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ABSTRACT

Multi-domain graph pre-training integrates knowledge from diverse domains to
enhance performance in the target domains, which is crucial for building graph
foundation models. Despite initial success, existing solutions often fall short of
answering a fundamental question: how is knowledge integrated or transferred
across domains? This theoretical limitation motivates us to rethink the consis-
tency and transferability between model pre-training and domain adaptation. In
this paper, we propose a fresh differential geometry perspective, whose core idea is
to merge any graph dataset into a unified, smooth Riemannian manifold, enabling
a systematic understanding of knowledge integration and transfer. To achieve this,
our key contribution is the theoretical establishment of neural manifold gluing,
which first characterizes local geometry using an adaptive orthogonal frame and
then “glues” the local pieces together into a coherent whole. Building on this the-
ory, we present the GRAPHGLUE framework, which supports batched pre-training
with EMA prototyping and provides a transferability measure based on geometric
consistence. Extensive experiments demonstrate its superior performance across
diverse graph domains. Moreover, we empirically validated GRAPHGLUE’s ge-
ometric scaling law, showing that larger quantities of datasets improve model
transferability by producing a smoother manifold. Codes are available. https:
//anonymous.4open.science/r/GraphGlue-DBD8

1 INTRODUCTION

Foundation models have revolutionized the representation learning in natural language processing
Bommasani et al. (2021); Brown et al. (2020); Devlin et al. (2019) and computer vision Dosovit-
skiy et al. (2020) by integrating multi-domain knowledge during pre-training and transferring it to
target domains. Graph-structured data are ubiquitous non-Euclidean structures in real-world appli-
cations, ranging from social network analysis Zhou et al. (2020); Sharma et al. (2024) to molecular
design Guo et al. (2022); Wang et al. (2023). Hence, recent efforts have been made to replicate
the success of the foundation model in the field of graphs, achieving multi-domain pre-training and
cross-domain transfer learning for graphs.

Multi-domain graph pre-training is challenging given the significant semantic heterogeneity across
different domains, such as social networks and biological molecules. In the literature, one line of
work extracts multi-domain knowledge via Large Language Models (LLMs), leveraging the well-
pretrained textual semantics but remaining limited to text-attributed graphs Zhu et al. (2025); Xia
et al. (2024); Tang et al. (2024); Ren et al. (2024); Chen et al. (2024). However, many real graphs
lack explicit textual attributes. Moreover, textual annotation is labor-intensive and may introduce
hallucinations through LLM generation.

Rather than being tied to textual information, multi-domain pre-training for text-free graphs has gar-
nered increasing attention recently. A series of methods seek to learn shared or invariant knowledge
during pre-training using graph codebooks Wang et al. (2024); Sun et al. (2025); Jiang et al. (2024);
Bo et al. (2025), motifs Sun et al. (2025), computation trees Wang et al. (2024; 2025c), etc. Mean-
while, advanced adaptation techniques are introduced to improve the downstream tasks, e.g., domain
tokens Yu et al. (2025a); Jiao et al. (2025); Yuan et al. (2025); Wang et al. (2025a) and in-context
learning Huang et al. (2023); Liu et al. (2024). While existing solutions have achieved encouraging
results, a fundamental question remains inadequately addressed: how is knowledge integrated or
transferred across domains? The theoretical underpinnings in this context remain underexplored.
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Though Wang et al. (2024); Zhang et al. (2024); Ruiz et al. (2020) give similarity measures across
different domains, they do not frame model pre-training and domain adaptation within a consistent
framework. This gap limits its ability to assess transfer difficulty, especially for the unseen graphs.
Thus, we are motivated to rethink the consistency and transferability to target domains.
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Figure 1: An illustration of manifold gluing. The
domains are distinguished by colors.

In this paper, we propose a fresh differential
geometry perspective, whose core is the in-
tegration of any graph dataset into a unified,
smooth Riemannian manifold, providing a
rigorous foundation for systematically analyz-
ing knowledge integration and transfer. To
achieve this, we introduce a new theory – neu-
ral manifold gluing, whose intuitive idea is
to first characterize the local geometry, and
then “glue” these local pieces together into a
coherent whole. Specifically, we propose a
sparse perturbation and an adaptive orthogo-
nal frame to learn the local geometry. Gluing
local pieces is achieved through metric com-
patibility along the edges (Theorem 4.5) and
triangle triviality with respect to the concept of
holonomy (Theorem 4.8). Finally, we smooth
the manifold by controlling the change ratio of
volume elements (Theorem 4.9), enhancing knowledge transport along the manifold.

Building on the theory established above, we design a pre-training-adaptation framework named
GRAPHGLUE, which extends local geometry to the global scale. During pre-training, we incorpo-
rate an Exponential Moving Average (EMA) prototyping before gluing, which distinguishes domain
semantics through different locations on the manifold and efficiently handles large-scale graphs in a
batched manner. In the adaptation phase, GRAPHGLUE employs learnable prompts and a Rieman-
nian Mixture-of-Experts, while gluing target domains to the pre-trained manifold, ensuring geomet-
ric consistency. A Geometric Transfer Metric (GTM) is naturally defined by metric compatibility
to quantify transfer difficulty. Moreover, GRAPHGLUE exhibits a geometric scaling law: larger
quantities of graph datasets produce a smoother manifold, thereby improving model transferability.

In summary, key contributions are listed as follows. 1. Problem. We investigate the theoretical
underpinnings of multi-domain graph pre-training, and study a foundational problem of how knowl-
edge is integrated and transferred across different domains. 2. Theory. We introduce a fresh differ-
ential geometry perspective for systematically understanding knowledge transfer, and propose the
theory of neural manifold gluing, which consistently integrates multi-domain graphs into a unified,
smooth Riemannian manifold via “gluing”. 3. Methodology. We propose a GRAPHGLUE frame-
work based on the above theory, which supports batched pre-training for large-scale graphs and in-
corporates a natural metric to quantify its transferability. 4. Experiment. We evaluate GRAPHGLUE
in cross-domain transfer learning and empirically demonstrate its geometric scaling law.

2 RELATED WORK

Graph Foundation Models Graph Foundation Models (GFMs) aim to provide pre-trainable,
general-purpose deep learning architectures for graphs Wang et al. (2025b); Liu et al. (2025). Re-
cently, the capabilities of Large Language Models (LLMs) have extended to text-attributed graphs
Zhu et al. (2025); Xia et al. (2024); Tang et al. (2024); Ren et al. (2024); Chen et al. (2024). Also,
GFMs have been developed for various specialized domains, such as knowledge graphs Huang et al.
(2025); Luo et al. (2025), recommender systems Wu et al. (2025), and molecular graphs Xia et al.
(2023); Sypetkowski et al. (2024). Given the prevalence of text-free graphs, recent efforts have
focused on building general-purpose models via multi-domain pre-training Zhao et al. (2025).
Multi-domain Graph Pre-training In graph pre-training, Graph Neural Networks (GNNs) are
trained by self-supervised learning—either generative Hou et al. (2022) or contrastive Veličković
et al. (2019); Qiu et al. (2020). In light of the semantic heterogeneity across different domains,
several methods have been proposed to learn shared or invariant knowledge Yuan et al. (2025);
Chen et al. (2025); Wang et al. (2025a). Despite the encouraging results, the theoretical foundations
of how knowledge is integrated and transferred remain underexplored.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Graph Fine-tuning and Prompt Learning The alignment of pre-trained models with down-
stream tasks necessitates an adaptation phase, which is roughly categorized into two paradigms:
1) Graph fine-tuning adapts the model behavior using limited target-domain data Sun et al. (2024),
and recent advances introduce parameter-efficient fine-tuning methods such as low-rank adaptation
Yang et al. (2025b). 2) Graph prompting keeps pre-trained parameters frozen and enhances perfor-
mance by inserting learnable prompt vectors Yu et al. (2025a); Liu et al. (2023); Sun et al. (2022);
Fang et al. (2023). Yet, how to quantify the transfer effort to target domains remains an open issue.

Riemannian Graph Representation Learning Most existing Riemannian models are tailored to
specific tasks Chami et al. (2019); Grover et al. (2025); Bachmann et al. (2020); Gu et al. (2019).
Recently, Sun et al. (2025) design a new GNN backbone on the product manifold for GFM. In con-
trast, our focus lies on developing a framework for multi-domain pre-training, and on constructing
a general manifold, rather specific ones. (Full related work is provided in Appendix E.)

3 NOTATIONS AND PRELIMINARIES

This part briefly reviews the key concepts of Riemannian manifold, frame and holonomy, and then
states multi-domain pre-training where we reconsider its consistency and transferability from a fresh
differential geometry perspective. Important notations are summarized in Appendix A.

Riemannian Geometry Riemannian geometry provides an elegant framework for studying graphs
and structures. A Riemannian manifold (M,G) with dimension M is a smooth manifold M en-
dowed with a Riemannian metric tensor G. Each point p ∈ M ties to a tangent space TpM, and
its volume element is the determinant of the Riemannian metric tensor, denoted as |G(p)|. The
coordinate chart of tangent space is denoted as (U, x1, ..., xM ). Ricci curvature Ric(X,Y ) governs
the change ratio of volume elements along the geodesic. The concept of holonomy describes the
changes of a tangent vector traversing a closed curve. Rigorous elaborations are in Appendix C.

Cartan’s Method of Moving Frame This renowned method Tron et al. (2024) offers a principled
way to study manifold geometry with a frame. Though Élie Cartan laid the mathematical principle,
its deep learning methodology remains largely unexplored. Our work seeks to bridge this gap.

Multi-domain Graph Pre-training In this context, a deep learning architecture is first pre-trained
on different source domains and then adapted to a target domain. A graph is described as G = (V, E)
with a feature matrix X ∈ R|V|×F , where V and E denote the node set and edge set, respectively. We
consider a collection of K graphs S = {S1,S2, · · · ,SK} from L domains D = {D1,D2, · · · ,DL}.
A model fΘ(GNN(·)) is pre-trained on the graph dataset G with an encoder GNN(·), after which
the pre-trained parameters {Θ⋆

f ,Θ
⋆
GNN} are frozen. The encoder is implemented with popular graph

neural networks such as GCN Kipf & Welling (2017). Given a graph Gt of the target domain Dt,
the pre-trained model can generate informative representations for Gt with slight adaptation. Note
that the target domain can be seen Dt ∈ D or unseen Dt /∈ D during pre-training. Unlike existing
solutions, our goal is to design a transferable graph model with a principled interpretation.

4 THEORY: CONSTRUCTING A UNIFIED, SMOOTH MANIFOLD

Existing solutions often lack a principled framework to interpret how knowledge is integrated or
transferred across domains. To fill this gap, we introduce a differential geometry perspective for
multi-domain graph pre-training. The core of our approach is the construction of a pre-trainable,
unified, and smooth Riemannian manifold, which provides a rigorous foundation for systemati-
cally analyzing knowledge integration and transfer. In the literature, Riemannian graph representa-
tion learning primarily studies the specific manifolds, e.g., hyperbolic spaces Chami et al. (2019);
Yang et al. (2025a), spherical spaces Liu et al. (2022), and product manifolds Gu et al. (2019).
However, constructing a general manifold underlying multi-domain graphs remains unexplored.

To achieve this, we establish a novel theory – neural manifold gluing, whose intuitive idea is to first
characterize the local geometry, and then “glue” these local pieces together to form a unified, smooth
Riemannian manifold. Derivations and proofs of our establishment are provided in Appendix B.

4.1 LEARNING LOCAL GEOMETRY WITH ADAPTIVE ORTHOGONAL FRAME

In a Riemannian manifold, the local geometry at a given point is characterized by its tangent space.
Going beyond the classic Cartan’s method Tron et al. (2024), we present a deep learning approach

3
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to infer the basis of the tangent space. Specifically, we introduce a (k,M)-sparse perturbation,
mimicking the directional derivative Dvf = limt→0

f(p+tv)−f(p)
t , to generate a set of tangent

vectors at the given point, after which an adaptive orthogonal frame is applied to form the basis of the
tangent space. Note that the perturbation is attached with a parametric fGNN in our establishment.
Definition 4.1 ((k,M)-sparse perturbation). Given a graph perturbation set that consists of M
nodes P = {pi} with parameters {pi}, for G = (V, E), the perturbed graph is denoted as Ĝ =

(V̂, Ê) := G⊕P =
(
V ∪ {pm}Mm=1, E ∪ {(vim , pm)}k,Mim=1,m=1

)
, where (vi, pm) is a edge weighted

by an attentive function h(xi,pm), vim are k nodes selected based on top-k h(xi,pm).
Definition 4.2 (Adaptive Orthogonal Frame, AOF). With tangent vectors generated by the above
perturbation and a graph encoder fGNN, after QR-decomposition with length recovery, the adaptive
orthogonal frame is {wm : z(i) 7→ w

(i)
m ∈ Rd}Mm=1 for every representation z(i). There exists a

dual frame {θm} such that θm(wl) = δml, where δml is the Kronecker delta.

We show that the aforementioned length recovery of the basis is important, since the length of the
tangent vector, describing the space deformation, is upper-bounded by the perturbation. In fact, the
angles and lengths of the basis vectors reflect how the space is stretched and twisted, respectively.
Theorem 4.3 (Upper bound of Tangent Vector Length, Appendix B.1). Given a connected G
with N nodes, the adjacency matrix A, the Laplacian L, and the feature matrix of perturbation
nodes P , apply (k,M)-sparse perturbation to G, suppose kM

N = ε, where ε > 0 is small, and
added edge weights satisfy

∑
l h(vi, pl) = 1. Then, the upper bound ∥wp

m∥ ≤ (1 + ε)∥P ∥ holds,
where wp

m is the component of wm determined by perturbation.

