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Abstract

Recent advancements in large multi-modal models (LMMs) have significantly en-
hanced performance across diverse tasks, with ongoing efforts to further integrate
additional modalities such as video and audio. However, most existing LMMs re-
main vulnerable to hallucinations, the discrepancy between the factual multi-modal
input and the generated textual output, which has limited their applicability in
various real-world scenarios. This paper presents the first systematic investigation
of hallucinations in LMMs involving the three most common modalities: language,
visual, and audio. Our study reveals two key contributors to hallucinations: over-
reliance on unimodal priors and spurious inter-modality correlations. To address
these challenges, we introduce the benchmark The Curse of Multi-Modalities
(CMM), which comprehensively evaluates hallucinations in LMMs, providing a
detailed analysis of their underlying issues. Our findings highlight key vulnerabili-
ties, including imbalances in modality integration and biases from training data,
underscoring the need for balanced cross-modal learning and enhanced hallucina-
tion mitigation strategies. Based on our observations, we suggest potential research
directions that could enhance the reliability of LMMs.

1 Introduction

Large Multi-modal Models (LMMs) have rapidly advanced, driving significant improvements across
a wide range of tasks by effectively integrating and processing diverse data modalities. These
models [28, 70, 21, 64, 55, 2, 52, 41], leveraging multi-modal inputs such as image and text, have
achieved notable performance gains, particularly in generating contextually accurate textual outputs.
As the field evolves, there is a growing trend toward incorporating additional modalities, such as
audio and video [62, 8, 58, 69, 11, 29, 25, 51, 18, 13], to enhance LMMs’ ability to understand and
interact with complex real-world environments.

However, despite these advancements, LMMs are prone to hallucination, a critical issue where
generated outputs do not accurately reflect the multi-modal inputs [35, 54, 59, 40]. This issue severely
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undermines the reliability and applicability of LMMs in real-world scenarios, particularly in tasks
requiring precise and factual content generation. Hallucination, particularly object hallucination, has
been a key focus in LMMs that handle image and text inputs. Object hallucination occurs when LMMs
generate semantically coherent but factually unaligned contents with the actual objects present in the
input images. Various benchmarks [31, 49, 38, 54] and mitigation techniques have been proposed
to address this issue by refining training processes [35], implementing post-hoc correction [27, 71],
etc. However, accommodating additional modalities like audio and video exacerbates alignment and
fusion difficulties [26, 14, 53, 33], which lead to increased hallucinations.

This study systematically examines how LMMs produce hallucinations while integrating language,
visual, and audio inputs, revealing the prevalence and causes of hallucinations under such multi-modal
scenarios. Two key contributors are identified: (1) over-reliance on unimodal priors: Models over-
rely on data from a single modality, neglecting others. This results in outputs that do not accurately
reflect the full range of input data, as models default to familiar patterns within one modality despite
contradictory signals from others. (2) spurious inter-modality correlations: Models learn erroneous
cross-modal associations based on patterns that appear statistically significant but lack meaningful
or causal connections, leading to plausible but counterfactual outputs. We introduce The Curse
of Multi-Modalities (CMM), a comprehensive benchmark for assessing hallucinations in LMMs,
covering a wide range of scenarios across visual, audio, and their joint contexts. CMM converts
hallucination evaluation into a binary classification task through object-level and event-level probing.
It comprises 1, 200 video/audio/video-audio samples across various multi-modal contexts, ensuring
balanced evaluation with 2, 400 probing questions evenly split between queries for existent and
non-existent objects/events. LMMs are prompted with straightforward yes-or-no questions regarding
the presence of objects or events in the input modalities.

CMM is the first benchmark to systematically investigate LMMs’ hallucinations in such comprehen-
sive multi-modal settings. Unlike prior benchmarks that broadly assess hallucination performance,
CMM segments hallucinations into nuanced subcategories under two key contributors: spurious inter-
modality correlations (e.g., visual-language, audio-language, visual-audio-language) and unimodal
over-reliance (e.g., language domianance, visual dominance, audio dominance), enabling precise
diagnosis of LMM vulnerabilities and shedding light on possible improvements. By introducing
diagnostic metrics including perception accuracy (PA) and hallucination resistance (HR), CMM
offers a comprehensive framework for gauging both perception capabilities and hallucination severity
in LMMs. In summary, the contributions of this work are threefold:

• We conduct the first systematic investigation of hallucinations in LMMs across language, visual,
and audio modalities, identifying their key contributors including unimodal prior over-reliance and
spurious inter-modality correlations.

• We introduce a novel and comprehensive benchmark, The Curse of Multi-Modalities (CMM),
which evaluates hallucinations using object-level and event-level probing within a binary classi-
fication framework. CMM defines hallucinations with nuanced subcategories and granularities,
enabling comprehensive diagnosis of LMM vulnerabilities across various modalities.

• We evaluate a diverse set of state-of-the-art LMMs across visual, audio, and joint contexts, revealing
critical insights in model limitations and fundamental challenges in multi-modal learning. Our
thorough analysis and discussion pinpoint future directions for mitigating hallucinations and
enhancing LMM reliability, providing a viable roadmap for improvements.

2 Analyzing Hallucinations across Language, Visual, and Audio

This section systematically investigates the underlying causes of hallucinations in Large Multi-modal
Models (LMMs). It includes qualitative demonstrations and comprehensive statistical analysis from
two key perspectives: over-reliance on unimodal priors and spurious inter-modality correlations.
Our analysis provides empirical evidence and quantifies the extent to which these factors influence
LMMs’ reliability.

Notations. Consider an LMM parametrized by θ that processes inputs from three modalities:
language x, visual v, and audio a. The model generates textual output y autoregressively, where each
token yt is conditioned on all three modalities and the previously generated tokens y<t:

yt ∼ pθ(yt | v, a, x, y<t),
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(a) Language Dominance.

Audio Captions:
pop music; person speaking

Did you see shoes are worn on feet in the video?

Yes. FAVOR
Yes, the video shows shoes being worn on feet.

Yes.

(b) Visual Dominance.

Did you hear hammer hitting in the audio?

Yes, there was hammer hitting in the audio. FAVOR
Yes, I did hear hammer hitting in the audio.

Yes.

Audio Captions:
person speaking; bird chirping

(c) Audio Dominance.

Audio Captions:
        thunderstorming

Did you see lightening in the video?

Yes, I did see lightening in the video. FAVOR
I saw lightening in the video.

Yes.

Figure 1: Demonstrations of over-reliance on unimodal priors.

where yt represents the token at time step t, and y<t denotes the sequence of tokens generated up to
time step t− 1.

2.1 Over-reliance on Unimodal Priors

Over-reliance on unimodal priors is a key factor contributing to hallucinations in LMMs. This issue
arises when the model over-relies on the knowledge learned from one modality during training, rather
than integrating knowledge of all available modalities. In such cases, the model defaults to strong
unimodal priors learned during training, leading to outputs that follow familiar unimodal patterns
even when those patterns are not supported by the multi-modal input. Following the general issue of
over-reliance on unimodal priors, we categorize this into three distinct types: Language Dominance,
Visual Dominance, and Audio Dominance. Each form of dominance presents unique challenges for
LMM performance and contributes to hallucinations in different ways.

