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ABSTRACT

Models of dense prediction based on traditional Artificial Neural Networks
(ANNs) require a lot of energy, especially for image restoration tasks. Currently,
neural networks based on the SNN (Spiking Neural Network) framework are be-
ginning to make their mark in the field of image restoration, especially as they
typically use less than 10% of the energy of ANNs with the same architecture.
However, training an SNN is much more expensive than training an ANN, due
to the use of the heuristic gradient descent strategy. In other words, the process
of SNN’s potential membrane signal changing from sparse to dense is very slow,
which affects the convergence of the whole model. To tackle this problem, we
propose a novel distillation technique, called asymmetric framework (ANN-SNN)
distillation, in which the teacher is an ANN and the student is an SNN. Specifi-
cally, we leverage the intermediate features (feature maps) learned by the ANN as
hints to guide the training process of the SNN. This approach not only accelerates
the convergence of the SNN but also improves its final performance, effectively
bridging the gap between the efficiency of the SNN and the superior learning
capabilities of ANN. Extensive experimental results show that our designed SNN-
based image restoration model, which has only 1/300 the number of parameters
of the teacher network and 1/50 the energy consumption of the teacher network,
is as good as the teacher network in some denoising tasks.

1 INTRODUCTION

Image restoration, a classical research area in computer vision, focuses on recovering high-quality
images from degraded observations. Most existing frameworks for image restoration use artificial
neural networks (ANNs), which have high performance but also often rely on large-capacity models
to achieve optimal performance. For instance, Restormer [47] and PromptIR [30] networks have
26.10M and 35.59M parameters, respectively, making them unsuitable for deployment on edge
devices. The growing importance of devices with low power or battery constraints in various real-
world applications, such as spiking neural networks (SNNs) offers a promising alternative [2, 6, 16,
36, 40, 41].

SNNs utilize binary signals (spikes) instead of continuous signals for neuron communication, re-
ducing data transfer and storage overhead. Moreover, Spiking Neural Networks (SNNs) feature
asynchronous processing and event-driven communication, which can eliminate redundant compu-
tations and synchronization burdens. When implemented in neuromorphic hardware, as mentioned
in [26, 29], SNNs demonstrate exceptional energy efficiency. Unfortunately, in the challenging do-
main of image restoration, there is a notable absence of an SNN-based benchmark that can achieve
performance levels comparable to those of its ANN counterpart. This is largely due to the slow
training process of SNNs, which, relying on spike-based signaling, require extensive data exposure
to generate predictions that match the accuracy of ANNs. This reliance on prolonged data exposure
is particularly problematic when it comes to the extraction of subtle information from images that
are visually redundant, as the training process becomes even more time-consuming.

In recent years, knowledge distillation as a promising approach for training heterogeneous models
for knowledge transfer [11, 24, 28]. These efforts have piqued our curiosity, prompting us to explore
the question: Is it feasible to transfer knowledge from ANNs to SNNs effectively? In this paper, our
objective is to address the prolonged training times in SNNs by leveraging the exceptional perfor-
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Figure 1: The Coxcomb of visual results and key evaluation metrics. Our SNN-based method
transfers the knowledge from the ANNs for better image restoration performance

mance capabilities of ANNs to enhance and expedite the capabilities of SNNs. We propose a novel
approach to train a thin SNN, called H-KD, which facilitates the distillation of knowledge in the
feature space directly from ANNs. Specifically, we propose an efficient and effective SNN-based
method, called SpikerIR, to solve the image restoration problem. This method aligns the represen-
tations from the ANN‘s decoder with those from our proposed SNN architecture, ensuring that the
knowledge transferred is accurate information. Furthermore, considering that heterogeneous mod-
els may learn distinct predictive distributions due to their different inductive biases, we utilize the
surrogate gradients to mitigate failure to surpass the performance of the original network (ANNs).
Compared to other ANN-based deraining models, our method can gain better performance with
shorter time steps. We consider the five different degradation types, as shown in Figure 1, helping
produce visually appealing results across the different degradations.

Our main contributions are summarised as follows:

(1) We present SpikerIR, the first general image restoration SNN-based method to the best of our
knowledge with a minimal parameter count of only 0.07M, perfectly tailored for real-world appli-
cations on resource-limited devices.

(2) We design a scheme, called H-KD, to accelerate the SNNs training process, by distilling the
knowledge from the ANN to obtain comparable performance for image restoration.

