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ABSTRACT

Text-to-image diffusion models, epitomized by DreamBooth, allow seamless gen-
eration of personalized images from scant reference photos. Yet, these tools, in
the wrong hands, can fabricate misleading or harmful content, endangering indi-
viduals. To address this, existing poisoning-based approaches perturb user images
in an imperceptible way to render them ”unlearnable” from malicious uses. We
identify two limitations of these defending approaches: i) sub-optimal due to the
hand-crafted heuristics for solving intractable bilevel optimization; and ii) lack
of robustness against simple countermeasures like Gaussian filtering transforma-
tions. To solve these challenges, we propose MetaCloak to prevent the unau-
thorized subject-driven text-to-image synthesis of DreamBooth finetuning. Meta-
Cloak combines a first-order method that approximately solves the bilevel prob-
lem via meta-learning and a transformation-robust noise crafting process. Specif-
ically, MetaCloak unrolls the training trajectory of the inner optimization loop
and conducts iterative updates between surrogate models and the perturbation. To
improve the robustness and transferability of our perturbation across models, we
further propose curricular ensembling by looping over steps-staggered clean sur-
rogate diffusion models of different versions. Furthermore, to bypass transforma-
tion defenses, MetaCloak crafts transformation-robust perturbation by conducting
denoising-error maximization for semantic distortion. Extensive experiments on
the VGGFace2 and CelebA-HQ datasets show that MetaCloak significantly out-
performs existing attacking approaches. Notably, MetaCloak can successfully fool
several online DreamBooth training services like Replicate in a black-box manner,
demonstrating the defense effectiveness of MetaCloak in real-world scenarios.

1 INTRODUCTION

Diffusion models achieve significant success in a wide range of applications, including image gener-
ation (Ho et al., 2020; Song et al., 2021; Dhariwal & Nichol, 2021), image editing (Kim et al., 2022;
Shi et al., 2023; Choi et al., 2023), and text-to-image synthesis (Rombach et al., 2022b; Avrahami
et al., 2022). Subject-driven text-to-image synthesis, an emerging application of diffusion models,
in particular, has attracted considerable attention due to its potential to generate personalized im-
ages from a few reference photos. Among the approaches proposed to achieve this goal (Ramesh
et al., 2022; Saharia et al., 2022), DreamBooth (Ruiz et al., 2023) is a prominent method that offers
impressive ability as it conducts an additional finetuning process to adapt the model to a specific
subject. While DreamBooth can generate high-quality personalized images, it also raises privacy
concerns as it can fabricate misleading or harmful content in the wrong hands, endangering individ-
uals. For example, recent news (Jiang) indicates that DreamBooth has been used to generate fake
images of individuals for conducting identity theft.

To tackle these issues, some poisoning-based approaches (Le et al., 2023; Liang et al., 2023) have
been recently proposed to perturb user images in an imperceptible way to render them “unlearnable”
from malicious uses. Specifically, these approaches aim to craft a perturbation that can mislead the
DreamBooth finetuning process, such that the model fails to capture the identity of the subject, and
the personalized generation ability of the model will be compromised. For instance, Le et al. (2023)
proposes to craft perturbation leveraging Dreambooth surrogate models in an alternating updating
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manner. Liang et al. (2023) proposes to craft protected images with a pre-trained fixed surrogate
model with adversarial perturbation. Its latter version considers an additional targeting attack loss
for degrading the texture quality.

Although these approaches have shown effectiveness in preventing unauthorized subject-driven text-
to-image synthesis, they exhibit two limitations. Firstly, their sub-optimal performance results from
the use of hand-crafted heuristics to address the underlying poisoning problem, which is a chal-
lenging bilevel optimization problem. Secondly, these attacks are fragile and demonstrate limited
robustness against various countermeasures, such as data transformations, including Gaussian filter-
ing. Given these limitations, in this paper, we ask the following question: Can we design a robust
poisoning attack that can still prevent unauthorized subject-driven text-to-image synthesis even un-
der more advanced defenses of data transformation?

To answer this question, we propose MetaCloak, a novel framework that perturbs user images in
an imperceptible way to make them “unlearnable” for malicious purposes. MetaCloak combines
a first-order method that approximately solves the underlying bi-level poisoning problem through
meta-learning and a transformation-robust noise crafting process. Specifically, MetaCloak unrolls
the training trajectory of the inner optimization loop and learns an effective perturbation via iterative
updates between the surrogate model and the perturbation. To improve the robustness and trans-
ferability of our perturbation across models, we further propose curricular ensembling by looping
over steps-staggered clean surrogate diffusion models of different versions. In comparison to poi-
soning approaches for classification tasks, our curricular ensembling method is better suited for the
generation tasks with diffusion models. To circumvent transformation defenses, MetaCloak crafts
transformation-robust perturbation by leveraging the expectation of transformation for semantic dis-
tortion. The primary contributions of this paper are summarized as follows.

1. We propose MetaCloak, a novel framework that crafts robust perturbation that can further
bypass data transformation defenses.

2. We propose a novel curricular ensembling method to improve the robustness and transfer-
ability of our perturbation across models.

3. Extensive experiments on the VGGFace2 and CelebA-HQ datasets show that MetaCloak
significantly outperforms existing approaches under data transformations. Notably, Meta-
Cloak can successfully fool several online DreamBooth training services like Replicate in
a black-box manner, demonstrating the defense effectiveness of MetaCloak in real-world
scenarios.

2 PRELIMINARY

2.1 TEXT-TO-IMAGE DIFFUSION MODELS

Diffusion models are probabilistic generative models that are trained to learn a data distribution
by the gradual denoising of a variable sampled from a Gaussian distribution. Our specific interest
lies in a pre-trained text-to-image diffusion model denoted as x̂θ. This model operates by taking
an initial noise map ϵ sampled from a standard Gaussian distribution N (0, I) and a conditioning
vector c. This conditioning vector c is generated through a series of steps involving a text encoder
represented as Γ, a text tokenizer denoted as f , and a text prompt P (i.e. c = Γ(f(P))). The
ultimate output of this model is an image denoted as xgen, which is produced as a result of the
operation xgen = x̂θ(ϵ, c). They are trained using a squared error loss to denoise a variably-noised
image or latent code as follows:

Ldenoise(x, c; θ) = Eϵ,t[wt∥x̂θ(αtx+ σtϵ, c)− x∥22], (1)

where x is the ground-truth image, c is a conditioning vector (e.g., obtained from a text prompt),
and αt, σt, wt are terms that control the noise schedule and sample quality, and are functions of the
diffusion process time t.