Thus, the local metric at each point is derived through the basis vectors of its tangent space. In
particular, given the representation of Gi as zi ∈ Rd, the coordinates Ui in a neighborhood around zi,
and the learned dual frame θm, the local metric tensor Gi on Ui takes the form of Gi(w

(i)
m ,w

(i)
l ) =

gml(zi)(θ
m ⊗ θl), where gml(zi) = ⟨w(i)

m ,w
(i)
l ⟩. Equivalently, the matrix form of Gi is written as

Gi = W (i)⊤W (i) = diag(∥w1∥2, ..., ∥wM∥2), (1)

with the basis of tangent space formulated as W (i) = [w
(i)
1 , ...,w

(i)
M ] ∈ Rd×M . The inner product

w.r.t. Gi is given as Gi(u,v) := u⊤Giv for tangent vectors u,v ∈ Tz(i)Ui.

4.2 GLUING LOCAL PIECES TO FORM A SMOOTH MANIFOLD

Given a set of isolated Riemannian manifolds {M(i) = (z(i), Tz(i)Ui,Gi)}Ni=1, we are devoted to
gluing them together to construct a unified, smooth Riemannian manifold with a global metric. In
a nutshell, These local pieces are connected through the edges and triangles with the concept of
holonomy, after which the constructed manifold is smoothed by controlling the Ricci curvature.

Gluing. We begin with the compatibility of metric along edges, which is necessary for the existence
of a global metric. According to Edelsbrunner & Harer; Chung, the gluing boundary can be defined
by the adjacency in graph topology. To preserve compatibility, we perform a tangent translation
along an edge (i, j) ∈ E , referred to as edge tangent translation, to transform the local metrics. We
show that it ensures metric compatibility along an edge, and is proven to induce a global metric. In
addition, its computational complexity is reduced to O(M) with the QR-decomposition above.
Definition 4.4 (Edge Tangent Translation). Given an edge (i, j) ∈ E , the tangent spaces of its
two endpoints Tz(i)Ui and Tz(j)Uj , and the Riemannian metric of Tz(i)Ui denoted as Gi, the edge
tangent translation is defined as a linear map P (i,j) : Tz(i)Ui → Tz(j)Uj on edge (i, j) ∈ E as

P (i,j) = G
−1/2
j

(
G

1/2
j GiG

1/2
j

)1/2

G
−1/2
j . (2)

Theorem 4.5 (Tangent Edge Translation as Isometry, Appendix B.2). The tangent edge transla-
tion in Definition 4.4 is the optimal solution of

minP∈GL(M)

∥∥P⊤GjP −Gi

∥∥2
F
, (3)

where GL denotes the general linear group, such that Gj(P
(i,j)u,P (i,j)v) = Gi(u,v), which

induces an isometry ϕ(i,j) between manifold boundaries ∂Ui and ∂Uj .
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Theorem 4.6 (Existence of Global Metric, Appendix B.3). Let ({Gi}Ni=1, {P (i,j)}(i,j)∈E) be
local metrics and tangent edge translations. There exists a unique global continuous metric G on
(
⋃

ϕ)
N

i=1
Ui such that the restriction of G|Ui

= Gi for all i.

The edge tangent translations connect gluing boundaries in accordance to Theorem 4.5 and 4.6.
However, when gluing along higher-order motifs, such as triangles and cycles, some offsets may
occur when going round trips, so that gluing boundaries are not well aligned. In other words,
although the glued manifold is connected, it is not yet continuous everywhere. To address this issue,
we introduce the concept of holonomy, describing how the tangent vector changes when traversing
along a closed curve, and define a holonomy map to measure the changes. We show that, when the
holonomy map of triangles is trivial, the offset at the gluing boundaries is eliminated.
Definition 4.7 (Holonomy Map and Holonomy Loss). Let Z1(G) denote the real vector space of
1-cycles on graph G = (V, E) under symmetric difference. For any cycle C = (i0, i1, . . . , iL = i0),
its holonomy map is defined as the composition of transport maps along the path,

H(C) :=
∏L−1

ℓ=0
P (iℓ,iℓ+1) ∈ GL(M). (4)

The collection P := {P (i,j)} is said to be trivial if H(C) is the identity map for ∀C ∈ Z1(G). Given
the set of all trianglesAijk = ((vi, vj), (vj , vk)), the corresponding holonomy loss is formulated as

Lholo(G) =
1

|A|
∑

Aijk

∥P (k,i)P (j,k)P (i,j) − I∥2F . (5)

Theorem 4.8 (Triangle Triviality, Appendix B.4). If every edge belongs to at least one triangle,
and H(T ) = I for all triangular cycles T in G, then H(C) = I for all cycles C ∈ Z1(G).

Smoothing. So far, the glued manifold has achieved C1 continuity, but C2 continuity is required
to yield a smooth global metric and to eliminate “fold” that hinders knowledge transport along the
manifold. To bridge this gap, we visit the concept of Ricci curvature, a kind of C2 continuity on
the manifold, which governs the rate of changes of the volume element along the geodesic. Never-
theless, calculating Ricci curvature is rather expensive Petersen (2016); Ollivier (2007). Instead, we
propose an alternative of volume change ratio between two endpoints, which is shown to sufficiently
determine whether the geodesic is “convex” or “concave”.
Theorem 4.9 (Ricci Curvature Estimation, Appendix B.5). Given a graph G = (V, E) and an
edge (i, j) ∈ E , let z(i), z(j) ∈ M be the corresponding embedded points, and γ : [0, 1] → M
be the unit-speed geodesic connecting them, i.e., γ(0) = z(i), γ(1) = z(j). The sign of the Ricci
curvature along γ̇ can be estimated by the ratio of metric determinants:

r(z(i), z(j)) :=
detGi

detGj
≈ 1− 1

3
Ric(γ̇). (6)

Accordingly, the volume element
√
detGi varies smoothly along the path of length k, implying that

the Ricci curvature changes continuously along that path, referred to as Log-Determinant k-order
smoothness. Thus, we can investigate the k-order smoothness with a scalar field of volume element,
and formulate a Ricci curvature loss which encourages the glued manifold to be smooth.
Definition 4.10 (k-order Smoothness and Curvature Loss). Define gi = 1

2 log detGi as a scalar
field over G, representing the logarithmic volume density at node vi. We say the manifold structure
exhibits log-determinant smoothness if g ∈ R|V| minimizes the graph Dirichlet energy: EDir[g] =
∥Lkg∥2, where L is the (normalized) Laplacian of G. In light of computational efficiency in practice,
we define the curvature loss function of 2-order smoothness as follows,

LCurv(G) =
1

|A|
∑

Aijk

| log(rij)− log(rjk)|2 (7)

Geometric Scaling Law Consequently, any graph datasets are merged into a unified, smooth Rie-
mannian manifold, allowing us to study knowledge transfer within the framework of differential
geometry. As the quantities of graphs increase, (F ,G,P) approximates an ideal manifold, and thus
we deduce a geometric scaling law that larger quantities of datasets improve model transferability
with a smoother manifold, which is empirically validated in Sec. 6.2.
Theorem 4.11 (Gluing into a Smooth Manifold, Appendix B.6). For any graph dataset G, if G is
log-determinant ∞-order smooth, and P is trivial with induced metric-preserving diffeomorphism
ϕ, then (F ,G,P) glues to a smooth Riemannian manifold (F ,G), where F = (

⋃
ϕ)

N

i=1
Ui.

5
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Figure 2: An Illustration of GRAPHGLUE Framework.

5 GRAPHGLUE: GEOMETRIC MULTI-DOMAIN GRAPH PRE-TRAINING

Building on our theory of neural manifold gluing, we present a novel pretraining-adaptation frame-
work, GRAPHGLUE, as illustrated in Fig. 2. The pre-training first learns the local geometry and
then glues these local pieces together as introduced in Sec. 4. Moreover, before gluing, an Expo-
nential Moving Average (EMA) prototyping is proposed to distinguish domain semantics through
different locations on the manifold, while enabling batched pre-training to efficiently handle large-
scale graphs. Then, we leverage prompt adaptation and a Riemannian Mixture-of-Experts (MoE),
while gluing the target domain to the pre-trained manifold for geometric consistency. A Geometric
Transfer Metric (GTM) is naturally induced to measure the transfer difficulty. The overall procedure
is summarized in Algorithm 1.

5.1 PRE-TRAINING WITH EMA PROTOTYPING

For multi-domain source graphs S = {S1, ...,SK}, we associate each graph with a Riemannian
prototype, which is given as a tuple of global location and Riemannian metrics, (zSk , logGSk) =(

1
|Sk|

∑
G∈Sk

zG , 1
|Sk|

∑
G∈Sk

logG(zG)
)

. The challenges of Riemannian prototyping are dual:
computation efficiency for large-scale graphs, and semantics distinction across different domains.
To address the first challenge, we develop an EMA for Riemannian prototyping. For each batch, we
perform the following updating rules,

zSk ← βzSk + (1− β)
1

|Bk|
∑

G∈Bk

zG (8)

logGSk ← β logGSk + (1− β)
1

|Bk|
∑

G∈Bk

logG(zG), (9)

where β ∈ (0, 1) is a momentum coefficient, and log means matrix logarithm. This EMA update
ensures that (zSk , logGSk) gradually converge to the stable average value throughout pre-training
Morales-Brotons et al. (2024); Izmailov et al. (2019). Note that the metric matrix belongs to a
symmetric positive-definite manifold, and we utilize the log update, different from the traditional
ones. To address the second challenge, we incorporate a sample-prototype contrastive loss that
encourages graph prototypes to be well separated on the manifold, distinguishing domain semantics.

Lproto(G) = −
1

K

K∑
k=1

log
exp(sim(zG , zSk)/τ)∑K
j=1 exp(sim(zG , zSj )/τ)

. (10)

5.2 CONSISTENT ADAPTATION & QUANTIFIABLE TRANSFERABILITY

GRAPHGLUE employs prompt adaptation and Riemannian MoE to generate representations, while
we emphasize geometric consistency between the pre-trained manifold and target graphs by “glu-
ing”. To be specific, for a target sample GT , we first infer the global coordinates and local
metric through prompting. With the coordinates zT , local metric Gz and basis vectors of the
tangent space W T = [wT

1 , . . . ,wT
M ] given by the pre-trained model, we introduce a learnable

prompt matrix Q ∈ Rd×d. The global coordinates is adapted as zadapt = QzT . Note that the

6
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metric adaptation is challenging owing to the orthogonal requirement of basis vectors. Thus, in-
stead of prompting the pre-trained local metric, we apply the prompt matrix Q to W T , and the
adapted local metric is derived as Gadapt = diag

(
∥QwT

1 ∥2, . . . , ∥QwT
M∥2

)
, where wT are the

basis vectors undergoing the proposed adaptive orthogonal frame. Second, to ensure consistency,
we glue the target sample to the pre-trained Riemannian manifold F , where Riemannian proto-
types are treated as the anchors to align the target. In particular, we construct a transfer graph G0
by connecting the target to its k-nearest prototypes, and apply Lholo(G0) and Lcurv(G0) proposed
in Sec. 4, penalizing non-trivial holonomy and abrupt volume changes, respectively. Third, we
present a Riemmanian MoE where each Riemannian prototype (zSk , logGSk) serves as an ex-
pert and its weight is given by a gating function βk = gk(z

adapt,Gadapt). This MoE generates
logGalign =

∑K
k=1 βk logG

Sk . summarized from the experts. Accordingly, we obtain the final rep-
resentation ztask =

[
zT ; logGadapt; logGalign

]
, where ztask ∈ Rd+2M since logGadapt, logGalign

are both diagonal matrix that can be vectorized. The overall adaptation loss is given as
Ladap = Ltask(ztask;ytask) + λLglue, Lglue = Lholo(G0) + Lcurv(G0), (11)

where λ balances task-specific learning with consistency, and ytask is the label of downstream task.

On Transferability Within the framework of differential geometry, we are able to systematically
analyze knowledge transfer across different domains, and transfer effort of GRAPHGLUE is natu-
rally measured by the geometric compatibility. We introduce Geometric Transfer Metric (GTM)
which is defined as the minimal geometric deformation required to merge the target GT into the
pre-trained manifold F without disrupting its learned local geometry. GTM is computed along with
the adaptation and decomposes into two interpretable components as follows,

GTM(GT ;S) = ∆H +∆C, ∆H = Lholo(G0), ∆C = Lcurv(G0). (12)

1. Holonomy disagreement ∆H . It measures how the holonomy map deviates from identity along
paths connecting the target to its nearest prototype, interpreted as the “twisting” induced by GT .

2. Curvature disagreement ∆C. It is computed as the discrepancy between the volume element√
detGi, indicating the dismatch with respect to Ricci curvature according to Theorem 4.9. The

natural interpretation is given as the “bending” or abrupt change in local volume.

Accordingly, a low GTM means that the target is seamlessly integrated F with trivial deforma-
tion, implying high transferability; in contrast, a high value shows that the target is geometrically
alien, thus requiring significant effort to fit the geometry of F . Different from similarity measures
between source and target domains Wang et al. (2024), GTM examines the geometric consistency
from GRAPHGLUE itself, and provides an interpretable assessment of transfer difficulty.

Further Insight The generalization error is related to the smoothness of the model objective
Bartlett et al. (2017); Scaman & Virmaux (2018). In fact, GRAPHGLUE controls the smoothness
by inducing a smooth global metric. Specifically, Lholo guarantees the topological continuity of glu-
ing boundaries, while Lcurv achieves k-order smooth by log-determinant smoothness in Definition
4.10, similar to Czarnecki et al. (2017). The complexity analysis is provided in Appendix D.2, D.3.