(3) Extensive experimental results on unified image restoration display that our proposed model can
obtain excellent performance in a shorter time while reducing energy costs.

2 RELATED WORK

Image Restoration. Image restoration [42] focuses on reconstructing a degraded image to produce
a high-quality version, addressing a core challenge in computer vision. This encompasses a range of
tasks, including image denoising [50, 51], deraining [14, 33], dehazing [31, 34], and motion deblur-
ring [5, 7] etc. Although these methods demonstrate remarkable reconstruction performance, their
significant computational demands hinder their deployment in real-world applications, especially
on resource-constrained devices. In contrast to these ANN-based methods, we introduce the use
of SNN, which offers higher energy efficiency, as a framework for achieving effective and efficient
image restoration.

Deep Spiking Neural Networks. Training strategies for deep SNNs primarily fall into two cate-
gories: direct training of SNNs and ANN-SNN conversion. Despite the promising advancements in
directly training SNNs using techniques such as surrogate gradients and threshold-dependent batch
normalization (TDBN) for deeper architectures, these approaches still suffer from several limita-
tions. While methods like STBP [40] and subsequent works by [13] and Fang et al. [10] have
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Figure 2: Overview of our method. SpikerIR transfers the knowledge from pre-trained ANNs’
decoders to enhance the comprehension of degradation images, helping output high-quality content
features. SpikerIR is designed as an encoder-decoder architecture, which mainly contains the Spik-
ing Block with Spike Convolution Unit and Multi-dimensional Attention.

achieved success in classification tasks, they often require deep network structures (e.g., 50 layers)
to perform well. This not only increases computational complexity but also contradicts the energy-
efficient nature of SNNs. Furthermore, while there have been efforts to extend directly trained SNNs
to regression tasks like object tracking [43, 49] and object detection [38], these approaches still rely
on deep architectures to achieve satisfactory results. Song et al. [37] proposed efficient SNN ar-
chitecture that has been implemented to remove rain from images. However, we tried to use it to
achieve other image restoration tasks with unsatisfactory results. In contrast, our approach leverages
artificial neural network feature distillation into SNNs, allowing SNNs to remain lightweight and
power-efficient without sacrificing performance.

3 THE PRELIMINARIES OF SNNS

3.1 ENERGY CONSUMPTION

The number of operations is commonly used to estimate the computational energy consumption of
neuromorphic hardware. In ANNs, each operation consists of multiplication and addition (MAC) in-
volving floating-point numbers, and the computational burden is typically measured using floating-
point operations (FLOPs)1. In contrast, SNNs offer an energy-efficient alternative for neuromor-
phic hardware, as neurons only engage in accumulation calculations (AC) when they spike. This
efficiency allows SNNs to perform computations using a similar number of synaptic operations
(SyOPs), significantly reducing energy consumption compared to traditional ANN architectures.
We quantify the energy consumption of vanilla SNNs as ESNN =

∑
n Eb, for each block n:

Eb = T× (fr ×EAC × OPAC +EMAC × OPMAC), (1)

where T and fr represent the total time steps and the block firing rate. The blocks are normally
convolutional or fully connected, and the energy consumption is determined by the number of AC
and MAC operations (OPAC,OPMAC). In this work, we adopt the same structure of SNN and ANN to
compare the energy consumption and assume that the data for various operations are 32-bit floating-
point implementation in 45nm technology [12], where EMAC = 4.6pJ and EAC = 0.9pJ .

3.2 STATIC IMAGE INPUTS

A common approach in SNNs for simulating pixel intensity signals in images is global encoding to
generate spike signals. Taking into account the spatiotemporal properties of SNNs, we first apply
direct encoding to the input degradation image to generate a sequence of spike trains, i.e. copying
the single degraded image as the input for each time step X = {Xt}T

t=1 (in this paper, we set T to
4).

1https://github.com/sovrasov/flops-counter.pytorch
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4 METHOD OVERVIEW

As illustrated in Figure 2, our method comprises two primary components: an encoder-decoder
framework (student network) designed to learn features for capturing information, and the distilla-
tion of knowledge from the decoders of ANNs. These parts are collaboratively worked to improve
the image restoration performance of SpikerIR.