2.2 ADVERSARIAL ATTACKS TO TEXT-TO-IMAGE DIFFUSION MODELS

Adversarial attacks aim to perform an imperceptible perturbation on the input image in order to
mislead machine learning models’ predictions. In the classification scenario, for a given classifier
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fcls, a perturbed adversarial image x′ is generated from the original image x to misguide the model
into incorrect classification. Constraints on the perceptibility of changes are often imposed through
ℓp norms (with p ≥ 1), such that the perturbed image x′ is bounded within a ℓp-ball centered at x
with radius r > 0, i.e., x′ ∈ Bp(x, r) = {x′ : ∥x′ − x∥p ≤ r}. Given a classification loss Lcls, un-
targeted adversarial examples are crafted by solving maxx′∈Bp(x,r) Lcls(fcls(x

′), ytrue), where ytrue
is the true label of image x. For the text-to-image generation scenario, given a pre-trained text-to-
image diffusion model x̂θ, the adversarial attack aims to perturb the image to hinder the model from
reconstructing the image, i.e., x′ ← argmaxx′∈Bp(x,r) Ldenoise(x

′, c; θ). In this paper, we consider
the ℓ∞-norm for its alignment with perception. To solve the ℓ∞ constrained optimization for gener-
ating adversarial examples, the Projected Gradient Descent (PGD) (Madry et al., 2018) technique is
commonly utilized by iteratively updating the poisoned image x′. Formally, the adversarial example
x′ is updated as

x′
i = ΠB∞(x,r)(x

′
i−1 + αsign(∇x′

i−1
Ldenoise)) (2)

where x′
0 = x, sign(·) is the sign function, i is the step index, and the step size α > 0.

During this generation process, the adversarial examples gradually progress in a direction that would
increase the denoising loss while maintaining imperceptible perturbations. Recent works Le et al.
(2023); Liang & Wu (2023) have demonstrated that images crafted using this attack can effectively
deceive various text-to-image generation models (including textual inversion (Gal et al., 2022) and
image-to-image synthesis (Ruiz et al., 2023))into producing images of low quality.

2.3 PERSONALIZED DIFFUSION VIA DREAMBOOTH FINE-TURNING

DreamBooth is a method aimed at personalizing text-to-image diffusion models for specific in-
stances. It has two main objectives: first, to train the model to generate images of the given subject
with generic prompts like “a photo of sks [class noun]”, where sks specifies the subject and “[class
noun]” is the category of object (e.g., “person”). For this, it uses the loss defined in Eq. 1 with xu as
the user’s reference image and conditioning vector c := Γ(f(“a photo of sks [class noun]”)). Simi-
lar to the classification model, this guides the model to create the correlation between the identifier
and the subject. Secondly, it introduces a class-specific prior-preserving loss to mitigate overfit-
ting and language-drifting issues. Specifically, it retains the prior by supervising the model with
its own generated samples during the fine-tuning stage. With a class-specific conditioning vector
cpr := Γ(f(“ photo of a [class noun]”)) and random initial noise zt1 ∼ N (0, I), DreamBooth first
generates prior data xpr = x̂θ0 (zt1 , cpr) using the pre-trained diffusion model and then minimize,

Ldb(x, c; θ) = Eϵ,ϵ′,t

[
wt ∥x̂θ (αtx+ σtϵ, c)− x∥22 + λwt′ ∥x̂θ (αt′xpr + σt′ϵ

′, cpr)− xpr∥
2

2

]
,

(3)
where ϵ, ϵ′ are both sampled from N (0, I), the second term is the prior-preservation term that su-
pervises the model with its own generated images and λ controls for the relative importance of
this term. Despite the simplicity, this term is found to be effective in encouraging output diversity
and overcoming language-drifting issues. With ∼ 1K training steps and 3∼5 subject images, it can
generate vivid personalized subject images with Stable Diffusion models (von Platen et al., 2022).

3 PROBLEM STATEMENT

We assume that the user has access and modification abilities limited to a portion of their personal
data. This scenario is designed to simulate a situation where the model trainer may possess some of
the user’s personal data from sources beyond their control, such as external images. To evade certain
inspection mechanisms, the perturbations created by the attacker must be ‘imperceptible’ based on
specific perceptual metrics. After publishing the perturbed images, the user cannot further interfere
with the training from the adversary trainer.

We formulate the problem as follows. A user wants to protect his images Xc = {xi}ni=1 from being
used by unauthorized model trainers for generating personalized images using DreamBooth, where
n is the number of images. To achieve this, for some portion of images x ∈ Xc, the user injects
a small perturbation onto the original image to craft poisoned images set Xp = {x′

i}ni=1, which is
then published to the public. Later, the model trainers will collect and use Xp to finetune a text-
to-image generator x̂θ, following the DreamBooth algorithm, to get the optimal parameters θ∗. We

3



Under review as a conference paper at ICLR 2024

assume that the adversary is aware of the poisoning to some extent, so some data transformations like
filtering or cropping might be applied to the training image set Xp during the data pre-processing
phase of unauthorized Dreambooth trainers. The overall objective of the user is to craft a delusive
and robust image set Xp to degrade the DreamBooth’s personalized generation ability, which is
measured based on a clean reference set Xref. This reference set shares the same distribution as Xc,
and only the user can access it. This problem can be formulated as a bi-level optimization,

X∗
p ∈ argmax

Xp,θ∗
L∗

gen(Xref; x̂θ∗ , Xp) (4)

s.t. θ∗ ∈ argmin
θ
{Lrob

db (Xp, T ; θ) := Ex′
i∼Xp,g∼TLdb(g(x

′
i), c; θ)} (5)

Here, c is the class-wise conditional vector, L∗
gen is some perception-aligned loss to measure the

personalization generation ability of trained model x̂θ∗ (with more details in the next section). T
is a set of data transformations the expected adversary might use, and Dc is the distribution of
conditioning vector c that the user might use. Compared to vanilla Ldb in (3), Lrob

db
1 is more robust

to learning personalized diffusion models as it conducts additional data filtering.

Overall Goals. While it’s hard to quantify a unified evaluation loss L∗
gen to measure the personalized

generation quality, our overall goal is to degrade the usability of generated images, and we attempt
to comprehensively decompose the evaluation metric into the following two aspects: quality-related
and semantic-related distortion. Specifically, we seek to render the generated image awful quality by
tricking the victim’s model into generating an image with extreme noise, blurring, or nonnegligible
artifacts. With extreme distortion, the adversary can’t use it for some resolution-sensitive applica-
tions. Furthermore, the subject identity of generated images should be greatly distorted for other’s
utilization. For example, when the subject is human, the generated object might be non-humanoid
or distinct significantly from the pristine ones. We’ll dive into the design of L∗

gen in Sec. 4.2.