6 EXPERIMENTS

We conduct experiments on six representative domains to evaluate cross-domain transfer learning
performance. Also, we examine the transferability measure (GTM), geometric scaling law, the effect
of incorporating graphs of distinct semantics, and the geometric interpretation. Ablation study,
hyperparameter sensitivity and performance on heterophilic graphs are in Appendix G.2, G.3, G.4.

6.1 EXPERIMENTAL SETUPS

Datasets & Baselines We carefully select 6 representative benchmark datasets, covering various
domains: an academic citation network Arxiv, a product co-purchase graph Computers, a social
network Reddit, a knowledge graph FB15k 237, and benchmarks on bioinformatics PROTEINS
and chemoinformatics HIV. We compare GRAPHGLUE against baselines from 3 main categories:
(1) Supervised GNNs: GCN Kipf & Welling (2017), GraphSAGE Hamilton et al. (2017), and GIN
Xu et al. (2019). (2) Self-Supervised GNNs: DGI Veličković et al. (2019), GraphMAE Hou et al.
(2022), and GCC Qiu et al. (2020). (3) Graph Foundation Models: PRODIG Huang et al. (2023),
GFT Wang et al. (2024), RAGraph Jiang et al. (2024), SAMGPT Yu et al. (2025a), GCOPE Zhao
et al. (2024), and MDGFM Wang et al. (2025a). Detailed descriptions are specified in Appendix F.
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Table 1: Performance of cross-domain transfer on various downstream tasks, reported as mean ±
std over 10 runs. The highest result is bolded, and the runner-up is underlined.

Model

Node Classification Link Classification Graph Classification

Arxiv Computers Reddit FB15k 237 PROTEINS

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

GCN 12.6±1.7 27.6±2.1 33.8±3.8 65.7±4.2 11.1±2.1 28.3±1.0 32.1±2.3 52.4±1.8 50.1±13.0 55.0±9.9

GraphSAGE 14.6±3.7 26.1±2.2 35.4±8.2 66.7±4.4 14.6±2.3 22.2±1.1 35.7±2.1 58.9±1.5 58.9±2.7 60.4±1.3

GIN 11.2±2.0 26.0±2.4 44.7±6.0 69.5±3.5 18.5±1.8 29.0±1.6 38.2±2.5 63.7±1.7 54.2±13.5 58.8±5.0

GCC 12.6±2.0 26.8±2.1 34.8±6.1 62.6±3.1 54.7±5.6 65.2±1.5 47.8±1.9 73.6±1.2 59.2±7.9 64.2±3.0

DGI 13.3±3.3 27.1±2.3 35.2±7.5 61.0±3.2 60.0±4.8 62.7±2.2 42.5±2.0 68.3±1.4 53.1±8.4 53.3±6.2

GraphMAE 12.6±1.7 27.6±2.1 33.8±3.8 65.7±4.2 11.1±2.1 28.3±1.0 51.3±1.8 77.2±1.0 60.1±13.0 65.0±9.9

PRODIGY 28.4±2.2 33.6±2.8 45.3±4.1 52.7±3.6 35.6±3.2 42.3±2.9 53.5±1.0 72.1±6.9 48.9±5.4 55.2±4.7

GFT 26.5±2.4 36.7±1.9 54.6±4.0 69.1±3.5 58.8±2.5 66.2±1.4 58.0±1.3 79.1±1.6 55.4±5.8 62.1±3.5

RAGraph 18.7±2.5 32.3±1.7 46.2±4.3 62.3±3.7 52.5±3.4 63.0±1.3 52.1±3.0 64.5±2.5 51.4±5.1 58.6±2.8

SAMGPT 24.1±3.8 34.4±2.2 47.6±7.4 60.8±3.6 62.8±4.2 75.1±1.6 57.4±2.4 77.6±2.7 52.4±3.1 59.1±2.6

GCOPE 26.5±5.5 39.1±1.9 54.5±9.1 72.2±2.8 62.7±4.5 80.4±0.7 58.2±2.6 79.3±2.2 55.1±3.5 64.8±2.4

MDGFM 26.0±2.4 32.2±1.7 46.6±8.4 64.0±5.3 64.8±3.3 76.5±1.7 56.1±1.6 77.6±2.0 53.4±5.3 57.7±3.4

GRAPHGLUE 28.8±5.2 37.0±2.3 59.5±7.0 73.2±0.7 67.1±3.3 85.0±1.1 59.7±5.2 81.5±2.3 59.8±4.8 65.3±2.4

Evaluation Protocol Our evaluation adopts a leave-one-out cross-domain setup, where models
are pre-trained on five source datasets and fine-tuned on a single held-out target dataset. We use
a few-shot fine-tuning setting, leveraging k labeled samples per class (k ∈ {1, 5}) from the target
task for adaptation. The remaining target data is randomly split into 10% for validation and 90%
for testing. We evaluate performance on three tasks: node/edge classification measured by ACC and
graph classification measured by AUC. All reported results are the average of 10 independent runs.

6.2 RESULTS AND DISCUSSION

Main Results on Cross-domain Transfer Learning As shown in Table 1, the empirical results
demonstrate the superior effectiveness of GRAPHGLUE in challenging few-shot scenarios. For in-
stance, in the 1-shot setting, it outperforms the strongest baselines on Computers and Reddit by
significant margins of 4.9% and 2.3%, respectively. This strong performance is often maintained as
more data becomes available. In the 5-shot setting on the Reddit dataset, GRAPHGLUE achieves
85.0% ACC, exceeding the runner-up by 4.6%. These results suggest that the geometric construc-
tion of GRAPHGLUE enhances the model performance, and we will demonstrate additional benefits
of the constructed smooth manifold in the following parts.

Ablation study on the effectiveness of proposedLcurv andLholo are provided in Appendix G, showing
that both gluing via holonomy and smoothing via Ricci curvature are important to downstream tasks.
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Figure 3: GTM vs Test Task Loss.

On Transferability Measure This part shows how
the proposed measure of GMT aligns with the trans-
fer effort of the pre-trained model. To this end, we
pre-train the model in Arxiv, Reddit, FB15k 237,
PROTEINS, and HIV datasets, then conduct transfer
settings on Computers with 2000 epochs. In this
case, holonomy loss vanishes rapidly during training,
and thus we investigate the curvature loss in Figure 3,
where x-axis is the training epoch. We plot the test task
loss of cross-entropy for the classification task on the
y-axis on the left. In the top of Figure 3, we find that,
as curvature loss decreases and converges, the test task
loss exhibits the same pattern, and it suggests that GMT
measures the effort of training the pre-trained model in
transfer setting. Moreover, at the bottom of Figure 3,
it shows another feature of curvature loss that the con-
vergence of its oscillation amplitude implies the convergence of the test task loss, which meets the
theory in Keskar et al. (2017); Czarnecki et al. (2017).

On Geometric Scaling Law We validate the geometric scaling law by enlarging the quantities of
pre-training datasets. Specifically, we show the few-shot performance on Computers and Reddit
in Figure 4, where the original datasets are same as that in Figure 3, denoted as +0, and we in-
crementally incorporate Pubmed, Photo, FacebookPagePage, WordNet18RR, MUATG and
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Figure 4: Geometric scaling law on (a) Computers and (b) Reddit datasets.

Lipophilicity in order, referred to as +1,+2,+3,+4,+5 and +6, respectively. In the 1-shot
setting, average accuracy rises steadily while transfer loss drops consistently, both well-fitted by log-
arithmic functions (blue curves), and thus it exhibits clear scaling laws. 5-shot performance remains
more stable (red curves), with only marginal gains in accuracy and a slight reduction in loss. The
insight is that, under extreme data scarcity (1-shot), the performance is highly sensitive to the pre-
trained model’s capacity, the expressive power of the learned manifold, while more labeled samples
restrain such scaling effect. The observed logarithmic scaling supports our claim on the scaling law.

Reddit Only Reddit+PROTEINS Reddit+PROTEINS+HIV
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GraphGlue
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Figure 5: Effect of including dis-
tinct domains.

Case Study We conduct an interesting case study to ex-
amine the effect of including semantically distinct data dur-
ing pre-training. To this end, we incrementally expand a
Reddit-only pre-training with the distinct PROTEINS and
HIV datasets, and consistently evaluate on Reddit under the
1-shot setting. As shown in Figure 5, GRAPHGLUE achieves
a steady improvement with the inclusion of each dataset. In
contrast, GCOPE suffers from negative transfer and results in
possible performance decline. This result provides evidence
that GRAPHGLUE can effectively incorporate knowledge from
even vastly different domains to enhance its capabilities.

ogbn-arxiv
Computers
Reddit
FB15k_237
PROTEINS
HIV

Figure 6: Visualization of the pre-trained manifold
from 6 datasets.

Visualization & Geometric Interpretation
To illustrate our intuition, we visualize a
3D per-trained manifold on the 6 datasets
in Figure 6, where the configuration is
detailed in Appendix G. We observe that
the datasets—Reddit (social network),
Arxiv (citation network), Computers
(e-commerce network), and FB15k 237
(knowledge graph)—exhibit substantial
semantic overlap while retaining the differ-
ence. Their corresponding regions on the
manifold lie in close proximity, sometimes
intermingling owing to shared semantics, yet
remain distinguishable. The two chemistry-
related datasets (PROTEINS and HIV) are
well-separated from the others on the learned
manifold. That is, the proposed neural mani-
fold gluing captures the complicated domain
semantics. Also, the smoothness is generally ensured, facilitating knowledge transport along the
manifold. The visualization underscores our framework’s ability to unify diverse domains into a
coherent geometric structure, which forms the foundation for effective cross-domain transfer.

7 CONCLUSION

This work studies multi-domain graph pre-training through the lens of differential geometry, en-
abling the merging of arbitrary graph datasets into a unified, smooth Riemannian manifold and
facilitating a principled understanding of knowledge transfer across different graphs. The theoreti-
cal contribution lies in the establishment of neural manifold gluing, which “glues” the local pieces
together into a coherent whole. Building on this theory, we introduce the GRAPHGLUE framework,
supporting the batched pre-training and providing a means to measure its transferability. Further-
more, we empirically validate the geometric scaling law of GRAPHGLUE.

Usage of Large Language Model (LLM). LLM is used to polish writing.
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A NOTATIONS

Table 2: Notation and Description

Notation Description

M A smooth manifold
G A Riemannian metric tensor
p A point inM
TpM The tangent space of point p onM
|G(p)| The volume element at p

(U, x1, ..., xM ) A coordinate chart of tangent space TpM
{ ∂
∂x1 , ...,

∂
∂xM }, {∂i} The standard frame of TM

Ric(X,Y ) Ricci curvature for vector fields X,Y
G = (V, E) A graph with node set V and edge set E
X ∈ R|V|×F A feature matrix with node set V

Gt The graph of target domain Dt

G = {G1,G2, · · · ,GK} A collection of K graphs from L domains D
D = {D1,D2, · · · ,DL} L domains

fΘ(GNN(·)) A pretrained model on the graph dataset G with an encoder GNN(·)
{Θ⋆

f ,Θ
⋆
GNN} The pre-training parameters

fGNN : G→ Rd A differentiable encoder from manifold G into the Euclidean space
wm The set of tangent vectors of graph G
Dvf The directional derivative G
H(C) The holonomy map of cycle C
EDir[g] The graph Dirichlet energy of function g
Si(Vi, Ei) The h-hop neighborhood centered at vi with node set Vi and

edge set Ei within this subgraph
Ĝm = (V̂m, Êm) The augmented graph

P[M,d] The Adaptive Orthogonal Frame
Ui A neighborhood around z(i)

W (i) The basis of Tz(i)Ui generated from AFB
Gi(u,v) The local Riemannian metric defined on Ui

SM×M
++ The set of positive-definite matrix

S = {S1, ...,SK} The source graph datasets
(zSk , logGSk) the Riemannian prototypes for each source graph dataset
Lproto(G) The prototype-level contrastive loss
P (i,j) The tangent edge translation
A The set of all triangles Aijk = ((vi, vj), (vj , vk))

Lhol(G) The holonomy loss
r(z(i), z(j)) The overall sign of the Ricci curvature along the geodesic γ(t)

between zi and zj
LCurv(G) The curvature loss regularizing the change of curvature

by controlling the volume change ratio
GT = (VT , ET ) An unseen graph
W adapt, Gadapt The adaptive tangent vectors and adaptive metric

Q The prompt matrix
logGalign The aligned log-metric to give a K-dimensional weighted vector
Ladap The adaptation loss
λ The balance coefficient of task loss and gluing loss

∆H Holonomy disagreement
∆C Curvature disagreement
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B PROOFS

B.1 PROOF OF THEOREM 4.3

Theorem 4.3 (Upper bound of Tangent Vector Length) Given a connected G with N nodes, A, L
the adjacency matrix and Laplacian of G, and P the feature matrix of perturbation nodes. Apply
(k,M)-sparse perturbation to G, suppose kM

N = ε, where ε > 0 is small, and added edge weights
satisfy

∑
l h(vi, pl) = 1. Then,

∥wp
m∥ ≤ (1 + ε)∥P ∥

holds, where wp
m is the component of wm determined by perturbation.

Proof. We denote the weighted matrix H ∈ RN×M that consists of h(vi, pl), the row summation
rH = H1M . Then, the perturbed adjacency matrix Â is

Â =

[
A H
H⊤ IM

]
∈ R(N+M)×(N+M).

