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Abstract

We propose a new model for aggregating preferences over
a set of indivisible items based on a quantile value. In this
model, each agent is endowed with a specific quantile, and
the value of a given bundle is defined by the corresponding
quantile of the individual values of the items within it. Our
model captures the diverse ways in which agents may per-
ceive a bundle, even when they agree on the values of individ-
ual items. It enables richer behavioral modeling that cannot
be captured by additive valuation functions. We aim to max-
imize utilitarian and egalitarian welfare within the quantile-
based valuation setting. For each of the welfare functions, we
analyze the complexity and provide complementary approx-
imation and exact algorithms. Interestingly, our results show
that the complexity of both functions varies significantly, de-
pending on whether the allocation is required to be balanced.
We provide near-optimal approximation algorithms for utili-
tarian welfare, and for egalitarian welfare, we present exact
algorithms for many cases.

1 Introduction

The problem of allocating indivisible items in a fair and ef-
ficient manner has been well-studied in recent years (Feige
2006; Feige and Vondrdk 2010; Budish 2011; Caragiannis
etal. 2019; Aziz et al. 2024). The overwhelming majority of
this work focuses on settings where agents have monotone
valuations for the items being assigned' partially because of
the underlying structure imposed by them. In practice how-
ever, agent preferences may be unreasonably non-monotone,
and alternate models of preferences are needed.

Consider a setting where an incoming class of school stu-
dents need to be divided into sections each with a different
teacher. School teachers are some of the most overworked
and underpaid professionals. Consequently, it is imperative
to try and ensure good allocations for them. Teachers get
satisfaction from the students’ learning and growth through-
out the year. Each teacher may have different levels of sat-
isfaction with a given set of students assigned to them, even
when the students even if the students were to perform simi-
larly. One teacher may be upset if even one student performs
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'a monotone valuation function is one where the marginal value
of an item is always non-negative or always non-positive.

poorly, whereas a different teacher may be satisfied if at least
half their class does well. Alternately, some teachers may be
delighted if they have even one exceptional child in their
class, even if the others do not do as well. These opinions
can be captured by different quantile values for the set of stu-
dents assigned. The pessimistic or critical teacher bases their
satisfaction on the lowest quantile, the teacher whose satis-
faction is based on at least half the class doing well can be
captured by the median quantile and the optimistic teacher
bases their satisfaction on the highest quantile.

We introduce a novel valuation class, termed quantile val-
uations, which encompasses the aforementioned scenarios.
In this framework, each agent is endowed with a specific
quantile value 7 € [0,1], and the value that she assigns
for a bundle S is the 7-quantile of the distribution of item
values in S. Quantiles are widely used across data analysis
and statistics because they provide a robust description of
value distributions. Compared to measures like average or
total/gross, most quantile based measures are significantly
less susceptible to outliers. As a result, quantiles are com-
monly used in practical settings, in measures like median
household income, median age, and median house price in
a given neighborhood etc. Quantiles have also been used in
decision theory to model agent preferences in settings where
agents have preferences over stochastic outcomes. Specifi-
cally, quantiles have been considered in settings where an
agent faces a choice of actions, each yielding a distribution
over outcomes. Here, modeling the agent’s choice as a quan-
tile maximizer has been shown to provide a better approxi-
mation of human behavior than modeling them as an ex-
pected utility maximizer (de Castro and Galvao 2019, 2022).

Other allocation settings where quantile valuations are
relevant include allocating repair tasks to workers and as-
signing submitted papers to reviewers. In these settings, as
well typical school settings with in-person classes, there of-
ten is an added restriction that each teacher be assigned an
equal sized set of students. In contrast, when it comes to on-
line classes such as those for distance learning or preparatory
classes for specific exams, there is no underlying restriction
on class size. Hence, we consider both the space of balanced
allocations as well as that of all unconstrained allocations.
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Table 1: Complexity of computing USW and ESW optimal allocations given n agents and m items. a-USW refers to an «
approximation to the optimal USW. Algorithmic results marked with T hold when agents have heterogeneous quantiles. All
other algorithmic results require agents to have the same (homogeneous) quantile value of 7. All complexity results hold for

both homogeneous and heterogenous quantiles.

1.1 Our Results

We study the problem of maximizing welfare for agents with
quantile valuations. Under quantile valuations, each agent ¢
specifies their value for individual items and a quantile value
7; € [0,1]. Given abundle B, agent s value for B is the 7;th
quantile of the values of the items in B. We provide compre-
hensive results on utilitarian social welfare (USW) (see for
e.g. Harsanyi (1955)), which captures efficiency, and egal-
itarian social welfare (ESW) (see for e.g. Moulin (2004)),
which captures fairness. USW is essentially the sum of the
agents’ valuations for their assigned bundles, and ESW is
the minimum of these values. We study each objective for
both balanced and unconstrained allocations. Our results are
summarized in Table 1.

Utilitarian Welfare. We first show that the problem of
maximizing the Utilitarian Social Welfare is NP-hard for
both balanced and all allocations. Over balanced allocations
(where each agent receives m/n items), we prove that it is
NP-hard to approximate the optimal USW within a factor

O(IO;&{L 7;")) for instances with m < n?. We then present

a min(“* + 1, n)-approximation algorithm, which matches
the hardness of approximation bound asymptotically.

In the unconstrained setting, we present a (1 + ﬁ)—

approximation algorithm to the optimal USW. Our results
thus demonstrate that the complexity of both problems dif-
fers significantly depending on whether the allocations are
required to be balanced.

Egalitarian Welfare. In the setting where allocations are
constrained to be balanced, we prove that ESW optimal al-
locations can be computed in polynomial time, even when
agents have arbitrary heterogeneous quantiles. This is in
contrast to USW, where we have hardness of approximation.

When not restricted to balanced allocations, we show that
the complexity of maximizing ESW is highly dependent on
the agents’ quantile values. Specifically, we prove that when
agents have homogeneous quantiles 7, the problem is solv-
able in polynomial time for 7 € {0,1/3,1} U {t/t+1 |t €
Z.}. In contrast, for 7 € (0,1/4] U (3/8,2/5] U (5/9,3/5], the
problem becomes APX-hard, with no multiplicative approx-
imation is possible unless P=NP.

Near-optimal results for goods. Our results for goods are
in fact quite tight. For USW, it is straightforward to see
that the hardness bounds are quite close to the guarantees
provided by the approximation bounds. Specifically, in the

o, . m/n :
balanced case, it is NP-hard to get an O(log T{q : /n) approxi-
mation algorithm, and our approximation algorithm matches

this by giving a min(”* + 1, 7). For the unconstrained case,
it is straightforward to see that an O(1 — %) approximation
is near-optimal for an NP-hard problem.

For egalitarian welfare, we show that even with binary
values for the items, the problem of maximizing ESW is
NP-hard. As this holds for binary valuations, any o > 0
approximation on ESW would imply exact ESW. As a re-
sult, the problem of maximizing ESW is APX-hard with
no non-trivial approximation possible. We then identify a
subset of quantiles where the problem of maximizing ESW
can be completed in polynomial time, while showing NP-
hardness for a large sub-class of the remaining quantiles.
The intractability holds when all agents have the same quan-
tile, thus easily extends to heterogeneous quantiles.

Identical Valuations. When all agents have the same val-
uation function, the strong intractability results for maxi-
mum USW under balanced allocations and maximum ESW
over all allocations can be overcome. The problem of maxi-
mizing USW in the unconstrained setting with identical val-
uations remains open.

Chores. For chores, the problem of maximizing welfare
is equivalent to that of minimizing social cost. We find that
the problem of maximizing utilitarian social cost (USC) in
the unconstrained setting is equivalent to the weighted set
cover problem. For balanced allocations, maximizing USC
is NP-hard and we get an O(n)-approximation. For egal-
itarian social cost (ESC) in the unconstrained setting, the
problem becomes APX-hard, even for quantiles that were
tractable for goods. For the balanced case, the algorithm for
goods extends to chores as well. Due to space constraints,
we defer this entire discussion to Section E.

1.2 Related Work

We defer an extended literature review to Section A.



Quantile based preferences. Quantile based preferences
are well-established in mathematical economics and social
choice theory. Our proposed valuations are a generalization
of preference set extensions that lift preferences over indi-
vidual items to a set of items. The study of preference set
extensions has a long-standing history in social choice the-
ory (Barbera, Bossert, and Pattanaik 2004) and has been
applied to hedonic coalition formation games (Cechldrova
and Hajdukova 2003, 2004), committee selection (Aziz and
Monnot 2020) and multidimensional matchings (Hosseini,
Narang, and Roy 2025). Recently, Caragiannis and Roy
(2025) introduced quantile based utilities to the context of
randomized social choice and matchings. We discuss these
and other generalizations of set extensions in Section A.

Allocating Indivisible Items. The problem of allocating
indivisible items fairly and/or efficiently is very well stud-
ied (see Amanatidis et al. (2023) for a survey). Existing lit-
erature almost exclusively assumes that aggregated prefer-
ences are monotone, very often, additive (Caragiannis et al.
2019; Aziz et al. 2022). Some also consider arbitrary valua-
tions (Bérczi et al. 2024; Barman et al. 2024a). Our proposed
valuations are non-monotone for most quantiles. Restricted
cardinality allocations have been explored for additive valu-
ations (Shoshan, Hazon, and Segal-Halevi 2023; Biswas and
Barman 2018; Caragiannis and Narang 2024).

2 Model

We shall use [t] = {1,--- ,t} forany ¢t € Z,.

We consider a setting with a set of agents N s.t. [N| =n
and a set of items M, s.t. |[M| = m. Each agent i € N
has a valuation function v; over M. Informally, a valuation
function is a 7 quantile valuation, for 7 € [0, 1], if the value
assigned to abundle S C M? is determined by the T quantile
of the distribution of item values in .S.

Definition 1 (Quantile Valuations). Given a set of indivisi-
ble items M, we say that v; : 2™ — R is a 7; quantile for
7; € [0,1), if for any subset S C M, we have that

e €S uilg) <vilg)} o
{vi(g) : 5] > TZ}.

vi(S) = min

An equivalent way of defining quantile valuations is to
say that v; is a 7; quantile for 7; € [0, 1] if for any sub-
set S C M where g;,, - ,gi are the items in S s.t.
Ui(gh) < - < vi(gi\m) and %(S) = Ui(giﬁi\sﬂ) if
7 > 0, otherwise, v;(S) = v;(g;,). In particular, if 7 is
0, the agent values the given set as much as their least fa-
vorite item and if 7; is 1, they value it as much as their most
favorite item.

We shall use 7; to denote the quantile of agent <. When
all agents have the same quantile, we shall simply use 7.
Unless otherwise specified, assume that all agents have the
same quantile 7 € [0, 1]. Consequently, an instance of our
problem can be expressed by the tuple I = (N, M, v, 7).