Specifically, SpikerIR incorporates a lightweight encoder designed to extract degradation features
from the degraded image sequence. To balance training efficiency and performance, we introduce
‘prompts’ derived from the ANN’s network, where a prompt refers to the output of each ANN
decoder layer, which guides SpikerIR’s learning process. We employ Mean Squared Error (MSE)
loss to align the outputs of each SNN decoder layer with those of the ANN, thereby facilitating
learning from the ANN’s output. Furthermore, to avoid the decreasing flexibility of our SpikerIR,
we leverage the L1 loss and an FFT-based frequency loss function, which is defined as:

L = ∥IR − IGT∥1 + λ∥F(IR)−F(IGT)∥1, (2)

where IR is the output of our model, IGT is the high-quality ground-truth image, ∥ · ∥1 denotes the
L1 loss, F represents the Fast Fourier transform, and λ is a weight parameter that set to be 0.1
empirically. Algorithm 1 (H-KD training strategy) procedures can be written:

Algorithm 1 the H-KD training strategy

Input:
The output of each ANN’s decoder layer Fprompt;
The output of each SpikerIR’s decoder layer Foptimize;
The randomly initialized parameters W of a SpikerIR.

Output:
The optimized parameters W∗ of SpikerIR.

Fprompt ← {Fprompt
1, . . . ,Fprompt

i};
Foptimize ← {Foptimize

1, . . . ,Foptimize
i};

W∗ ← γ argmin
Foptimize

LMSE(Foptimize,Fprompt) + argmin
W

LEq.(2)(W);

return W∗;

where γ represents the hyperparameter, which we set to 0.12 in this paper. It is worth noting that
Fprompt and Foptimize may not match in the size of the feature maps, which can be aligned by interpo-
lation and pooling.

5 EXPERIMENTS

We experimentally evaluate our method on five degradation types of tasks: motion blurry, hazy,
noise, rainy and defocus blurry. In addition, we use three existing image restoration models as
teacher networks to evaluate the effectiveness of our algorithm.

5.1 IMPLEMENTATION DETAILS

We train five sets of model parameters for these five image restoration tasks within the same network
framework. Our SpikerIR uses a 4-layer encoder-decoder structure, where each layer of the network
is a convolutional layer and a ReLU layer. From level-1 to level-4, the number of each level Spik-
erIR Blocks is 2, and the number of channels is {48,96,192,384}. For teather networks, we adopt
Restormer [46], PromptIR [30] and AdaIR [8] as the teacher models. We train models with AdamW
optimizer (β1=0.9, β2=0.999, weight decay 0.05) for 51 epochs with the initial learning rate 0.0005
gradually reduced to 0.00001 with the cosine annealing for image denoising tasks. Distinct tasks,
however, were trained for different numbers of epochs to optimize performance, with the details as
follows: Motion deblurring for 77 epochs, dehazing for 5 epochs, deraining for 8 epochs, and defo-
cus deblurring for 208 epochs. We start training with patch size 64 × 64 and batch size 8. For data
augmentation, we use horizontal and vertical flips. Two well-known metrics, Peak Signal-to-Noise
Ratio (PSNR) and Structural Similarity (SSIM), are employed for quantitative comparisons. Higher
values of these metrics indicate superior performance of the methods.
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5.2 MAIN RESULTS

We show some quantitative and qualitative results. It is worth noting that some teacher models were
not trained on the specific dataset, so the results shown may only have one SpikerIR. Some reports
have three teacher models, and the results shown will have three SpikerIR’s, which are represented
as three student networks of teacher networks.

Image Denoising Results. We conduct denoising experiments on the synthetic benchmark dataset
BSD68 [25], generated using additive white Gaussian noise. Table 1 presents the result for color
image denoising. In alignment with previous methods [23, 52], we evaluated noise levels of 15, 25,
and 50 during testing. Our SpikerIR achieves excellent performance for denoising tasks. Addition-
ally, for the noise level 15 and 25, SpikerIR surpasses the teacher model Restormer. Figure 3 shows
the denoised results by feature model and Our SpikerIR correspondingly for color denoising.

Table 1: Single-image motion denoising results. The H-KD method is applied to three different
methods, i.e. Restormer, PromptIR, and AdaIR.