Language Dominance. Also known as language biases [42, 27, 19, 56], language dominance
arises when a model excessively depends on pre-trained large language models (LLMs), generating
responses that adhere to linguistic patterns or prior knowledge from large language corpora, even
when visual or audio inputs provide contradictory information. This issue is particularly prevalent in
LMMs that integrate LLMs as their decoder base. These LLMs [12, 23, 63], due to their proficiency
in capturing linguistic structures and semantic relationships, often dominate the decision-making
process, overshadowing contributions from visual or audio modalities. As illustrated in Fig. 1a,
a video depicts finger skateboarding with shoes on fingers. When asked by the language-biased
question “Did you see shoes worn on feet?”—reflecting commonsense event that follows linguistic
priors—LMMs respond “yes”, contradicting the actual content and inducing hallucination. This
demonstrates LMMs’ tendency to rely on language priors over factual multi-modal inputs.

Visual Dominance. This occurs when a model over-relies on visual information, with less considering
linguistic and auditory cues. In such cases, the model outputs are dominated by visual context,
neglecting important information from other input modalities. As illustrated in Fig. 1b, a video
depicts a person planning a woodworking project with a hammer in sight, while the audio track
contains only events of person speaking and bird chirping. Despite this, advanced LMMs may
over-rely on the visual presence of the “hammer” and incorrectly infer a “hammer hitting” sound,
ignoring the actual audio content where no such sound is present.

Audio Dominance. This phenomenon arises when a model is excessively relying on auditory input,
disregarding visual or linguistic inputs. As illustrated in Fig. 1c, a video captures a person recording a
village view through a window, showing dark clouds. The audio track contains evident thunderstorm
sounds, but no lightning is visible. Despite this, LMMs may over-rely on the audio cues, hallucinating
that lightning is visible in the scene, thereby disregarding the actual visual content.

Case Study. To further explore our observations on unimodal over-reliance, we performed case
studies on each example in Fig. 2, hypothesizing that gradually altering information from a dominant
modality would significantly affect the model’s responses if hallucinations are primarily due to
over-reliance on that modality3.

3To further validate unimodal over-reliance, we conduct similar experiments using open-source models
across more samples in Appendix A.1.
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(a) Language Dominance
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Figure 2: Validation experiments on over-reliance on unimodal priors.

In the visual dominance scenario, we progressively blur the video to reduce visual content and tracked
the probabilities of the LMM responding with a hallucinatory “yes” (pθ(“yes” | v′, a, x)) or a correct
“no” (pθ(“no” | v′, a, x)) across different blur levels. As shown in Fig. 2b, increasing the blur led
to a significant decline in hallucinatory “yes” responses and a rise in correct “no” responses. This
indicates that reducing visual information compels the model to rely more on auditory cues, thereby
decreasing visual-induced hallucinations. In the audio dominance case (Fig. 2c), we add noise to the
audio track to degrade its quality. As noise levels increased, the probability of hallucinatory “yes”
responses decreased, while correct “no” responses became more frequent (pθ(“yes”/“no” | v, a′, x)).
This demonstrates that diminishing auditory information shifts the model’s reliance to visual cues,
mitigating hallucinations caused by over-reliance on auditory inputs. For the language dominance
scenario, we blur the video containing critical visual information needed to accurately answer
an adversarial question. As the visual content was increasingly obscured, the model’s reliance
on language priors intensifies, leading to more hallucinatory “yes” responses and fewer correct
“no” responses (Fig. 2a). This suggests that in the absence of visual details, the model defaults to
language-based patterns, exacerbating hallucinations.

In summary, these case studies confirm that unimodal over-reliance significantly contributes to hallu-
cinations in LMMs. Reducing information from the dominant modality forces the model to integrate
cues from other modalities more effectively, thereby decreasing the likelihood of hallucinations. This
validates the challenges posed by uni-modality over-reliance in multi-modal integration.

2.2 Spurious Inter-modality Correlations

Spurious inter-modality correlations are a major contributor to hallucinations in LMMs, especially
when integrating multiple modalities. Learned during pretraining on large-scale multi-modal datasets
(e.g., image-caption, video-caption, and audio-caption data [34, 24, 6, 43, 57, 48]), these correlations
involve misleading associations between modalities that appear statistically significant but lack
meaningful or causal connections. Two common sources of spurious correlations are: (1) Global
occurrence frequency. The high overall occurrence of specific objects or events in the dataset leads
LMMs to hallucinate these elements even when they are absent in the input. (2) Co-occurrence
frequency. Frequent co-occurrence of objects or events during training causes the model to incorrectly
predict the presence of one of them when only the other is present. While spurious object-level
correlations between language and visual inputs have been extensively studied [42, 31, 71], integrating
additional modalities like audio introduces new complexities, resulting in increasingly intricate
spurious correlations. We categorize them into three subtypes:

Visual-Language. The model hallucinates visual objects or events based on pre-training patterns.
For instance, if “phone” frequently co-occurs with “human” in captions, the model may hallucinate a
phone upon recognizing a human, even when no phone is present.

Audio-Language. The model links absent sound events to textual descriptions due to over-represented
patterns in pre-training data. For example, if “dog barking” frequently appears during pre-training,
the model may hallucinate this audio event even when the dog in the current input simply whimpers.
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(a) Visual-Language
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Figure 3: Validation experiments on spurious inter-modality correlations caused by co-occurrences.

Visual-Audio-Language. Spurious correlations arise from frequent co-occurrence of visual objects
and audio events in video-audio joint training. For example, if “bird chirping” in audio descriptions
is often paired with “tree” in visual annotations, the model may hallucinate to see trees when only
hearing birds, or vice versa.

Quantitative Analysis. To validate spurious inter-modality correlations, we curate 200 samples for
each subtype, paired with probing questions that target non-existent objects or events based on learned
co-occurrence patterns. For VL, video-only samples are paired with questions about non-existent
objects that frequently co-occur. In AL, all queries are event-level, targeting absent audio events
while a co-occurring action-object pair is present (e.g., querying “dog barking” when the dog only
whimpers). For VAL, video-audio pairs are probed for non-existent visual objects or audio events
based on frequently co-occurring pairs. We adopt the Co-occurrence Score (CoScore) from previous
work [7, 71] to quantify co-occurrence frequency:

CoScores =
∑ |S(os,i) ∩ S(os,j)|

|S(os,i)|+ |S(os,j)|
,

where S(os,i) denotes the set of captions mentioning the i-th object or event within a sample s. Three
open-source LMMs (FAVOR [46], GroundingGPT [32], VideoLLaMA2-7B [11]) are evaluated,
with aggregated results shown in Fig. 3, plotting CoScore against the frequency of hallucinatory
and non-hallucinatory answers. A consistent trend emerges: hallucinatory responses are associated
with higher CoScores, indicating that higher co-occurrence frequencies increase the likelihood of
hallucinations. This confirms the impact of spurious inter-modality correlations learned during
pretraining4.

3 CMM Benchmark

Table 1: Overview of CMM subcategories.

Spurious Inter-modality Correlations Unimodality Over-reliance

Subcategories Visual-Language Audio-Language Visual-Audio-Language Visual Dominance Audio Dominance Language Dominance

Input Modality Visual Audio Visual+Audio Visual+Audio Visual+Audio Visual
Granularity object-, event-level event-level object-, event-level event-level object-level object-, event-level
# Samples 400 400 400 400 400 400

Inspired by the findings in previous section, we introduce The Curse of Multi-Modality (CMM)
benchmark, designed to systematically evaluate hallucinations in LMMs from two key contributors:
over-reliance on unimodal priors and spurious inter-modality correlations. As shown in Tab. 1, each
type is further divided into specific sub-categories, enabling fine-grained assessment of how these
factors influence LMMs’ performance5.