Each item must be allocated to some agent. Formally, an
allocation A = (Ay,---, A,) is an n-partition of M, with

2we refer to a subset of items as a bundle

A; being the set of items assigned to agent ¢ € N. We shall
use II(n, M) to denote the set of all allocations that divide
the items in M among n agents. Our aim is to allocations
with maximum welfare.

Definition 2 (Utilitarian Social Welfare (USW)). Given
an instance I = (N, M,v,7) and an allocation A =
(Ay,---, Ay), the utilitarian social welfare is the sum of the
values received by the agents USW(A) = 3,y vi(4;).

Given an instance I = (N, M, v, 7), let A* be a maxi-
mum USW allocation. We shall say that allocation A is a-
USW for « € [0, 1], if USW(A) > «USW(A*).

Definition 3 (Egalitarian Social Welfare (ESW)). Given
an instance I = (N, M,v,7) and an allocation A =
(Ay,---, Ay), the egalitarian social welfare is the min-
imum of the values incurred by the agents ESW(A) =
minieN Ui(Al)

Balanced Allocations Quantile valuations are very intu-
itive for settings where we insist on each agent getting an
equal number of items, as in the case of assigning papers to
reviewers in conferences or assigning students to teachers.
We shall consider both Utilitarian and Egalitarian Welfare
with and without this requirement.

When considering balanced allocations, we shall assume
that the number of agents divides the number of items. That
is, m = kn for some k € Z,. Thus, we shall look for al-
locations A = (A4, -+, A,) where |4;| = k. We shall use

II(n, M) to denote the set of all balanced allocations for in-
stance I. It is important to note that when we consider max-
imizing USW or ESW over balanced allocations, we are in
fact finding a maximum welfare allocation from II(I) alone.
That is, we are not holding the allocations to the standard
of maximum welfare under unconstrained allocations. When
not explicitly specified, assume unconstrained.

Goods and Chores. We shall say thatanitemg € M isa
good, if for all agents v;(g) > 0. Analogously, we shall say
that an item g € M is a chore, if for all agents, v;(g) < 0.
Unless specifically mentioned otherwise, the items we refer
to will be goods. When referring to chores, we shall often
use the term disutilities with d; denoting agent ¢’s disutility
where d; = —v;. Consequently, an instance of our problem
can be denoted equivalently by (N, M, d, 7) when consider-
ing an instance with chores.

When we consider instances with only chores, the so-
cial welfare notions become Utilitarian Social Cost (USC)
and Egalitarian Social Cost (ESC), respectively. Here,
We shall say that allocation A is a-USC for a > 1, if
USC(A) < aUSC(A*) where A* has minimum USC.

3 Balanced Allocations

We first explore quantile valuations with the requirement
that the allocations be balanced. Our results for USW and
ESW lie in stark contrast with each other here. We defer any
omitted proofs to Section B.



3.1 [Utilitarian Social Welfare

We first show, when allocations are balanced, that maximiz-
ing USW is NP-hard to approximate to better than a factor

of O(%). We then proceed to give a polynomial-time

algorithm that matches hardness of approximation bound.

Hardness of Approximation In order to show hardness of
approximation, we give an approximation preserving reduc-
tion from the k-DIMENSIONALMATCHING(kDM) problem.
The kDM problem requires finding a maximum collection
of disjoint edges in a k-partite hypergraph where each hyper-
edge has size k. Hazan, Safra, and Schwartz (2003) showed
that this problem is NP-hard to approximate to a factor better

than O(logk).

Theorem 1. Given instance I = (N,M,v,7) where
m < n? and m = kn, it is NP-hard to find an

0] (%) -USW balanced allocation.

Proof. Given an instance of kDM, (G = (X, H), {), we cre-
ate an instance of our problem as follows: For each edge
H, € H, we create agent i. For each vertex z € X, we cre-
ate item g,. We can assume, without loss of generality, that
each vertex is contained in at least one hyper-edge. Thus, we
have that | X'| < k|H|. To balance the item count, we intro-
duce k[H| — | X| dummy items g1, , g, x|- Thus, we
have n = |H| agents and the number of items is m = k|H|.
As a result, we have that m = kn. Recall that balanced allo-
cations require k = 7 items to be allocated to each agent.

For each agent© € N, weset; = 0 foralli € N.
Now for 4 and each g, if € H;, we set v;(g.) = 1 else,
we set v;(g,) = 0. Finally, for each t € [k|H| — | X|], set
v;(g;) = 0. We now show that a matching of size ¢ in the
kDM problem can be transformed into a balanced allocation
whose USW is at least £ in the reduced instance of our prob-
lem, and vice versa. Consider a matching p of size £ in kDM.
For each H; € u, allocate the items vertices in H;. That is,
A; = {g.|z € H;}. Arbitrarily allocate the remaining items,
ensuring |4;| = k. It is easy to see that USW(A) > £.

Now consider a balanced allocation A in the reduced in-
stance with a USW of /. As the maximum value for any
agent is 1, this implies that £ agents receive a value of 1 from
A. By construction, v;(A;) = 1 only if A; contains all the
items corresponding to the vertices in H;. From here, it is
easy to see that u = {H;|v;(A;) = 1} is a matching of size
£. Hazan, Safra, and Schwartz (2003) proved that there exists
a class of instances with k£ < n such that kDM is NP-hard to
approximate within a factor of O(k/log(k)). Thus, we have
hardness of approximation for instances where m < n?. [

Observe that this reduction can be extended to all 7 €
[0,1) by adding enough dummy items s.t. an agent gets a
value of 1 only if they get three items of value 1. Conse-
quently, the APX-hardness holds for all quantiles 7 € [0, 1)
where (m — n[T(m/n)]) < n?.

Near-Optimal Algorithm We now provide an approx-
imation algorithm that almost matches the lower bound
placed by Theorem 1. The greedy algorithm (Algorithm 1)

[T I S

ALGORITHM 1: min( + 1,n)-USW Greedy Algorithm

Input: Instance with goods and heterogeneous quantiles
(N, M, v, 7) where m = kn
Output: A balanced allocation A
Initialize set of unallocated goods P <+ M;
Initialize set of unassigned agents N’ <— N
Let k; «+ min(k, k — [k + 1);
while N’ # () do
Foreachi € N',let S; - argmax 3 s vi(9);

SCP,|S|=k;
Let i* = arg max (minges; vi(g));
ieN’
A = Six;

N« N\ {i*};
Allocate items in P arbitrarily s.t. |A;| = k forall ¢ € N;
Return A

proceeds by iteratively allowing unassigned agents to “de-
mand” their best possible set from the unassigned items. We
then choose the agent whose value for their demanded set is
highest. We repeat this until all items are assigned.

Theorem 2. Given an instance I = (N,M,v,T) with
m = kn and heterogeneous quantiles, Algorithm 1 returns
a balanced allocation which is min(%* + 1,n)-USW.

3.2 Egalitarian Social Welfare

We now move to maximizing egalitarian welfare. We begin
with a very useful reduction, which facilitates all our algo-
rithms for ESW. We show that whenever there is an algo-
rithm to find an allocation with maximum ESW under binary
valuations, we can use it to find a maximum ESW allocation
under general non-negative valuations.

Lemma 1. The problem of finding an allocation with ESW
at least v > 0 over allocations in II' C TI(n, M) under
heterogeneous quantiles reduces to maximizing ESW over
Il under binary goods with heterogeneous quantiles.

The proof of Lemma 1 shows that given an arbitrary in-
stance [ and a value v, we can construct an alternate instance
I’ with binary valuations such that I has an allocation with
ESW of v if and only if the maximum ESW under I’ is 1.
As a result, given I and an algorithm ALG which finds a
maximum ESW allocation over IT’ for binary goods, we can
make at most mn calls to ALG to find a maximum ESW
allocation over II’ for .

This enables us to maximize ESW over balanced alloca-
tions, even if the quantile values are heterogeneous. We only
consider a setting where v;(g) € {0,1} forall¢ € N and all
g € M. Here, we shall try to see if an allocation with ESW
1 can exist. That is, all agents must get a value of 1. In order
to achieve this, we first make the following observation:

Observation 1. For an agent i with quantile T; and binary
valuations, given a bundle B C M, the value of i for B
satisfies v;(B) = 1 if and only if there are at most [1;| B|]—1
items in B for which i has value 0.

This follows from the definition of quantile valuations.
Thus, to have ESW of 1, each ¢ € N must receive at least



ALGORITHM 2: Max balanced ESW for binary goods.

Input: Instance with binary values and heterogeneous
quantiles (N, M,v,7) s.t. m = kn

Output: Balanced Allocation A

t Letk; = min(k, k — [1:k] — 1);

[

w

a B

e
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Create bipartite graph G = (X, Y, E) where X contains x4
for each g € M, Y contains 3, - - y}% for each 7z € N and
(xg,yi) € E onlyif v;(g) = 1, for each
1€ N, g€ M,te ki
Let 1 be a maximum cardinality matching in G;
if || = |Y'| then
Initialize A = (A1, --- Ay) where A; + {g|(zq,vi) € p
for some ¢ € [k;]} for eachi € N;
Allocate remaining items arbitrarily but ensuring
|A;| = kforalli € N,
else
L Let A be an arbitrary balanced allocation;

Return A;

k; = min(k, k— [1;k] +1) items of value 1, where m = kn.
Note that the min argument only comes in when 7; = 0.

We can check if this is possible using a simple maximum
cardinality bipartite matching algorithm. This is shown in
Algorithm 2. Here, we create a bipartite graph where for
each ¢ € N, we create k; vertices, and for each g € M
we create one vertex. We add an edge between ¢ and g if
v;(g9) = 1. A matching of size ) . k; exists if and only if
the given instance has an allocation with ESW of 1.

Proposition 1. Given I = (N, M,v,7) where m = kn
with binary goods and heterogeneous quantiles, Algorithm 2
finds a max ESW balanced allocation in polynomial time.

As a consequence of Lemma 1 and Proposition 1, we get
the following theorem.

Theorem 3. Given I = (N, M,v,T) with heterogeneous
quantiles where m = kn, a balanced allocation with maxi-
mum ESW can be found in polynomial time.

4 Unconstrained Allocations

Typical work on allocating indivisible items does not require
allocations to be balanced. Further, there are many practi-
cal settings, such as online classrooms in distance education,
where allocations need not be balanced. Thus, for complete-
ness, we again explore welfare maximization, now for un-
constrained allocations, beginning with utilitarian welfare.
We find that it is possible to give significantly better guaran-
tees on USW, compared to the balanced setting. In contrast,
maximum ESW now becomes intractable for a large subset
of the quantiles. Omitted proofs are deferred to Section C.

4.1 Utilitarian Social Welfare

We find that while maximizing USW still remains in-
tractable, we are able to circumvent hardness of approxima-
tion and achieve a near exact approximation algorithm that
even works for heterogeneous quantiles.