σ=15 σ=25 σ=50
Method PSNR SSIM PSNR SSIM PSNR SSIM

Restormer 31.96 0.900 29.52 0.884 26.62 0.688
SpikerIR 32.35 0.894 29.72 0.825 26.13 0.678

PromptIR 33.98 0.933 31.31 0.888 28.06 0.799
SpikerIR 32.48 0.898 29.70 0.829 25.59 0.642

AdaIR 34.12 0.935 31.45 0.892 28.19 0.802
SpikerIR 32.29 0.889 29.53 0.817 25.34 0.623

Image Deraining Results. The PSNR and SSIM scores across the RGB channels, as shown in
Table 2, demonstrate that while our SpikerIR model achieves lower scores compared to state-of-
the-art methods such as Restormer, PromptIR, and AdaIR, it is important to note that SpikerIR
operates with only 1/300 of the parameter count. Our SpikerIR model adopts a similar architecture to
Restormer, making Restormer a natural choice as the teacher model for comparison. Consequently,
Restormer outperforms both PromptIR and AdaIR in this context, as its architectural design aligns
more closely with that of SpikerIR. This alignment enables Restormer to serve as a more effective
reference for evaluating SpikerIR’s performance.

Single-image Motion Deblurring Results. Here, we use only Restormer as the teacher network,
due to PromptIR and AdaIR were not evaluated poorly on this dataset. We evaluate deblurring
methods both on the synthetic dataset (GoPro [27]) and the real-world datasets (RealBlur-R [35],
RealBlur-J [35]). Table 3 shows that our SpikerIR receives a similar performance as the SOTA ANN
models with fewer parameters and lower complexity.

Table 2: Image deraining results. The H-KD method is applied to three different methods, i.e.
Restormer, PromptIR, and AdaIR.

Test100 [48] Rain100H [44] Rain100L [44]
Method PSNR SSIM PSNR SSIM PSNR SSIM

Restormer [46] 32.00 0.923 31.46 0.904 38.99 0.978
SpikerIR 28.20 0.854 29.06 0.810 34.90 0.938

PromptIR 30.23 0.901 30.88 0.877 37.44 0.979
SpikerIR 30.22 0.902 30.15 0.856 33.71 0.934

AdaIR 31.79 0.979 30.99 0.889 38.02 0.981
SpikerIR 31.55 0.973 28.64 0.799 34.51 0.924
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Noisy GT Restormer SpikerIR AdaIR SpikerIR PromptIR SpikerIR
(PSNR/SSIM) (+∞/1) 33.52/0.944 31.97/0.893 33.25/0.942 31.67/0.883 33.22/0.941 32.01/0.895

Noisy GT Restormer SpikerIR AdaIR SpikerIR PromptIR SpikerIR
(PSNR/SSIM) (+∞/1) 32.76/0.952 30.06/0.882 32.04/0.946 29.56/0.876 31.96/0.946 29.70/0.880

Noisy GT Restormer SpikerIR AdaIR SpikerIR PromptIR SpikerIR
(PSNR/SSIM) (+∞/1) 29.91/0.773 27.42/0.600 29.51/0.751 26.60/0.537 29.48/0.747 26.67/0.553

Figure 3: Visual results on Image denoising. Top row: the noise level is 15. Middle row: the noise
level is 25. Bottom row: the noise level is 50.

Reference Restoremr PromptIR AdaIR
PSNR/SSIM 37.17/0.971 34.60/0.973 35.40/0.975

Rainy SpikerIR SpikerIR SpikerIR
25.81/0.835 32.07/0.950 32.06/0.945 31.80/0.938

Reference Restoremr PromptIR AdaIR
PSNR/SSIM 37.17/0.971 34.60/0.973 35.40/0.975

Rainy SpikerIR SpikerIR SpikerIR
18.62/0.762 25.15/0.896 24.66/0.883 24.50/0.883

Figure 4: Single image deraining. Compared to the teacher model, our SpikerIR achieves compara-
ble performance with significantly fewer parameters.
Table 3: Single image motion deblurring results. Our method was compared with other motion
deblurring methods, and it achieved superior results on the RealBlur dataset. In addition, the number
of parameters and FLOPS are much smaller than those of other models.

GoPro [27] RealBlur [35] Params FLOPs
Method PSNR SSIM PSNR SSIM (M) (G))

MPRNet [45] 32.66 0.959 29.65 0.892 20.10 777.01
MIMO-UNet++ [4] 32.68 0.959 33.37 0.856 617.64 16.10
Restormer [46] 32.92 0.961 33.69 0.863 26.10 12.33
Stripformer [39] 33.08 0.962 25.97 0.866 20.0 170.46
SpikerIR (Ours) 29.89 0.931 30.25 0.899 0.07 0.03

Image Defocus Deblurring Results. Table 4 reports the performance of our SpikerIR on the image
defocus deblurring task. Figure. 6 shows that our SpikerIR has a comparable performance in terms
of deblurring quality. We also present zoomed-in cropped patches in yellow and green boxes.