3.1 Data Composition and Evaluation Setup

For each subcategory, we manually collect 200 samples (video-only, audio-only, or video-audio pairs)
to evaluate LMMs’ handling of multi-modal inputs. Each sample includes two modality-specific
probing questions: one targeting a non-existent object or event (ground-truth answer “no”) and
one targeting an existent object or event (ground-truth answer “yes”): This results in a total of

4Further experimental details are provided in the Appendix A.
5More benchmark details such as video/audio lengths and object/event distributions are provided in Ap-

pendix C.1.
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1, 200 samples and 2, 400 probing questions. We benchmark LMMs using two core metrics, namely,
Perception Accuracy (PA) and Hallucination Resistance (HR):

PA =
#correct “yes”

#ground-truth “yes”
, HR =

#correct “no”
#ground-truth “no”

PA measures the model’s ability to accurately perceive present objects or events, while HR assesses
its resistance to hallucinations by correctly identifying the absence of non-existent objects or events.

3.2 Data Construction

3.2.1 Over Reliance on Unimodal Priors

To assess over-reliance on a single modality (visual, audio, or language), we construct targeted
probing queries that test the model’s dependence on one modality while ignoring complementary
signals.

Visual Dominance. This subcategory tests whether LMMs hallucinate audio events based on visual
input, where we construct queries asking about the existence of specific audio event. While queries
with a “yes” answer are manually annotated, non-existent events are sourced from video-audio pairs
in the AudioCaps dataset [24], where visual objects that do not correspond to any audio content are
identified. These samples are manually verified to ensure accurate annotation, setting the ground
truth answer as “no.”

Audio Dominance. We probe LMMs’ tendency to infer incorrect visual content from audio cues.
Queries ask about the presence of visual objects, with “yes” queries annotated manually. For “no”
queries, we filter video-audio pairs from AudioCaps where audio-indicated objects have no visual
representation, confirmed through manual review.

Language Dominance. To explore how language priors contribute to hallucinations, we define sets
of common-sense events (e.g., “fish swim in water”) and object attributes (e.g., “yellow banana”) to
reflect typical linguistic biases. Videos are manually sourced from YouTube to depict anti-common-
sense scenarios (e.g., “fish fly in the air,” “black banana”). For existence-probing queries, we ask
about the video’s anti-common-sense object/event, annotating the ground truth as “yes.” Conversely,
for non-existence probing queries, we test for the common-sense version of the object/event, setting
the ground truth as “no.”

3.2.2 Spurious Inter-modality Correlations

We evaluate hallucinations arising from spurious inter-modality correlations, constructing object-level
and event-level queries across visual, audio, and textual associations6.

Visual-Language. Hallucinations are assessed based on associations between visual content and
textual descriptions. Object-level queries are derived from (i) global appearance frequencies and
(ii) co-occurrence frequencies within the video-caption dataset. Event-level queries, however, are
constructed based on (i) global appearance patterns and (ii) [subject]-predicate-object] co-occurrence
patterns. All samples are curated from WebVid-10M [6].

Audio-Language. Hallucinations derived from associations between audio and text are probed
through event-level queries, given the temporal nature of audio. Queries are formed from (i) global
appearance frequencies and (ii) subject-oriented co-occurrence patterns, based on data from the
Auto-ACD [48].

Visual-Audio-Language. This subcategory explores hallucinations across visual and audio modali-
ties. Queries probe non-existent audio events based on existent co-occurred visual objects and vice
versa, with data sourced from AudioCaps [24], focusing on co-occurrence frequencies between visual
objects and audio events.

6For more details on the construction process and data statistics, please refer to Appendix C.2.
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Table 2: Benchmarking proprietary and open-source Audio-Visual LMMs on CMM.

Model

Spurious Inter-modality Correlation Uni-modality Over-reliance
Overall

VL AL VAL V A L

pa hr pa hr pa hr pa hr pa hr pa hr pa↑ hr↑

Proprietary Models

Gemini-1.5-Pro 91.0 90.5 94.0 14.5 86.0 67.0 82.5 34.0 90.5 82.0 78.5 61.5 87.1 58.3
Gemini-2.0-Flash 95.0 83.5 98.5 47.0 97.5 68.0 96.5 36.0 93.0 71.0 94.0 62.5 95.8 61.3
Gemini-1.5-Flash 93.5 90.0 88.5 39.5 88.5 70.5 79.0 36.5 90.5 86.5 90.5 62.0 88.4 64.2
Reka-Core 87.0 94.5 25.0 76.0 76.7 85.1 35.6 69.4 80.8 82.7 75.0 76.0 63.7 80.9

Open-Source Models

GroundingGPT 95.5 36.5 100. 0.0 97.5 18.0 99.5 1.0 98.5 23.5 88.5 7.0 96.6 14.3
PandaGPT 96.5 27.0 90.5 11.0 84.5 17.5 89.0 13.5 95.0 17.5 87.0 18.5 90.5 17.5
OneLLM 97.0 67.0 97.5 17.0 97.5 34.5 95.5 11.0 99.0 8.0 75.0 32.0 93.7 28.3
FAVOR 91.0 55.0 94.5 45.0 94.5 69.0 89.0 21.5 92.0 43.5 92.0 18.5 92.2 42.1
VideoSalmonn 60.0 71.5 70.0 89.0 67.0 80.0 59.5 90.0 61.0 51.5 59.0 30.5 62.8 68.8
VideoLLaMA 2 75.0 86.0 77.5 94.0 78.0 98.0 62.0 75.5 80.0 90.0 57.5 43.0 71.7 81.1
Qwen2.5-Omni 88.5 97.0 92.0 83.5 91.0 97.5 89.5 74.5 82.5 80.0 68.5 85.0 85.3 86.3

4 Experiments and Discussions

4.1 Implementation Details

Models. We evaluate a diverse set of LMMs on our benchmark, categorized into three groups based
on their modality capabilities: models capable of processing both visual and audio inputs, visual-only
models, and audio-only models.

• Audio-Visual LMMs. We test a wide range of audio-visual LMMs that are capable of handling
video-audio input pairs simultaneously, including proprietary models from [41, 52] and existing
open-source models [32, 44, 47, 20, 11, 45, 61] 7.

• Visual-Only LMMs. These include models that only take video as inputs without paired audios,
including [29, 8, 62, 21, 70, 28, 5]. We evaluate two subsets from CMM for these models,
specifically, Visual-Language Spurious Correlation and Visual Dominance.

• Audio-Only LMMs. These include models that only takes audio as inputs, including [25, 51, 18,
13]. We evaluate Audio-Language Spurious Correlation and Audio Dominance.

Evaluation Protocol. All models are evaluated using a sampling decoding strategy with a fixed
temperature of 0.2 for consistency. We assess models based on Perception Accuracy (PA) and
Hallucination Resistance (HR) metrics (see Sec. 3.1). All models are post-prompted to answer with
yes or no, where PA and HR are computed based on whether their responses include yes or no,
following [31].

4.2 Main Results

4.2.1 Analyzing Audio-Visual LMMs

The results of LMMs that can process both visual and audio inputs are presented in Tab. 2.

Hallucination Vulnerability from Spurious Inter-Modality Correlations. Visual-Audio LMMs
generally achieve PA scores over 80, demonstrating effective multi-modal perception. Extensive
efforts to mitigate Visual-Language (VL) spurious correlations have significantly reduced hallucina-
tions, as proprietary models like Reka-core and Gemini-1.5 reach HR scores around 90. In contrast,
open-source models like FAVOR and GroundingGPT continue to struggle with VL correlations.
However, the introduction of audio intensifies hallucinations across all models. Even Gemini-1.5-Pro
only attains a 14.5 HR score for Audio-Language (AL) correlations, highlighting the difficulty in
handling these correlations. Moreover, AL correlations cause more severe hallucinations than Visual-
Audio-Language (VAL) correlations, likely due to the limited availability of visual-audio-language
datasets compared to audio-language data. This imbalance may lead LMMs to form stronger spurious
correlations between audio and language, leading to more frequent hallucinations when processing
audio-only content.