—
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ALGORITHM 3: Scapegoat Algorithm for 1 + —1--USW

Input: Instance with heterogeneous quantiles (N, M, v, )

Output: Allocation A

for eachi € N do

Create weighted bipartite graph G* = (XY, E, w)
where

X contains x4 for each g € M,

Y contains y; for each j € N \ 7 and

w(zg,y;) = vi(9); _

Let 4 be a maximum weight matching in G*;

Set Ab = {g|zg = pu(y;)} forall j # i;

Set A: =M \ Uj#iA;;

Let A < arg max{USW(A%)|i € N};
Return A;

Intractability We first show that for non-identical agents
with quantile 7 = 0 for all agents, the problem of maxi-
mizing social welfare proves to be NP-hard for goods. We
give a reduction from the EXACT3COVER problem, which
is known to be NP-hard (Garey and Johnson 1979).

Theorem 4. Given instance I = (N, M, v, ) with goods
finding a maximum USW allocation is NP-complete.

A similar reduction can be carried out for all other quan-
tiles in 7 € [0, 1) by adding a sufficient number of items that
would give value 0 to all agents. The only change needed
would be add enough “padding” items of value 0 for every-
one, so that we can get an analogous mapping of instances.
The number of padding items needed depends on the quan-
tile, but can easily be computed for each 7 € [0,1).

Near Exact Algorithm. In contrast to the balanced case,
we find a near-optimal approximation for USW. We call this
the scapegoat algorithm (Algorithm 3). It proceeds by con-
sidering allocations where one agent is the “scapegoat” and
receives m — n + 1 items, while the remaining agents get
one item each of high value. Exactly n such allocations are
considered, one for each agent as the scapegoat. For a fixed
scapegoat, the corresponding allocation is built by a max-
imum weight one-one matching between the other agents
and the items. The algorithm chooses the allocation with the
highest USW.

Theorem 5. Given instance I = (N, M, v, ) with hetero-
geneous quantiles, scapegoat algorithm (Algorithm 3) re-
turns an (1 + ﬁ)—USW allocation in polynomial time.

Building on this approach, we now show that when even
one agent has 7; = 1, we can now maximize USW in poly
time. Essentially this agent can be treated as the scapegoat,
and we can simply use a maximum weight one-one matching
as in Algorithm 3 and allocate all remaining items to the
scapegoat.

Proposition 2. Given instance I = (N, M, v, 1) with het-
erogeneous quantiles and an agent i* such that 7~ = 1, a
maximum USW allocation can be found in polynomial time.
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Figure 1: Quantile-wise tractability or intractability of max ESW. Red dashed lines show values of 7 for which maximizing
ESW is NP-hard, black solid lines show a value for 7 for which we have polytime algorithms.

4.2 Egalitarian Social Welfare

Rather surprisingly, we find that maximizing ESW over all
allocations is intractable for some quantiles and tractable for
others. Here, we assume all agents have the same quantiles.
Clearly, the intractability results would extend to settings
with arbitrary heterogeneous valuations. We illustrate the
spectrum of quantiles for which the problem is tractable vs
intractable in Fig. 1. When presenting algorithms, we shall
again assume binary valuations. From Lemma 1, a polyno-
mial time algorithm for the binary case is sufficient to get a
general algorithm.

Exact Algorithms. We are able to find polynomial time
algorithms for maximizing ESW under a class of quan-
tiles which includes many natural quantiles like 7 =
0,1/2,2/3,3/4,9/10. We begin with an observation which is
true for all quantiles: for maximum ESW to be 1, each agent
must get at least one item of value 1 simultaneously.

Observation 2. Under an instance with binary goods, for
allocation A, ESW(A) = 1 if and only if for each i € N,
there exists g € A;, s.t. v;(g) = 1.

This gives a necessary condition for an allocation with
ESW of 1 to exist. We now specifically consider quantiles of
the form 7 = t% for k € Z . For this setting, we have the
following simple result.

Lemma 2. For an agent i € N with T; = H%, where t €

Z is fixed, a bundle B C M with exactly £ goods of value
1 for i, we have that v;(B) = 1 if and only if the number of
0 valued items in B for i is at most £t — 1.

Based on Observation 2 and Lemma 2 we develop an
algorithm for maximizing ESW over unconstrained alloca-
tions when there isat € Z, s.t. 7; = t%l foreach? € N.
We divide the items into two set My and M. Items in M,
are objective Os, that is, all agents have value 0 for each item
in My. The items in M; are subjective 1s, that is, these are
the items for which at least one agent has value 1.

The algorithm checks for two conditions: are there
enough items so that each agent can receive a good of value
1 and are there enough items in M; to offset the items in
M. If so, it first assigns each agent an item they have value
1 for. Next, out of the unassigned items in M, it arbitrarily
selects one such item and allocates it to an agent who has
value 1 for it, along with ¢ items from Mj. Finally, if no
items remain in one of M or M7, it allocates the remaining
items while ensuring the condition in Lemma 2.

Proposition 3. Given instance I = (N,M,v,7 = )
where t € Z, Algorithm 4 returns a maximum ESW allo-
cation in polynomial time.
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ALGORITHM 4: Max ESW for binary goods and 7 = t/t + 1

Input: I = (N, M, v, 7) with binary goods and 7 = /¢ + 1

Output: An allocation A

Create bipartite graph G = (X, Y, E)) where X contains z,
for each g € M, Y contains y; for each 7 € N and
(xg,yi) € Eonlyifvi(g) =1,foreachi € N, g € M;

Let ¢ be a maximum cardinality matching in G;

Let Mo = {g € M|vi(g) =0foralli € N};

Let My =M \ Mo;

if |[Mo| > ¢|M1| — n OR |p| < n then
\ Let A be an arbitrary allocation;

else

Let A = (A1,---,Ap) best. A; «+ {gl(zg,yi) € pu};
My M\ UjAg;
while My # () AND My # 0 do
Arbitrarily pick g € M7 andi € N s.t. v;(g) = 1;
if |[Mo| > ¢ then
| Pick an arbitrary subset S C Mo s.t. |S| = ¢;
else
L Let S «+ Mo;
A+ A;U{g}US;
M, eMl\{g}andMo (—M()\S;
if My # 0 then
Let B - - - By, be an arbitrary partition of My s.t.
|B;| <t—1foralli € N;

if My # () then

Let By - - - By, be an arbitrary partition of M s.t.
g € |B;| only if v;(g) = 1;

| Foreachi € N,set A; +— A; U B;;

Return 4;

We can extend this idea to the setting of 7, = 1/3 for all
agents. We defer the discussion to Section C.
Proposition 4. Given I = (N, M, v, 7 = 1/3), Algorithm 5
returns a maximum ESW allocation in polynomial time.

We can now summarize our tractability results for maxi-
mum ESW over all allocations as follows.

Theorem 6. A maximum ESW allocation can be found in
polynomial time for T = {0,1/3,1} U {5 |t € Z }.

Intractability. We now show that there are several quan-
tile values for which maximizing ESW is APX-hard. In-
triguingly, these values interweave between quantile val-
ues for which maximizing ESW can be done in polyno-
mial time. We find three ranges of intractability. Namely,
for 7 € (0,1/4] U (3/8,2/5] U (5/9,3/5]. For T € (3/8,2/5] or
7 € (5/9,3/5) the ratio of additional items of value 1 for a
new item of value 0 can vary. We find that deciding between



these cases proves to be intractable. We show intractability
for binary valuations for each range. Under binary valua-
tions, any o > 0 approximation on ESW would be an exact
algorithm. Consequently, we get that it is NP-hard to have
any a-ESW algorithm for all o« > 0.

Theorem 7. Given I = (N, M,v,T), maximizing ESW is
APX-hard for T € (0, 1] U (3/s, 2/0] (5/9,3/5].

5 Identical Valuations

We now consider identical valuations, that is all agents have
the same quantile 7 and the same valuation function v. We
defer all omitted proofs to Section D.

5.1 Utilitarian Welfare

Maximizing USW remains open for the unconstrained case.
A maximum USW balanced allocation can be found in poly-
nomial time for any 7 € [0, 1]. In fact, we have that the
same greedy algorithm (Algorithm 1) that was min(”* +
1,7n)-USW that proves to be an exact algorithm in this case.

Theorem 8. Given an instance with identical valuations
I = (N, M,v, 1), Algorithm 1 returns a balanced alloca-
tion with maximum USW.

5.2 Egalitarian Welfare

We again focus our attention to binary goods, as a conse-
quence of Lemma 1. The balanced case is already covered
by Theorem 3. We find that a maximum ESW allocation in
the unconstrained case can be found in polynomial time. To
this end, we first observe a simple fact.

Observation 3. Given 7 € (0,1] and a T-quantile binary
valuation function v and bundle B C M, let By = {g €

B : v(B) = 0}. We have that v(B) = 1 < |B| > @.

We use this to show in order to maximize ESW under
identical valuations, it suffices to consider allocations where
the number of items of value 0 is balanced across agents.

Lemma 3. Given instance I = (N, M, v, T) with identical
valuations over binary goods, let r be the number of goods
with value 1. An allocation with ESW of 1 exists only if there
exists an allocation A in which each A; has at most [(m —
r)/n] goods of value 0 and v(A;) = 1 for eachi € N.

Proof. Let there exist an allocation A = (Ay,--- , A,) s.t.
v(A;) = 1forall i € N. Let t; denote the number of goods
of value 0 in A;. If 7 = 0, then if » # m, no allocation
can exist where all agents get value 1. It follows that any
allocation with ESW of 1, satisfies the required property.
Now consider the case where 7 > 0. Let there exist an
agent j s.t t; > [™="1]. Then there must exist an agent ;'
s.t.tj—tj > 2.Thus, t; < [ - ” |. We shall show that there
ex1sts an allocatlon A’ Where J gets t; — 1 items of value 0,
and j' gets t;» + 1 items of value 0 and ESW(A) = 1.
Consider A’ where A, = A; foralli # j, j'. We shall now
transfer one item of value 0 and just enough items of value
1 from j to j’ to get the required allocation. From Observa-
tion 3, for ¢ + 1 items of value 0, in order for v(A%,) = 1,

t/+1 If|A |+1>t/+1

it must be the case that |4, | >

we let A%, = Aj U go such that v(go) = 0 and go € A;.
Finally, let A} = A; \go, observe that v(A}) = v(A%) =

Suppose [A;/| +1 < J . Now as v(A /) = 1, by Ob-

servation 3, it must be that |A | > -L. We shall show that
there are enough goods of value 1 in A that can be trans-

ferred while maintaining the values of both bundles.
Choose ¢ = [1] — 1 goods {g1, ..., g¢} of value 1 and go
ofv(go) = 0 from A;. Let A}, = Ajs U{go, g1, -, g}, and
= A; \{go,gl,. ., ge}. Observe that as v(A;/) = 1, we

have that | A/ > Y it follows that

1 th+1
|A;,|:\Aj/|+1+£2|Aj/|+;>] .

