The Curse of Multi-Modalities: Evaluating Hallucinations of Large Multimodal Models across Language, Visual, and Audio

Sicong Leng 1,2* Yun Xing 2* Zesen Cheng 1,4* Yang Zhou 3 Hang Zhang 1,4 Xin Li 1,4 Deli Zhao 1,4 Shijian Lu 2,† Chunyan Miao 2 Lidong Bing 1,4

DAMO Academy, Alibaba Group
 Nanyang Technological University
 HPC A*STAR, Singapore
 Hupan Lab, Hangzhou, China

Project Page: https://cmm-damovl.site/
Data: https://huggingface.co/datasets/DAMO-NLP-SG/CMM
Code: https://github.com/DAMO-NLP-SG/CMM

Abstract

Recent advancements in large multi-modal models (LMMs) have significantly enhanced performance across diverse tasks, with ongoing efforts to further integrate additional modalities such as video and audio. However, most existing LMMs remain vulnerable to hallucinations, the discrepancy between the factual multi-modal input and the generated textual output, which has limited their applicability in various real-world scenarios. This paper presents the first systematic investigation of hallucinations in LMMs involving the three most common modalities: language, visual, and audio. Our study reveals two key contributors to hallucinations: overreliance on unimodal priors and spurious inter-modality correlations. To address these challenges, we introduce the benchmark The Curse of Multi-Modalities (CMM), which comprehensively evaluates hallucinations in LMMs, providing a detailed analysis of their underlying issues. Our findings highlight key vulnerabilities, including imbalances in modality integration and biases from training data, underscoring the need for balanced cross-modal learning and enhanced hallucination mitigation strategies. Based on our observations, we suggest potential research directions that could enhance the reliability of LMMs.

1 Introduction

Large Multi-modal Models (LMMs) have rapidly advanced, driving significant improvements across a wide range of tasks by effectively integrating and processing diverse data modalities. These models [28, 70, 21, 64, 55, 2, 52, 41], leveraging multi-modal inputs such as image and text, have achieved notable performance gains, particularly in generating contextually accurate textual outputs. As the field evolves, there is a growing trend toward incorporating additional modalities, such as audio and video [62, 8, 58, 69, 11, 29, 25, 51, 18, 13], to enhance LMMs' ability to understand and interact with complex real-world environments.

However, despite these advancements, LMMs are prone to hallucination, a critical issue where generated outputs do not accurately reflect the multi-modal inputs [35, 54, 59, 40]. This issue severely

^{*}Equal contribution.

[†]Corresponding author.

undermines the reliability and applicability of LMMs in real-world scenarios, particularly in tasks requiring precise and factual content generation. Hallucination, particularly object hallucination, has been a key focus in LMMs that handle image and text inputs. Object hallucination occurs when LMMs generate semantically coherent but factually unaligned contents with the actual objects present in the input images. Various benchmarks [31, 49, 38, 54] and mitigation techniques have been proposed to address this issue by refining training processes [35], implementing post-hoc correction [27, 71], etc. However, accommodating additional modalities like audio and video exacerbates alignment and fusion difficulties [26, 14, 53, 33], which lead to increased hallucinations.

This study systematically examines how LMMs produce hallucinations while integrating language, visual, and audio inputs, revealing the prevalence and causes of hallucinations under such multi-modal scenarios. Two key contributors are identified: (1) over-reliance on unimodal priors: Models over-rely on data from a single modality, neglecting others. This results in outputs that do not accurately reflect the full range of input data, as models default to familiar patterns within one modality despite contradictory signals from others. (2) spurious inter-modality correlations: Models learn erroneous cross-modal associations based on patterns that appear statistically significant but lack meaningful or causal connections, leading to plausible but counterfactual outputs. We introduce The Curse of Multi-Modalities (CMM), a comprehensive benchmark for assessing hallucinations in LMMs, covering a wide range of scenarios across visual, audio, and their joint contexts. CMM converts hallucination evaluation into a binary classification task through object-level and event-level probing. It comprises 1, 200 video/audio/video-audio samples across various multi-modal contexts, ensuring balanced evaluation with 2, 400 probing questions evenly split between queries for existent and non-existent objects/events. LMMs are prompted with straightforward yes-or-no questions regarding the presence of objects or events in the input modalities.