7Omni-LMMs incapable of handling tri-modalities simultaneously are not included, such as [1, 17, 30].
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Table 3: Results for Visual-language and Audio-Language.

Model
VL Cor Lan Dom

pa hr pa hr

CogVLM2-Video 99.5 44.0 98.0 5.0
VideoChat2 97.0 66.0 88.0 34.5
InternLM-XC2.5 99.0 73.0 94.5 46.5
PLLaVA 89.5 93.0 75.0 52.0
ShareGPT4Video 87.5 85.5 79.5 58.0
LLaVA-OV 94.0 88.0 87.5 69.5
Qwen2.5VL 89.0 97.0 66.5 87.0

(a) Visual-Language LMMs results.

Model
AL Cor

pa hr

Qwen2-Audio 98.5 34.5

Audio-Flamingo 89.5 39.0

GAMA-IT 94.5 52.0

SALMONN 93.0 59.0

(b) Audio-Language LMMs results.

Hallucination Vulnerability from Uni-modality Over-reliance. Models show solid perception
capabilities across Uni-modality Over-reliance subcategories, with high PA scores. However, a
notable gap emerges when comparing PA and HR scores, highlighting hallucination challenges due
to unimodal dependence. Visual Dominance, in particular, proves to be more problematic than Audio
Dominance for most models. For instance, Gemini-1.5-Flash achieves an HR of 86.5 in Audio
Dominance but only 36.5 in Visual Dominance, suggesting that over-reliance on visual input presents
a more significant challenge. This can be attributed to the larger volume of visual training data and a
visual-centric bias in video-audio joint datasets. Moreover, Language Dominance reveals the impact
of LLM decoders, with steep declines in HR from PA scores, as seen in FAVOR dropping from 92.0
to 18.5. This indicates a strong reliance on language priors, suggesting a need to better balance
multi-modal integration.

Response Tendencies of LMMs. Certain models show atypical response patterns. GroundingGPT
tends to answer “yes” carelessly, leading to high PA but low HR scores (e.g., 0 in AL correlations).
This suggests overconfidence or excessive human alignment during training, as also previously noted
by other studies [31]. In contrast, Reka-core and VideoLLaMA2 exhibit cautious tendencies, showing
higher HR than PA in many cases and occasionally very low PA scores (e.g., Reka-core’s 25.0 PA in
AL correlations). This likely reflects safety alignment strategies to reject uncertain inputs with “no”
responses. These contrasting response tendencies underscore the varied behavioral patterns in LMMs
and highlight the need for more balanced training strategies that ensure accurate, context-dependent
responses without overconfidence or excessive caution.

4.2.2 Analyzing Visual-only and Audio-only LMMs

Visual and audio-only LMMs show superior perception accuracy in their respective domains compared
to Visual-Audio LMMs, as evidenced by higher PA scores in Tab. 3a and Tab. 3b. However, this
advantage does not extend to mitigating hallucinations. Similar to Visual-Audio LMMs, single-
modality models remain vulnerable to hallucinations caused by spurious inter-modality correlations.
Despite previous efforts to address VL correlations, some models still exhibit poor HR scores, such
as CogVLM2-Video, which scores 44. Furthermore, AL correlations pose even greater challenges,
with audio-only LMMs scoring between 30 and 60 in HR, underscoring the insufficient mitigation of
hallucinations in audio-text interactions, likely due to the limited attention this issue has received
in prior research [40]. Additionally, most Visual-only LMMs exhibit low HR scores for Language
Dominance, hovering around 50. This indicates a strong reliance on language priors, leading
to hallucinations when visual input conflicts with linguistic expectations. These findings further
strengthen our identification of the two key factors driving hallucinations.

4.3 Discussions

Effects of Probing Granularities. Our benchmark includes both object-level and event-level probing
questions across subcategories8. As shown in Tab. 4, most models show lower PA scores for event-
level queries than object-level ones, highlighting the challenge posed by temporal complexity and the
limited availability of event-oriented training data. For Visual-Language (VL) spurious correlations,
event-level probing yields higher HR scores than object-level probing. This may be due to the scarcity
of event-level annotations in visual-text pretraining data, while object-level annotations are more
prevalent, fostering stronger spurious correlations. Conversely, within Language Dominance under

8Audio-related subcategories exclusively contain event-level queries due to their temporal nature.
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Table 4: Effects of Probing Modalities.

Model
Visual Prob Audio Prob

pa hr pa hr

Reka-Core 96.6 86.7 57.1 83.5
Gemini-1.5-Flash 94.0 92.0 83.0 49.0
Gemini-1.5-Pro 92.0 90.0 80.0 44.0
FAVOR 94.0 85.0 95.0 53.0
GroundingGPT 96.0 35.0 99.0 1.0
VideoLLaMA2 84.0 99.0 72.0 97.0

Table 5: Effects of LLM Sizes.

Model LLM Size
VL Cor Lan Dom

pa hr pa hr

PLLaVA
7B 89.5 93.0 75.0 52.0

13B 86.5 96.5 75.5 65.0
34B 91.0 94.5 75.5 74.0

LLaVA-OV
0.5B 96.5 91.5 81.0 55.0
7B 94.0 88.0 87.5 69.5

72B 84.5 93.5 89.5 75.5

Unimodal over-reliance, HR scores are lower for event-level queries. This pattern is likely due to the
autoregressive nature of large language models, which increases reliance on language priors as the
length of processed sequences grows, heightening the risk of hallucinations, especially when longer
event-related common-sense knowledge is involved.

Effects of Probing Modalities. The Visual-Audio-Language (VAL) subcategory examines spurious
correlations arising from the co-occurrence of visual objects and audio events. It includes two probing
types: (1) object-level queries about non-existent visual objects when frequently co-occurring audio
events are present, and (2) event-level queries about non-existent audio events when frequently
co-occurring visual objects are present. Despite both probing types originating from similar co-
occurrence patterns, HR scores for event-level (audio) probing are significantly lower than those
for object-level (visual) probing across all models (Tab. 4). This finding aligns with our analysis of
Visual and Audio Dominance under Unimodal over-reliance, suggesting a bias towards visual data
due to its abundance in training and the visual-centric nature of joint visual-audio pretraining. As
a result, models tend to over-rely on visual cues, leading to more pronounced hallucinations when
predicting non-existent audio events.

Effects of LLM Sizes. We analyzed the impact of LLM decoder sizes on two LMMs, PLLaVA and
LLaVA-OneVision. As shown in Tab. 5, increasing the LLM size has minimal influence on HR scores
for Visual-Language spurious correlations, supporting our claim that these correlations primarily
arise from global appearance and co-occurrence patterns in training data. In contrast, larger LLM
sizes consistently improve HR scores for Language Dominance. For example, LLaVA-OneVision’s
HR score increases from 55.0 (0.5B LLM) to 75.5 (34B LLM), suggesting that larger LLMs are
more adept at managing complex or contradictory multi-modal inputs. Smaller LLMs, however, are
more susceptible to overfitting to linguistic priors, leading to higher hallucination rates when faced
with content that deviates from expected patterns.

Due to space constraints, potential future directions and additional analyses—including the effects of
focus prompting, QA formatting, and question templates—are provided in Appendix D and B.

5 Related Works

Large Multi-modal Models. Recent LMMs like LLaVA [36] and Flamingo [3] utilize transformer
architectures to enhance cross-modal understanding, enabling nuanced visual-text comprehension
for tasks such as visual question answering and image-based dialogue. Beyond static image-text
tasks, recent approaches have aimed to extend multi-modal capabilities by incorporating additional
modalities like video and audio [11, 58, 13, 1, 45, 68, 64, 17], fostering richer context and enhancing
the model’s ability to handle a diverse range of multi-modal scenarios.