Image Dehazing Results. We evaluate SpikerIR on the synthetic dataset (RESIDE/SOTS) [20].
Compared to PromptIR [30], our method generates a 0.35 dB PSNR improvement. As the Figure 7
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GT Input MIMO-Net++ MRPNet Restromer Stripformer SpikerIR (Ours)
PSNR 28.70 dB 23.60 dB 29.59 dB 30.02 dB 30.19 dB 30.85 dB

GT Input MIMO-Net++ MRPNet Restromer Stripformer SpikerIR (Ours)
PSNR 29.95 dB 36.92 dB 37.51 dB 37.69 dB 23.82 dB 35.48 dB

Figure 5: Visual results on image deblurring. Top row: Realworld deblurring on RealBlur dataset.
Bottom row: Synthetic deblurring on Gopro Dataset.
Table 4: Defocus deblurring comparisons on the DPDD testset [1] (containing 37 indoor and 39
outdoor scenes). Our SpikerIR achieves excellent performance.

Indoor Scenes Outdoor Scenes Combined
Method PSNR SSIM MAE LPIPS PSNR SSIM MAE LPIPS PSNR SSIM MAE LPIPS

EBDB [15] 25.77 0.772 0.040 0.297 21.25 0.599 0.058 0.373 23.45 0.683 0.049 0.336
DMENet [17] 25.50 0.788 0.038 0.298 21.43 0.644 0.063 0.397 23.41 0.714 0.051 0.349
DPDNet [1] 26.54 0.816 0.031 0.239 22.25 0.682 0.056 0.313 24.34 0.747 0.044 0.277
IFAN [18] 28.11 0.861 0.026 0.179 22.76 0.720 0.052 0.254 25.37 0.789 0.039 0.217
Restormer [46] 28.87 0.882 0.025 0.145 23.24 0.743 0.050 0.209 25.98 0.811 0.038 0.178

SpikerIR (Ours) 26.42 0.801 0.030 0.287 21.50 0.648 0.059 0.411 23.89 0.727 0.045 0.351

Table 5: Dehazing results in the single-task setting on the SOTS-Outdoor [20] dataset.

DehazeNet MSCNN AODNet EPDN FDGAN AirNet Restormer PromptIR AdaIR SpikerIR
Method [3] [34] [19] [32] [9] [21] [46] [30] [8] (Ours)

PSNR 22.46 22.06 20.29 22.57 23.15 23.18 30.87 31.31 31.80 31.66
SSIM 0.851 0.908 0.877 0.863 0.921 0.900 0.969 0.973 0.981 0.975

shown, our SpikerIR is effective in removing degradations and generates images that are visually
closer to the ground truth.

6 ABLATION STUDY AND APPLICATION

In this section, we train Gaussian color denoising models on image patches of size 64 × 64 for 51
epochs only. Testing is performed on BSD68 [25] dataset. Flops and energy statistics are computed
on image size 256 × 256. The feature models that we selected are the well-known Restormer [46],
PromptIR [30], and AdaIR [8].

Impact of knowledge distillation In our H-KD method, the ANN teacher model’s decoder features
are integrated into the SpikerIR to enhance intermediate-level learning. We conduct experiments
to understand the impact of aligning intermediate layer features from the ANN teacher model on
our SpikerIR’s performance during knowledge distillation. As the SpikerIR is the encoder-decoder
framework, we perform three ablation experiments to evaluate the effects of feature constraints at
different stages (stages: 1 → 7). First, we apply constraints to all the encoder and decoder layers.
Second, we restrict the constraints to stages 3 → 5. Finally, we only constrain the decoder, i.e.
stages 4 → 7. As shown in Table 6, when comparing learning at different feature ANNs, the
SpikerIR student presents no preference for different features on denoising tasks, as they all help
improve the performance.

Performance Comparison with Equivalent ANNs To highlight the efficiency of our SNN model,
we compare its performance with equivalent ANNs, trained and tested using the same strategies on
the BSD dataset. This comparison allows us to evaluate the energy consumption differences between

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(a) Input (b) IFAN () [18] (c) Restormer [46] (d) SpikerIR (Ours) (e) GT
Figure 6: Qualitative comparisons with IFAN [18] and Restormer [46] on the test set of the DPDD
dataset [1] for image defocus deblurring.