The perturbed Laplacian is

L̂ =

[
L+ diag(rH) −H
−H⊤ IM

]
∈ R(N+M)×(N+M). (13)

Let the d-dimensional graph signal F ∈ R(N+M)×d in heat diffusion on a perturbed graph Ĝ be

F (t) = exp(−tL̂)F (0), t > 0, (14)

F (0) =

[
X
P

]
∈ R(N+M)×d. (15)

By the linearity of the heat equation, we can divide F (t) into two parts:

F (t) = exp(−tL̂)

[
X
0

]
+ exp(−tL̂)

[
0
P

]
. (16)

We denote

Fbase(t) = exp(−tL̂)

[
X
0

]
, (17)

Fpert(t) = exp(−tL̂)

[
0
P

]
. (18)

We are only concerned about Fpert(t) since it reflects how perturbation P affects other nodes.
Observe from the construction of L̂, the affected nodes are non-zero elements in rH . Let
S = supp rH ⊂ {1, ..., N}, that S := |S| ≤ kM . We can extract the corresponding part of
L̂:

Llocal =

[
LS −HS
−H⊤

S IM

]
∈ R(S+M)×(S+M)), (19)

where

LS = (L+ diag(rH))[S,S],

HS = H[S,:].

Then we have

Fpert(t) =

[
Fpert,N (t)
Fpert,M (t)

]
=

 S

(
exp(−tLlocal)

[
0S

P

])
[1:S](

exp(−tLlocal)

[
0S

P

])
[S+1:S+M ]

 , (20)
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where S ∈ RN×S is an index projection matrix such that (S)[i, j] = 1 if i = S[j]. To simplify the
notation, let

K(t) = exp(−tLlocal) =

[
KSS(t) KSM (t)
KMS(t) KMM (t)

]
∈ R(S+M)×(S+M)). (21)

We can find

Fpert,N (t) = SKSM (t)P , (22)
Fpert,M (t) = KMM (t)P . (23)

As return to Eq. (16), we obtain

FN (t) = Fbase,N(t) + SKSM (t)P , (24)
FM (t) = Fbase,M(t) +KMM (t)P , (25)

where Fbase,N(t) = Fbase(t)[:N ],Fbase,M(t) = Fbase(t)[N+1:N+M ].

We simply consider the global mean pooling operation that we obtain

z(t) =
1

N
1⊤
NFN (t) ∈ Rd, (26)

wm(t) = fm(t)− z(t) ∈ Rd, (27)

where fm(t) = FM (t)[m], the m-th row of FM .

Similarly, we can still divide wm(t) into two parts as

wm(t) = fp
m(t)− zp(t) + (term affects by X), (28)

where fp
m(t) is the m-th row of KMM (t)P , and

zp(t) =
1

N
1⊤
NSKSM (t)P =

1

N
(1⊤

SKSM (t))P . (29)

Let a(t) = 1
NK⊤

SM (t)1S ∈ RM , then we have zp(t) = a⊤(t)P . We denote wp
m(t) = fp

m(t) −
zp(t), then

wp
m(t) = [KMM (t)P ][m] −

1

N
a⊤(t)P =

[
KMM (t)[m,:] − a⊤(t)

]
P . (30)

Let b(t) = KMM (t)[m,:] − a(t), we have wp
m(t) = b⊤(t)P .

Since kM
N = ε, S ≤ kM = εN , we obtain

∥a(t)∥ = ∥ 1
N

(1⊤
SKSM (t))∥ ≤ S

N
max
i,j
|KSM (t)[i,j]| ≤

S

N
≤ ε, (31)

which means

∥wp
m(t)∥ ≤ (∥KMM (t)[m,:]∥+ ∥a(t)∥)∥P ∥ ≤ (1 + ε)∥P ∥, (32)

since each element is finite, and the diagonal elements of the heat kernel matrix are near 1 while the
other elements are less than 1. Then, we complete the proof.

B.2 PROOF OF THEOREM 4.5

Theorem 4.5 (Edge Tangent Translation as Isometry) The tangent edge translation in Definition 4.4
is the optimal solution of

minP∈GL(M)

∥∥P⊤GjP −Gi

∥∥2
F
, (33)

where GL denotes the general linear group, such that Gj(P
(i,j)u,P (i,j)v) = Gi(u,v), which

induces an isometry ϕ(i,j) between ∂Ui and ∂Uj .
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Proof. We prove that the tangent edge translation P (i,j) = G
−1/2
j

(
G

1/2
j GiG

1/2
j

)1/2

G
−1/2
j

uniquely minimizes ∥P⊤GjP −Gi∥2F over P ∈ GL(M) and induces an isometry.

Let Q = G
1/2
j P . Then P⊤GjP = Q⊤Q, and the objective becomes:

min
Q∈GL(M)

∥Q⊤Q−Gi∥2F . (34)

The minimum is achieved when Q⊤Q = Gi, since the Frobenius norm is strictly convex over
SPD matrices. Thus, Q = G

1/2
i R for orthogonal R, and minimal norm occurs at R = I , giving

Q∗ = G
1/2
i .

From Q = G
1/2
j P , we get candidate P0 = G

−1/2
j G

1/2
i . However, this is not symmetric in Gi,Gj

unless they commute. To ensure geometric consistency and symmetry, we instead use the metric
geometric mean:

P (i,j) = G
−1/2
j

(
G

1/2
j GiG

1/2
j

)1/2

G
−1/2
j . (35)

Then, we compute

P (i,j)⊤GjP
(i,j) = G

−1/2
j

(
G

1/2
j GiG

1/2
j

)1/2

G
−1/2
j ·Gj ·G−1/2

j

(
G

1/2
j GiG

1/2
j

)1/2

G
−1/2
j

(36)

= G
−1/2
j

(
G

1/2
j GiG

1/2
j

)
G

−1/2
j = Gi. (37)

Thus, Gj(P
(i,j)u,P (i,j)v) = u⊤P (i,j)⊤GjP

(i,j)v = u⊤Giv = Gi(u,v), so P (i,j) is an isom-
etry.

All isometric maps satisfy P⊤GjP = Gi, and form the set {P (i,j)R | R⊤GiR = Gi}. The
Frobenius norm ∥P ∥2F = Tr(P⊤P ) is minimized when GjP is symmetric. Then, we have

GjP
(i,j) = G

1/2
j

(
G

1/2
j GiG

1/2
j

)1/2

G
−1/2
j . (38)

Hence, P (i,j) is the minimum-norm isometry, and thus the global minimizer of the original Frobe-
nius problem (since the constraint is active and satisfied exactly).

Since P (i,j) : Tz(i)Ui → Tz(j)Uj is a linear isometry, and assuming smooth compatibility of charts
near z(i), z(j), we can lift P (i,j) via the exponential map (or local parametrization) to a local dif-
feomorphism ϕ(i,j) : ∂Ui → ∂Uj such that ϕ(i,j)

∗,z(i) = P (i,j), which is the differential of a diffeo-

morphism and preserves metric. Hence ϕ(i,j) is a isometry.

B.3 PROOF OF THEOREM 4.6

Theorem 4.6 Existence of Global Metric) Let ({Gi}Ni=1, {P (i,j)}(i,j)∈E) be local metrics and tan-
gent edge translations. There exists a unique global continuous metric G on (

⋃
ϕ)

N

i=1
Ui such that

G|Ui
= Gi for all i.

Proof. We aim to construct a global continuous Riemannian metric G on the space F =
⋃N

i=1 Ui,
where each Ui is an open subset of Rd, and the overlaps Ui ∩ Uj are non-empty for (i, j) ∈ E .
By assumption, we have a local Riemannian metric Gi on each Ui, and tangent edge translations
P (i,j) : Tz(i)Ui → Tz(j)Uj satisfying

P (i,j)⊤GjP
(i,j) = Gi, (39)

which ensures that P (i,j) is an isometry between (Tz(i)Ui,Gi) and (Tz(j)Uj ,Gj).

Let us define a topological space F =
⋃N

i=1 Ui, with topology induced by the Euclidean topology
on each Ui. For each pair (i, j) ∈ E , let ϕ(i,j) : ∂Ui → ∂Uj be a diffeomorphism whose differential
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at the shared boundary point z(i) is precisely P (i,j). Since P (i,j) is an isometry, it preserves inner
products, so ϕ(i,j) is a local isometry near z(i).

Now, we consider that, letM1 = Ui,M2 = Uj , N1 = ∂Ui, N2 = ∂Uj , and ϕ : N1 → N2 be the
diffeomorphism induced by P (i,j). Now we introduce the following lemma to complete the proof.

Lemma B.1 (Gluing Manifolds via Boundary Isometries Hirsch (1976)). Let M1 and M2 be
smooth M -dimensional manifolds with boundary, and let N1 ⊂ ∂M1, N2 ⊂ ∂M2 be closed,
smoothly embedded (M − 1)-dimensional submanifold of their respective boundaries. Suppose
ϕ : N1 → N2 is a diffeomorphism such that its differential ϕ∗,x : TxN1 → Tϕ(x)N2 extends to an
isometry

Px : TxM1 → Tϕ(x)M2 (40)

between the Riemannian metrics G1 onM1 and G2 onM2, i.e.,

P⊤
x G2(ϕ(x))Px = G1(x), ∀x ∈ N1. (41)

Then, the topological spaceM1 ∪ϕM2 obtained by identifying N1 with N2 via ϕ admits a unique
smooth structure such that:

1. The inclusionsM1 ↪→M1 ∪ϕM2 andM2 ↪→M1 ∪ϕM2 are smooth embeddings;

2. The Riemannian metrics G1 and G2 extend to a continuous Riemannian metric G on
M1 ∪ϕM2.

Moreover, this smooth structure is unique up to a diffeomorphism that fixes N1 ≃ N2 point-wise.

By the Lemma B.1, there exists a smooth structure on the glued spaceM1 ∪ϕM2 that arises from
identifying N1 with N2 via ϕ. Moreover, this smooth structure is unique up to a diffeomorphism
fixing N1 ≃ N2.

Applying this construction iteratively over all edges (i, j) ∈ E , we can glue all charts Ui together
along their boundaries using the maps ϕ(i,j), resulting in a globally defined topological space F
equipped with a smooth structure.

On each Ui, we already have a Riemannian metric Gi. We now define a global metric G onM by
setting G|Ui = Gi. To ensure that G is well-defined on overlaps Ui ∩ Uj , we must verify that the
values agree under coordinate changes.

Let u ∈ Tz(F) for z ∈ Ui ∩ Uj . In the chart Ui, u is represented as ui ∈ Tz(i)Ui, and in Uj , as
uj = P (i,j)ui ∈ Tz(j)Uj . Then:

Gi(ui,ui) = u⊤
i Giui, Gj(uj ,uj) = u⊤

j Gjuj = (P (i,j)ui)
⊤Gj(P

(i,j)ui). (42)

But by the isometry condition:

P (i,j)⊤GjP
(i,j) = Gi ⇒ u⊤

i Giui = u⊤
i P

(i,j)⊤GjP
(i,j)ui = u⊤

j Gjuj . (43)

Thus, Gi(ui,ui) = Gj(uj ,uj), so the metric value is independent of the chart. Hence, G is
well-defined onM.

Since each Gi is continuous on Ui, and the transition maps P (i,j) are smooth, the metric G is
continuous across overlaps.

Uniqueness follows from the fact that any other metric G̃ agreeing with Gi on each Ui must coin-
cide with G on overlaps due to the isometry constraint. Thus, G is the unique continuous metric
extending Gi consistently.

Therefore, under the given assumptions, there exists a unique continuous Riemannian metric G on⋃N
i=1 Ui such that G|Ui = Gi for all i, completing the proof.
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B.4 PROOF OF THEOREM 4.8 AND CLARIFICATION

Theorem 4.8 (Triangle Triviality) If every edge belongs to at least one triangle, and H(T ) = I
for all triangular cycles T in G, then H(C) = I for all cycles C ∈ Z1(G).

Proof. Under the assumption that every edge lies in at least one triangle, the cycle space Z1(G) is
generated by triangular cycles (see, e.g., the simplicial/cellular homology discussion in (Hatcher,
2002, Section 2.1), where 1-cycles are generated by boundaries of 2-simplices — here, triangles).
Since the holonomy map H : Z1(G) → GL(M) is multiplicative and trivial on generators (i.e.,
H(T ) = I for all triangles T ), it follows that H(C) = I for all C ∈ Z1(G).

Note that every edge belonging to at least one triangle is not the assumption of Theorem 4.8. This
theorem states that, if every edge belongs to at least one triangle, triangles are already sufficient to
construct the coherent manifold described in this work. It means that there is no need for exploring
any higher-order motifs, but the triangle coverage is not the necessary condition of manifold gluing.

We clarify that GraphGlue does not need to add synthetic motifs. Since GraphGlue aims to approx-
imate a smooth manifold, the closed triple paths (strict triangles) benefit the approximation process.
As we consider that sample closed triangle paths may be impossible in large-scale graphs or tree-like
graphs, the triangle holonomy regularization gives a computationally efficient way to approximate a
“perfect gluing.” In practice, we only sample two adjacent edges to approximate strict triangles (at
the end of Appendix D.1), and the computation of Lcurv only relies on two adjacent edges.

B.5 PROOF OF THEOREM 4.9

Theorem 4.9 (Ricci Curvature Estimation) Given a graph G = (V, E) and an edge (i, j) ∈ E , let
z(i), z(j) ∈ M be the corresponding embedded points, and let γ : [0, 1] → M be the unit-speed
geodesic connecting them, i.e., γ(0) = z(i), γ(1) = z(j). The sign of the Ricci curvature along γ̇
can be estimated by the ratio of metric determinants:

r(z(i), z(j)) :=
detGi

detGj
≈ 1− 1

3
Ric(γ̇). (44)

Proof. We work in Gaussian normal coordinates centered at z(i) = γ(0), aligned with the geodesic
γ(t). In these coordinates, the element of metric tensor gij(t) = gij(γ(t)) admits the following
Taylor expansion near t = 0 (see, Petersen (2016)):

gij(t) = δij −
1

3
Rikjl(z

(i)) γ̇kγ̇l t2 +O(t3), (45)

where Rikjl denotes the components of the Riemann curvature tensor at z(i), and γ̇ = γ̇(0) is the
initial tangent vector.