4 OUR METHOD

4.1 CRAFTING ROBUST PERTURBATION VIA META-LEARNING AND CURRICULAR
ENSEMBLING

One naive idea to solve the bilevel problem (4)-(5) is to unroll all the training steps and optimize
the protected examples Xp via backpropagating. However, accurately minimizing this full bi-level
objective is intractable since a computation graph that explicitly unrolls 103 SGD steps would not
fit on most of the current machines. To address this issue, inspired by Huang et al. (2020), we
propose to approximately optimize the outer-level objective (4) and inner-level objective (5) in an
alternative fashion. Specifically, considering the i-th iteration, when the current model weight θi and
the protected image set Xi

P are available (with θ0 being randomly initialized and X0
P = Xc), we

make a copy of current model weight θ′i,0 ← θi for perturbation crafting and optimize the inner-level
problem for K steps as

θ′i,j+1 = θ′i,j − β∇θ′
i,j
Lrob

db (X
i
p; θ

′
i,j),where j ∈ {0, 1, . . . ,K − 1}, (6)

with β > 0 being the stepsize. We term this procedure K-step method. This unrolling procedure
allows us to “look ahead” in training and view how the perturbations now will impact the generation
loss L∗

gen after K steps. We then leverage the unrolled crafting model x̂θ′
i,K

for optimizing the
outer-level problem, i.e., updating the protected images Xp as

Xi+1
p = ΠB∞(X0

p ,r)
(Xi

p + αsign(∇Xi
p
L∗

gen(Xref; x̂θ′
i,K

, Xi
p)). (7)

After obtaining the updated protected images Xi+1
p , the surrogate model θi is trained with Lrob

db for
a few SGD steps on Xi+1

p to get θi+1 as the next iteration’s starting point

θi+1 = θi − β∇θiLrob
db (X

i+1
p ; θi). (8)

1We by default omit T and simplify the notation as Lrob
db (Xp; θ) in the following context.
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The procedure (6)-(8) is executed repeatedly until the surrogate model reaches maximum training
steps to obtain the final protected images X∗

p . While this K-step method offers satisfactory re-
sults, it is not robust under various training settings with different models and model initializations.
Motivated by previous works Huang et al. (2020), we propose to craft robust perturbation over dif-
ferent versions of diffusion models and diverse initialization. Specifically, we consider Nx different
versions of diffusion models {x̂θi}Nx

i=1 and for each version of the model, we train M surrogate
models {θi,j0 }Mj=1 as the initial point for the j-th surrogate model for the i-th version of the diffusion
model. Given maximum training steps Nmax, the j-th surrogate model θi,j0 is trained with Lrob

db for
⌊jNmax/M⌋ steps on clean data. We then sequentially loop through all the surrogate models of dif-
ferent versions of diffusion models to craft the protected images Xp following the procedure (6)-(8).
For each surrogate model, we leverage it for a fixed number of perturbation crafting iterations and
then switch to the next surrogate model. We term this ensembling process as curricular ensembling.
Compared to the gradient averaging used in (Huang et al., 2020) for poisoning classification mod-
els, we found that our curricular ensembling method is more effective for poisoning the generation
task with diffusion models. We conjecture that this is because the step-staggered diffusion surrogate
models are more distinct, and averaging them might cause the cancellation. Our curricular ensem-
bling process allows the perturbation to form in a more gentle and “curricular” way that first focuses
on easy surrogate models with weak identifier-subject knowledge and, later on hard ones with strong
knowledge. Since we consider Nx different versions of diffusion models, our perturbation can be
more robust and transferable across different diffusion models.

4.2 TRANSFORMATION-ROBUST SEMANTIC DISTORTION WITH DENOISING-ERROR
MAXIMIZATION

As mentioned before, we seek to degrade both the graphical and semantic quality of the gener-
ated images. During the evaluation stage of the generated images, we can readily leverage various
quality reference-based and reference-free assessment metrics like BRISQUE (Mittal et al., 2012a),
CLIP-IQA (Wang et al., 2023), and FDSR (He et al., 2021) for the construction of the ground-truth
generation loss L∗

gen. However, during the poisoning stage, we can not simply take these “ground-
truth” metric losses to serve as the loss for crafting noise: i) overfitting is prone to happen since
most SOTA quality-assessment models are neural-network-based; ii) even if the assessment mod-
els are rule-based, the leading distortion might still over adapt to some certain assessment models,
making the comparison between ours and previous works unfair. To avoid these problems, we take
a different way of designing an approximated generation loss Lgen(Xp; θ) ∈ R+ used for crafting
poison. Our design of Lgen is based on the observation that adversarial examples for pre-trained
diffusion models can fool the model to generate images poor in semantic and graphical quality. We
think that the perturbation injected in the adversarial examples represents the patterns that are hard
to denoise, and the diffusion model trained on the poisons will overfit those regular patterns. Since
the model falsely establishes the correlation between the identifier “sks” and perturbation patterns,
the generation will be significantly degraded. Our approximated generation loss can be formulated,

Lgen(Xp; θ) = Ec,x′∼Xp [Ldenoise(x
′, c; θ)] . (9)

Our empirical observation indicates that the maximization of this loss can result in chaotic content in
the generated images, and the texture of the generated images is scattered and disordered. Compared
to recent works (Liang et al., 2023; Liang & Wu, 2023) that injected hand-craft heuristics of con-
ducting targeting attacks, we found that our simple denoising-maximization loss is effective enough
to form perturbation in an automatic way that can fool the diffusion model to generate images with
bad semantic and graphical quality. However, poisons crafted directly with (9) are fragile to minor
data transformations and ineffective in bypassing (5). For example, standard data augmentation (Le
et al., 2023), like Gaussian filtering, can easily remove the perturbations and retain the personalized
generation ability of DreamBooth. To remedy this, we adopt the expectation over transformation
technique (EOT; (Athalye et al., 2018)) into the PGD generation process of perturbation. EOT is a
stability-enhancing technique that was first proposed for adversarial examples (Eykholt et al., 2018;
Athalye et al., 2018). We leverage this technique here to improve the robustness of the poisoned
examples so that the transformation-based purification methods can be effectively resisted. Specifi-
cally, given T as a distribution over a set of transformations that the model trainer might use in (5),
the crafting process applies EOT on (7) as

Xi+1
p = Eg∼T

[
ΠB∞(X0

p ,r)
(Xi

p + αsign(∇Xi
p
Lgen(g(X

i
p); x̂θ′

i,K
))
]
. (10)
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where g(Xp) = {g(xp) : xp ∈ Xp} is the transformed image of Xp under the transformation g, θ′
is a K-step unrolled model following (6), and the expectation is estimated by Monte Carlo sampling.