Hazy Image Input AirNet [22] PromptIR [30] AdaIR [8] SpikerIR (Ours) GT

Figure 7: Image dehazing comparisons under the single task setting on SOTS [20].

the models while maintaining comparable performance. Specifically, for the ANN model, we set the
number of encoder and decoder layers to match those of our SpikerIR model, and we adopt the
Restormer framework for the architecture. Table 7 reports the performance, parameters and energy
consumption comparison between our SNN model and the ANN model for the equivalent architec-
ture. The evaluation models were run on a Lynxi HP300 platform to demonstrate the performance
of the models. Our model is trained on dehazing and deraining datasets with the accuracy of float16.
As the Figures 9 and 8 shown, our method has better visualization, especially on real-world image
dehazing tasks.

7 DISCUSSION AND LIMITATIONS

By leveraging the intermediate features from the ANN teacher model, we successfully accelerate the
convergence of the SNN student (the aggregation speed of SNN models is increased by more than

8
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Table 6: Ablation experiments on image denoising for learning the impact of aligning intermediate
features. Without the use of distillation, there is a significant reduction in the performance of the
student network.

Stage 1→ 7 Stage 3→ 5 Stage 3→ 5 w/o KD
Teacher Model σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50 σ=15 σ=25 σ=50

Restormer 32.45 29.65 25.68 31.36 29.00 25.07 32.35 29.72 26.13 30.46 27.91 22.35

PromptIR 32.50 29.61 25.04 31.98 29.15 25.35 32.48 29.70 25.59 31.44 25.00 23.26

AdaIR 32.33 29.48 25.22 31.99 29.33 25.16 32.29 29.53 25.34 31.29 25.11 22.89

Table 7: Comparison with Equivalent ANNs on image denoising.

BSD68 Flops Params Energy
Teature Model Student Model σ=15 σ=25 σ=50 G M uJ

Restormer SpikerIR 32.45 29.65 25.68 0.07 0.03 5.232×104
ANN 33.00 30.33 26.87 10.22 71.18 7.331×106

Hazy Restormer [46] PromptIR [30] AdaIR [8] Ours

Figure 8: Real-world image dehazing results. Our method recovers images with more contrast and
the haze is effectively removed.

Rainy Restormer [46] PromptIR [30] AdaIR [8] Ours

Figure 9: Real-world image deraining results. Our method effectively removes rain streaks and the
glow of the wick is effectively limited.

5 ×), reducing the computational burden typically associated with training SNNs. However, during
our experiments, we observed two limitations related to inference and training time.
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i) The inference time in the SNN model is slower compared to its ANN counterpart (on platforms
without SNN-optimized hardware, see Figure 10(b)). Although SNNs offer significant energy sav-
ings, their event-driven nature and reliance on temporal dynamics during the inference process in-
troduce latency. Future work could explore more optimized spiking neuron models or hybrid ap-
proaches that combine the advantages of both SNNs and ANNs to improve inference speed without
sacrificing energy efficiency.

ii) Training time per epoch increases progressively as training continues, particularly in later
stagessee Figure 10(a). This phenomenon is primarily due to the complexity of gradient-based
optimization in SNNs, where updating spiking neurons’ membrane potentials becomes more com-
putationally demanding as the model learns. Addressing this issue will require the development of
more efficient training algorithms or hardware-accelerated solutions specifically designed for SNNs.

In addition, Figures 10(c) and 10(d) show the voltage shift of the SNN with the H-KD strategy, where
the shift in Figures 10(c) is more drastic and non-sparse. A denser voltage can more effectively
extract the features of an image.

(a) Training Time for Denoising on BSD68 (b) Inference Time vs Resolution

(c) The voltage visualization of SpikerIR with the H-
KD method.

(d) The voltage visualization of SpikerIR without the
H-KD method.

Figure 10: Comparison of training and inference times and the state of voltage membrane changes
in the SNN during training.

8 CONCLUSION

In this paper, we develop an efficient, low-energy network named SpikerIR for a variety of image
restoration tasks. On both GPU platforms and embedded platforms, our model demonstrates excel-
lent performance, with clearer images than those recovered by the teacher network on some datasets.
In addition, we attempted to explain the role of distillation, which acts to enable the conversion of a
sparse voltage to a denser one. We also discuss some of the limitations of the model, in particular
the fact that SNNs rely heavily on efficient I/O operations.
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