Thus, we have v(A},) = 1. We now show that v(A}) =
1. By assumption, v(A;) = 1. Consequently, we have that

[T|A;]] > t;+1. Now consider A%, we need [7(|A;|—(1+
?))] > t;. Consider
(714511 = [7(14;] = (1 + )]

> [r(145] = D)1 = [rl4;] 11 =

>ti+1-1=t.

[l A;]1 =1

Hence, we have that ESW(A’) = 1. Consequently, we
can repeat this procedure till each agent has at most [ —"]
goods of value 0. As a result, whenever an allocation ex-
ists s.t. ESW(A) = 1, there must exist an allocation A’, s.t.
ESW(A’) = 1 and each agent receives either [(m — 7)/n ]
or [(m — n)/r] items of value 0. O

This result proves useful in maximizing ESW in the un-
constrained setting and even leads to an algorithm for maxi-
mum USW for binary goods.

Theorem 9. Given instance I = (N, M, v, T) with identical
valuations, an allocation with maximum ESW can be found
in polynomial time.

Proposition 5. Given instance I = (N, M, v, ) with iden-
tical valuations over binary goods, an allocation with maxi-
mum USW can be found in polynomial time.

6 Conclusions

In this work, we proposed a novel quantile-based preference
model in the context of indivisible item allocation. We stud-
ied Utilitarian and Egalitarian Welfare, both with and with-
out the balanced allocation requirement, and provided com-
prehensive algorithmic and complexity-theoretic results.
Interestingly, our results reveal that the complexity of the
problems changes significantly depending on whether the
balancedness requirement is imposed. For instance, for bal-
anced allocations there is a strong hardness of approxima-
tion bound for maximizing USW, whereas for unconstrained
allocations, a near-exact approximation algorithm exists. A
similar phenomenon occurs with ESW but in reverse: for



balanced allocations, maximizing ESW can be solved ef-
ficiently, while for unconstrained allocations, maximizing
ESW is APX-hard for many quantile values.

Our work opens up several promising directions for fu-
ture research. Firstly, while we focused on the two extremes
of the p-means (Utilitarian and Egalitarian welfare), explor-
ing other welfare functions, such as Nash welfare, presents
an intriguing avenue for study. Secondly, investigating the
compatibility between fairness notions, such as EF1 or EFx,
and Pareto efficiency within the framework of our valuation
class is another interesting direction of further research.
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A Additional Related Work

Allocating Indivisible Items. The problem of allocating
indivisible items fairly and/or efficiently is very well stud-
ied (See (Amanatidis et al. 2023) for a survey). Existing
literature almost exclusively assumes that preferences are
aggregated in a monotone manner, often assuming additive
valuations (Caragiannis et al. 2019; Aziz et al. 2022), but
also at times subadditive (Barman et al. 2024b; Benabbou
et al. 2020) or superadditive valuations (Barman, Narayan,
and Verma 2023; Viswanathan and Zick 2023). A couple of
papers also consider arbitrary valuations, with no underly-
ing structure guaranteed, in addition to monotone valuations
(Bérczi et al. 2024; Barman et al. 2024a). Our paper consid-
ers quantile preferences which may be monotone for the two
extreme quantiles, but non-monotone for all others.

Constrained Allocations. While typical work on allocat-
ing indivisible items does not explicitly restrict the type of
allocations studied there has been some work restricting the
number of items that can be allocated. Shoshan, Hazon, and
Segal-Halevi (2023) and (Biswas and Barman 2018) con-
sider a setting where items are partitioned into categories
and there is a uniform constraint on how many items of each
category can be allocated to a single agent. For this space,
Biswas and Barman (2018) focus on envy based fairness,
while Shoshan, Hazon, and Segal-Halevi (2023) consider ef-
ficiency via pareto optimality and envy-based fairness.

Caragiannis and Narang (2024) study a repeated match-
ing setting where there are 7" rounds and n agents and n
items. In each round, each agent must receive exactly one
item. Here, value for an item depends on how many times
this agent has received the item in the past. For this space,
(Caragiannis and Narang 2024) pursue utilitarian social wel-
fare and envy-based fairness.

Quantile based preferences. Quantile based preferences
are well-established in mathematical economics and social
choice theory. (de Castro and Galvao 2019, 2022) show that
quantile preferences are a more accurate model of real-life
behavior of agents in random settings over expected util-
ity. Recently, quantile valuations have been introduced to
the setting of randomized social choice as well as one and
two-sided matchings (Caragiannis and Roy 2025).

These preferences are a generalization of preference set
extensions that lift preferences over individual items to a
set of items. The study of preference set extensions has
a long-standing history in social choice theory (Barbera,
Bossert, and Pattanaik 2004) and has been applied to hedo-
nic coalition formation games (Cechlarova and Hajdukova
2003, 2004; Cechlarova 2008), committee selection (Aziz
and Monnot 2020) and multidimensional matchings (Hos-
seini, Narang, and Roy 2025). Among them, one is called
the best set extension in which the sets are compared based
on the best item in each set. One is called the worst set ex-
tension, in which the sets are compared based on the best
item in each set. The best and worst extension correspond to
the 7 = 1 and 7 = 0 in our model.

Quantile based set extensions have been explored in prior
work through the lens of specific quantiles. The downward
lexicographic (DL) and the upward lexicographic (UL) set

extension are both natural refinements of the best and worst
set extensions, respectively. Both lexicographic extensions
are also special cases of set extensions based on additive
valuations (Barbera, Bossert, and Pattanaik 2004). Lexico-
graphic preferences have been well studied within fair di-
vision (Aziz et al. 2015; Hosseini, Mammadov, and Was
2023; Hosseini et al. 2021, 2023; Ebadian, Peters, and Shah
2022). Other quantiles have also been considered previously.
Nitzan and Pattanaik (1984) characterize median quantile
preferences that are a special case of 7 = 1/2 in our model.

Recently, the idea of quantiles has been introduced on top
of the standard additive valuation setting within fair division.
(Babichenko et al. 2024) consider settings where an agent
assesses the fairness of a bundle by comparing it to her val-
uation in a random allocation. In this framework, a bundle is
considered g-quantile fair, if it is at least as good as a bundle
obtained in a uniformly random allocation with probability
at least ¢. In a similar vein, Bhawalkar et al. (2024) intro-
duce the average value problem where the valuations are ad-
ditive but they require that the average value of the bundles
received by the agents meets a certain threshold.

B Omitted Proofs from Section 3

We now present the omitted proofs regarding balanced allo-
cations, beginning with utilitarian welfare.

B.1 [Utilitarian Welfare

Recall that we find that the problem of maximizing utili-
tarian welfare is APX-hard. Specifically, that is NP-hard to

get an O(log% "/n) approximation. We now prove the cor-
rectness and running time for the greedy algorithm (Algo-

rithm 1) giving a matching approximation guarantee.

Theorem 2. Given an instance I = (N, M,v,T) with
m = kn and heterogeneous quantiles, Algorithm 1 returns
a balanced allocation which is min (7 + 1,n)-USW.

Proof. Given I, let A* = (A3, ..., A}) be a maximum USW
balanced allocation. Without loss of generality, we assume
that vy (A7) > v2(A3) > -+ > v, (AL). Let i; denote the
agent who is allocated a bundle in the ¢-th iteration of the
while loop, and let A;, denote the corresponding bundle al-
located to her under Algorithm 1.

Let k; = min(k, k — [7;k] + 1). That is, k; is minimum
number of items in any k sized bundle B s.t. v;(g) > v;(B).
Recall that under the greedy algorithm, agent ¢ “demands”
k; items. Let ¥ = max; k;. Observe that 1 < k' < k.
We shall now show that the first [ 7%+ ] agents to receive
a bundle will have value comparable to the value under
specific bundles under A*.

Claim: Foreacht = 1,--- , [ 55 ], we have that the value
of agent it, Vi, (A“) Z U(t—l)(k’+1)+1(A?t—l)(k’-ﬁ-l)—&-l)'

Proof of Claim. We shall prove this by induction. For 41,
as none of the items have been allocated, the best possible
bundle A4;, must be such that v;, (4;,) > v1(A47).

Suppose we have that for all t < £—1, the claim holds. Let
L= 0cli-1] A;, be the set of items that are allocated up



to the (¢ — 1)th iteration of the while loop. In each iteration
at most &’ items are allocated. Consequently, we have that
|L| < K'(t—1). It follows that in the worst case, the number
of bundles under A* for which some item has already be
allocated in Lis [{j € [(t = 1)(K' +1) +1] : AT NL #
0 < |L|= k(i 1). )
Consequently, we get that among the top (t—1)(k'+1)+1
bundles under A*, at least ¢ bundles do not inter-
sect with L. Thus far, £ — 1 bundles have been al-
located. Consequently, at least one bundle and agent
pair among these f unallocated bundles must remain
available for selection . Hence, we must have that

vi;(Ag;) = v(t—l)(k’+1)+1(A?tq)(k'ﬂ)ﬂ)- [

We can now prove the approximation guarantee. Let o =
min(k’ + 1,n). Observe that [k,ﬂ] = [2]. The USW of

A is lower bounded by >, * e "/“ v;, (45, ). From the proof of
the claim, we know that

Z”% i ZZU
t=1

Recall that agents are ordered according to A*, that is,
v1(A7) > - > v, (A*). As aresult, we get that

USW(A™) = > wi(4))

te[n]

Yo'+ 1)+1 (Al 1) (k1) 11)

(#7571
>« Z V(t—1) (k' +1)+1 (AG_ 1) (1) +1)-
t=1
From the claim, we know that this is greater than or equal
to o times the value obtained by the first | agents un-

der Algorithm 1. Hence, USW(A) >

Observe that when each agent demands k; < n — 1 items,
we are guaranteed (k’ + 1)-USW which may be even better
than (k + 1)-USW. However, when k' > n — 1, the greedy
algorithm can only guarantee n-USW. Consequently, for an
arbitrary I, Algorithm 1 is min(™ + 1,n)-USW. O

el

B +1

USW(A*)
e

B.2 [Egalitarian Welfare

In contrast to the previous case, we find that for ESW, we
are able to provide an exact algorithm, that works even for
heterogeneous quantiles. To this end, we first provide the
proof of a very useful reduction.

Lemma 1. The problem of finding an allocation with ESW
at least v > 0 over allocations in II' C TI(n, M) under
heterogeneous quantiles reduces to maximizing ESW over
11" under binary goods with heterogeneous quantiles.

Proof. Consider an arbitrary instance I = (N, M, v, 7) and
II' C TI(n, M). Each agent can receive at most m distinct
values, consequently, the ESW of an allocation can take at
most mn different value. As a result, we can check for at
most mn distinct threshold values for v s.t. we wish to find
an allocation in A € II' where ESW(A) > v.