Training Setting Dataset Method SDS ↓ IMS-CLIP ↓ IMS-VGGNet ↓ CLIP-IQA ↓ CLIP-IQA-C↓

Standard
Training

VGGFace2

Clean 0.958 ± 0.060 0.781 ± 0.072 0.314 ± 0.427 0.818 ± 0.045 0.397 ± 0.113

ASPL 0.472 ± 0.223 0.601 ± 0.082 -0.363 ± 0.516 0.498 ± 0.093 -0.449 ± 0.068

TASPL 0.923 ± 0.083 0.773 ± 0.086 0.432 ± 0.297 0.688 ± 0.186 0.011 ± 0.231

EASPL 0.397 ± 0.136 0.603 ± 0.105 -0.256 ± 0.685 0.508 ± 0.043 -0.470 ± 0.028

FSMG 0.503 ± 0.288 0.585 ± 0.116 -0.320 ± 0.654 0.556 ± 0.105 -0.437 ± 0.079

ADVDM 0.791 ± 0.104 0.661 ± 0.059 0.045 ± 0.810 0.653 ± 0.209 -0.289 ± 0.190

MetaCloak 0.107 ± 0.108 0.616 ± 0.022 -0.441 ± 0.473 0.400 ± 0.056 -0.491 ± 0.064

CelebA-HQ

Clean 0.837 ± 0.049 0.726 ± 0.051 0.240 ± 0.152 0.860 ± 0.053 0.438 ± 0.164

ASPL 0.620 ± 0.179 0.632 ± 0.041 -0.489 ± 0.356 0.633 ± 0.079 -0.266 ± 0.097

T-ASPL 0.911 ± 0.098 0.776 ± 0.012 0.168 ± 0.337 0.734 ± 0.104 0.071 ± 0.162

EASPL 0.593 ± 0.166 0.614 ± 0.053 -0.488 ± 0.427 0.674 ± 0.122 -0.272 ± 0.185

FSMG 0.699 ± 0.183 0.635 ± 0.053 -0.323 ± 0.506 0.700 ± 0.057 -0.177 ± 0.127

AdvDM 0.881 ± 0.060 0.772 ± 0.027 0.128 ± 0.525 0.864 ± 0.062 0.243 ± 0.136

MetaCloak 0.318 ± 0.150 0.676 ± 0.019 -0.716 ± 0.224 0.605 ± 0.093 -0.338 ± 0.077

Trans.
Training

VGGFace2

Clean 0.934 ± 0.092 0.756 ± 0.104 0.299 ± 0.357 0.750 ± 0.083 0.286 ± 0.042

ASPL 0.880 ± 0.113 0.728 ± 0.065 0.150 ± 0.439 0.639 ± 0.068 -0.043 ± 0.239

TASPL 0.967 ± 0.026 0.815 ± 0.024 0.515 ± 0.089 0.756 ± 0.039 0.263 ± 0.228

EASPL 0.809 ± 0.169 0.690 ± 0.110 -0.013 ± 0.625 0.650 ± 0.079 -0.139 ± 0.101

FSMG 0.855 ± 0.168 0.724 ± 0.062 0.245 ± 0.489 0.600 ± 0.077 -0.138 ± 0.150

ADVDM 0.856 ± 0.146 0.777 ± 0.064 0.397 ± 0.307 0.737 ± 0.061 0.233 ± 0.256

MetaCloak 0.571 ± 0.191 0.672 ± 0.105 -0.200 ± 0.612 0.522 ± 0.128 -0.285 ± 0.130

CelebA-HQ

Clean 0.795 ± 0.103 0.696 ± 0.045 0.226 ± 0.323 0.799 ± 0.054 0.380 ± 0.135

ASPL 0.762 ± 0.213 0.719 ± 0.077 0.128 ± 0.463 0.701 ± 0.160 0.084 ± 0.206

T-ASPL 0.857 ± 0.121 0.763 ± 0.046 0.301 ± 0.325 0.692 ± 0.132 0.187 ± 0.167

EASPL 0.753 ± 0.185 0.735 ± 0.044 -0.025 ± 0.507 0.733 ± 0.090 0.015 ± 0.227

FSMG 0.771 ± 0.270 0.723 ± 0.085 0.071 ± 0.546 0.723 ± 0.142 0.034 ± 0.203

AdvDM 0.847 ± 0.093 0.791 ± 0.051 0.480 ± 0.169 0.730 ± 0.133 0.301 ± 0.145

MetaCloak 0.271 ± 0.104 0.629 ± 0.015 -0.755 ± 0.231 0.565 ± 0.072 -0.333 ± 0.073

Table 1: Results of different methods in both standard and advanced training settings with the cor-
responding std (±) on two datasets. The best data performances are in bold, and the second runners
are shaded in gray. In the advanced training setting, the Gaussian filtering kernel size is set to 7.

5 EXPERIMENTS

5.1 SETUP

Datasets. Our main experiments are performed on human subjects using the two face recognition
datasets: Celeba-HQ (Karras et al., 2017) and VGGFace2 (Massoli et al., 2020) following existing
works (Le et al., 2023). CelebA-HQ is an enhanced version of the original CelebA dataset consisting
of 30,000 celebrity face images. VGGFace2 is a comprehensive dataset with over 3.3 million face
images from 9,131 unique identities, covering a broad spectrum of age, ethnicity, and pose varia-
tions. From these two datasets, we select 50 identities that have at least 15 images with resolutions
higher than 500 × 500. For each individual in these datasets, we randomly pick 6 images and split
them into two equal subsets for image protection and clean reference, respectively.

Training Settings. The Stable Diffusion v2-1-base (Rombach et al., 2022a) is used as the model
backbone by default. For Dreambooth training, we fine-tune both the text-encoder and U-Net model
with a learning rate of 5 × 10−7 and batch size of 2 for 1000 iterations in mixed-precision train-
ing mode. We consider two training settings: standard training and advanced training with data
transformations (Trans. Training). For the standard training setting, DreamBooth is trained without
performing special pre-processing. For the advanced training with data transformations scenario,
we consider transformations including Gaussian filtering with a kernel size of 7, horizontal flipping
half probability, center cropping, and image resizing to 512x512. For both the settings, we leverage
two inferring prompts with inferring step size of 100, “a photo of sks person” and “a DSLR portrait
of sks person” during the inference stage to generate 16 images per prompt for evaluations.