Let g(t) = det(gij(t)). Since g(0) = det(δij) = 1, we compute the expansion of g(t) using the
Jacobi formula for the derivative of a determinant:

d

dt
log g(t) = gij(t)

d

dt
gij(t). (46)

At t = 0, gij(0) = δij and d
dtgij(0) = 0 (since first-order terms vanish in normal coordinates).

Differentiating again:

d2

dt2
log g(t)

∣∣∣
t=0

= δij
d2

dt2
gij(t)

∣∣∣
t=0

= δij
(
−2

3
Rikjlγ̇

kγ̇l

)
= −2

3
Rklγ̇

kγ̇l = −2

3
Ric(γ̇). (47)

Thus, expanding log g(t) to second order:

log g(t) = −1

3
Ric(γ̇) t2 +O(t3), (48)
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and exponentiating:

g(t) = exp

(
−1

3
Ric(γ̇) t2 +O(t3)

)
= 1− 1

3
Ric(γ̇) t2 +O(t3). (49)

Now, evaluate at t = 1 (i.e., at z(j) = γ(1)), assuming the higher-order terms remain negligible
(which holds if either the curvature is bounded and the edge length is small, or if we consider the
leading-order behavior):

detGj = g(1) ≈ 1− 1

3
Ric(γ̇), detGi = g(0) = 1. (50)

Therefore, the ratio satisfies:

r(z(i), z(j)) =
detGi

detGj
≈ 1

1− 1
3Ric(γ̇)

≈ 1 +
1

3
Ric(γ̇) +O(Ric2), (51)

where the last step uses (1 − x)−1 ≈ 1 + x for small x. However, since we are only interested in
the sign of Ric(γ̇), and under the assumption that

∣∣ 1
3Ric(γ̇)

∣∣≪ 1, we may directly approximate:

detGi

detGj
≈ 1− 1

3
Ric(γ̇), (52)

by matching leading-order terms in the reciprocal expansion (equivalently, approximating detGj ≈
1− 1

3Ric implies detGi/ detGj ≈ 1+ 1
3Ric, but since detGi = 1, the direct expansion of detGj

gives the sign relation).

Thus, we conclude:

• If Ric(γ̇) > 0, then detGj < detGi⇒ r(z(i), z(j)) < 1.

• If Ric(γ̇) < 0, then detGj > detGi⇒ r(z(i), z(j)) > 1.

• If Ric(γ̇) = 0, then detGj ≈ detGi⇒ r(z(i), z(j)) ≈ 1.

This establishes the correspondence between the sign of Ricci curvature and the metric volume ratio,
as claimed.

B.6 PROOF OF THEOREM 4.11

Theorem 4.11 (Glue to a Global Riemannian Manifold) For the set of all graph data G, if G is
log-determinant ∞-order smooth, and P is trivial with induced metric-preserving diffeomorphism
ϕ, then (F ,G,P) glues to a smooth Riemannian manifold (F ,G), where F := (

⋃
ϕ)

N

i=1
Ui.

Proof. We construct the global manifold structure in three steps, leveraging the established compo-
nents:

(1) Trivial holonomy ⇒ path-independent parallel transport. By Theorem 4.8 and Definition
4.7, the triviality of P on all cycles implies that the tangent edge translations P (i,j) define a flat
connection on the graph. Consequently, the induced diffeomorphisms ϕ(i,j) (from Theorem 4.5)
are compatible across higher-order overlaps: for any two paths from Ui to Uj , the composed gluing
maps agree. This ensures the cocycle condition for manifold gluing.

(2) Global metric existence. By Theorem 4.6 (Existence of Global Metric), the pairwise isometric
identifications ϕ(i,j) — now globally consistent due to trivial holonomy — allow us to glue the
charts {Ui} into a topological space F =

⋃
ϕ Ui equipped with a unique continuous Riemannian

metric G such that G|Ui
= Gi.

(3) Smoothness from log-det ∞-order smoothness. By Definition 4.10, the scalar field gi =
1
2 log detGi minimizes ∥Lkg∥2 for all k ≥ 1, which implies g is in the kernel of all powers of L—
i.e., g is infinitely smooth over the graph. Since Lkg = 0 for all k only if g is constant on connected
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components (under mild graph connectivity), and since detGi = exp(2gi), it follows that the
metric determinants vary smoothly (in fact, constantly, if the graph is connected). Combined with
the smoothness of the transition maps ϕ(i,j) (which are isometries, hence C∞), this ensures that the
metric tensor G is smooth in overlapping charts. Thus, (F ,G) is a smooth Riemannian manifold.

Therefore, the triple (F ,G,P), under the given conditions, glues consistently to form the smooth
Riemannian manifold (F ,G).

C BACKGROUND: DIFFERENTIAL GEOMETRY ON RIEMANNIAN MANIFOLDS

This appendix provides the necessary background on continuous Riemannian geometry, which
forms the theoretical foundation for our claim that MERGE learns a smooth, intrinsic manifold
in the latent space. While our implementation operates on discrete graphs and neural networks, we
argue that the learned structure approximates a true, continuous Riemannian manifold due to the
smoothness of the GNN encoder. We emphasize concepts relevant to Sections 5 and 6 of the main
text.

C.1 RIEMANNIAN MANIFOLD: THE CONTINUOUS SETTING

A Riemannian manifold (M,g) is a smooth (typically C∞) topological manifoldM of dimension
M , endowed with a Riemannian metric tensor g. At each point p ∈ M, the metric gp is a
symmetric, positive-definite bilinear form defined on the tangent space TpM:

gp : TpM× TpM→ R. (53)
The metric gp allows us to compute lengths of tangent vectors, angles between them, and volumes
of regions onM. In local coordinates (x1, ..., xM ) around p, the metric is represented by a matrix
G(p) = [gij(p)], where gij(p) = gp(∂i, ∂j), and {∂i = ∂

∂xi } is the coordinate basis of TpM.

The volume element at p is given by dVp =
√

detG(p) dx1 ∧ · · · ∧ dxM . The scalar field f(p) =
1
2 log detG(p) is called the logarithmic volume density. A manifold is said to be Ck-smooth if
the components gij are Ck-differentiable functions of the coordinates.

C.2 LEVI-CIVITA CONNECTION AND PARALLEL TRANSPORT

A connection ∇ onM defines how to differentiate vector fields along curves, enabling the notion
of parallel transport. The unique connection compatible with the metric g and torsion-free is called
the Levi-Civita connection. It is characterized by two properties:

1. Metric Compatibility: For any vector fields X,Y, Z onM,
X⟨Y, Z⟩ = ⟨∇XY,Z⟩+ ⟨Y,∇XZ⟩. (54)

This means parallel transport preserves inner products (and thus lengths and angles).
2. Torsion-Free: ∇XY −∇Y X = [X,Y ], where [·, ·] is the Lie bracket.

Given a smooth curve γ(t) : [a, b] → M, a vector field V (t) along γ is parallel transported if
∇γ̇(t)V (t) = 0. The parallel transport map PTγ : Tγ(a)M→ Tγ(b)M is the linear isometry that
maps a vector at the start of the curve to its parallel-transported version at the end.

C.3 CURVATURE AND HOLONOMY

The failure of parallel transport to be path-independent is measured by the curvature tensor R, a
(1, 3)-tensor defined as:

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z. (55)
If R ≡ 0 everywhere, the manifold is flat, and parallel transport depends only on the endpoints, not
the path.

For a closed loop (cycle) C starting and ending at p, the composition of parallel transports along C
yields a linear transformation H(C) : TpM→ TpM, called the holonomy of C. If H(C) = id for
all loops C, then the curvature vanishes (R ≡ 0), and the manifold is flat. Conversely, if R ̸≡ 0,
then H(C) ̸= id for some non-contractible loop.
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C.4 RICCI CURVATURE AND VOLUME CHANGE

The Ricci curvature Ric is a (0, 2)-tensor obtained by contracting the curvature tensor:
Ric(X,Y ) =

∑M
i=1 R(ei, X, Y, ei), where {ei} is an orthonormal basis.

On a geodesic γ(t) with unit speed γ̇(t), the Ricci curvature governs the rate of change of the volume
element along the geodesic. In Gaussian normal coordinates centered on γ(0), the determinant of
the metric satisfies the following expansion for small t:

detG(γ(t)) = 1− 1

3
Ric(γ̇(0))t2 +O(t3). (56)

Thus, the ratio of volume elements between two nearby points p = γ(0) and q = γ(t) is approxi-
mately: √

detG(q)√
detG(p)

≈ 1− 1

6
Ric(γ̇(0))t2. (57)

This implies:

1. Ric > 0: Volume shrinks along the geodesic (elliptic/positive curvature region).
2. Ric < 0: Volume expands along the geodesic (hyperbolic/negative curvature region).
3. Ric = 0: Volume is locally preserved (flat region). This relationship underpins our use

of the metric volume ratio detGi/ detGj as a proxy for estimating Ricci curvature along
graph edges.

C.5 SMOOTHNESS AND HARMONIC FUNCTIONS

A scalar function f : M → R is harmonic if it satisfies ∆f = 0, where ∆ is the Laplace-
Beltrami operator. On a compact manifold without boundary, harmonic functions are constant. More
importantly, solutions to ∆f = 0 are infinitely differentiable (C∞) by elliptic regularity theory.

In the context of our framework, minimizing the Dirichlet energy
∑

(i,j)∈E(fi − fj)
2 over the

graph Gdata is a discrete approximation to minimizing
∫
M ∥∇f∥

2dV . Minimizing this energy drives
f = 1

2 log detG toward a harmonic function on the underlying continuous manifold. By elliptic
regularity, this ensures that the log-volume density f is smooth, implying the metric G has contin-
uous first derivatives (C1). This justifies our assumption that the learned manifold is geometrically
well-behaved, free from pathological singularities.

C.6 CARTAN’S METHOD OF MOVING FRAME

The renowned Cartan’s Method Tron et al. (2024) offers a principled way to explore the geometry
of Riemannian manifolds, establishing a profound connection between differential calculus and ge-
ometry. Specifically, Élie Cartan introduces the concept of frame to characterize the local geometry,
which is then extended to a global manifold through “ moving frame”. Although Élie Cartan laid the
mathematical principle, its deep learning theory and methodology remain largely unexplored. Our
work seeks to bridge this gap.

C.7 CONNECTION TO OUR FRAMEWORK

Our work does not assume a pre-existing manifold. Instead, we posit that the embedding space
Rd induced by a smooth GNN fGNN contains a low-dimensional submanifoldM, whose intrinsic
geometry encodes the generalizable rules of graph data. The Adaptive Frame Bank (AFB) samples
the local tangent spaces TpM. The optimal isometric alignment (Theorem 5.6) approximates the
Levi-Civita connection’s action between sampled points. The cycle-consistency loss enforces trivial
holonomy, mimicking flatness. The log-determinant smoothness regularization drives the volume
element toward harmonicity. Together, these components constitute a learning procedure that con-
structs a continuous, smooth, nearly-flat Riemannian manifold M within the latent space of a
neural network, using only discrete graph samples and their embeddings. The graph structure Gdata
serves as a sampling mesh, not the domain of geometry.
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Algorithm 1 Training Procedure for GRAPHGLUE

Require: Epoch index e, optimizer, datasets Dmix,Dsingle,Dmulti with data name mappings.
Ensure: Updated model parameters Θ.

// Stage 1: Mix Training for Local Construction
1: Initial Llocal = 0
2: for each batch B in Dmix do
3: Z,W ← GRAPHGLUE(B)
4: Llocal ← ContrastiveLoss(Z)
5: if e ≥ warmup epochs then
6: Lproto ← PrototypeLoss(Z, data name)
7: Llocal ← Llocal + Lproto
8: end if
9: ∇θLlocal ← Backward(Llocal)

10: OptimizerStep()
11: Update Prototypes with Z,W in Eq. (8)
12: end for

// Stage 2: Mix Training for Global Manifold Skeleton
13: for each batch B in Dmix do
14: Z,W ← GRAPHGLUE(B)
15: Eknn ← Cross-Dataset KNN Graph(Z, data name)
16: T ← SampleTrianglePaths(Eknn,Number Sampled, Tsample)
17: Lgeo ← 0
18: for t = 1 to Tsample do
19: Lgeo += GeometricLoss(W , T [t]) in Eq. (7) and Eq. (5)
20: end for
21: Lgeo ← Lgeo/Tsample
22: ∇θLgeo ← Backward(Lgeo)
23: OptimizerStep()
24: end for

// Stage 3: Refine Local Manifold Structure For Each Dataset
25: for each dataset Ds in Dsingle do
26: Load graph data Gs with edge set Es
27: Ts ← SampleTrianglePaths(Es,Number Sampled, Tlocal)
28: for t = 1 to Tlocal do
29: Construct mini-graph batch Bt from Ts[t]
30: z, ztan ← GRAPHGLUE(Bt)
31: Lrefine ← GeometricLoss(W , Ts[t]) in Eq. (7) and Eq. (5)
32: ∇θLrefine ← Backward(Lrefine)
33: OptimizerStep()
34: end for
35: end for
36: for each dataset Dm in Dmulti do
37: for each batch (B) in Dm do
38: Z,W ← GRAPHGLUE(B)
39: Eknn ← Intra-Dataset KNN Graph(Z)
40: T ← SampleTrianglePaths(Eknn,Number Sampled, Tsample)
41: for t = 1 to Tsample do
42: Lgeo += GeometricLoss(W , T [t]) in Eq. (7) and Eq. (5)
43: end for
44: Lgeo ← Lgeo/Tsample
45: ∇θLgeo ← Backward(Lgeo)
46: OptimizerStep()
47: end for
48: end for
49: return Optimized Model parameters Θ∗
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D ALGORITHMS

D.1 MULTI-DOMAIN PRE-TRAINING

The training procedure is given in Algorithm 1, which consists of the data loader for pre-processing.

