increasing to the right and
bottom, as in figure 3. We also label the plaquette neighboring a vertex (i, j) to its bottom-right as
(i+ 1

2 , j +
1
2 ). Then we have explicitly,

∆g(g
−1 · σ) =

(
0,

L−1∑
i=0

σX
i,0,

L−1∑
i=0

σZ
i+ 1

2 ,−
1
2
, 0
)
. (19)

where the coordinates are understood modulo L. Then Rg
a acts as t···γa··· 7→ t···(1−γa)··· if ∆g(g

−1 ·
σ)a = 1 mod 2 and as identity ∆g(g

−1 · σ)a = 0 mod 2. Similarly, if g is the vertical translation
by one unit to the bottom, we have that Pg is identity and the action of Rg

a is read off from:

∆g(g
−1 · σ) =

( L−1∑
j=0

σX
0,j , 0, 0,

L−1∑
j=0

σZ
− 1

2 ,j+
1
2

)
. (20)

Still referring to figure 4, it is also clear that translations by more than one unit will involve sums over
syndromes associated to more than one row or column. For example, if g is the vertical translation by
two units to the bottom,

∆g(g
−1 · σ) =

( 0∑
i=−1

L−1∑
j=0

σX
i,j , 0, 0,

0∑
i=−1

L−1∑
j=0

σZ
i− 1

2 ,j+
1
2

)
. (21)

Translating by L units to the bottom or to the right is the same as no translations. In our formalism
this follows from the fact that there exists an error E such that:

L−1∑
i,j=0

σX
ij =

L−1∑
i,j=0

ω(E,SX
ij ) = ω

(
E,

∏
ij

SX
ij

)
= 0 . (22)

The first equality is the definition of syndrome, the second uses the fact that ω(E,FG) = ω(E,F ) +
ω(E,G) mod 2, and the third uses that the product of X stabilizers across all vertices is the identity,
as remarked in section 4.2.2. The same argument applies to σZ and Z stabilizers.

4.5 PROOF OF THEOREM 4.1

To prove theorem 4.1, we shall first establish the following proposition which shows the transformation
of the components of the maximum likelihood decoder.

Proposition 4.2. If g is a symmetry of the code and noise model, then for all γ ∈ F2k
2 , σ ∈ Fn−k

2 , we
have p(γ|σ) = p(γ′|σ′), with

σ′ = g−1 · σ (23)

γ′ = ρ−1
logi(g)(γ +∆g(σ

′) mod 2) , (24)

where ρlogi is the permutation representation of the logical operators in equation 14 and ∆g is defined
in equation 16.

Proof. If we denote by π(g) the action of a symmetry on the error E, since ω(E,FG) = ω(E,F ) +
ω(E,G) mod 2, and p(E) = p(π(g)E) by assumption, we have ω(π(g)E, π(g)F ) = ω(E,F ),

13
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so:

p(γ, σ) =
∑
E∈P

p(E) δ(ω(E,S), σ)δ(ω(E,L), γ)

=
∑
E∈P

p(π(g)E) δ(ω(π(g)E, π(g)S), σ)δ(ω(π(g)E, π(g)L), γ)

=
∑
E∈P

p(E) δ(ω(E, π(g)S), σ)δ(ω(E, π(g)L), γ)

=
∑
E∈P

p(E) δ(ω(E,S), g−1 · σ)δ(ρlogi(g)ω(E,L) + ∆g(ω(E,S)), γ)

= p(γ′, σ′) .

In the third to last equality we relabeled π(g)E with E since π(g) is an invertible transformation
on the set of Pauli operators and thus acts as a permutation of the Pauli errors. In the second to last
equality we used the transformation laws of S and L, equation 12 and equation 14.

The probability p(γ|σ) has the same symmetry since p(γ|σ) = p(γ, σ)/p(σ) and the denominator
p(σ) is invariant: p(σ) =

∑
γ p(γ, σ) =

∑
γ p(γ

′, σ′) =
∑

γ′ p(γ′, σ′) = p(σ′).

The theorem 4.1 follows by noting that the map p(γ, σ) 7→ p(γ′, σ′) can be written as the
operator P−1

g R1R2R3R4 defined in theorem 4.1 acting on the tensor p(σ). Indeed the map
p(γ1, γ2, γ3, γ4) 7→ p(ρlogi(g)γ) = p(γg1, γg2, γg3, γg4) can be written as Pg acting on the ten-
sor p, with Pg explicitly in Dirac notation:

Pg =
∑
γ

|γ1, γ2, γ3, γ4⟩ ⟨γg1, γg2, γg3, γg4| =
∑
γ

∣∣γg−11, γg−12, γg−13, γg−14

〉
⟨γ1, γ2, γ3, γ4| .