CMM is the first benchmark to systematically investigate LMMs' hallucinations in such comprehensive multi-modal settings. Unlike prior benchmarks that broadly assess hallucination performance, CMM segments hallucinations into nuanced subcategories under two key contributors: *spurious intermodality correlations* (e.g., visual-language, audio-language, visual-audio-language) and *unimodal over-reliance* (e.g., language domianance, visual dominance, audio dominance), enabling precise diagnosis of LMM vulnerabilities and shedding light on possible improvements. By introducing diagnostic metrics including perception accuracy (PA) and hallucination resistance (HR), CMM offers a comprehensive framework for gauging both perception capabilities and hallucination severity in LMMs. In summary, the contributions of this work are threefold:

- We conduct the first systematic investigation of hallucinations in LMMs across language, visual, and audio modalities, identifying their key contributors including unimodal prior over-reliance and spurious inter-modality correlations.
- We introduce a novel and comprehensive benchmark, The Curse of Multi-Modalities (CMM), which evaluates hallucinations using object-level and event-level probing within a binary classification framework. CMM defines hallucinations with nuanced subcategories and granularities, enabling comprehensive diagnosis of LMM vulnerabilities across various modalities.
- We evaluate a diverse set of state-of-the-art LMMs across visual, audio, and joint contexts, revealing
 critical insights in model limitations and fundamental challenges in multi-modal learning. Our
 thorough analysis and discussion pinpoint future directions for mitigating hallucinations and
 enhancing LMM reliability, providing a viable roadmap for improvements.

2 Analyzing Hallucinations across Language, Visual, and Audio

This section systematically investigates the underlying causes of hallucinations in Large Multi-modal Models (LMMs). It includes qualitative demonstrations and comprehensive statistical analysis from two key perspectives: *over-reliance on unimodal priors* and *spurious inter-modality correlations*. Our analysis provides empirical evidence and quantifies the extent to which these factors influence LMMs' reliability.

Notations. Consider an LMM parametrized by θ that processes inputs from three modalities: language x, visual v, and audio a. The model generates textual output y autoregressively, where each token y_t is conditioned on all three modalities and the previously generated tokens $y_{< t}$:

$$y_t \sim p_\theta(y_t \mid v, a, x, y_{\leq t}),$$

Figure 1: Demonstrations of over-reliance on unimodal priors.

where y_t represents the token at time step t, and $y_{< t}$ denotes the sequence of tokens generated up to time step t-1.

2.1 Over-reliance on Unimodal Priors

Over-reliance on unimodal priors is a key factor contributing to hallucinations in LMMs. This issue arises when the model over-relies on the knowledge learned from one modality during training, rather than integrating knowledge of all available modalities. In such cases, the model defaults to strong unimodal priors learned during training, leading to outputs that follow familiar unimodal patterns even when those patterns are not supported by the multi-modal input. Following the general issue of over-reliance on unimodal priors, we categorize this into three distinct types: Language Dominance, Visual Dominance, and Audio Dominance. Each form of dominance presents unique challenges for LMM performance and contributes to hallucinations in different ways.

Language Dominance. Also known as language biases [42, 27, 19, 56], language dominance arises when a model excessively depends on pre-trained large language models (LLMs), generating responses that adhere to linguistic patterns or prior knowledge from large language corpora, even when visual or audio inputs provide contradictory information. This issue is particularly prevalent in LMMs that integrate LLMs as their decoder base. These LLMs [12, 23, 63], due to their proficiency in capturing linguistic structures and semantic relationships, often dominate the decision-making process, overshadowing contributions from visual or audio modalities. As illustrated in Fig. 1a, a video depicts finger skateboarding with shoes on fingers. When asked by the language-biased question "Did you see shoes worn on feet?"—reflecting commonsense event that follows linguistic priors—LMMs respond "yes", contradicting the actual content and inducing hallucination. This demonstrates LMMs' tendency to rely on language priors over factual multi-modal inputs.

Visual Dominance. This occurs when a model over-relies on visual information, with less considering linguistic and auditory cues. In such cases, the model outputs are dominated by visual context, neglecting important information from other input modalities. As illustrated in Fig. 1b, a video depicts a person planning a woodworking project with a hammer in sight, while the audio track contains only events of person speaking and bird chirping. Despite this, advanced LMMs may over-rely on the visual presence of the "hammer" and incorrectly infer a "hammer hitting" sound, ignoring the actual audio content where no such sound is present.

Audio Dominance. This phenomenon arises when a model is excessively relying on auditory input, disregarding visual or linguistic inputs. As illustrated in Fig. 1c, a video captures a person recording a village view through a window, showing dark clouds. The audio track contains evident thunderstorm sounds, but no lightning is visible. Despite this, LMMs may over-rely on the audio cues, hallucinating that lightning is visible in the scene, thereby disregarding the actual visual content.

Case Study. To further explore our observations on unimodal over-reliance, we performed case studies on each example in Fig. 2, hypothesizing that gradually altering information from a dominant modality would significantly affect the model's responses if hallucinations are primarily due to over-reliance on that modality³.