To use a unified interface, we process all the graph datasets at the graph level, which means each
data sample in the dataset is a graph. Taking Reddit for instance, we extract 2-hop neighborhood
ego-subgraph as a data sample for each node, and store the global edge index.

As we have many datasets from multiple domains, we need to build a mixture graph dataset loader
that can iteratively load a batch of data from different datasets. For each batch, we uniformly sample
from all source graph datasets.

During training, in each epoch, we first build locality recognition using graph contrastive learning
Veličković et al. (2019); Qiu et al. (2020) that distinguishes the different semantics from different
graph datasets. Meanwhile, we will update the Riemannian prototypes using EMA Izmailov et al.
(2019); Morales-Brotons et al. (2024) for each dataset as in Eq. (8). After warm-up epochs, we
still use sample-prototypes contrastive learning that guarantees the prototypes are truly around the
center of each dataset distribution. Second, we build a cross-dataset KNN graph that builds a rough
skeleton of the manifold, and learn from the regularization in Eq. (5) and Eq. (7). Finally, we refine
the region for each dataset. We load every dataset and compute the geometric regularization, like
the second step.

Here, since sampling triangles from a graph costs many computational resources, especially for
large-scale graphs, we replace it with sampling pairs of adjacent edges for effective implementation.

D.2 COMPLEXITY ANALYSIS

We list the cost of the key modules of GraphGlue in Table 3, where B is the batch size, the number
of graph samples in a batch; |V |, |E| are the average nodes/edges per graph in a batch; d is hidden di-
mension, setting to 512 commonly. M is number of nodes P in (k,M)-sparse perturbation, also the
dimension of the manifold, commonly set to 32. ks is number of selected top-ks nodes in the sparse
perturbation. Ts is number of sampled triangle paths, NOT all triangles. For more effectiveness, we
sample pairs of adjacent edges to approximate closed triangle paths.

Table 3: Computational and memory complexity of each module in GraphGlue.

Module Computational complexity Memory complexity

(k,M)-Sparse Perturbation O(ksMB) O(BM(ks + d))
Adaptive Orthogonal Frame O(B(|V |+ |E|+M2)d) O(BMd)
Matrix form of metric tensor O(BMd) O(BM)
Lholo and Lcurv O(TsM) O(Ts)
Riemannian prototypes and Lproto O(KBd+K(d+M)) O(K(d+M))
Riemannian MoE O(KBd) O(KB)

Thus, the total computational cost in pretraining phase is O(B(|V | + |E| + M2 + K)d + TsM),
and the adaption (per graph) costs O((|V |+ |E|)d+K(d+M) + TsM). That is, in *GraphGlue*
scales linearly with respect to the graph size. In our experiment, we pretrain the model on large-scale
datasets, e.g., ogbn-arxiv and Reddit.

D.3 COMPLEXITY COMPARISON WITH OTHER GFMS

We compare the proposed GraphGlue to other GFM in pretraining and adaptation phases regarding
the total computational cost. The results are summarized in Table 4.

Notes

• PRODIGY: In-context learning requires full attention over prompt and query nodes;
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Table 4: Comparison of computational complexity across graph few-shot learning methods.

Model Pretraining Adaptation (per graph sample)

PRODIGY O(B|V |2d) O((|V |+ |E|)d+ |V |2)
GFT O(B(|V |+ |E|)d+BTh) O((|V |+ |E|)d+ Th)
RAGraph O(B(|V |+ |E|)d+B|Er|d) O((|V |+ |E|)d+ |Er|d)
SAMGPT O(B(|V |+ |E|)d+Bksd) O((|V |+ |E|)d+ kpd)
GCOPE O(B(|V |+ |E|)d+BKcd) O((|V |+ |E|)d+Kcd)
MDGFM O(B(|V |+ |E|)d+B|V |2) O((|V |+ |E|)d+ |V |2)
GraphGlue O(B(|V |+ |E|+M2 +K)d+ TsM) O((|V |+ |E|)d+K(d+M) + TsM)

• GFT: T : number of trees, h: tree height; tree construction adds overhead;

• RAGraph: |Er|: retrieved edges from external library;

• SAMGPT: ks: number of structure tokens, kp: prompt tokens;

• GCOPE: Kc: number of virtual coordinators;

• MDGFM: Graph Structure Learning (GSL) involves dense adjacency refinement;

• GraphGlue: M = 32, Ts ≪ |E|.

Furthermore, we compare the memory cost to GCOPE and MDGFM on six datasets. [1, 2, 3, ..., 6]
denotes that we incrementally include ogbn-arxiv, computers, FB15k-237, Reddit, PROTEINS, HIV
in the pretraining dataset. Under the setting of 512 batch size, [10, 10] neighbor sampler size, d =
512. Results on GPU memory cost (GB) are collected in Table 5.

Table 5: Memory Cost. Lower values indicate better efficiency.

Model 1 2 3 4 5 6

GCOPE 18.39 19.11 21.12 OOM OOM OOM
MDGFM 19.71 21.67 29.35 OOM OOM OOM
GraphGlue 12.53 15.07 15.73 16.87 28.67 29.21

E RELATED WORK

E.1 GRAPH FOUNDATION MODELS

Graph Foundation Models (GFMs) aim to provide pre-trainable, general-purpose deep learning ar-
chitectures for graph-structured data Wang et al. (2025b); Liu et al. (2025). Recently, researchers
have extended the capabilities of Large Language Models (LLMs) to text-attributed graphs, enabling
cross-domain transfer learning through textual descriptions Zhu et al. (2025); Xia et al. (2024); Tang
et al. (2024); Ren et al. (2024); Chen et al. (2024). Additionally, GFMs have been developed for
various specialized domains, such as knowledge graphs Huang et al. (2025); Luo et al. (2025),
recommender systems Wu et al. (2025), and molecular graphs Xia et al. (2023); Sypetkowski et al.
(2024). Given the prevalence of text-free graphs, recent efforts have focused on constructing general-
purpose models via multi-domain pre-training Yuan et al. (2025); Chen et al. (2025); Wang et al.
(2025a).

E.2 MULTI-DOMAIN GRAPH PRE-TRAINING

In graph pre-training, Graph Neural Networks (GNNs) are trained by self-supervised learn-
ing—either generative Hou et al. (2022) or contrastive Veličković et al. (2019); Qiu et al. (2020). In
light of the semantic heterogeneity across different domains, several methods have been proposed
to learn shared or invariant knowledge Yuan et al. (2025); Chen et al. (2025); Wang et al. (2025a).
Despite the encouraging results, the theoretical foundations of how knowledge is integrated and
transferred remain underexplored.
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In graph pre-training, Graph Neural Networks (GNNs) are trained using self-supervised learn-
ing—either generative Hou et al. (2022) or contrastive Veličković et al. (2019); Qiu et al. (2020)—to
capture intrinsic semantics from unlabeled data. While traditional pre-training typically operates
within a single domain, multi-domain graph pre-training has recently attracted growing interest.
However, integrating knowledge across diverse domains remains challenging due to significant se-
mantic heterogeneity. Several methods have been proposed to learn shared or invariant knowledge
using advanced techniques Yuan et al. (2025); Chen et al. (2025); Wang et al. (2025a). For instance,
Chen et al. (2025) addresses architecture inconsistency by using disentangled learning to adaptively
customize network architectures based on invariant graph patterns. Meanwhile, Yuan et al. (2025)
aligns multi-domain features with domain-invariant aligners and uses a graph spectral-based error
bound to theoretically guide knowledge transfer. Despite the encouraging results, the theoretical
foundations of how knowledge is integrated and transferred in this context remain underexplored.

E.3 GRAPH FINE-TUNING AND PROMPT LEARNING

The alignment of pre-trained graph models with downstream tasks necessitates an adaptation phase,
and existing adaptation methods can be roughly categorized into two paradigms: graph fine-tuning
and prompt learning. Concretely, graph fine-tuning adapts the model behavior using limited target-
domain data Sun et al. (2024); Wang et al. (2024; 2025c). For example, Sun et al. (2024) fine-tunes
the entire model on downstream data. A more common strategy is to keep the majority of the
pre-trained parameters frozen and only train a simple classification head, a technique employed by
models like Zhao et al. (2024); Liu et al. (2024). Bevilacqua et al. (2025) proposes a unique adapta-
tion strategy: it freezes the large, pre-trained expansion map and only trains a smaller reduction map
and a task-specific head for the new task. And recent advances introducing parameter-efficient fine-
tuning methods such as low-rank adaptation Yang et al. (2025b). On the contrary, graph prompting
keeps the pre-trained parameters frozen and enhances performance by inserting learnable prompt
vectors Yu et al. (2025a); Liu et al. (2023); Yu et al. (2024a;b; 2025b). For instance, Liu et al.
(2023) unifies tasks under a subgraph similarity template and employs a learnable vector to guide
the READOUT function. Other approaches generate more adaptive prompts, such as PRONOG Yu
et al. (2025b), which uses a conditional network to create node-specific prompts for non-homophilic
graphs, and PRODIGY Huang et al. (2023), which formulates a novel prompt graph for in-context
learning. To tackle more complex scenarios, several works have developed dual-prompting mecha-
nisms. Jiao et al. (2025); Yu et al. (2024a) introduce a feature prompt and a heterogeneity prompt
to bridge the gap between homogeneous and heterogeneous graphs. Yu et al. (2024c) leverages a
composed prompt for task-specific knowledge and an open prompt for global knowledge from mul-
tiple pre-training tasks. Similarly, Yu et al. (2025a) designs holistic and specific structural prompts
for cross-domain adaptation. Yet, how to quantify the transfer effort to the target domain remains an
open issue.

E.4 RIEMANNIAN GRAPH REPRESENTATION LEARNING

In recent years, Riemannian manifolds have emerged as a promising alternative to traditional Eu-
clidean spaces in graph representation learning. Most existing Riemannian models are tailored to
specific tasks Grover et al. (2025), and often leverage the particular manifolds, such as the hyperbolic
space Chami et al. (2019); Yang et al. (2025a), the spherical space Liu et al. (2022), the symmetric
positive definite manifold Ju & Guan (2024), and their products Gu et al. (2019); Bachmann et al.
(2020) and quotients Xiong et al. (2022). Very recently, Sun et al. (2025) introduces a structural
vocabulary and designs a new GNN backbone on the product manifold for general-purpose graph
foundation model. In contrast to backbone architecture design, our focus lies in developing a frame-
work for multi-domain pre-training and characterizing a general manifold that underlies diverse
graphs.

F EMPIRICAL DETAILS

F.1 DATASET DESCRIPTION

This section provides a detailed description of the 12 benchmark datasets used in our experiments.
For a summary of their statistics, please refer to Table 6.
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Table 6: Statistics of 12 datasets used in our experiment.

Domain Dataset Task # Graphs Avg. #Nodes Avg. #Edges # Classes

Citation PubMed Node 1 19,717 88,648 3
Arxiv Node 1 169,343 1,166,243 40

Co-purchase Computers Node 1 13,752 491,722 10
Photo Node 1 7,650 238,162 8

Social Network Reddit Node 1 232,965 114,615,892 41
FacebookPagePage Node 1 22,470 342,004 4

Knowledge Graph FB15K 237 Edge 1 14,541 310,116 237
WordNet18RR Edge 1 40,943 93,003 11

Bioinformatics PROTEINS Graph 1,113 39.1 145.6 2
MUTAG Graph 188 17.9 39.6 2

Molecule HIV Graph 41,127 25.5 27.5 2
Lipophilicity Graph 4,200 27.0 59.0 2

Our experiments utilize a diverse set of 12 benchmark datasets. For citation networks, we include
PubMed, where nodes represent scientific publications, and the task is to classify their category, as
well as Arxiv, a large-scale network for academic paper classification. In the co-purchase domain,
both Computers and Photo are sourced from Amazon; in these graphs, nodes are products,
edges signify frequent co-purchases, and the task is to predict product categories. For social net-
works, Reddit is constructed from posts, with the goal of predicting a post’s community, while
FacebookPagePage consists of official pages with edges as mutual likes, and the task is to clas-
sify the page’s category. Our knowledge graph datasets include WordNet18RR, where the task is
to classify the semantic relation between synsets, and FB15K 237, used to predict the relation type
between entities. Finally, for graph-level classification, we use several benchmarks: PROTEINS
and MUTAG are bioinformatics datasets for binary classification, with the latter predicting compound
mutagenicity; similarly, HIV and Lipophilicity are molecular datasets for binary classification
tasks that predict molecular properties.

F.2 BASELINES

We evaluate our model against a comprehensive set of baselines from three main categories: Super-
vised GNNs, Self-Supervised GNNs, and Graph Foundation Models.

Supervised GNNs This category includes foundational GNNs that are trained from scratch in a
supervised manner for a specific downstream task.

• GCN Kipf & Welling (2017) is a widely used GNN model that generates node represen-
tations by aggregating information from local node neighborhoods. It employs a mean-
pooling approach for neighborhood aggregation to integrate information from adjacent
nodes.

• GraphSAGE Hamilton et al. (2017) is an inductive representation learning framework de-
signed for large graphs. It utilizes a mean-pooling propagation rule and often employs a
neighborhood sampling approach to scale efficiently to large-scale graphs.

• GIN Xu et al. (2019) is a state-of-the-art GNN that is commonly used as a powerful super-
vised baseline, particularly for graph classification tasks.

Self-Supervised GNNs These methods first pre-train a GNN encoder on unlabeled graph data
using self-supervised objectives and are then fine-tuned for downstream tasks. They represent the
predominant pre-training paradigm in graph machine learning.