Baselines and Implementation Details. We compare our method with the following adopted state-
of-the-art baselines in Liang et al. (2023); Le et al. (2023); Liang & Wu (2023): i) ASPL (Le et al.,
2023) alternatively update the perturbations and surrogate models, where the surrogate models are
updated on both poisons and clean data; ii) E-ASPL is an extension of ASPL that ensembles multiple

6



Under review as a conference paper at ICLR 2024

Input ASPL E-ASPL T-ASPL FSMG AdvDM MetaCloak

Figure 1: Transformation robustness of different methods. The first row is a generated sample
from DreamBooth trained on poisons with no transformation defenses. The 2-th row showcases the
robustness of each method under transformation with Gaussian kernel size of 7. Our method perform
robustly under transformation defenses while other methods fail to preserve the perturbation.

types of diffusion models for better transferability; iii) FSMG leverages a DreamBooth trained on
clean image for crafting adversarial examples; iv) AdvDM (Liang et al., 2023; Liang & Wu, 2023)
leverages a pre-trained diffusion model for crafting adversarial examples with additional targeting
loss for texture distortion. Following the setting in ASPL, we set the adversarial radius (ℓ∞ ball) to
11/255 with a step size of 1/255 and a step number of 6 by default. The Stable Diffusion v1-5 and
v2-1-base are leveraged for the curricular ensembling. See App. A for more details.

Metrics. We evaluate the generated images in terms of their semantic-related quality and graphical
quality. For the semantic-related score, first, we want to determine whether the subject is present
in the generated image. We term this score as Subject Detection Score (SDS). For human faces, we
can take the mean of face detection confidence probability using RetinaFace detector (Deng et al.,
2020) as its SDS. Secondly, we are interested in how the generated image is semantically close to its
subject. We term this score as Identity Matching Score (IMS) (Le et al., 2023), the similarity between
embedding of generated face images and an average of all reference images. We use VGG-Face
Serengil & Ozpinar (2021) and CLIP-ViT-base-32 Radford et al. (2021) as embedding extractors
and employ the cosine similarity. For the graphical quality, we employ two quality assessment
metrics: i) CLIP-IQA leverages CLIP (Radford et al., 2021) as a zero-shot classifier for evaluation
of image semantic quality by taking the score difference of “good photo” and “‘bad photo”’; ii)
Based on CLIP-IQA, we further propose CLIP-IQA-C metric with additional class information, i.e.,
the CLIP score difference between “a good photo of [class]” and “a bad photo of [class]”. Please
see the App. B.1 for more details and discussion on the selection of metrics.

5.2 EFFECTIVE OF METACLOAK UNDER STANDARD TRAINING AND ADVANCED TRAINING

Effectiveness comparison through quantitative metrics. As observed in Tab. 1, MetaCloak con-
sistently outperforms other baselines across most of the settings and metrics. Specifically, under
the standard training setting, where no data transformation is applied, MetaCloak achieves the best
performance in terms of four out of five metrics except for IMS-CLIP. In the most important metric,
i.e., SDS, which measures whether a face appeared in the generated image, MetaCloak success-
fully degraded this metric by 71.9% and 46.3% compared to previous SOTA on VGGFace2 and
CelebA-HQ. In terms of reference-based semantic matching metrics, the results on IMS-VGGNet
also show that our method is more effective than other baselines. Since VGGNet is specially trained
on the facial datasets and thus more aligned with facial representation, we believe that the results on
IMS-VGGNet are more convincing than IMS-CLIP. In terms of image quality metrics, the results
on CLIP-IQA and CLIP-IQA-C both suggest that MetaCloak can effectively degrade the image
quality of generated images. Under the advanced training setting, where data transformation is ap-
plied, MetaCloak achieves the best performance in terms of all five metrics. This demonstrates that
MetaCloak is more robust in defense of data transformation.

Effectiveness comparison through visualization. As we can see in Fig. 1, compared to other
baselines, MetaCloak can robustly fool the DreamBooth to generate images with low quality and
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semantic distortion under both standard and advanced training. In contrast, other baselines are
sensitive to data transformation defenses. In this setting, the generation ability of DreamBooth is
retained since the generated images are of high quality. More visualizations are in the App C.
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Figure 2: Comparison of Full-FT and LoRA-FT under online training-as-service settings.

Effectiveness across different architectures. To study the effectiveness of MetaCloak across dif-
ferent architectures, we conduct experiments with three different diffusion models, including Stable
Diffusion v2-1, Stable Diffusion v2-1-base, and Stable Diffusion v1-5. Note that MetaCloak lever-
ages the latter two models for the curricular ensembling and does not use the first model for crafting
perturbation. As shown in Tab. 2, despite not being specifically trained on the v2-1, MetaCloak can
still effectively degrade the performance of DreamBooth using this architecture, demonstrating the
transferability of MetaCloak across architectures. More results can be found in the App. C.

Settings Models SDS ↓ IMS-CLIP ↓ IMS-VGGNet ↓ CLIP-IQA ↓ CLIP-IQA-C ↓

Standard
Training

SD21base 0.068 0.581 -0.299 0.360 -0.520
SD21 0.182 0.703 -0.036 0.283 -0.388

SDv1-5 0.329 0.686 0.098 0.531 -0.400

Trans.
Training

SD21base 0.486 0.668 -0.277 0.534 -0.252
SD21 0.767 0.713 0.001 0.410 -0.203

SDv1-5 0.714 0.700 0.235 0.645 -0.059

Table 2: Effectiveness of MetaCloak across different diffusion architectures. Stable Diffusion v1-5,
v2-1-base, and v2-1 are abbreviated as SDv1-5, SD21base, and SD21 respectively.

Effectiveness under online training-as-services scenario. To test the effectiveness of our frame-
work in the wild, we conduct experiments under online training-as-service settings. Unlike local
training, attacking online training services is more challenging due to the limited knowledge of the
data processing phase, e.g., techniques like SwinIR (Liang et al., 2021) and CLIPSeg (Lüddecke
& Ecker, 2022) are usually applied to the uploaded images for better Dreambooth training perfor-
mance. We showcase the performance of our method under such online training settings on the two
kinds of fine-tuning scenarios of DreamBooth, including full fine-tuning (Full-FT) and LoRA-fine-
tuning (LoRA-FT). We sample a few instances from VGGFace2 and upload its clean and poisoned
images to Replicate (2023) for DreamBooth training. From the results in Fig. 2, we can see that
MetaCloak achieves significant data protection performance under the Full-FT setting; for instance,
it successfully degrades the SDS from 98.9% to 21.8%. Furthermore, under the LoRA-FT setting,
MetaCloak can still effectively degrade the personalized generation performance of DreamBooth,
but the degradation is not as significant as the Full-FT setting. We conjecture that this is because the
LoRA-FT setting only fine-tunes a few additional layers of the model, which might be less likely
to overfit and, thus, more robust to the perturbation. However, MetaCloak can still lead to some
artifacts in the LoRA-FT setting, as shown in more visualization in Fig. 3 in the App. C.1. These
results demonstrate that MetaCloak can seriously threaten Dreambooth’s online training services.