³To further validate unimodal over-reliance, we conduct similar experiments using open-source models across more samples in Appendix A.1.

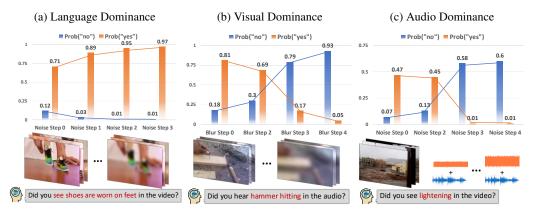


Figure 2: Validation experiments on over-reliance on unimodal priors.

In the visual dominance scenario, we progressively blur the video to reduce visual content and tracked the probabilities of the LMM responding with a hallucinatory "yes" $(p_{\theta}("yes" \mid v', a, x))$ or a correct "no" $(p_{\theta}("no" \mid v', a, x))$ across different blur levels. As shown in Fig. 2b, increasing the blur led to a significant decline in hallucinatory "yes" responses and a rise in correct "no" responses. This indicates that reducing visual information compels the model to rely more on auditory cues, thereby decreasing visual-induced hallucinations. In the audio dominance case (Fig. 2c), we add noise to the audio track to degrade its quality. As noise levels increased, the probability of hallucinatory "yes" responses decreased, while correct "no" responses became more frequent $(p_{\theta}("yes"/"no" \mid v, a', x))$. This demonstrates that diminishing auditory information shifts the model's reliance to visual cues, mitigating hallucinations caused by over-reliance on auditory inputs. For the language dominance scenario, we blur the video containing critical visual information needed to accurately answer an adversarial question. As the visual content was increasingly obscured, the model's reliance on language priors intensifies, leading to more hallucinatory "yes" responses and fewer correct "no" responses (Fig. 2a). This suggests that in the absence of visual details, the model defaults to language-based patterns, exacerbating hallucinations.

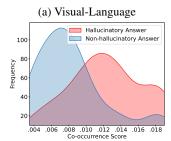
In summary, these case studies confirm that unimodal over-reliance significantly contributes to hallucinations in LMMs. Reducing information from the dominant modality forces the model to integrate cues from other modalities more effectively, thereby decreasing the likelihood of hallucinations. This validates the challenges posed by uni-modality over-reliance in multi-modal integration.

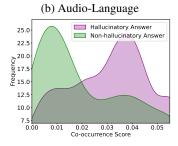
2.2 Spurious Inter-modality Correlations

Spurious inter-modality correlations are a major contributor to hallucinations in LMMs, especially when integrating multiple modalities. Learned during pretraining on large-scale multi-modal datasets (e.g., image-caption, video-caption, and audio-caption data [34, 24, 6, 43, 57, 48]), these correlations involve misleading associations between modalities that appear statistically significant but lack meaningful or causal connections. Two common sources of spurious correlations are: (1) *Global occurrence frequency*. The high overall occurrence of specific objects or events in the dataset leads LMMs to hallucinate these elements even when they are absent in the input. (2) *Co-occurrence frequency*. Frequent co-occurrence of objects or events during training causes the model to incorrectly predict the presence of one of them when only the other is present. While spurious object-level correlations between language and visual inputs have been extensively studied [42, 31, 71], integrating additional modalities like audio introduces new complexities, resulting in increasingly intricate spurious correlations. We categorize them into three subtypes:

Visual-Language. The model hallucinates visual objects or events based on pre-training patterns. For instance, if "phone" frequently co-occurs with "human" in captions, the model may hallucinate a phone upon recognizing a human, even when no phone is present.

Audio-Language. The model links absent sound events to textual descriptions due to over-represented patterns in pre-training data. For example, if "dog barking" frequently appears during pre-training, the model may hallucinate this audio event even when the dog in the current input simply whimpers.





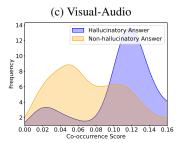


Figure 3: Validation experiments on spurious inter-modality correlations caused by co-occurrences.

Visual-Audio-Language. Spurious correlations arise from frequent co-occurrence of visual objects and audio events in video-audio joint training. For example, if "bird chirping" in audio descriptions is often paired with "tree" in visual annotations, the model may hallucinate to see trees when only hearing birds, or vice versa.