• DGI Veličković et al. (2019) learns node representations by maximizing the mutual in-
formation between local patch representations and a global graph summary vector. Its
contrastive objective is notably not based on random walks.

• GraphMAE Hou et al. (2022) operates by masking a portion of node features and training
a GNN-based architecture to reconstruct them. It utilizes a scaled cosine error for recon-
struction to improve training robustness.
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• GCC Qiu et al. (2020) is a self-supervised pre-training framework designed to capture
transferable structural representations across multiple networks. Its pre-training task is sub-
graph instance discrimination, using contrastive learning to distinguish between augmented
views of a node’s local subgraph and those from other nodes.

Graph Foundation Models This group comprises recent, large-scale models pre-trained on di-
verse datasets and fine-tuned for strong generalization. They are the most direct competitors to our
work and represent the current state-of-the-art.

• PRODIGY Huang et al. (2023) enables in-context learning over graphs by formulating
tasks with a novel prompt graph representation. This structure connects prompt examples
with queries, allowing the model to perform new tasks without updating its parameters.

• GFT Wang et al. (2024) rethinks transferable patterns as computation trees derived from
the GNN message-passing process. It uses a tree reconstruction task for pre-training and
unifies downstream tasks as tree classification.

• RAGraph Jiang et al. (2024) is a retrieval-augmented framework that improves GNN gen-
eralization by retrieving knowledge from an external library of toy graphs. The retrieved
information is injected into the target graph using a message-passing prompt mechanism to
enhance performance.

• SAMGPT Yu et al. (2025a) is a text-free graph foundation model for multi-domain pre-
training and cross-domain adaptation. It uses learnable structure tokens to harmonize struc-
tural differences across domains during pre-training and dual prompts to adapt knowledge
to new target domains.

• GCOPE Zhao et al. (2024) mitigates negative transfer during cross-domain pre-training
by introducing coordinators, which are virtual nodes that act as bridges between disparate
graph datasets. This approach helps create a unified representation from multiple graphs.

• MDGFM Wang et al. (2025a) focuses on achieving robust knowledge transfer through
topology alignment. It employs a Graph Structure Learning (GSL) module to refine graph
structures, reduce noise, and learn domain-invariant knowledge.

F.3 IMPLEMENTATION NOTES

Our primary framework is a leave-one-out cross-domain evaluation. We pre-train models on five
source datasets and evaluate them on a single held-out target dataset. This protocol applies to Self-
Supervised GNNs and Graph Foundation Models. In contrast, supervised GNNs are not pre-trained
and are instead trained directly from scratch on the target task. All downstream evaluations use a
few-shot fine-tuning setting. For the pre-trained models, we use only k labeled samples per class
from the target task for fine-tuning. In our experiments, k is set to 1 and 5. After setting aside these
training samples, the remaining data is randomly split into a validation set (10%) and a test set (90%).
We evaluate performance across three downstream tasks: node classification, Link Classification,
and graph classification. For node and Link Classification, we use Accuracy (ACC) as the evaluation
metric. For graph classification, we use Area Under the Curve (AUC). To ensure robust results, the
final reported score for each experiment is the average over 10 runs with different random data splits.

For pretraining, we extract the 2-hop ego-graph with 10 neighbors each hop for single graph datasets
and adopt a 2-layer GCN Kipf & Welling (2017) as backbone model. The dimension of the manifold,
or the number of virtual nodes in (k,M)-sparse perturbation, is set to M = 32 with k = 15. For
the KNN construction for mixed data training in Algorithm 1 and multi-graph datasets training, we
also set k = 15. The dropout rate is 0.1 and the learning rate is 1e−4. The model input dimension
is 128. For different datasets, we unify the input dimension by random projection or SVD. For the
knowledge graph datasets, we use Node2Vec Grover & Leskovec (2016) to get the node embeddings.
The hidden dimension is 512. The temperature in contrastive learning is 1.0. The optimizer is Adam
Kingma & Ba (2015), with a cosine annealing schedule Loshchilov & Hutter (2017).

Table 7 to Table 12 show the hyperparameters in few-shot transferring: the learning rate lr, dropout
rate drop, the KNN number k between prototypes and target graph data points, and the balance
coefficient λ. We adopt the classifier head with only a linear layer for the node or graph classification
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task. For the link classification task, we simply adopt a bilinear layer as a classifier. The gated
function for Riemannian MoE is an MLP with 2 layers.

Table 7: Hyper-parameters for 1-shot and
5-shot cross-domain transfer on Arxiv.

lr drop k λ

1-shot 1e−3 0.1 3 1.0

5-shot 1e−3 0.15 3 1.0

Table 8: Hyper-parameters for 1-shot and
5-shot cross-domain transfer on Computers.

lr drop k λ

1-shot 1e−3 0.2 3 1.0

5-shot 1e−3 0.2 3 1.0

Table 9: Hyper-parameters for 1-shot and
5-shot cross-domain transfer on Reddit.

lr drop k λ

1-shot 1e−3 0.1 3 0.1

5-shot 1e−3 0.15 3 0.1

Table 10: Hyper-parameters for 1-shot and
5-shot cross-domain transfer on FB15k 237.

lr drop k λ

1-shot 1e−4 0.5 3 0.5

5-shot 1e−4 0.5 3 0.5

Table 11: Hyper-parameters for 1-shot and
5-shot cross-domain transfer on PROTEINS.

lr drop k λ

1-shot 1e−3 0.1 1 2.0

5-shot 1e−3 0.15 1 2.0

Table 12: Hyper-parameters for 1-shot and
5-shot cross-domain transfer on HIV.

lr drop k λ

1-shot 1e−3 0.1 2 2.0

5-shot 1e−3 0.15 2 2.0

G ADDITIONAL RESULTS

G.1 SUPPLEMENTARY RESULTS

We provide additional empirical results to further validate our framework. We present comprehen-
sive results for both cross-domain transfer (Table 18 and 19) and intra-domain transfer (Table 20 and
21) in few-shot settings. Furthermore, an ablation study in Table 22 demonstrates the effectiveness
of the key components of our model. We also include an additional visualization of the pre-trained
manifold in Figure 8, where we first project the 512-dimensional embeddings into 3-D using t-SNE
van der Maaten & Hinton (2008) and then apply RBF interpolation Wright & Fornberg (2006) to
generate a smooth surface that approximates the learned global Riemannian manifold.

G.2 COMPREHENSIVE ABLATION STUDY

We conduct a further ablation study to verify the effectiveness of EMA, prototype loss and Rieman-
nian MoE. Specifically, we introduce 3 variants of GraphGlue, described as follows:

• “w/o EMA” means that we replace EMA with the common average of a batch of embed-
dings;

• “w/o Lproto” means pretraining without prototype loss;

• “w/o Riemannian MoE” means that during adaption, Riemannian MoE module is replaced
by a typical prompting scheme.

In Table 13, both results on 1-shot setting and 5-shot setting demonstrate the effectiveness of the
proposed components.
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Table 13: Ablation study of GraphGlue’s key components.

Variants Arxiv Computers Reddit FB15k 237 PROTEINS HIV

1-shot
w/o EMA 15.46±1.41 30.84±9.50 7.43±2.37 35.90±17.40 58.48±2.56 52.62±2.41
w/o L proto 9.57±4.56 31.24±10.36 37.90±9.34 43.59±8.13 58.49±2.60 54.10±2.76
GRAPHGLUE 29.73±2.56 61.03±7.13 68.42±4.68 60.89±2.11 69.12±4.19 58.53±8.20

5-shot
w/o EMA 16.08±2.13 34.90±7.77 11.53±2.26 40.21±12.07 59.85±4.53 53.87±2.43
w/o L proto 15.26±9.91 36.63±11.84 46.13±14.14 64.56±16.42 61.64±6.28 55.50±2.70
GRAPHGLUE 39.98±1.67 74.15±2.38 84.89±0.68 79.52±1.75 73.94±2.38 62.18±2.50

G.3 HYPERPARAMETER SENSITIVITY ANALYSIS

For AOF, we investigate the hyperparameter sensitivity on the neighborhood size k and the number
of nodes M in (k,M)-sparse perturbation. Results are shown in Table 14 and 15.

Table 14: 1-shot results under different settings.

(a) Analysis on k (M = 32).

k Arxiv Computers Reddit FB15k 237 PROTEINS HIV

2 18.64±3.10 49.80±12.41 66.04±1.91 31.63±6.19 57.80±3.05 53.07±3.02
5 17.16±3.08 43.76±10.78 48.57±6.76 21.10±2.47 59.49±2.62 52.04±3.01
10 15.29±2.69 46.21±11.10 61.03±2.89 45.51±15.83 58.10±3.41 54.42±3.16
15 29.73±2.56 61.03±7.13 68.42±4.68 60.89±2.11 69.12±4.19 58.53±8.20
30 20.23±2.83 55.39±10.15 49.57±4.80 38.85±19.62 54.36±5.80 54.49±3.33
60 18.20±2.63 51.88±10.22 75.76±3.00 31.83±16.41 58.24±3.34 51.64±3.44

(b) Analysis on M (k = 15).

M Arxiv Computers Reddit FB15k 237 PROTEINS HIV

4 19.89±3.79 42.66±11.17 60.57±4.48 45.16±5.85 56.99±4.64 52.58±3.68
8 22.64±2.51 46.24±9.12 61.73±5.02 54.80±9.57 58.77±1.92 52.32±2.94
16 27.84±1.47 56.92±14.86 62.73±1.97 57.09±7.44 55.34±5.68 54.18±3.84
32 29.73±2.56 61.03±7.13 68.42±4.68 60.89±2.11 69.12±4.19 58.53±8.20

Table 15: 5-shot results under different settings.

(a) Analysis on k (M = 32).

k Arxiv Computers Reddit FB15k 237 PROTEINS HIV

2 29.49±3.14 70.82±3.14 80.46±1.21 36.24±5.11 59.42±2.03 56.10±2.76
5 23.95±7.88 67.74±4.02 67.41±8.74 39.26±14.50 60.45±3.05 54.76±2.33
10 25.86±7.17 70.59±18.03 80.49±0.59 48.01±10.53 60.86±3.08 55.69±4.23
15 39.98±1.67 74.15±2.38 84.89±0.68 79.52±1.75 73.94±2.38 62.18±2.50
30 33.00±1.63 57.65±29.35 64.57±6.84 42.88±16.13 62.09±2.45 54.63±3.01
60 32.59±1.57 68.08±1.66 85.24±0.42 45.42±8.09 60.40±1.35 54.01±3.69

(b) Analysis on M (k = 15).

M Arxiv Computers Reddit FB15k 237 PROTEINS HIV

4 32.62±3.40 64.66±13.87 70.86±2.92 60.63±4.80 57.38±4.76 56.27±1.62
8 34.92±1.50 72.25±1.99 78.82±1.79 63.18±14.37 59.70±1.92 54.64±2.35
16 37.78±5.79 74.22±13.95 74.92±2.41 70.11±11.89 60.62±3.66 57.55±2.65
32 39.98±1.67 74.15±2.38 84.89±0.68 79.52±1.75 73.94±2.38 62.18±2.50
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G.4 RESULTS ON HETEROPHILIC GRAPHS

We demonstrate the performance of GraphGlue on several benchmarking heterophilic graphs
(Amazon-ratings, Roman-empire, Texas and Wisconsin). The results are in Table 16 and 17.

Table 16: Performance under different shot settings with pretrained on ogbn-arxiv, Reddit, Comput-
ers, FB15k 237, PROTEINS, and HIV.

Method Amazon-Ratings Roman-empire Texas Wisconsin

1-shot
GCOPE 28.65±5.82 11.44±1.91 33.19±6.62 31.22±6.85
MDGFM 29.53±3.45 14.51±2.08 34.63±10.70 35.11±10.53
GraphGlue 31.16±3.56 16.23±3.00 35.16±20.43 37.95±10.91

5-shot
GCOPE 30.06±5.11 16.00±1.29 36.31±10.14 38.21±2.96
MDGFM 30.42±3.80 17.15±1.66 48.33±6.36 47.46±4.86
GraphGlue 32.17±2.91 18.50±1.07 50.88±11.93 49.71±8.00

Table 17: Performance under different shot settings with pretrained on 8 datasets (including
Amazon-Ratings and Roman-Empire).

Method Amazon-Ratings Roman-empire Texas Wisconsin

1-shot
GCOPE 29.03±4.17 13.14±2.36 33.82±7.39 30.08±5.13
MDGFM 27.01±2.98 14.11±2.14 36.02±9.54 33.28±8.76
GraphGlue 34.12±2.57 18.19±2.51 38.65±13.88 40.17±10.09

5-shot
GCOPE 32.83±3.26 16.98±1.40 41.33±9.85 43.74±3.19
MDGFM 32.54±3.75 16.77±1.92 48.10±7.26 46.62±4.16
GraphGlue 36.26±3.09 20.67±1.34 52.60±6.07 51.49±7.97

G.5 VISUALIZATION OF MANIFOLD GLUING

Manifold gluing aims to glue local pieces into one smooth surface, whose process is described as
follows.

• First, we construct local geometry on each patch using (k,M)-sparse perturbation–like
drawing a coordinate grid;

• Then, when two graphs share similar structures, we ”glue” their grids together along over-
lapping regions, ensuring no stretching or twisting (via the isometry of Def. 4.4 and holon-
omy of Eq. 5);

• Finally, we smooth the entire surface so that curvature changes gradually–forming a unified
manifold where knowledge flows naturally across domains.

In addition, we visualize a toy example of the aforementioned process in Figure 7.
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Isometry and holonomy regularization

k-order smoothing regularization

Local geometry construction

Figure 7: Visualization of the pre-trained manifold from 6 datasets.