Fix a value for the threshold ». We can construct an alter-
nate instance I’ = (N, M,v’, 7) with binary valuations as

follows: v;(g) = 1 if and only if v;(g) > v. We can now
show that an allocation A € II' has ESW(A) > v under v if
and only if ESW(A) = 1 under v’.

Suppose we have an allocation A € TII' s.t. A has
ESW(A) > v under v. Thus, for each ¢ € N, A; must
contain enough goods each with value at least v so that
v;(4;) > v. Thus, for the same quantile 7;, it must be that
vi(A;) > 1. Consequently, ESW(A) > 1 under v'.

Now, suppose we have an allocation A € II' st. A
has ESW(A) > 1 under v’. We can analogously see that
vi(A;) > 1if and only if v;(A;) > v. As a result, it must
be that v;(A;) > v for each i € N, and thus, ESW(A) > v
under v.

Hence, given an algorithm that finds a maximum ESW
allocation for IT" under an instance with binary goods, we
can make at most mn calls to it to find a maximum ESW
allocation for II" under arbitrary goods. O

Based on this previous result, we henceforth only consider
instances with binary goods when maximizing ESW. For the
space of balanced allocations, Algorithm 2 finds a maximum
ESW allocation for agents with heterogeneous quantiles. We
now prove the corrctness and running time of this algorithm.

Proposition 1. Given I = (N, M,v,7) where m = kn
with binary goods and heterogeneous quantiles, Algorithm 2
finds a max ESW balanced allocation in polynomial time.

Proof. For an instance with binary goods, the maximum
ESW possible is 1. For a balanced allocation to have ESW
of 1, from Observation 1 each 7 € N must receive at least
k; = min(k,k — [7;k] + 1) items which give ¢ value 1.
Algorithm 2 checks if this is simultaneously possible for all
i € N.Let A be the allocation returned by Algorithm 2 on I.
We shall now show that ESW(A) = 1 whenever a balanced
allocation with ESW 1 exists for I.

Suppose a matching of size ), k; exists in the graph
G constructed in Algorithm 2. Consequently, A; contains at
least k; items for which ¢ has value 1. Thus, ESW(A) = 1.

Conversely, let an allocation A’ with ESW(A’) = 1 exist
for the given instance. Then for each ¢ € N, A; must con-

tain at least k; items of value 1 for 4. Let g} - - - gf P e A
be distinct items s.t. v;(gf) = 1 for all ¢ € [k;]. Consider
po= {(zg,y)lt € [kil}. Clearly, |p| = >, k;. That

is, a maximum cardinality matching of the required size
must exist. As a result, the allocation returned by A is s.t.
ESW(A) = 1.

Running Time. The bipartite graph has >, k; < kn =
m vertices in X and m vertices in Y and thus, at most m?2
edges. A maximum cardinality matching on a bipartite graph
can be found in polynomial time using the Ford-Fulkerson
Algorithm. As a result, Algorithm 2 runs in polynomial time.

O

C Omitted Proofs from Section 4

We now move to the case of unconstrained allocations, again
beginning with utilitarian welfare.



C.1 Utilitarian Welfare

In contrast to the balanced case, for unconstrained alloca-
tion, while maximizing USW remains intractable, it is no-
longer inapproximable.

Intractability

Theorem 4. Given instance I = (N, M, v, T) with goods
finding a maximum USW allocation is NP-complete.

Proof. 1t is straightforward to see that this problem is in NP.
Given instance I and value «, such that there exists an allo-
cation A with USW at least «, it can be checked in polyno-
mial time that A has USW at least .

We give a reduction from the well known EXACT3COVER
problem, which is known to be NP-hard (Garey and John-
son 1979). Under the EXACT3COVER problem we are given
a universe of 3t elements U/ and a family of sets S =
{S1,---,8¢} s.t. foreach j € [t], S; C U and |S;| = 3.
The aim is to find ¢ mutually disjoint sets S;,,--- ,.S;, that
cover the given set of elements, i.e., Upe[é] Sjp =U

Given an instance of EXACT3COVER (U, S), we con-
struct an instance of our problem with ¢ agents and 2t + /¢
items as follows: For each set Sj, create an agent 7;. For
each element e € U, create an item g.. Create an additional
set of prized £ — ¢ items ¢}, -+ , gj_,.

For each agent ¢, set the quantile value 7; = 0. Set the
agent values as follows: for any 7 € N, we set ¢’s value for
a prized item ¢’ as v;(¢’) = 2 and for each j € [t] we set
vi;(g9e) = 1if e € S; and v;; (ge) = 0 otherwise.

We can now show that ({/, S) has an EXACT3COVER if
and only if there exists an allocation A = (Ay,---,A4,)
under the constructed instance (N, M, v) with USW at least
20 —t.

First assume that an Exact 3-Cover does exist, and that it
is, without loss of generality, Sp, - - - , Si. Consider the allo-
cation A where each agent corresponding a set in the exact
3 cover receives the items corresponding to its constituent
elements and the remaining agents get one prized item each.
That is, for j € [t], A;;, = {ge|e € S;} and for j € [{] \ [t],
Ai; ={g;_}. Observe that, here agents i, - - - , i each get
a value of 1 while the remaining ¢ — ¢ agents receive value
2, making the USW of A to be 2¢ — ¢.

Now let there not exist an exact 3-cover. Then, even if
we assign each item corresponding to an element g, to a set
containing it, we will need to give these elements to at least
t+1 distinct agents, in which case at least 41 agents receive
value 1 and at most £ — ¢t — 1 agents receive value 2.

If we were to assign an element item to an agent who does
not contain it, they would get value 0. Thus, in either case
the optimal USW cannot be more than 2¢ — ¢ — 1. O

Near Exact Algorithm We complement the intractability
result, by providing a near exact approximation algorithm
which we call the scapegoat algorithm (Algorithm 3). We
now prove its correctness and running time.

Theorem 5. Given instance I = (N, M, v, ) with hetero-
geneous quantiles, scapegoat algorithm (Algorithm 3) re-

turns an (1 + —15)-USW allocation in polynomial time.

Proof. Given I, let A* and A be as in Algorithm 3 when run
on I. Let A* be a maximum USW allocation for /. Further,
let i* € N be such that A = A°.

By definition of quantile valuations, for each j € N, there
is some g; € A7 s.t. v;(A}) = v;(g;). Without loss of
generality we can assume that v1 (A}) > va(4%5) > -+ >
vn(A3). As aresult, "=LUSW(A*) < 3071 v;(A7).

Now, as A* has maximum USW over all the allocations
constructed, it is straightforward to see that its USW must
be at least the weight of the best max weight matching con-
structed under Algorithm 3. This matching in turn must have
weight at least Z?:_ll v(g;) = E;:ll v;(A%). Thus, we get
that

n

1
n—1 "
v;(g5) > TUSW(A )-
1

USW(A) >

<.
Il

Hence, A is (1 + —15)-USW.

Note that since the maximum weight matching can be
computed in O(nm) time, and such a matching is computed
n times, our algorithm terminates in O(mn?) time. O

Building on this approach, whenever even one agent is
optimistic, that is, for at least one agent 7; = 1, we can
make this agent a scapegoat and exactly maximize utilitarian
social welfare.

Proposition 2. Given instance I = (N, M, v, T) with het-
erogeneous quantiles and an agent i* such that 7~ = 1, a
maximum USW allocation can be found in polynomial time.

Proof. Given I, let A* be a maximum USW allocation. For
each j € N, let g; € A7 be such that v; (A7) = v;(g;).-
Consider a maximum weight matching j on the bipartite
graph with all agents and all items. Observe that the weight
of y is at least ), v;(A7) = USW(A). Now define allo-
cation A to be such that for all j # ¢*, they are allocated
only their matched item under p. Agent ¢* is allocated the
matched item under ; along with all remaining items.
Clearly USW(A) is the weight of u. Hence, A has maxi-
mum USW. O

C.2 Egalitarian Welfare

For the unconstrained case, we find that the quantiles for
which maximizing ESW is tractable and those for which it
is intractable, interlace. We first present the correctness of
our exact algorithms.

Exact Algorithms We first wish to prove the correctness
and running time of our algorithm for 7 = H-Ll (Algo-
rithm 4). To this end, we first prove a useful lemma for this
class of quantiles.

Lemma 2. For an agent i € N with 1; = t_%l, where t €

Z is fixed, a bundle B C M with exactly £ goods of value
1 for i, we have that v;(B) = 1 if and only if the number of
0 valued items in B for i is at most {t — 1.

Proof. Given agent ¢ and bundle B with exactly ¢ goods of
value 1 for 7. Observe that it is sufficient to compare the case



when there are either exactly ¢t — 1 items of value O or ¢t
items of value 0.

Suppose the number of items of value 0 is ¢¢. The value of
agent i for B would be from the [ (£t + £) t+1] = (t’th low-
est valued item, which would have value 0. Consequently

On the other hand, if B contained /¢ — 1 items of value 0,
then ¢’s value would come from the item which has the pth
lowest value where

(tt—1+10) +J

’V 2
Vt Jrﬂt—t“
[

t+1

zt—m]

(As L < 1)

t+1
As a result, when there are at most ¢ — 1 items of value
0, V; (B) =1. O

We can now prove the running time and correctness of
Algorithm 4. This algorithm first matches each agent to one
item they like, and then chooses up to ¢ items all agents have
value 0 for, and matches them to an agent along with an
item they like, if possible. We show that these checks are

necessary and sufficient whenever 7 = .

Proposition 3. Given instance I = (N, M,v,7 = H_%)
where t € Z, Algorithm 4 returns a maximum ESW allo-

cation in polynomial time.

Proof. We now show that given an instance with binary
goods I = (N, M,v,7 = t+1> Algorithm 4 finds an al-
location with ESW of 1 whenever it exists.

Let u, My and M; be as defined in Algorithm 4 by step
4. We shall now show that whenever an allocation of ESW
1 exists, Algorithm 4 will return an allocation with ESW
1. We first show that when |u| = n and |My| < ¢|M;]| —
n, Algorithm 4 creates an allocation where if agent : € N
receives ¢; > 1 items of value 1 then they receive at most
tl; — 1 items of value 0. We have that ¢; > 1 as u matches
each agent to an item of value 1.

Further, in the while loop, whenever 7 receives at most ¢ 0
valued items from My, they are accompanied with one item
of value 1. After the while loop, an additional ¢ — 1 items of
value 0 may be allocated to 7. As a result, v;(A4;) = 1 in this
case.

Consequently, when || = n and | M| < t|M1| — n, we
have that Algorithm 4 finds an allocation with ESW(A) = 1.

Conversely, assume that an allocation A* exists s.t.
ESW(A*) = 1. Now, clearly each agent ¢ must receive at
least one good of value 1, thus we have that |p| = n.