5.3 RESISTANCE OF METACLOAK UNDER ADVERSARIAL PURIFICATIONS

We consider three more advanced adversarial purification techniques, including JPEG compression
(Liu et al., 2019), super-resolution transformation (SR) (Mustafa et al., 2020), and image recon-
struction based on total-variation minimization (TVM) (Wang et al., 2020). We follow the setting
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of Liang et al. (2023) and use a quality factor of 75 for the JPEG defense and a scale factor of 4
for the SR defense. For each image, we first conduct image resizing with a scale factor of 1/4 and
then use the SR model to reconstruct the image. For the TVM defense, we resize the image to a
size of 64x64 for computation feasibility. Then, we use the TVM model to reconstruct the image
following two super-resolution and one resize processes to align the image size with the original
image. As shown in Tab. 3, all the considered defenses can degrade the data protection performance
of MetaCloak to some extent. Compared to the JPEG defenses, SR and TVM defenses are more
effective in purifying the adversarial perturbation while maintaining the image quality. However,
these defenses both introduce some artifacts or certain semantic distortions to the image and can’t
retain the original generation ability of DreamBooth. See App. C.2 for more results.

Setting Defenses SDS ↑ IMS-CLIP ↑ IMS-VGGNet ↑ CLIP-IQA ↑ CLIP-IQA-C ↑

Standard
Training

× 0.068 0.581 -0.299 0.360 -0.520
+SR 0.747 0.677 0.375 0.685 0.061

+TVM 0.798 0.652 0.333 0.733 0.091
+JPEG 0.485 0.659 -0.093 0.584 -0.282
Oracle* 0.958 0.781 0.314 0.818 0.397

Trans.
Training

× 0.486 0.668 -0.277 0.534 -0.252
+SR 0.739 0.671 0.206 0.578 -0.074

+TVM 0.554 0.607 0.255 0.607 -0.124
+JPEG 0.535 0.655 -0.193 0.562 -0.283
Oracle* 0.934 0.756 0.299 0.750 0.286

Table 3: Resilience of MetaCloak under more advanced adversarial purifications. JPEG compres-
sion, Super-resolution (SR), and Total-variation minimization (TVM) are considered. Oracle* de-
notes the performance of Dreambooth trained on clean data.

5.4 ABLATION STUDY OF METACLOAK

Table 4: Ablation study on the proposed components in
MetaCloak. The 2nd to 4th rows are the ablated versions.
C.E. denotes the curricular ensembling technique.

Ablation SDS ↓ IMS-CLIP ↓ IMS-VGGNet ↓ CLIP-IQA ↓ CLIP-IQA-C ↓

MetaCloak 0.486 0.668 -0.277 0.534 -0.252
× K-step 0.603 (+0.117) 0.698 (+0.030) -0.010 (+0.267) 0.417 (-0.117) -0.303 (-0.051)
× C.E. 0.564 (+0.078) 0.692 (+0.024) -0.063 (+0.214) 0.513 (-0.021) -0.266 (-0.014)
× EOT 0.846 (+0.360) 0.749 (+0.081) 0.256 (+0.533) 0.623 (+0.089) -0.273 (-0.021)

To study the effectiveness of differ-
ent components of MetaCloak, we
conduct ablation studies on the VG-
GFace2 dataset. For the ablated ver-
sion of removing curricular ensem-
bling, we remove the step of collect-
ing different initial surrogated models
and just alternatively train surrogate
and perturbation following Le et al.
(2023). The results are shown in Tab. 4. From the table, we can see that all the components of
MetaCloak contribute to the effectiveness of the framework. Specifically, in terms of SDS, and IMS
scores, all the proposed modules can degrade the personalized generation performance of Dream-
Booth. Among them, EOT contributes the most to the effectiveness of MetaCloak, followed by
the k-step unrolling and the curricular ensembling. Furthermore, removing the proposed modules
individually seems to increase the image graphical quality of the generated images, indicating the
necessity of combining different modules of MetaCloak for better image quality degradation. These
results demonstrate that the proposed modules complement each other and can effectively degrade
DreamBooth’s personalized generation ability.

6 CONLUSION

This paper proposes MetaCloak, the first work that protects user images from unauthorized subject-
driven text-to-image synthesis under data transformation defenses. MetaCloak resolves the limi-
tations of existing works in sub-optimal optimization and fragility to data transformations with a
novel meta-learning framework and transformation-robust perturbation crafting process. Extensive
experiments demonstrate that the effectiveness of MetaCloak can effectively degrade the person-
alized generation performance of DreamBooth under various settings. MetaCloak is practical and
can be applied to fool black-box online training-as-service platforms. An important future direction
is to establish the theoretical foundations for the effectiveness of MetaCloak. Another interesting
direction is to design more efficient, transformation-robust perturbation generation methods.
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Timo Lüddecke and Alexander Ecker. Image segmentation using text and image prompts. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7086–7096, June 2022.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. To-
wards deep learning models resistant to adversarial attacks. In International Conference on Learn-
ing Representations, 2018. URL https://openreview.net/forum?id=rJzIBfZAb.

Fabio Valerio Massoli, Giuseppe Amato, and Fabrizio Falchi. Cross-resolution learning for face
recognition. Image and Vision Computing, 99:103927, jul 2020. doi: 10.1016/j.imavis.2020.
103927. URL https://doi.org/10.1016%2Fj.imavis.2020.103927.

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
ment in the spatial domain. IEEE Transactions on Image Processing, 21(12):4695–4708, 2012a.
doi: 10.1109/TIP.2012.2214050.

Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
ment in the spatial domain. IEEE Transactions on Image Processing, 21(12):4695–4708, 2012b.

Aamir Mustafa, Salman H. Khan, Munawar Hayat, Jianbing Shen, and Ling Shao. Image super-
resolution as a defense against adversarial attacks. IEEE Transactions on Image Processing, 29:
1711–1724, 2020. doi: 10.1109/tip.2019.2940533. URL https://doi.org/10.1109%
2Ftip.2019.2940533.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Replicate. Replicate, 2023. URL https://replicate.com/.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022a.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models, 2022b.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation, 2023.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kam-
yar Seyed Ghasemipour, Raphael Gontijo-Lopes, Burcu Karagol Ayan, Tim Salimans, Jonathan
Ho, David J. Fleet, and Mohammad Norouzi. Photorealistic text-to-image diffusion mod-
els with deep language understanding. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=08Yk-n5l2Al.

Sefik Ilkin Serengil and Alper Ozpinar. Hyperextended lightface: A facial attribute analysis frame-
work. In 2021 International Conference on Engineering and Emerging Technologies (ICEET),
pp. 1–4. IEEE, 2021. doi: 10.1109/ICEET53442.2021.9659697. URL https://doi.org/
10.1109/ICEET53442.2021.9659697.