Hallucinations in LMMs. Hallucination, particularly object hallucination, has been extensively
studied in LMMs that process image and text. This phenomenon arises when a model generates
content inconsistent with the actual objects present in the input image. Various benchmarks have
been developed to assess hallucination in vision-language tasks [31, 54, 19, 39, 9, 65, 67, 37],
and several mitigation techniques have been proposed [4, 27, 22, 66, 49, 60]. However, research
on hallucinations in LMMs beyond image-text tasks remains limited, with relatively few studies
addressing hallucinations involving additional modalities such as audio and video [59, 40]. A
concurrent effort, AVHBench [50], investigates unimodal over-reliance in audio-visual settings but
does not address inter-modality correlation effects.
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6 Conclusions

To the best of our knowledge, this paper is the first to systematically investigate and verify the two
key contributors to hallucinations in Large Multi-modal Models (LMMs) across language, visual,
and audio modalities: over-reliance on unimodal priors and spurious inter-modality correlations. We
introduce The Curse of Multi-Modality (CMM) benchmark, which features nuanced subcategories
and granularities along with diagnostic metrics, enabling precise diagnosis of model limitations and
guiding targeted improvements. By benchmarking various LMMs across diverse multi-modal contexts,
we identified key vulnerabilities in current models, such as unbalanced multi-modal integration and
biases arising from pretraining datasets. Our analyses provide fundamental insights into multi-modal
learning, highlighting the need for improved alignment across multi-modal inputs and offering
foundational guidance for developing more robust and reliable LMMs.
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2. Limitations
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
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results of the paper to the extent that it affects the main claims and/or conclusions of the paper
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Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).
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recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Please refer to Sec. 4.1 and Appendix A for benchmark evaluation and analysis details.
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• The answer NA means that the paper does not include experiments.
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7. Experiment statistical significance
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tion about the statistical significance of the experiments?
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resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
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runs as well as estimate the total compute.
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• If the authors answer No, they should explain the special circumstances that require a deviation
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• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).
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of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix G.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or
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the quality of generative models could be used to generate deepfakes for disinformation. On the
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as intended and functioning correctly, harms that could arise when the technology is being used
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misuse of the technology.
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efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: Please refer to Appendix H, where we describe how we avoid unsafe data.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Please refer to Appendix I, where we clearly specify licenses for existing assets, including
models we have evaluated and the codes we use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should
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some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: All data and codes introduced in this paper is well documented with proper license.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

This paper does not include crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not include crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

A Experimental Details

A.1 Qualitative Demonstrations

For the demonstrations in the main paper Fig.2, we use three advanced LMMs capable of processing both
visual and audio inputs. Gemini-1.5-pro [52], FAVOR-13B [46], and VideoLLaMA2-7B [11]. The case studies
presented in the main paper Fig.2 analyze hallucination tendencies by computing pθ(“yes”/“no” | v, a′, x) and
pθ(“yes”/“no” | v′, a, x), using VideoLLaMA2-7B as a representative model.

Furthermore, we extend our experiments from Fig.2 of the main paper, to justify existing tri-modality models
over-rely on uni-modal priors to response [31, 27]. To achieve this, we sampled 20 failure cases with questions
asking non-existent objects/events for each open-sourced LMM under the over-rely on visual and audio priors in
CMM subsets (where the LMM’s output probability on those test cases , but the ground truth answer is “no”). As
shown in Fig. 4, we plotted the average along with standard deviations across blur/noise steps applied to specific
input modalities. The observed trends align with our original findings in Figure 2, demonstrating that reducing
information from the dominant modality forces the model to rely more on the targeted modality, effectively
decreasing hallucination rates. This highlights the critical impact of modality dominance on hallucinations and
underscores the necessity of robust cross-modal integration, particularly in scenarios involving mutual exclusion.

A.2 Quantitative Validation

For the quantitative validation shown in main paper Fig.3, we curate 200 samples for each subcategory of
hallucination.

Visual-Language Experiments. Each sample is a video-only raw file associated with a probing question
targeting the existence of a non-existent object, while a frequently co-occurring object is present. The co-
occurrence scores are computed from the WebVid-10M dataset [6], from which the video samples are also
sourced. For instance, a video containing a bird is queried with “Did you see trees in the video?” since "bird"
and "tree" frequently co-occur in the pretraining data, although no tree is visually present in the sample.
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(a) Audio Dominance. (b) Visual Dominance. (c) Language Dominance.

Figure 4: Validation experiments on overreliance on unimodal priors.

Audio-Language Experiments. Given the temporal nature of audio, all queries are event-level. Each audio-only
raw file is associated with a question about a non-existent audio event, while the subject of a related event can be
recognized. For example, a dog whimpering is queried with “Did you hear dog barking?” Co-occurrence scores
are computed from the audio-text pretraining dataset Auto-acd [48], which also provides the audio samples.

Audio-Visual Experiments. The co-occurrence scores are derived from the video-audio dataset AudioCaps [24],
containing video samples with corresponding audio tracks. Each sample is queried about a non-existent visual
object with a frequently co-occurring audio event, or vice versa.

The above experiments are conducted on three open-source LMMs that support both visual and audio inputs:
FAVOR-13B [46], GroundingGPT-7B [32], and VideoLLaMA2-7B [11]. The frequencies displayed in the main
paper Fig.3 represent the aggregated results across all three models.

B Additional Experiments

We provide additional experiments in this section.

B.1 Effects of Focus Prompting

Table 6: Effects of prompting LMMs to focus on the key modality.

Model
Visual Dom Audio Dom

pa hr pa hr

Gemini-1.5-Flash 99.5 44.0 98.0 5.0
+ focus 97.0 66.0 88.0 34.5

GroundingGPT 99.0 73.0 94.5 46.5
+ focus 89.5 93.0 75.0 52.0

FAVOR 87.5 85.5 79.5 58.0
+ focus 94.0 88.0 87.5 69.5

VideoLLaMA2 87.5 95.5 83.0 84.0
+ focus 87.5 95.5 83.0 84.0

We conduct experiments prompting LMMs to focus on a single modality. Specifically, in scenarios where LMMs
tend to rely on audio while ignoring visual inputs, we prompt them to focus more on the visual content. A
similar approach is applied when LMMs over-rely on visual inputs while ignoring audio. As shown in Tab. 6,
such prompting can reduce hallucinations to some extent. However, the improvements are not consistent across
models and metrics, suggesting challenges in addressing hallucinations among tri-modalities. Furthermore,
this approach presupposes prior knowledge of the decisive input modality, which is impractical in real-world
scenarios.

B.2 Effects of QA formatting

To avoid the potential influence of yes-no tendency [35], where LMMs tend to answer with yes, we reformulate
our questions with multiple-choice formats, as demonstrated in Tab. 7. Such modifications ensures that LMMs
cannot simply rely on yes-no tendencies to answer. CMM results with reformated questions are summarized in
Tab. 8. Such results indicate that a leading proprietary LMM like Gemini-1.5-Flash suffers less from yes-no
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Table 7: Example of different QA formatting.

Yes or No Formatting

Question Did you hear bird chirping in the audio?
Please answer with yes or no.

Ground Truth No.

A or B Formatting

Question Did you hear bird chirping in the audio?
A. Yes. B. No.
Select the best option for the question.

Ground Truth B.

tendency. This also suggests that CMM poses challenges in robustness to existing models in tri-modality
scenarios, which is less attended to in previous hallucination evaluations [31, 39, 19, 67].