Now let A*O and A7, respectively denote the 0 and 1
valued items 7 is allocated under A*. We have that My C
UZENA'L’O and U%ENAZJ S Ml.

ALGORITHM 5: Max ESW binary goods for 7 = 1/3

Input: [ = (N, M, v, ) with binary goods and 7 = 1/3
Output: An allocation A
Let Mo = {g € M|vi(g) =O0foralli € N};

2 Let My = M \ Mo;

e ® 9 wn

Create graph G = (X UY, E) where X contains x4 for each
g € M,,Y contains y; foreachi € N and (z4,y;) € E
only if v;(g) = 1 and (x4, x4 ) € E only if there exists
i€ Nstv(g) =vi(¢9)=1;

Define edge weight function w where w(zx,y) =
and w(y,y’) = 1;

Let ¢ be a maximum weight matching in G'2;

ifw(p) < |Mo| 4+ n(|X UY|+ 1) then
\ Let A be an arbitrary allocation;

else

IXUY|+1

Let A= (Ai,---, A,) be such that
Ai ={gl(zg,y:) € u}:
My + M\ U;Ag;
while My # 0 do
Arbitrarily pick go € Mo and g, ¢’ s.t. (zg,24) € s
Picki € N s.t.vi(g) = vi(¢") = 1;
Ai + AiU{g0,9,9'}:
| My« Mi\{g,g'} and Mo < Mo \ {go}:
if My # () then
Let B - - - By, be an arbitrary partition of M; s.t.
g € |B;| only if v;(g) = 1;
B Foreach: € N, set A; < A; U B;;
Return A;

As v;(A7) = 1, from Lemma 2, we have that |A] | <
t|A7 ;| — 1. Consequently, we have that

Mol <D 1Azl <D tAT| =1 < tMy| =

Hence, we have that the necessary conditions will be sat-
isfied and Algorithm 4 will return an allocation of ESW 1.
As aresult, Algorithm 4 will return an allocation with ESW
1 if and only if one exists. O

1/3 quantile. We now consider the case where 7 = 1/3. To
this end, we begin with the following simple observation,
analogous to Lemma 2.

Observation 4. For an agent i € N with ; = 1/3, a bundle
B C M with exactly { items of value 0 for i, we have that
vi(B) = 1 if and only if the number of 1 valued items in B
is at least 20 + 1.

Thus, when M, and M; are as in Algorithm 4, we need
two items from M7 to offset one from M. We can now build
Algorithm 5 where we need to check if we can satisfy both
Observations 2 and 4.

Proposition 4. Given I = (N, M,v, T = 1/3), Algorithm 5
returns a maximum ESW allocation in polynomial time.

Proof. We now show that given an instance with binary
goods I = (N, M,v, 7 = 1/3), Algorithm 5 finds an allo-
cation with ESW of 1 whenever it exists.



Let p, My and M be as initially defined in Algorithm 5.
We shall now show that whenever an allocation of ESW 1
exists, Algorithm 4 will return an allocation with ESW 1.
We first show that when w(p) > |My| + n(|X UY]| + 1),
Algorithm 5 creates an allocation where if agent 7 € N re-
ceives ¢; items of value 0, then they receive at least 2¢; 4 1
items of value 1.

First, 1 matches each agent to one item of value 1, so for
agents with ¢; = 0, the requirement is satisfied. Further, in
the while loop, whenever ¢ receives two items of value 1
for every item from Mj. After the while loop, only items of
value 1 may be allocated to 7. As a result, v;(A4;) = 1 in this
case.

Consequently, when w(p) > [My| +n(|X UY |+ 1), we
have that Algorithm 5 finds an allocation with ESW(A) = 1.

Conversely, assume that an allocation A* exists s.t.
ESW(A*) = 1. Now let A*O and A7, respectively denote
the 0 and 1 valued items ¢ is allocated under A*. We have
that My C UzeNAi,o and UzeNAi’1 < M;.

As v;(A}) = 1, from Lemma 2, we have that [A},| >
2| A7 o| + 1. Consequently, we have can build a matching p//
in in G'» matching |A7 | pairs of items from A7, to each
other and one additional item to 7. Now as po is a maximum
weight matching in G, it must have weight at least

w(pz) > w(p')
> (145l +1XUY[+1)

=n(|XUY|+1)+ > |A5]

>n(|XUY|+ 1)+ |My|.

Hence, we have that the necessary condition will be satis-
fied and Algorithm 4 will return an allocation of ESW 1. As
a result, Algorithm 4 will return an allocation with ESW 1 if
and only if one exists. O

Intractability

Lemma 4. Given an instance with binary goods I =
(N, M,v,7 € (1/5,1/4]), maximizing ESW is NP-hard.

Proof. We shall give a reduction from EXACT3COVER
(X3C) 3. Given an instance of X3C (U, S) where |U| = 3t
and |S| = ¢, we shall create an instance of our problem as
follows:

For each S; € S, create a set agent 4; and a set item g;.

For each element u € U, we create an element item g,,.

Create t dummy items g7, - - , gj.

As a result, we have created ¢ agents and ¢ + 4¢ items.
We define agent preferences as follows. For any i; € N,
vi;(g9") = 0 for any dummy item g’. Further, for any u € U,
if u € Sj, set vy, (g,) = 1, otherwise set v;, (g,) = 0.
Finally, for any j" € [{], set v, (g;) = 1if j = 7" otherwise,
set v, (g;) = 0. Lastly, choose 7; arbitrarily from the range

(1/5 1/4], foralli € N.

3See the proof of Theorem 4 for a definition of the exact 3 cover
problem

We shall now show that an allocation with ESW of 1 ex-
ists if and only if the given X3C instance has an exact 3-
cover.

First, assume that S;,,--- ,S;, form an exact 3 cover of

(U, S). Consider the following allocation A

A = {{gj}
’ {95, 9,1 U{gulu € S;}
That is, agents corresponding to sets in the exact 3 cover

receive their set item, one dummy item and constituent

items. Agents corresponding to sets not in the exact 3 cover
only receive their corresponding set item. Firstly, observe

that as Sj,,---,S;, form an exact 3 cover of (U,S), A

must be a valid allocation, where all items are allocated,

and the bundles of agents are disjoint. Now, for any agent
ij, where j ¢ {j1---,j:}, we have that A;; = {g;}, thus,

Vi, (A7J
Further, for Jj € {j- » -, Ji}» Aq; contains one item of

value 0, the dummy item ¢’ and 4 items of value 1, the set

item and element items. As, 7 € (1/5, 1/4] we have that
v;,(As;) = 1. Consequently, ESW(A)
Now, conversely, assume that an allocat1on A* exists s.t.

ESW(A*) = 1. That is, for each i € N, v;(Af) = 1.
Observe that for each agent there are exactly four items of

value 1: the corresponding set item and constituent element

items. As 7; € (1/5,1/4], AY can contain at most 1 item of
value O for 7. If it does contain one item of value 0, all four of
the value 1 items must also be contained in order to ensure

In particular, as there are ¢ dummy items for which each
agent has value 0, each agent can be allocated at most
one dummy item under A*. Let the set of agents who re-
ceive one dummy item be i; ,--- ,4;,. Further, each for

Jj € {41, ,jt} we have that A;; must contain g; and

all three items in {g,|u € S;}. AS a resul, Sjl, -8,

must be mutually disjoint. Consequently, Siy 5 S;, form

an exact 3 cover of (U, S).

Hence, the problem of finding a maximum ESW alloca-

tion is NP-hard for binary goods and 7 € (1/5,1/4]. O

itj & {ji- .}
if j = j, for some p € [t]

We can do an analogous reduction from the ¢-dimensional
matching problem for ¢ > 3, to an instance with binary
goods and 7 € ( t}ﬂ, " +1) where 1 item of value 0 needs
to be offset by ¢ items of value 1 to ensure that the bundle
has value 1 for the corresponding agent.

Corollary 1. Given I = (N, M, v, 7 € (0,1/4]) with binary
goods, maximizing ESW is NP-hard.

Intractability with 7 € (3/8,2/5]. The main source of in-
tractability in this range of quantiles comes from differing
number of value 1 items that can are needed to offset an ad-
ditional item of value 0. Considering only bundles that give
value 1 to an agent, with four items of value 1, there can
be at most two items of value 0. However with five items
of value 1 there can be at most three items of value 0. Thus
when the number items which give value 0 is strictly greater
than the number of items that give value 1 to at least one
agent, deciding if an ESW 1 allocation may not be possible
with polynomially many greedy decisions.



Lemma 5. Finding a maximum ESW allocation is NP-hard

forT € (3/8,2/5].

Proof. We shall give a reduction from EXACT3COVER
(X3C). Given an instance of X3C (U, S) where |[U| = 3t
and |S| = ¢, we shall create an instance of our problem as
follows:

* Foreach S; € S, we create a set agent i; and a set items
1 2
gj and gj.
* For each element u € U/, we create an element item g,,.

* Create ¢ 4+ 2t dummy items g, - - - 792+2t~

As aresult, we have created n = £ agents and m = 3¢+5¢
items. We define agent preferences as follows. For any i; €
N, v;(g") = 0 for any dummy item g’. Further, for any u €
U, if u € Sy, set v;,(gy) = 1, otherwise set v, (g,) = 0.
Finally, for any j" € [{], setv;, (gj,) = v, (g3,) = 1if j = j'
otherwise, set vy, (gj,) = vi;(g3,) = 0. Lastly, set 7; = 2/5,
forallt € N.

We shall now show that an allocation with ESW of 1 ex-
ists if and only if the given X3C instance has an exact 3-
cover.

First, assume that S;,,---,S;, form an exact 3 cover
of (U,S). Consider the following allocation A where
Ay, = Agj, 0595y it 5 ¢ -y and A =

{gjl" gj2’ gé'ﬂ 92+2p_1v gé+2p} U {gu|u € Sj} ifj = Jp for
some p € [t]

That is, agents corresponding to sets in the exact 3 cover
receive their set items, three dummy items and their con-
stituent items. Agents corresponding to sets not in the exact
3 cover only receive their corresponding set items and one
dummy item. Firstly, observe that as S;,,--- ,5;, form an
exact 3 cover of (U, S), A must be a valid allocation, where
all items are allocated, and the bundles of agents are disjoint.
Now, for any agent i;, where j ¢ {j1--- ,j.}, we have that
Ai; = {9j,97, 95} As i > 1/3, we have that, v;; (A;;) = 1.

Further, for j € {j1---,j¢}, Ai, contains three items of
value 0, the dummy items g7, g, 5, 1, gy, and five items
of value 1, the set items and element items. As, 7; > 3/s, we
have that v (A;;) = 1. Consequently, ESW(A) = 1.

Now, conversely, assume that an Exact 3 Cover does not
exist.