Yujun Shi, Chuhui Xue, Jiachun Pan, Wenqing Zhang, Vincent Y. F. Tan, and Song Bai. Dragdiffu-
sion: Harnessing diffusion models for interactive point-based image editing, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021.

11

https://openreview.net/forum?id=rJzIBfZAb
https://doi.org/10.1016%2Fj.imavis.2020.103927
https://doi.org/10.1109%2Ftip.2019.2940533
https://doi.org/10.1109%2Ftip.2019.2940533
https://replicate.com/
https://openreview.net/forum?id=08Yk-n5l2Al
https://doi.org/10.1109/ICEET53442.2021.9659697
https://doi.org/10.1109/ICEET53442.2021.9659697


Under review as a conference paper at ICLR 2024

Patrick von Platen, Suraj Patil, Anton Lozhkov, Pedro Cuenca, Nathan Lambert, Kashif Rasul,
Mishig Davaadorj, and Thomas Wolf. Diffusers: State-of-the-art diffusion models. https:
//github.com/huggingface/diffusers, 2022.

Bao Wang, Alex T. Lin, Wei Zhu, Penghang Yin, Andrea L. Bertozzi, and Stanley J. Osher. Adver-
sarial defense via data dependent activation function and total variation minimization, 2020.

Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
of images. In AAAI, 2023.

12

https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers


Under review as a conference paper at ICLR 2024

A EXPERIMENT DETAILS

A.1 HARDWARE AND DREAMBOOTH TRAINING DETAILS

All the experiments are conducted on an Ubuntu 20.04.6 LTS (focal) environment with 503GB
RAM, 10 GPUs (NVIDIA® RTX® A5000 24GB) and 32 CPU cores (Intel® Xeon® Silver 4314
CPU @ 2.40GHz). Python 3.10.12 and Pytorch 1.13 are used for all the implementations. For
the DreamBooth full trianing mode, we use the 8-bit Adam optimizer (Kingma & Ba, 2017) with
β1 = 0.9 and β2 = 0.999 under bfloat16-mixed precision and enable the xformers for memory-
efficient training. For calculating prior loss, we use 200 images generated from Stable Diffusion
v2-1-base with the class prompt “a photo of a person”. The weight for prior loss is set to 1. For
instance prompt, we use “a photo of sks person”. During the curricular ensembling, we regularly
delete the temporary models and store the surrogates back to cpu to save GPU memory. It takes
about 4 GPU hours to craft perturbations for an instance under this strategy.

B BASELINE METHODS AND METRICS

B.1 EVALUATION METRICS

We describe more detailedly on the evaluation metrics used in our experiments in this section. For
calculating SDS and IMS-VGGNet, we leverage the apis for face recognition and face embedding
extraction in the deep face library Serengil & Ozpinar (2021). In terms of graphical quality, we
found that the commonly used metric, BRISQUE Mittal et al. (2012b) is not a faithful metric when
we conduct additional data transformations like Gaussian filtering. We thus omit this score when
presenting results in the main text. For instance, the BRISQUE score of a fully poisoned Dream-
booth is better than the clean one, as shown in Tab. 7. Among all the considered metrics, we found
that SDS and IMS-VGGNet are more aligned with our perception of evaluating the personalized
generation performance of Dreambooth. The SDS score indicates whether a subject is presented
in the generated image, while the IMS-VGGNet score measures the similarity between the gener-
ated image and the subject. Compared to graphical distortion, semantic distortion is more important
when the user wants to prevent the unauthorized generation of their images. In terms of these two
metrics, MetaCloak achieves the best performance among all the considered baselines.

C MORE EXPERIMENTS RESULTS

C.1 TRAINING DREAMBOOTH ON REPLICATE

We test the effectiveness of MetaCloak in the wild by training DreamBooth on the Replicate platform
(Replicate, 2023). The Replicate platform is an online training-as-service platform that allows users
to upload their own images and train DreamBooth on them. The generated image of the trained
DreamBooth is shown in Fig. 3. As we can see, MetaCloak can effectively degrade the personalized
generation performance of DreamBooth under this setting. More visualizations are in the App.
C.1. As can be seen, MetaCloak can effectively degrade the personalized generation performance
of DreamBooth under both Full-FT and LoRA-FT settings. This demonstrates that MetaCloak can
seriously threaten Dreambooth’s online training services.

Training Setting SDS IMS-CLIP IMS-VGGNet CLIP-IQA CLIP-IQA-C

Full-FT on clean images 0.989 ± 0.012 0.824 ± 0.088 0.674 ± 0.099 0.864 ± 0.045 0.349 ± 0.075
Full-FT on poisons 0.218 ± 0.388 0.640 ± 0.120 -0.337 ± 0.518 0.457 ± 0.059 -0.505 ± 0.187

LoRA-FT on clean images 0.999 ± 0.000 0.805 ± 0.010 0.721 ± 0.003 0.641 ± 0.125 0.028 ± 0.143
LoRA-FT on poisons 0.947 ± 0.002 0.747 ± 0.030 0.052 ± 0.216 0.643 ± 0.061 0.065 ± 0.069

Table 5: Results of DreamBooth training on Replicate. Full-FT denotes the full fine-tuning setting,
and LoRA-FT denotes the LoRA-fine-tuning setting.
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Clean Ref. Training on clean images Training on poisoned images

Figure 3: Effectiveness of our method in the wild. Dreambooth training on the replicate platform
under two training settings, including full fine-tuning and LoRA-based fine-tuning.

C.2 MORE RESULTS ON ADVERSARIAL PURIFICATION

The DreamBooth trained on data purificated by JPEG compression, SR, and TVM are shown in Fig.
4. As we can see, SR defense is the only one that can effectively purify the adversarial perturbation
while maintaining the image quality. Compared to SR defense, TVM defense distorts the face
significantly, and JPEG defense introduces some artifacts to the image. These results demonstrate
that MetaCloak can effectively degrade the personalized generation performance of DreamBooth
under more advanced adversarial purifications.

C.3 EFFECTIVENESS UNDER DIFFERENT RADII

To study the effectiveness of MetaCloak under different radii, we conduct experiments with differ-
ent radii from {8/255, 11/255, 16/255} under the advanced training setting. As shown in Tab 6,
increasing the radius can effectively improve the effectiveness of MetaCloak. However, when the
radius is too large, the stealthiness of injected noise will also be compromised since some specific
noise patterns will overwhelm the image content as shown in Fig. 1. We think that the study of how
to further improve the stealthiness of MetaCloak under large radii is an important future direction.