Table 8: Effects of QA formatting. FAVOR and GroundingGPT do not follow instructions to response
with A or B, thus not included.

Model
Spurious Correlation Unimodal Overreliance

pa hr pa hr

Gemini-1.5-Flash 90.2 66.7 86.7 61.7
w. A or B 94.0 60.8 94.7 52.1

Video-LLaMA2 76.8 92.7 66.5 69.5
w. A or B 94.7 44.5 94.0 25.2

B.3 Effect of Question Template

Table 9: Question Template Variations.

Template 1

Q Did you hear bird chirping in the audio?
A No.

Template 2

Q Can you hear bird chirping in the audio?
A No.

Template 3

Q Is bird chirping audible in the audio?
A No.

To evaluate the potential influence of question template variations on results, we ask six LMMs with three prompt
variations, as listed in Tab. 9. The quantitative results are summarized in Tab. 10. As the table indicates, most
existing models are drastically affected by question templates variations, suggesting challenges in tri-modality
alignment. We hope such results inspire future designs that suffer less from these issues.

B.4 Evaluation of GPT-Series Models

As the GPT-series models do not support audio inputs, we evaluated three flagship models (GPT-4.1, GPT-4.1
mini, and GPT-4.1 nano) on the visual–language (VL) subsets of our CMM benchmark.

Across all models, hallucination resistance (HR) is consistently lower for event-level queries than for object-level
ones, reflecting the difficulty of overcoming temporal or event-based language priors. The vulnerability becomes
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Table 10: Effects of Question Template.
Spurious Inter-modality Correlation Uni-modality Over-reliance

Overall
VL AL VAL V A L

pa hr pa hr pa hr pa hr pa hr pa hr pa hr

Gemini-1.5-Flash

+ prompt 1 93.5 90.0 88.5 39.5 88.5 70.5 79.0 36.5 90.5 86.5 90.5 62.0 88.4 64.2
+ prompt 2 96.0 82.5 93.0 38.5 97.5 51.8 97.0 23.5 95.5 72.0 94.0 59.5 95.5 54.6
+ prompt 3 96.5 81.0 87.0 53.5 97.5 59.0 95.5 20.0 96.0 71.0 97.5 45.0 95.0 54.9

∆ 3.0 9.0 6.0 14.0 9.0 18.7 18.0 16.5 5.5 15.5 7.0 17.0 7.1 9.6

GroundingGPT

+ prompt 1 95.5 36.5 100.0 0.0 97.5 18.0 99.5 1.0 98.5 23.5 88.5 7.0 96.6 14.3
+ prompt 2 97.0 46.5 100.0 0.0 97.5 28.5 97.0 0.5 96.0 38.5 90.5 14.0 96.3 21.3
+ prompt 3 97.5 42.0 99.5 0.0 94.5 52.0 82.0 2.5 96.5 43.5 91.0 13.5 93.5 25.6

∆ 2.0 10.0 0.5 0.0 3.0 34.0 17.5 2.0 2.5 20.0 2.5 7.0 3.1 11.3

PandaGPT

+ prompt 1 96.5 27.0 90.5 11.0 84.5 17.5 89.0 13.5 95.0 17.5 87.0 18.5 90.5 17.5
+ prompt 2 99.0 8.5 94.5 0.0 95.5 7.5 94.5 4.0 97.0 7.5 98.0 1.5 96.6 4.8
+ prompt 3 98.5 2.0 94.5 0.5 96.0 1.0 98.0 4.5 99.0 0.0 98.5 0.0 97.5 1.3

∆ 2.5 25.0 4.0 11.0 11.5 16.5 9.0 9.5 4.0 17.5 11.5 188.5 7.0 16.2

FAVOR

+ prompt 1 91.0 55.0 94.5 45.0 94.5 69.0 89.0 21.5 92.0 43.5 92.0 18.5 92.2 42.1
+ prompt 2 92.5 54.5 91.5 58.5 91.0 77.5 91.5 25.5 93.0 56.0 89.0 20.5 91.4 48.8
+ prompt 3 98.5 32.0 96.0 43.0 95.0 58.0 87.0 23.5 89.0 47.5 88.0 23.5 92.3 37.9

∆ 7.5 23.0 4.5 15.5 4.0 19.5 4.5 4.0 4.0 12.5 4.0 5.0 0.9 10.9

Video-Salmonn

+ prompt 1 60.0 71.5 70.0 89.0 67.0 80.0 59.5 90.0 61.0 51.5 59.0 30.5 62.8 68.8
+ prompt 2 67.5 63.0 82.5 76.5 73.0 80.5 78.5 66.0 56.5 57.0 64.5 20.0 70.4 60.5
+ prompt 3 81.5 29.5 82.5 63.0 78.0 73.0 81.5 54.5 74.0 39.0 67.5 17.0 77.5 46.0

∆ 21.5 42.0 12.5 26.0 11.0 7.5 22.0 35.5 17.5 18.0 8.5 13.5 14.7 22.8

VideoLLaMA2

+ prompt 1 75.0 86.0 77.5 94.0 78.0 98.0 62.0 75.5 80.0 90.0 57.5 43.0 71.7 81.1
+ prompt 2 89.0 90.5 81.0 89.5 86.5 96.5 71.0 64.0 82.0 92.0 83.5 25.5 82.2 76.3
+ prompt 3 82.5 91.0 82.0 86.5 86.5 93.5 72.0 62.0 83.0 90.0 70.5 47.5 79.4 78.4

∆ 14.0 5.0 4.5 7.5 8.5 4.5 10.0 13.5 3.0 2.0 26.0 17.5 10.5 4.8

Model Granulariy PA HR

GPT-4.1 Object 97.0 93.9
Event 85.0 96.0

GPT-4.1 mini Object 93.8 92.9
Event 84.0 96.0

GPT-4.1 nano Object 98.0 82.8
Event 89.9 90.0

(a) VL Correlations subset.

Model Granularity PA HR

GPT-4.1 Object 90.0 94.0
Event 79.0 81.0

GPT-4.1 mini Object 85.0 91.0
Event 68.0 76.0

GPT-4.1 nano Object 81.0 63.0
Event 75.3 35.4

(b) Language Dominance subset.

increasingly pronounced for smaller models: HR on event-level queries drops from 81.0 (GPT-4.1) to 35.4
(GPT-4.1 nano), demonstrating the sensitivity of lightweight architectures to language dominance.

B.5 Chain-of-Thought (CoT) Reasoning Experiments

We further examined the effect of explicit Chain-of-Thought (CoT) prompting using the instruction: “Think
step-by-step and then answer with yes or no at the end.” Each cell in Table 12 reports Perception Accuracy (PA)
/ Hallucination Resistance (HR).

Analysis. CoT prompting introduces a clear trade-off between reasoning and perception. Cautious reasoners
(Gemini models) tend to lose perception accuracy while gaining limited hallucination resistance, indicating
interference between linguistic reasoning and visual grounding. Over-confident reasoners (PandaGPT) display
the opposite pattern—stronger PA but catastrophic HR collapse—suggesting amplification of pre-existing biases.
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Table 12: Original vs. Chain-of-Thought (CoT) performance comparison across benchmark subsets.
Model Setting VL Corr. AL Corr. VAL Corr. Visual Dom. Audio Dom. Lang. Dom.