Observe that for each agent there are exactly five items of
value 1: the corresponding set items and constituent element
items. This along with the fact that ; < 2/5 implies that any
bundle of value 1 for ¢ can contain at most three items of
value 0 for ¢. If it does contain three items of value 0, all
five of the value 1 items must also be contained to ensure
the bundle has value 1.

Recall that there are ¢ 4+ 2t dummy items for which each
agent has value 0. These items can only be offset by 2/ set
items and 3t element items. Further, as for all agents 7; €
(3/8,2/5], we have that if an agent received p < 5 items of
value 1, they must have at most |p/2] items of value 0.

Consequently, in order to offset all the dummy items, we
must have at least ¢ agents who each receive three dummy
items and their corresponding set item and constituent items.
Now as no exact 3 cover exists, at most ¢ — 1 (set) agents can

receive all three constituent element items. Thus, no alloca-
tion exists with an ESW of 1. ]

Intractability with 7 € (5/9,3/5]. The main source of in-
tractability in this range of quantiles comes from differing
number of value 0 items that can be added with an addi-
tional item of value 1. Considering only bundles that give
value 1 to an agent, with three items of value 1, there can be
at most three items of value 0. However with four items of
value 1 there can be at most five items of value 0. Thus when
the number items which give value 0 is strictly greater than
the number of items that give value 1 to at least one agent,
deciding if an ESW 1 allocation may not be possible with
polynomially many greedy decisions.

Lemma 6. Finding a maximum ESW allocation is NP-hard

Jor T € (3/9,3/5].

Proof. We shall give a reduction from EXACT3COVER
(X3C). Given an instance of X3C (U, S) where |U| = 3t
and |S| = ¢, we shall create an instance of our problem as
follows:

For each S; € S, we create a set agent 7; and a set item
9j-

For each element u € U/, we create an element item g,,.

Create £ + 4t dummy items gy, , gj, 4

Thus, we have created ¢ agents and 2¢ 4 7t items. We de-
fine agent preferences as follows. Forany i; € N, v;,(g') =
0 for any dummy item ¢’. Further, for any element v € U,
if u € Sj, set v;;(gy) = 1, otherwise set v, (g,) = 0. Fi-
nally, for any ;" € [€], set value for set item g;: v;, (g;/) = 1
if j = j' otherwise, set v, (g;:) = 0. Lastly, arbitrarily set
7 € (5/9,3/5], forall i € N.

We shall now show that an allocation with ESW of 1 ex-
ists if and only if the given X3C instance has an exact 3-
cover.

First, assume that S ,---,S5;, form an exact 3 cover
of (U,S). Consider the following allocation A where
Ai_;’ = {gjag‘;} it j ¢ {j-,j} and Al] =
{gjag;'a92+4p_3a92+4p_2792+4p_1792+4p} U {gulu € Sj}
if j = j, for some p € [t]

That is, agents corresponding to sets in the exact 3 cover
receive their set item, five dummy items and their constituent
items. Agents corresponding to sets not in the exact 3 cover
only receive their corresponding set item and one dummy
item. Firstly, observe that as Sj,,---, S}, form an exact 3
cover of (U, S), A must be a valid allocation, where all items
are allocated, and the bundles of agents are disjoint. Now,
for any agent i;, where j ¢ {ji --- ,ji}, we have that 4;, =
{95, 95} As 7 > 0.5, we have that, v, (4;;) = 1.

Further, for j € {j1---,j:}, A;, contains five items
of value 0, the dummy items gé, gé+4p_3, gg+4p_2,
9orap—1> 9044, and 4 items of value 1, the set item and ele-
ment items. As, 7; > 5/9, we have that v, (4;;) = 1. Con-
sequently, ESW(A) = 1.

Now, conversely, assume that an Exact 3 Cover does not
exist.

Observe that for each agent there are exactly four items of
value 1: the corresponding set item and constituent element



items. This along with the fact that ; < 3/5 implies that any
bundle of value 1 for ¢ can contain at most 5 items of value
0 for <. If it does contain five items of value 0, all four of the
value 1 items must also be contained to ensure the bundle
has value 1.

Recall that there are ¢ + 4¢ dummy items for which
each agent has value 0. These items can only be offset by
d set items and 3¢ element items. Clearly there are fewer
items that can give an agent value 1 than the number of
items that give all agents value 0. Further, as for all agents
7; € (5/9,3/5], we have that if an agent received p < 4 items
of value 1, they must have at most p items of value 0.

Consequently, in order to offset all the dummy items, we
must have at least ¢ agents who each receive 5 dummy items
and their corresponding set item and constituent items. Now
as no exact 3 cover exists, at most ¢ — 1 (set) agents can re-
ceive all three constituent element items. Thus, no allocation
exists with an ESW of 1. O

D Omitted Proofs from Section 5

We now present the omitted proofs on identical valuations.
Here we find exact algorithms for all cases studied.

D.1 Utilitarian Welfare

The problem of maximizing USW over unconstrained al-
locations with identical valuations remains open. However,
for balanced allocations we find that the greedy algorithm
which gave an approximation to the optimal USW for the
non-identical case, proves to be an exact algorithm for the
identical case.

Theorem 8. Given an instance with identical valuations
I = (N,M,v,T), Algorithm I returns a balanced alloca-
tion with maximum USW.

Proof. Given I with identical valuation v, let the items be
such that v(g1) > v(g2) > -+ > v(gm)- Let A be the
allocation returned by Algorithm 1. Furthermore, let k; be
as defined in Algorithm 1. Since the quantiles are identical,
we have that k; = min(k, k — [7k] + 1) forall j € N. Let
k' = min(k, k — [7k] + 1).

Let the order in which agents are first assigned their de-
manded set under Algorithm 1 be 21, %9, - - - 7,,. Without loss
of generality, we may assume that the set demanded by agent
i is Si, = {g—1)k+1, -+ » gerr }. Thus, v(A;,) = v(gewr)
for each t € [n].

Let A* be a balanced allocation with maximum USW. As
agents have identical valuations, we assume without loss of
generality that v(A} ) > v(A4])) > --- > v(A]).

We now show that v(4;,) > wv(A4j) for all t € [n].
Suppose, for the sake of contradiction, that there exists
¢ € [n] such that v(4;,) < wv(Aj,). It follows that, we
have v(Aj,) > v(gex). Since v(A]) > --- > v(A],_ ) >
v(Aj,), we see that in A* the number of agents who get
value strictly higher than v(ge) is at least £. However, as
|A%| = k for all j € N, this implies that the number of
items value strictly more that v(ge) is at least k'¢, contra-
dicting the fact that number of items that are valued strictly

more than v(ge) is at most £k’ — 1 by the item order-
ing. Consequently, for each ¢ € [n], we must have that
v(A;,) > v(A7,). Hence, USW(A) > USW(A*). O

D.2 Egalitarian Welfare

The balanced case is already resolved for all valuations,
identical or otherwise by Algorithm 2. We now provide an
algorithm for the unconstrained case based on Lemma 3
which shows that it is sufficient to consider allocations
where the number of items with value O are allocated as
equally as possible across the agents.

Theorem 9. Given instance I = (N, M, v, T) with identical
valuations, an allocation with maximum ESW can be found
in polynomial time.

Proof. Given I, as a consequence of Lemma 1, we assume
1 is an instance with binary goods.

First, consider the set of items of value 0, that is, My =
{g € M|v(g) = 0}. From Lemma 3, we know that it is
sufficient to consider only allocations where items in M, are
distributed uniformly. Let ¢ = [Mo| — n| 2%l | Thatis, ¢ is
the number of agents who need to receive more than L%J
items from M.

Now, consider the set of items of items of value 1, that is
M, = M \ M. If an agent receives ¢ items from M, by
Observation 3, we can easily calculate the minimum bun-
dle size k s.t. [7k] > £. In particular, & = min{k’ €
Zy|k > L}. Consequently, let k; = min{k’ € Z;|k >

UMol/ny | |My|/n] and ks = min{k' € Z,|k >

[IMol/m1y — [|0y| /m].

As a result, an agent receiving ||Mo|/n] items from M,
requires at least k; items from M to have value 1. Analo-
gously, an agent receiving [|Mp|/n] items from M requires
at least ko items from M, to have value 1. Thus, an alloca-
tion of ESW 1 exists, if and only if | M;| > tks + (n —t)k;.

This can easily be checked and an appropriate allocation
can accordingly be built. Thus, a maximum ESW allocation
can be found in polynomial time. O

Maximum USW for binary goods via ESW. We now
show that our algorithm for maximum ESW implies an al-
gorithm for maximum USW under binary goods.

Proposition 5. Given instance I = (N, M, v, T) with iden-
tical valuations over binary goods, an allocation with maxi-
mum USW can be found in polynomial time.

Proof. Let M, and M be the sets of items of value 0 and 1,
respectively.

Observe that with binary goods, an allocation with USW
n exists, if and only if an allocation with ESW 1 exists. Thus,
we first find a maximum ESW allocation. If it has ESW 1, it
must have USW n.

If an ESW 1 allocation does not exist, we can check if
|M7| > n — 1. If so we can give n — 1 agents exactly one
item each from M, and give all remaining items in M, and
M) to the remaining agent.

Finally, if | M;| < n—1, we can give | M | agents one item
each from M and the items in M are distributed arbitrarily



among the remaining agents. In this case, no agent can get

an item from both M; and M.
It is easy to see that this can be done in polynomial time.
O

E Chores

We now turn our attention to the case of chores. Here, all
items give all agents non-positive values. Recall that for
chores, we capture agent preferences via disutilities and aim
to minimize utilitarian and egalitarian social costs.

E.1 [Utilitarian Social Cost

Balanced Allocations. Under balanced allocations, we
had seen in Section 3.1 that maximum USW is hard to ap-
proximate. While the same reduction does not extend well
to the case, of chores, it can be seen from a simple reduction
from 3DIMENSIONALMATCHING (3DM) that the problem
is NP-hard.

Theorem 10. Given instance I = (N, M, d, T) with chores,
it is NP-hard to obtain a minimum USC balanced allocation.

Proof. Given an instance of 3DM, (G = (X, H), ), we cre-
ate an instance of our problem as follows: For each edge
H; € H, we create agent 7. For each vertex x € X, we cre-
ate item g,. We can assume, without loss of generality, that
each vertex is contained in at least one hyper-edge. Thus, we
have that | X| < 3|H|. To balance the item count, we intro-
duce 3[H| — | X| dummy items g;,-- -, g5, - Thus, we
have n = | H| agents and the number of items is m = 3| H|.
As a result, we have that m = 3n. Recall that balanced allo-
cations require k = 7 items to be allocated to each agent.