Radius BRISQUE SDS IMS-CLIP IMS-VGGNet CLIP-IQA CLIP-IQA-C

Clean 10.680 ± 6.785 0.915 ± 0.076 0.816 ± 0.038 0.563 ± 0.227 0.905 ± 0.018 0.538 ± 0.208
8/255 14.041 ± 1.455 0.613 ± 0.176 0.684 ± 0.082 -0.120 ± 0.581 0.487 ± 0.079 -0.265 ± 0.107

11/255 15.628 ± 1.956 0.571 ± 0.191 0.672 ± 0.105 -0.200 ± 0.612 0.522 ± 0.128 -0.285 ± 0.130
16/255 16.981 ± 2.693 0.471 ± 0.227 0.679 ± 0.064 -0.039 ± 0.590 0.374 ± 0.079 -0.370 ± 0.187

Table 6: Performance of MetaCloak under Trans. training setting with different perturbation radii.

C.4 RESILIANCE UNDER LOW POISONING RATE

To study the effectiveness of MetaCloak under low poisoning rates, we conduct experiments with
different poisoning rates from {0%, 25%, 50%, 75%, 100%} under the two training settings. As
shown in Tab 7, increasing the poisoning rate can effectively improve the effectiveness of Meta-
Cloak. However, when the poisoning rate is too low, the effectiveness of MetaCloak will be com-
promised since there is some knowledge leakage. How to further improve the effectiveness of Meta-
Cloak under low poisoning rates is an important future direction.

C.5 RESISTANCE UNDER LORA-FINE-TUNING

LoRA fine-tuning is now a common way for fine-tuning the DreamBooth, considering its efficiency
in terms of training time and training memory. Furthermore, we study this fine-tuning paradigm
due to its potential defense effect against MetaCloak. Since LoRA only adds some adaptors with
a few parameters to the model, thus might be less likely to overfit certain brittle patterns on the
subject images compared to the full training mode. We consider LoRA fine-tuning with different
dimensions of the LoRA update matrices from {2, 8, 16}. As shown in Tab 8, MetaCloak can still
effectively degrade the performance of DreamBooth under this fine-tuning paradigm.
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Defenses A dslr portrait of sks person

JPEG

SR Defense

TVM Defense

Figure 4: Visualizations of generated images of Dreambooth trained with various adversarial purifi-
cations under Trans. training setting.

r = 0 4/255 8/255 16/255 32/255

Figure 5: Visualization of perturbed images from VGGFace2 under different attack radii.

r A dslr portrait of sks person

r = 8/255

r = 16/255

Figure 6: Performance of MetaCloak under different perturbation radii under Trans. training setting.
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Setting Portion (clean/poison) BRISQUE SDS IMS-CLIP IMS-VGGNet CLIP-IQA CLIP-IQA-C

Standard Training

Clean 14.610 ± 4.560 0.958 ± 0.060 0.781 ± 0.072 0.314 ± 0.427 0.818 ± 0.045 0.397 ± 0.113
Mostly Clean(3/1) 14.700 ± 10.405 0.928 ± 0.047 0.785 ± 0.042 0.460 ± 0.325 0.799 ± 0.109 0.410 ± 0.203
Half-and-half (2/2) 16.123 ± 9.162 0.897 ± 0.103 0.785 ± 0.029 0.362 ± 0.315 0.733 ± 0.093 0.267 ± 0.191
Mostly Poison(1/3) 17.801 ± 5.931 0.794 ± 0.121 0.761 ± 0.063 0.225 ± 0.468 0.670 ± 0.061 0.113 ± 0.110
Fully poisoned (4/0) 19.868 ± 2.051 0.068 ± 0.116 0.581 ± 0.044 -0.299 ± 0.640 0.360 ± 0.085 -0.520 ± 0.119

Trans. Training

Clean 19.063 ± 4.070 0.934 ± 0.092 0.756 ± 0.104 0.299 ± 0.357 0.750 ± 0.083 0.286 ± 0.042
Mostly Clean(3/1) 24.385 ± 9.997 0.911 ± 0.077 0.794 ± 0.044 0.474 ± 0.216 0.763 ± 0.068 0.346 ± 0.129
Half-and-half (2/2) 25.809 ± 0.996 0.840 ± 0.062 0.769 ± 0.049 0.424 ± 0.194 0.715 ± 0.122 0.305 ± 0.247
Mostly Poison(1/3) 23.588 ± 5.067 0.655 ± 0.299 0.728 ± 0.070 0.197 ± 0.499 0.592 ± 0.146 0.066 ± 0.312
Fully poisoned (4/0) 12.982 ± 0.935 0.486 ± 0.156 0.668 ± 0.079 -0.277 ± 0.636 0.534 ± 0.058 -0.252 ± 0.030

Table 7: Performance of MetaCloak under low poisoning rate. The number in the portion column
denotes the portion of clean images in the training set.

Settings #LoRA BRISQUE SDS IMS-CLIP IMS-VGGNet CLIP-IQA CLIP-IQA-C

Clean
2 21.352 ± 4.528 0.509 ± 0.106 0.699 ± 0.085 0.037 ± 0.741 0.662 ± 0.029 -0.207 ± 0.163
8 19.600 ± 1.248 0.917 ± 0.018 0.729 ± 0.077 0.262 ± 0.523 0.657 ± 0.031 -0.086 ± 0.377
16 17.772 ± 5.189 0.710 ± 0.125 0.667 ± 0.059 -0.198 ± 0.724 0.621 ± 0.071 -0.268 ± 0.112

Std. Training
2 19.512 ± 3.230 0.136 ± 0.176 0.686 ± 0.054 0.156 ± 0.748 0.566 ± 0.090 -0.491 ± 0.082
8 21.615 ± 4.702 0.192 ± 0.323 0.658 ± 0.068 0.113 ± 0.754 0.579 ± 0.060 -0.505 ± 0.050
16 18.499 ± 3.068 0.238 ± 0.244 0.678 ± 0.026 0.120 ± 0.763 0.527 ± 0.121 -0.433 ± 0.051

Trans. Training
2 18.891 ± 2.533 0.761 ± 0.183 0.708 ± 0.078 0.151 ± 0.498 0.551 ± 0.072 -0.207 ± 0.200
8 18.174 ± 3.045 0.934 ± 0.030 0.677 ± 0.092 -0.138 ± 0.595 0.589 ± 0.034 -0.212 ± 0.161
16 17.792 ± 1.628 0.792 ± 0.219 0.678 ± 0.067 0.002 ± 0.563 0.588 ± 0.102 -0.254 ± 0.159

Table 8: Performance of MetaCloak under LoRA-FT setting. The number in the model column
denotes the dimension of the LoRA update matrices.

Clean ASPL E-ASPL T-ASPL FSMG AdvDM MetaCloak

Figure 7: Visualization of Dreambooth’s generated images on VGGFace2. DreamBooths are trained
on data perturbed by different methods under Trans. training. The first column denotes the Dream-
booth trained on clean data. The inferring prompt is “A photo of sks person”.
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