Gemini-1.5 Pro Original 91.0 / 90.5 94.0 / 14.5 86.0 / 67.0 82.5 / 34.0 90.5 / 82.0 78.5 / 61.5
CoT 70.5 / 81.0 70.0 / 69.0 70.5 / 55.5 55.0 / 32.0 71.5 / 65.0 56.0 / 66.0

Gemini-1.5 Flash Original 93.5 / 90.0 88.5 / 39.5 88.5 / 70.5 79.0 / 36.5 90.5 / 86.5 90.5 / 62.0
CoT 86.5 / 90.0 72.0 / 69.0 82.5 / 77.0 76.5 / 43.5 88.0 / 80.5 84.0 / 74.5

Gemini-2.0 Flash Original 95.0 / 83.5 98.5 / 47.0 97.5 / 68.0 96.5 / 36.0 93.0 / 71.0 94.0 / 62.5
CoT 87.5 / 92.0 92.0 / 53.5 92.0 / 76.5 88.5 / 38.5 83.0 / 78.5 86.5 / 66.0

Qwen2.5-Omni Original 88.5 / 97.0 92.0 / 83.5 91.0 / 97.5 89.5 / 74.5 82.5 / 80.0 68.5 / 85.0
CoT 89.0 / 97.5 92.5 / 82.0 87.0 / 97.5 86.0 / 79.0 77.0 / 85.5 66.5 / 83.0

PandaGPT Original 96.5 / 27.0 90.5 / 11.0 84.5 / 17.5 89.0 / 13.5 95.0 / 17.5 87.0 / 18.5
CoT 98.0 / 15.0 95.0 / 2.0 96.0 / 3.0 97.0 / 4.0 99.0 / 2.0 96.0 / 3.0

Video-Salmonn Original 60.0 / 71.5 70.0 / 89.0 67.0 / 80.0 59.5 / 90.0 61.0 / 51.5 59.0 / 30.5
CoT 60.0 / 62.0 71.5 / 85.5 63.5 / 84.5 59.0 / 85.5 55.0 / 57.0 53.5 / 37.5

Mixed responders (QwenOmni and Video-Salmonn) exhibit minimal or inconsistent changes. These results
show that longer reasoning chains may intensify reliance on language priors and weaken perceptual grounding.

C Data Details

C.1 Data Statistics

Length Distribution. We summarize the audio and video length distributions of CMM in Fig. 5. We summarize
three types of input data involved in CMM, including (a) 400 audio-only samples, (b) 800 video-only samples,
and (c) remaining 1200 paired audio-visual samples. The audio-only data are extracted from the large-scale
Auto-ACD, where most samples contain approximately 10 seconds of audio, and the length distribution of our
audio-only samples follows the characteristics.

(a) Distribution of CMM Audio
Lengths.

(b) Distribution of CMM Video
Lengths.

(c) Distribution of Audio-Visual
Lengths.

Figure 5: Length Distribution.

Object/Event Statistics. We provide the statistics of objects and events in detail. Specifically, we include the
most frequent 10 existent and non-existent objects, visual events and audio events in Fig. 6. The full distributions
of object, visual event and audio event frequency are summarized in Fig. 7, Fig. 8, and Fig. 9, respectively.
It should be pointed out that our aim is not to replicate natural distribution with our benchmark. Instead, we
highlight tri-modal test cases that challenge existing LMMs with spurious inter-modality spurious correlations
and over-reliance on uni-modal priors, whereby we hope inspiring more robust and safe models that suffer less
from hallucinations.

C.2 Benchmark Data Construction Details

The benchmark is designed to evaluate hallucination scenarios across multiple modalities, targeting specific
LMM tendencies such as Over Reliance on individual modalities and spurious inter-modality correlations. It
comprises video, audio, and textual inputs with probing questions aimed at assessing the presence or absence of
objects or events in these modalities. Precise annotation is employed to ensure a thorough evaluation of LMM
performance in multimodal contexts.

C.2.1 Over Reliance on Unimodal Priors

To assess how LMMs may excessively depend on a single modality (visual, audio, or language), we construct
targeted probing queries that test this Over Reliance while potentially neglecting complementary information.
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(a) Top 10 existent object frequencies. (b) Top 10 non-existent object frequencies.

(c) Top 10 existent visual event frequencies. (d) Top 10 non-existent visual event frequencies.

(e) Top 10 existent audio event frequencies. (f) Top 10 non-existent audio event frequencies.

Figure 6: Statistics of object and event frequencies in our probing questions.
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Figure 7: Distribution of Object Names.

Figure 8: Distribution of Visual Event Names.

Visual Dominance. The Visual Dominance subcategory examines the extent to which LMMs over-rely on visual
content, potentially leading to hallucinated sound events that are often associated with visual objects. All probing
questions focus on audio events. For queries about existent sound events, the ground truth “yes” is derived from
direct human annotation. To identify non-existent sound events, we use the AudioCaps dataset [24], which
provides short captions describing the audio track. Objects associated with these audio events are extracted using
LLaMA3 [16] from the audio caption, while visual objects are identified from video frames using InternVL2 [10].
Samples where visual objects do not correspond to any audio content are filtered and manually verified, with the
ground truth set to “no.” All raw video-audio pairs are sourced from AudioCaps.

Audio Dominance. The Audio Dominance subcategory explores how LMMs may over-rely on audio cues,
leading to hallucinations of visual content. Here, questions probe the presence of visual objects. For existent
objects, the ground truth “yes” is annotated manually. To find non-existent objects, we filter samples where the
objects indicated by audio cues are not visually present in the video. These samples undergo manual review
to ensure accurate annotation, with the ground truth as “no.” All raw video-audio pairs are also sourced from
AudioCaps.

Language Dominance. The Language Dominance subcategory targets hallucinations caused by the LMMs’
dependence on language priors from pretraining corpora. This category focuses on common-sense events and
object attributes. We manually define sets of typical events (e.g., “fish swim in water”) and object characteristics
(e.g., “yellow banana”). Videos depicting anti-common-sense scenarios (e.g., “fish fly in the air,” “black banana”)
are then collected from YouTube. For queries probing existent content, the ground truth “yes” corresponds to the
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Figure 9: Distribution of Audio Event Names.

anti-common-sense object/event depicted in the video. Conversely, non-existent content queries, which are the
common-sense versions that do not match the video, have the ground truth “no.”

Each subcategory includes 200 video-audio or video-only samples, each accompanied by two probing questions:
one querying an existent object/event (“yes”), and another probing a non-existent one (“no”). For subcategories
containing both object- and event-level probing, the dataset is balanced with equal numbers of object- and
event-level queries.

C.2.2 Spurious Inter-modality Correlations

This section outlines the construction of queries targeting Spurious Inter-modality Correlations, where hallu-
cinations arise from misleading associations between different modalities learned during pretraining. These
correlations are probed at both object- and event-level granularities.

Visual-Language. This occurs when LMMs hallucinate visual objects due to associations learned from patterns
in video-caption pretraining data. Queries in this subcategory are developed based on two factors: global
appearance frequencies and co-occurrence patterns within the data.

Object-level queries are derived from two sources: (i) global appearance frequencies, where the model is asked
about frequent objects that are absent in the video (e.g., “Did you see a tree in the video?” when no tree is
present), and (ii) co-occurrence patterns, where queries target non-existent objects that are often seen alongside
other objects in the pretraining data (e.g., "Did you see a phone in the video?" when a human is present but no
phone).

Event-level queries similarly explore global appearance frequencies by probing events that frequently occur in
pretraining data but are not present in the video. For co-occurrence patterns, event-level queries are designed
around subject-fixed action-object pairs, such as “Did you see a person using a phone in the video?” when the
person is engaged in a different action like walking.

Both global frequencies and co-occurrence data are extracted from the large-scale video-caption pretraining
dataset WebVid10M. Probing samples are curated accordingly from the same source.

Audio-Language. This subcategory assesses correlations learned from audio-caption pretraining, leading to
potential hallucinations of audio events based on their appearance or co-occurrence in the training data. Due to
the temporal nature of audio, all queries are event-level.