For each agent ¢« € N, weset; = 0 foralli € N.
Now for ¢ and each g, if © € H;, we set d;(g..) = 0 else,
we set d;(g,) = 1. Finally, for each ¢ € [3|H| — | X|], set
d;(g9;) = 1. We now show that a matching of size ¢ in the
3DM problem can be transformed into a balanced allocation
whose USC is at most n — ¢ in the reduced instance of our
problem, and vice versa. Consider a matching p of size ¢
in 3DM. For each H; € u, allocate the items vertices in
H;. That is, A; = {gz|x € H;}. Arbitrarily allocate the
remaining items, ensuring | 4;| = 3. Here, for each H; € p,
d;(A;) = 0 otherwise d;(4;) = 1.

Now consider a balanced allocation A in the reduced in-
stance with a USC of n — ¢. As the maximum disutility for
any agent is 1, this implies that n — ¢ agents receive a disu-
tility of 1 from A. By construction, d;(4;) = 0 only if A;
contains all the items corresponding to the vertices in H;.
From here, it is easy to see that p = {H;|d;(4;) = 0} isa
matching of size /.

Observe that this proof can be extended to any 7 € [0, 1),
by simply padding with enough items of disutility 1 to match
the quantile value. That is, for some fixed 7 € [0,1), we
simply need to add nk’ extra dummy items of disutility 1 to
all agents, where &’ is such that, [7(k' +3)] = k' +1. O

While the greedy algorithm (Algorithm 1), that worked
for the case of goods, can be arbitrarily bad for chores, a

minimum ESC allocation (which we shall discuss in Sec-
tion E.2 and can be found in polynomial time) can be shown
to be at most n-USC.

Proposition 6. Given instance I = (N,M,d,r) with
chores, a balanced allocation which is n-USC can be found
in polynomial time.

Proof. Observe that given an instance with chores, the min-
imum possible egalitarian cost must always be less than or
equal to the minimum possible utilitarian cost. This follows
from the fact that under any allocation A,

ESC(A) = max di(4;) < Zdi(Ai) = USC(4).

Further, under any allocation A,

USC(A) = > di(A;) < nmaxd;(A;) = nESC(A).
iEN !
Consequently, an allocation with minimum ESC will be

n-USW. We have from Theorem 12 that a minimum ESC
allocation can always be found in polynomial time. O

Unconstrained Allocations. While goods allow for a near
exact algorithm, for chores, one is not possible. We now
show that minimizing USC when all agents quantiles is 0,
is equivalent to the WEIGHTEDSETCOVER problem. This
enables us to show that with chores and pessimistic agents
(quantile 7 = 0) no polytime algorithm can give an (1 —
0(1)) log m approximation to minimum USC, if P # N P.

Theorem 11. Given instance I = (N, M,d, 7 = 0) with
chores, it is NP-hard to get (1 — o(1)) logm-USC.

Proof. We give an approximation preserving reduction from
the SETCOVER problem. Given an instance of SETCOVER
with element set £ = [{] and family of subsets S =
{S1,--+,St}, we construct an instance of our problem with
n = t agents and m = { items as follows:

Create an agent i; for each set S; € S. Create an item
(chore) g, for each element e € E. Set the quantile value
7; = 0 for each agent :.

We set the disutilities as follows: for j € [t], the disutility
of agent i; for item g is:

(1 ife e S
di; (9e) = {t+1 ife¢S;

It is straightforward to see that an allocation with USC at
most a < t exists if and only if a set cover of size at most
o < t exists. Let there exist a set cover of size o. With-
out loss of generality, let it be Sp,--- ,.S,. Then construct
allocation A where

ifj <a

4 = J1ge e €5\ (Ujrgj155)}
0 if j > a

vy

Clearly, agents i1, - ,i, receive disutility 1 and all re-
maining agents receive disutility 0. As a result, the USC of
Ais a.



We can similarly argue the other case. Let an allocation
A have USC(A) = a < t. Thus, each agent 7; must only
be assigned items belonging to its corresponding set S; and
exactly « agents are assigned any items. Consequently, sets
corresponding to these agents must form set cover of size a.

As a result, we have an approximation preserving reduc-
tion from SETCOVER. It is known that, for SETCOVER
problem is hard to approximate to within factor (1 —
0(1)) log £, unless P=NP (Feige 1998). Consequently, as our
constructed instance has m = /¢ items, the problem of min-
imizing USC is NP-hard to approximate to factor within
(1 —-0(1))logm. O

Given an instance with chores, I = (N, M,d,7 = 0),
we can get an analogous reduction to weighted set cover.
Here we construct an element for each item and a set for
each agent and each disutility level. That is, for each agent,
we create a set with top ¢ best chores, for each ¢ € [m].
The corresponding weight of the set will be the agent’s disu-
tility for the set. We can now see that there is a mapping
between set covers of weight at most v and to allocations
of USC at most v. Thus, the log m-approximation algorithm
for weighted set cover provides a log m-USC algorithm for
pessimistic agents.

Corollary 2. Given I = (N, M, d, 1), an log m-USC allo-
cation can be found in polynomial time.

E.2 [Egalitarian Social Cost

We had begun our exploration of egalitarian welfare in
Lemma 1, by showing that for goods, it is sufficient to find
algorithms for binary goods. We can get an analogous result
for the case of egalitarian cost.

Lemma 7. The problem of finding an allocation with ESC
at most v > 0 over allocations in I C I(n, M) under het-
erogeneous quantiles reduces to the problem of minimizing
ESC over Il' under binary chores with heterogeneous quan-
tiles.

We can now focus our discussion on binary chores where
di(g) € {0,1} forall i € N and all g € M. For balanced al-
locations, it is straightforward to see that the ideas for binary
goods for balanced allocations extend to binary chores. Re-
call Algorithm 2. Instead of adding edges for items of value
1, we add an edge for chores for disutility 0. The result will
then analogously follow.

Theorem 12. Given an instance with chores and heteroge-
neous quantiles I = (N, M,d, ) where m = kn, a mini-
mum ESC balanced allocation can be found in polynomial
time.

Unconstrained Allocations. Recall that for goods, the
tractability of egalitarian welfare was highly quantile de-
pendent. Algorithm 4 found a maximum ESW allocation in
polynomial time for quantiles of the form 7 = t/t +1 for
t € Z*. We now show that for chores, not only does Algo-
rithm 4 not extend, but the corresponding quantiles prove to
be NP-hard.

Theorem 13. Given an instance I = (N, M,d, 7 = 1/2),
finding a minimum ESC allocation is NP-hard.

Proof. We give a reduction from VERTEXCOVER (Johnson
and Garey 1979) where given a connected undirected graph
G = (X, E) and a positive integer o > 0, we wish to find a
set of at most « vertices, such that each edge has at least one
endpoint in this set.

Given an instance of vertex cover (G = (X, E), a), we
construct an instance with binary chores as follows. For each
vertex © € X, we create an agent ¢,. For each edge e, we
create an item g.. We create additionally, | E| — « universal
bads gy, ,g|p|_,- Foreachz € X ande € ., d;, (gc) =

0 if e is incident on x, otherwise, d;_(ge) = 1. Further for
all agents and all ¢ € [|E| — «], we have that d;(g;) = 1.
Finally, for each i, we set 7; = 1/2.

Now, observe that if an agent is allocated an empty set,
clearly their disutility will be 0. For non-empty sets, as 7; =
1/5 for all 4, ¢ needs to have strictly more items of disutility
0 than 1 to have a disutility of O for the allocated set.

We now show that the given instance has a vertex cover
of size at most « if and only if the constructed instance has
an allocation with ESC of 0.

First, assume that there is a minimum vertex cover S C X
s.t. |S] < a. Thus, we can assume without loss of generality,
there a must be a partition of the edges in E UyegP, = E
s.t. |[P;| > 2. If not, as the graph is connected, a smaller
vertex cover must exist. Based on this, we create a partition
of the universal bads ¢’ s.t. Upes M, = {¢}, - vng\—a}
and |M,| = |P,| — 1.

We now construct the following allocation where A;, = ()
ifrx ¢ Sandifz € S, A;, = {ge|le € P} U M,. Clearly,
forx ¢ S d; (A;,) = 0. For agents i, s.t. x € S, i, re-
ceives | P, | incident edge items and | M, | — 1 universal bads.
Consequently, d;_(A;,) = 0. Thus, ESC(A) = 0.

Conversely, let an allocation A exist s.t. ESC(A) = 0. By
construction, there are |E| items that give disutility O to at
least some agent, and |E| — « items that give disutility 1 to
all.

Now, as ESC(A) = 0, at most « agents can receive non-
empty sets, as there are only « extra edge items than univer-
sal bad. Further, all the edge items must have been allocated
to an agents corresponding to an endpoint of the edge. Thus,
the agents allocated non-empty sets must correspond to a
vertex cover of size at most ov.

Hence, a vertex cover of size at most « exists in G if and
only if the constructed instance has an allocation of ESC
0. O

Exact Algorithms. In this manner, most of the quantiles
for which we had exact algorithms for goods become in-
tractable. For two specific quantiles however, we continue
to have simple exact algorithms: 7 =0and 7 = 1. If 7 = 0,
it is sufficient to check for the given binary chores instance,
if there is an item that is a universal bad, in which case all
allocations will have ESC of 1. If not, each item has at least
one agent who has no disutility for it, and can be arbitrarily
assigned to such an agent to get an allocation with ESC of 0.
For 7 = 1, if any one agent has even item with no disutility,
they can be given all the items in M to get an allocation with
ESC of 0. Otherwise, each allocation must have ESC of 1.



Proposition 7. Given instance I = (N, M,d,7 € {0,1}),
a minimum ESC allocation can be found in polynomial time.

Proof. Note that, here we assume homogeneous quantiles.
That is, either forall i € N, 7, = Qorforall: € N, 7; = 1.
We again assume binary chores, that is, d;(g) € 0, 1.

Pessimistic quantile 7 = 0. In this case, it is sufficient
to check if for each g, there exists at least one agent ¢ such
that d;(g) = 0. In this case, allocating each chore to any one
such agent ensures that each agent receives only chores that
they have no disutility for. Thus the resultant allocation will
have ESC of 0. Suppose that there exists at least one g € M
s.t. foralli € N, d;(g) = 1. In this case, no allocation can
have an ESC of 0, as whoever receives this item will have
strictly positive disutility. In fact, in this case, all allocations
will have an ESC of 1, so an arbitrary allocation can be se-
lected. Observe that this condition can be checked in time
O(mn), and thus a minimum ESC allocation can be found
in polynomial time.

Optimistic quantile 7 = 1. In this case, it is sufficient to
check if for at least one agent 7 € N and one item g € M,
d;(g) = 0. In this case, the allocation where A; = M and
A; =0 for all j # 7 will clearly have an ESC of 0. Suppose
no such agent exists. Thus, for all 7 € N and all g € M, we
have that d;(g) = 1. Then, all allocations will have an ESC
of 1 and thus an arbitrary allocation can be selected. This
condition can be checked in time O(mn), thus a minimum
ESC allocation can be found in polynomial time. O