(25)

This is the same object introduced in equation 15. It is a representation of the symmetric group of 4
elements: PgPh = Pgh. The map p(γ) 7→ p(γ +∆g(σ) mod 2) can be written as the following
operator acting on tensor p:

4⊗
a=1

[
δ∆g(σ)a,012 + δ∆g(σ)a,1X

]
, (26)

with X the Pauli X . This proves the form of the operator P−1
g R1 · · ·R4 introduced in 4.1.

4.6 GROUP HOMORPHISM PROPERTY OF THE REPRESENTATION ρ

If we denote f ′(σ) = (ρhf)(σ) = Mh(σ)f(h
−1 · σ), the condition ρgρh = ρgh, means that we

have:

(ρgρhf)(σ) =Mg(σ)f
′(g−1 · σ) =Mg(σ)Mh(g

−1 · σ)f(h−1g−1 · σ) , (27)

which needs to equal Mgh(σ)f((gh)
−1 · σ), that is

Mgh(σ) =Mg(σ)Mh(g
−1 · σ) . (28)

This is a necessary condition for ρ to be a well defined action.

4.7 IMPLEMENTATION DETAILS FOR THE TRANSLATION GROUP

We shall now discuss some details of the construction of proposition 3.1 for the translation group.
We index elements of the translation group Z×2

L as g = (i, j) indicating a translation to the right by i
and to the bottom by j. ϕ is then a standard translation-equivariant convolutional neural network:

ϕ((−i,−j) · σ)k,l,γ = ϕ(σ)k+i,l+j,γ . (29)

From equation 4 with g = (i, 0), h = (0, j), we have

M(i,j)(σ) =M(i,0)(σ)M(0,j)((−i, 0) · σ) (30)

=M(i,0)(σ)M(0,j)(σ) (31)
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where the second equality follows from the fact that M(0,j)(σ) depends on σ only through sums
along rows which are invariant under horizontal translations. We can then consider the horizontal and
vertical translations separately. Setting g = (i− 1, 0) and h = (1, 0) in equation 4 we get a recursion
relation

M(i,0)(σ) =M(i−1,0)(σ)M(1,0)((−i+ 1, 0) · σ) . (32)

We discussed explicitlyM(1,0)(σ) in example 4.1. M(1,0)((i, 0) ·σ) involves the sum of the syndrome
over the i+ 1-th column of vertices or plaquettes – when starting counting from the middle, as in
figure 3 – and can be precomputed for all i by summing along the columns of the matrices σX and σZ .
Therefore we can compute M(i,0)(σ) from M(i−1,0)(σ) in O(1) time. A similar procedure allows us
to compute M(0,j)(σ) so that the summation in equation 5 can be computed efficiently in O(L2).

Since our experiments focus on the translation symmetry, we refrain from discussing here details of
the implementation of the other symmetries of section 4.4.

4.8 EXPERIMENTS DETAILS

Ablation L p : 0.155 0.166 0.178

(7,32,AP) 7 0.13(0.01) - -
(7,32,FC) 7 0.62(0.05) 0.51(0.05) -

(15,64,FC) 15 - 0.21(0.02) -
(17,64,FC) 17 - 0.06(0.02) -
(19,64,FC) 17 - 0.1(0.03) -

Table 2: Ablation study for END decoder. We used same body architecture and training procedure,
but the Fully Connected (FC) or Average pooling (AP) projection from feature to the space of logits
instead of the twisted global average pooling introduced in section 3.2.

Architecture We adapt the wide-resnet (WR) architecture zagoruyko2016wide: each convolution
is defined to have periodic boundaries. WR consists of 3 blocks, where the depth of each block
was 3 and fixed across all experiments. We vary the number of channels in the blocks: (ch, 64, 64),
ch ∈ {32, 64, 128}. Inside each block we used the GeLU hendrycks2016gaussian activation function.
As initialization we used kaiming for leaky ReLU. As normalisation layer, we used standard batch-
norm.

Sampling noise channel For performance tests of neural decoders we used standard NumPy
random generator. During training we used Quasi-Monte Carlo generator based on Sobolev Sequence.
This does not provide any gain in terms of performance overall, but we found it to stabilise training.
Both for training and performance evaluation batches were generated on the fly.

Training hyperparameters We used AdamW optimiser loshchilovdecoupled for all experi-
ments. In order to avoid manual tuning of schedule and learning rate, we used 1cycle approach
smith2019super. Typical maximal learning rate was 0.01 for batch 512 and 0.03 for batch 2048.
For the ablation studies we also tried reduce on plateau and cosine annealing, however this doesn’t
produce consistent effects for lattice size bigger than 7.

4.9 THRESHOLD PLOT
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Figure 5: Logical accuracy of MWPM and END decoder. END decoder has threshold ≈ 0.17.
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