Event-level queries focus on global appearance frequencies, probing for hallucinated audio events that are
common in the pretraining data but absent from the audio track (e.g., “Did you hear a dog barking?” when
no such sound exists). Co-occurrence queries involve subject-fixed action-object pairs, targeting frequently
co-occurring events (e.g., "Did you hear a dog barking?" when only dog whimpering is present).

The dataset Auto-acd is used for constructing these queries, ensuring a balanced representation of global
appearance and co-occurrence-based patterns.
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Visual-Audio-Language. The Visual-Audio-Language subcategory captures cross-modal hallucinations, where
visual objects are hallucinated based on audio cues, and vice versa.

Object-level queries target visual objects that are hallucinated based on associated sound events (e.g., “Did you
see a tree in the video?” when bird chirping is present without any tree visible).

Event-level queries test for non-existent audio events that are frequently co-occurred with visual objects in
training data (e.g., “Did you hear car revving?” when a human is visible without any car sound).

The co-occurrence frequencies between visual objects and audio events are computed using the Auto-ACD
dataset, with the visual and audio content manually checked and annotated by human reviewers. Queries are
evenly split between probing audio events and visual objects.

For all subcategories, there is a balance between object-level and event-level queries. Additionally, the samples
constructed from global appearance frequencies and co-occurrence patterns are evenly distributed.

C.3 Frequent Patterns in Pretraining Datasets

The following outlines the frequent global appearances and co-occurrence patterns derived from major pretraining
datasets, which is used to construct our benchmark. These patterns reflect common associations across modalities,
contributing to spurious correlations within LMMs during pretraining.

Patterns in Pretraining Datasets

Visual-Language Correlations from WebVid-10M
• Object-level

– Top appeared objects: [beach, boat, car, city, flower, mountain, person, phone, tree, water]
– Top co-occurrences: [beach-person, car-person, city-person, dog-person, food-person,

laptop-person, mountain-person, phone-person, tree-person, water-person]

• Event-level

– Top appeared events: [person drinks coffee, person drives car, person eats food, person
holds glass, person reads book, person rides bike, person uses camera, person uses laptop,
person uses phone, person uses tablet]

– Top co-occurred (subject)-(action object) pairs: [person-drinks coffee, person-drives car,
person-eats food, person-holds glass, person-reads book, person-rides bike, person-uses
camera, person-uses laptop, person-uses phone, person-uses tablet]

Audio-Language Correlations from Auto-acd
• Event-level (since audio is inherently temporal)

– Top appeared events: [bird chirps, car passes, car revs, crowd cheers, dog barks, guitar
strums, person laughs, person sings, person speaks, water splashes]

– Top co-occurred (subject)-(action object) pairs: [car-honks, car-passes, car-revs, dog-
barks, dog-howls, dog-whimpers, person-cheers, person-laughs, person-sings, person-
speaks]

Visual-Audio-Language from AudioCaps
• Cross-modality (visual object)-(audio event) co-occurrences

– Top co-occurrences: [person-bird chirping, tree-bird chirping, tree-car passing, person-dog
barking, car-person speaking, table-person speaking, tree-person walking, person-water
splashing, dog-person speaking, person-car revving, water-person speaking]

D Future Directions

Our analysis identifies key vulnerabilities in current LMMs, representing only a subset of broader challenges.
These include but are not limited to unbalanced cross-modal integration, often with visual dominance over-
shadowing audio or text cues; spurious inter-modality correlations arising from training biases; overreliance on
linguistic priors from large-scale LLM pretraining; and divergent response tendencies—either overconfident
approval or overly cautious rejection. To address these challenges, we propose several potential directions for
reference:

• Balanced Multi-modal Training Data. Creating datasets with balanced modality representation and
diverse temporal annotations to reduce visual biases and improve event-level understanding.
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• Advanced Cross-modal Fusion. Implementing dynamic fusion strategies to adjust modality importance
based on context can improve multimodal integration and reduce hallucination.

• Mitigating Linguistic Priors. Fine-tuning LMMs with contextually diverse prompts and incorporating
visual/audio fact-checking mechanisms can decrease overreliance on language priors.

• Refined Safety Alignment. Establishing balanced response strategies to avoid overconfidence or
excessive caution ensures accurate interpretation, even for ambiguous inputs.

E Limitation

While our study introduces a structured benchmark to evaluate hallucinations in LMMs, several limitations
remain. First, although our analysis identifies two key contributors—unimodal prior overreliance and spurious
inter-modality correlations—these do not exhaustively capture all possible causes of hallucination. Other
underexplored factors, such as modality misalignment due to temporal inconsistency or more complex and
entangled scenarios, may also contribute and warrant further investigation.

Second, current open-source Visual-Audio-Language (VAL) models exhibit limited instruction-following ca-
pabilities and display a strong response bias toward affirmative answers. Despite our efforts to mitigate this
via prompt formatting and binary answer constraints, this bias persists, which may confound evaluation and
necessitate the development of more robust instruction-following capability.

Lastly, our benchmark focuses on short, binary probing questions. While effective for diagnosis, this format
may not fully reflect the complexity of real-world multimodal tasks, where nuanced, multi-step reasoning and
open-ended generation are required. Extending evaluations to cover such settings remains an important direction
for future work.

F Computation Resource

For benchmark evaluation, the majority of experiments are conducted using open-source models ranging from
7B to 13B parameters. These models can be deployed on a single GPU with 40–80GB of memory, with inference
times ranging from a few minutes to approximately 30 minutes, depending on the implementation efficiency of
each model’s codebase.

For experiments involving larger model sizes (34B and 72B) used in the analysis of LLM size effects, 2–4
80GB-GPUs are required to support inference. Evaluations of proprietary models are performed via their
respective official APIs, as these models are not publicly available for local deployment.

G Broader Impacts

This work presents a systematic benchmark for evaluating hallucinations in large multimodal models (LMMs)
across language, visual, and audio modalities. By identifying key failure modes and providing fine-grained
diagnostics, our framework can facilitate the development of more reliable and robust multimodal systems. This
has potential benefits in applications such as assistive technologies, education, and content moderation, where
accurate multimodal understanding is critical.

While improved model reliability may accelerate deployment in real-world scenarios, we emphasize that our
contribution is primarily diagnostic in nature. We release the benchmark and evaluation results to support
transparency and reproducibility. We hope this work encourages continued research into model alignment and
robustness, and informs best practices for safe and responsible development of LMMs.

H Safeguard

All data included in our benchmark have undergone rigorous manual verification to ensure safety and appropri-
ateness for public research use. Each sample—whether sourced from licensed datasets such as AudioCaps and
WebVid-10M or manually collected from YouTube—was individually reviewed to exclude any content involving
identifiable individuals, private settings, or potentially harmful, sensitive, or inappropriate material.

In addition to verifying the multimodal inputs, we manually reviewed all associated probing questions to ensure
they are neutral, non-offensive, and free from bias. This careful curation process reflects our commitment to
responsible data sharing and minimizes risks related to misuse or unintended harms.

We encourage responsible use of the benchmark and provide clear documentation on its intended purpose:
evaluating hallucination robustness in LMMs. Researchers are advised to use the benchmark solely for academic
and diagnostic purposes and not for fine-tuning generative models without proper safety measures.

30



I License for Existing Assets

The models we use to evaluate CMM in this paper, including proprietary models such as Gemini and Reka Core,
open-source models like VideoSalmonn and VideoLLaMA 2, are under permissive license for academic purpose.
For code with which we implement our evaluation, we use VLMEvalkit [15] for most models, which is with
Apache-2.0 license and permissive to use.
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