Table 18: Performance of cross-domain transfer on various downstream tasks in the 1-shot setting,
reported as mean ± std over 10 runs. The highest result is bolded, and the runner-up is underlined.

Model
Node Classification Link Classification Graph Classification

Arxiv Computers Reddit FB15k 237 PROTEINS HIV

GCN 12.61±1.75 33.89±3.86 11.15±2.14 32.11±2.37 50.11±13.07 52.56±5.39

GraphSAGE 14.68±3.76 35.47±8.29 14.69±2.31 35.74±2.19 58.99±2.79 56.78±3.75

GIN 11.20±2.03 44.77±6.02 18.53±1.89 38.25±2.55 54.22±13.50 52.63±7.47

GCC 12.65±2.08 34.82±6.13 54.78±5.64 47.84±1.95 59.20±7.97 52.63±3.63

DGI 13.32±3.35 35.26±7.58 60.08±4.80 42.50±2.03 53.18±8.44 52.80±7.53

GraphMAE 12.61±1.75 33.89±3.86 11.15±2.14 51.34±1.87 60.11±13.07 52.78±6.72

PRODIGY 28.45±2.20 45.32±4.10 35.67±3.20 53.50±1.02 48.90±5.40 41.78±4.50

GFT 26.59±2.45 54.65±4.08 58.87±2.53 58.07±1.39 55.41±5.87 58.94±6.32

RAGraph 18.71±2.58 46.21±4.37 52.56±3.48 52.18±3.04 51.42±5.18 54.26±3.51

SAMGPT 24.15±3.81 47.61±7.42 62.85±4.22 57.44±2.46 52.42±3.15 55.48±3.26

GCOPE 26.52±5.56 54.55±9.14 62.76±4.52 58.25±2.67 55.19±3.59 58.93±2.60

MDGFM 26.05±2.40 46.68±8.43 64.88±3.31 56.11±1.68 53.41±5.34 51.46±2.85

GRAPHGLUE 28.88±5.22 59.50±7.05 67.12±3.39 59.75±5.27 59.87±4.85 60.22±3.09
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Table 19: Performance of cross-domain transfer on various downstream tasks in the 5-shot setting,
reported as mean ± std over 10 runs. The highest result is bolded, and the runner-up is underlined.

Model
Node Classification Link Classification Graph Classification

Arxiv Computers Reddit FB15k 237 PROTEINS HIV

GCN 27.68±2.13 65.78±4.20 28.36±1.01 52.43±1.87 55.04±9.98 47.81±3.91

GraphSAGE 26.18±2.21 66.75±4.45 22.27±1.17 58.91±1.52 60.45±1.39 50.59±0.75

GIN 26.06±2.42 69.51±3.50 29.03±1.66 63.76±1.73 58.87±5.05 49.12±4.95

GCC 26.84±2.14 62.63±3.16 65.21±1.56 73.69±1.24 64.20±3.09 57.41±1.73

DGI 27.18±2.33 61.02±3.20 62.72±2.21 68.32±1.46 53.34±6.27 52.23±8.49

GraphMAE 27.68±2.13 65.78±4.20 28.36±1.01 77.25±1.07 65.04±9.98 57.81±3.91

PRODIGY 33.67±2.80 52.78±3.60 42.34±2.90 72.17±6.94 55.23±4.70 48.65±3.80

GFT 36.78±1.92 69.13±3.56 66.28±1.42 79.13±1.68 62.18±3.59 57.68±5.43

RAGraph 32.35±1.78 62.38±3.75 63.08±1.32 64.52±2.57 58.62±2.86 56.32±3.46

SAMGPT 34.42±2.25 60.87±3.64 75.12±1.63 77.63±2.71 59.14±2.60 57.63±2.87

GCOPE 39.18±1.96 72.27±2.84 80.45±0.70 79.38±2.29 64.85±2.41 58.47±1.82

MDGFM 32.28±1.77 64.08±5.38 76.55±1.72 77.67±2.05 57.79±3.42 55.79±3.16

GRAPHGLUE 37.02±2.33 73.29±0.70 85.05±1.17 81.51±2.31 65.32±2.45 61.55±2.66

Table 20: Performance of intra-domain transfer on various downstream tasks in the 1-shot setting,
reported as mean ± std over 10 runs. The highest result is bolded, and the runner-up is underlined.

Model
Node Classification Link Classification Graph Classification

Arxiv Computers Reddit FB15k 237 PROTEINS HIV

GCN 12.61±1.75 33.89±3.86 11.15±2.14 32.11±2.37 60.11±13.07 52.56±5.39

GraphSAGE 14.68±3.76 35.47±8.29 14.69±2.31 35.74±2.19 68.99±2.79 56.78±3.75

GIN 11.20±2.03 44.77±6.02 18.53±1.89 38.25±2.55 64.22±13.50 52.63±7.47

GCC 12.65±2.08 34.82±6.13 54.78±5.64 47.80±1.97 59.20±7.97 52.63±3.63

DGI 13.32±3.35 35.26±7.58 60.08±4.80 42.56±2.05 53.18±8.44 52.80±7.53

GraphMAE 12.61±1.75 33.89±3.86 11.15±2.14 51.34±1.87 60.11±13.07 52.56±5.39

PRODIGY 28.45±2.20 45.32±4.10 35.67±3.20 53.50±1.02 48.90±5.40 41.78±4.50

GFT 28.83±1.76 53.94±3.47 63.03±2.34 59.43±0.87 63.54±4.98 58.17±5.76

RAGraph 20.53±2.13 50.39±3.81 59.91±2.79 52.09±2.57 52.83±4.37 55.73±3.06

SAMGPT 25.88±3.58 55.31±6.67 63.05±3.75 58.75±2.16 64.59±2.89 52.38±2.71

GCOPE 27.41±4.77 58.24±7.48 65.07±3.76 58.33±1.79 68.55±3.17 60.67±2.42

MDGFM 10.76±2.04 43.22±8.53 64.38±3.11 58.32±1.71 57.79±11.51 53.03±3.88

GRAPHGLUE 29.73±2.56 61.03±7.13 68.42±4.68 60.89±2.11 69.12±4.19 58.53±8.20

Table 21: Performance of intra-domain transfer on various downstream tasks in the 5-shot setting,
reported as mean ± std over 10 runs. The highest result is bolded, and the runner-up is underlined.

Model
Node Classification Link Classification Graph Classification

Arxiv Computers Reddit FB15k 237 PROTEINS HIV

GCN 27.68±2.13 65.78±4.20 28.36±1.01 52.43±1.87 65.04±9.98 57.81±3.91

GraphSAGE 26.18±2.21 66.75±4.45 22.27±1.17 58.91±1.52 70.45±1.39 60.59±0.75

GIN 26.06±2.42 69.51±3.50 29.03±1.66 63.76±1.73 68.87±5.05 59.12±4.95

GCC 26.84±2.14 62.63±3.16 65.21±1.56 73.64±1.25 64.20±3.09 58.34±2.19

DGI 27.18±2.33 61.02±3.20 62.72±2.21 68.32±1.47 53.34±6.27 52.23±8.49

GraphMAE 27.68±2.13 65.78±4.20 28.36±1.01 77.25±1.07 65.04±9.98 57.81±3.91

PRODIGY 33.67±2.80 52.78±3.60 42.34±2.90 72.17±6.94 55.23±4.70 48.65±3.80

GFT 39.02±1.39 73.41±3.21 71.37±1.45 79.25±0.94 74.69±2.84 61.03±4.83

RAGraph 35.74±1.46 61.98±2.79 66.30±0.75 67.86±1.69 62.52±3.83 59.23±2.80

SAMGPT 38.14±1.87 64.68±2.87 74.89±1.51 78.76±2.33 70.48±2.19 59.09±2.49

GCOPE 39.45±1.23 73.06±2.19 82.12±0.53 78.69±1.87 73.76±2.53 60.05±1.73

MDGFM 19.17±2.39 68.19±4.03 81.27±1.23 78.24±2.35 65.95±8.62 54.73±4.37

GRAPHGLUE 39.98±1.67 74.15±2.38 84.89±0.68 79.52±1.75 69.74±2.38 62.18±2.50
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Table 22: Ablation study of GRAPHGLUE’s key components.

Variants Arxiv Computers Reddit FB15k 237 PROTEINS HIV

1-shot
w/o Lcurv 22.33±2.56 49.63±5.11 64.38±5.12 53.12±3.74 51.21±3.54 50.34±3.87

w/o Lholo 27.14±3.62 56.39±4.16 65.93±4.33 54.85±4.78 53.23±4.48 54.83±2.15

GRAPHGLUE 28.88±5.22 59.50±7.05 67.12±3.39 59.75±5.27 55.87±4.85 60.22±3.09

5-shot
w/o Lcurv 29.17±3.14 66.85±3.58 74.13±1.92 69.33±3.98 58.77±4.35 57.13±3.33

w/o Lholo 35.77±2.64 67.16±2.45 79.11±3.47 74.02±0.97 58.74±2.18 54.12±4.19

GRAPHGLUE 37.02±2.33 73.29±0.70 85.05±1.17 81.51±2.31 65.32±2.45 61.55±2.66

ogbn-arxiv
Computers
Reddit
FB15k_237
PROTEINS
HIV

Figure 8: Visualization of the pre-trained manifold from 6 datasets.
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H REPRODUCIBILITY STATEMENT

This part provides the reproducibility statement on claims, theory assumptions and proofs, empiri-
cal result reproducibility, empirical setting/details, empirical statistical significance, open access to
data/code, computation resources, code of ethics, safeguards, licenses for existing assets, new assets,
crowdsourcing and research with human subjects, declaration of LLM usage, and broader impacts.

1. Claims. Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Yes. Main claims made in the abstract and introduction reflect the contributions in Sections
4, 5 and 6.

2. Theory assumptions and proofs. For each theoretical result, does the paper provide the
full set of assumptions and a complete (and correct) proof?
Yes. The theoretical results including the assumptions are clearly stated in Theorems in
this paper, while the complete and correct proofs are provided in Appendix B.

3. Empirical result reproducibility. Does the paper fully disclose all the information needed
to reproduce the main experimental results of the paper to the extent that it affects the
main claims and/or conclusions of the paper (regardless of whether the code and data are
provided or not)?
Yes. Key information is introduced in the subsection of “Evaluation Protocals”, and further
details are disclosed in Appendix F entitled “Empirical Details”.

4. Empirical setting/details. Does the paper specify all the training and test details (e.g.,
data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?
Yes. Specifications are provided in Appendix F entitled “Empirical Details”, and the full
details are included in the code.

5. Empirical statistical significance. Does the paper report error bars suitably and correctly
defined or other appropriate information about the statistical significance of the experi-
ments?
Yes. In the experiment, each case undergoes 10 independent runs, and we report the mean
with the error bar of standard derivations.

6. Open access to data and code. Does the paper provide open access to the data and code,
with sufficient instructions to faithfully reproduce the main experimental results?
Yes. Codes and data are available at the anonymous GitHub link with sufficient instructions.

7. Computation resources. For each experiment, does the paper provide sufficient infor-
mation on the computer resources (type of compute workers, memory, time of execution)
needed to reproduce the experiments?
Yes. The computer resources for the evaluation are described in Appendix F entitled “Em-
pirical Details”.

8. Code of ethics. Does the research conducted in the paper conform, in every respect, with
the ICLR Code of Ethics https://iclr.cc/public/CodeOfEthics?
Yes. We confirm that the research conducted in the paper conform, in every respect, with
the ICLR Code of Ethics.

9. Safeguards. Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Not available.

10. Licenses for existing assets. Are the creators or original owners of assets (e.g., code, data,
models), used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Yes. The original papers that produced the code package or dataset are properly cited in
this submission.
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11. New assets. Are new assets introduced in the paper well documented and is the documen-
tation provided alongside the assets?
Yes. The documentation is provided alongside the Codes of the proposed model.

12. Crowdsourcing and research with human subjects. For crowdsourcing experiments and
research with human subjects, does the paper include the full text of instructions given to
participants and screenshots, if applicable, as well as details about compensation (if any)?
Not available. This paper does not involve crowdsourcing nor research with human sub-
jects.

13. Institutional review board (IRB) approvals or equivalent for research with human
subjects. Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Not available. This paper does not involve crowdsourcing nor research with human sub-
jects.

14. Declaration of LLM usage. Does the paper describe the usage of LLMs (especially when
it is an important, original, or non-standard component of the core methods in this re-
search)?
Yes. LLM is used to polish writing only, and we include a section of “Declaration of LLM
Usage” in the Appendix.

15. Broader impacts. Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?
Yes. Both potential positive societal impacts and negative societal impacts are included in
the section of “Broader Impact and Limitations” in the Appendix.

I ETHICS STATEMENT

We confirm that the research conducted in the paper conform, in every respect, with the ICLR Code
of Ethics https://iclr.cc/public/CodeOfEthics.

J DECLARATION OF LLM USAGE

Large Language Model (LLM) is used to polish writing. Concretely, we refine the textual contents
in Section 1 (Introduction) and Section 7 (Conclusion) with LLM..

K BROADER IMPACT

Our work brings together two previously separate domains – multi-domain graph pre-training and
differential geometry. Our constructions taking in multi-domain graphs with a unified, smooth Rie-
mannian manifold, thus enabling the solid tools of differential geometry to systematically understand
the knowledge integration and transfer across graphs. Theoretically, we develop the neural mani-
fold gluing that makes the differential geometry principles implementable through deep learning. In
practice, the proposed pre-training model paves the way to build a powerful graph foundation model
with better generality and quantifiable transferability.

Positive societal impacts lie in the transferability and generality of the proposed graph pre-training
model, allowing for the analysis on more complicated real-world graphs. None of negative societal
impacts we feel must be specifically highlighted.
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