Quantitative Analysis. To validate spurious inter-modality correlations, we curate 200 samples for each subtype, paired with probing questions that target non-existent objects or events based on learned co-occurrence patterns. For VL, video-only samples are paired with questions about non-existent objects that frequently co-occur. In AL, all queries are event-level, targeting absent audio events while a co-occurring action-object pair is present (e.g., querying "dog barking" when the dog only whimpers). For VAL, video-audio pairs are probed for non-existent visual objects or audio events based on frequently co-occurring pairs. We adopt the Co-occurrence Score (CoScore) from previous work [7, 71] to quantify co-occurrence frequency:

$$CoScore_s = \sum \frac{|S(o_{s,i}) \cap S(o_{s,j})|}{|S(o_{s,i})| + |S(o_{s,j})|},$$

where $S(o_{s,i})$ denotes the set of captions mentioning the i-th object or event within a sample s. Three open-source LMMs (FAVOR [46], GroundingGPT [32], VideoLLaMA2-7B [11]) are evaluated, with aggregated results shown in Fig. 3, plotting CoScore against the frequency of hallucinatory and non-hallucinatory answers. A consistent trend emerges: hallucinatory responses are associated with higher CoScores, indicating that higher co-occurrence frequencies increase the likelihood of hallucinations. This confirms the impact of spurious inter-modality correlations learned during pretraining⁴.

3 CMM Benchmark

Table 1: Overview of CMM subcategories.

	Spuri	ous Inter-modality C	1	Jnimodality Over-reli	ance	
Subcategories	Visual-Language	Audio-Language	Visual-Audio-Language	Visual Dominance	Audio Dominance	Language Dominance
Input Modality Granularity # Samples	Visual object-, event-level 400	Audio event-level 400	Visual+Audio object-, event-level 400	Visual+Audio event-level 400	Visual+Audio object-level 400	Visual object-, event-level 400

Inspired by the findings in previous section, we introduce The Curse of Multi-Modality (CMM) benchmark, designed to systematically evaluate hallucinations in LMMs from two key contributors: over-reliance on unimodal priors and spurious inter-modality correlations. As shown in Tab. 1, each type is further divided into specific sub-categories, enabling fine-grained assessment of how these factors influence LMMs' performance⁵.

3.1 Data Composition and Evaluation Setup

For each subcategory, we manually collect 200 samples (video-only, audio-only, or video-audio pairs) to evaluate LMMs' handling of multi-modal inputs. Each sample includes two modality-specific probing questions: one targeting a non-existent object or event (ground-truth answer "no") and one targeting an existent object or event (ground-truth answer "yes"): This results in a total of

⁴Further experimental details are provided in the Appendix A.

⁵More benchmark details such as video/audio lengths and object/event distributions are provided in Appendix C.1.

1, 200 samples and 2, 400 probing questions. We benchmark LMMs using two core metrics, namely, Perception Accuracy (PA) and Hallucination Resistance (HR):

$$PA = \frac{\text{\#correct "yes"}}{\text{\#ground-truth "yes"}}, \quad HR = \frac{\text{\#correct "no"}}{\text{\#ground-truth "no"}}$$

PA measures the model's ability to accurately perceive present objects or events, while HR assesses its resistance to hallucinations by correctly identifying the absence of non-existent objects or events.

3.2 Data Construction

3.2.1 Over Reliance on Unimodal Priors

To assess over-reliance on a single modality (visual, audio, or language), we construct targeted probing queries that test the model's dependence on one modality while ignoring complementary signals.

Visual Dominance. This subcategory tests whether LMMs hallucinate audio events based on visual input, where we construct queries asking about the existence of specific audio event. While queries with a "yes" answer are manually annotated, non-existent events are sourced from video-audio pairs in the AudioCaps dataset [24], where visual objects that do not correspond to any audio content are identified. These samples are manually verified to ensure accurate annotation, setting the ground truth answer as "no."

Audio Dominance. We probe LMMs' tendency to infer incorrect visual content from audio cues. Queries ask about the presence of visual objects, with "yes" queries annotated manually. For "no" queries, we filter video-audio pairs from AudioCaps where audio-indicated objects have no visual representation, confirmed through manual review.

Language Dominance. To explore how language priors contribute to hallucinations, we define sets of common-sense events (e.g., "fish swim in water") and object attributes (e.g., "yellow banana") to reflect typical linguistic biases. Videos are manually sourced from YouTube to depict anti-commonsense scenarios (e.g., "fish fly in the air," "black banana"). For existence-probing queries, we ask about the video's anti-common-sense object/event, annotating the ground truth as "yes." Conversely, for non-existence probing queries, we test for the common-sense version of the object/event, setting the ground truth as "no."

3.2.2 Spurious Inter-modality Correlations

We evaluate hallucinations arising from *spurious inter-modality correlations*, constructing object-level and event-level queries across visual, audio, and textual associations⁶.

Visual-Language. Hallucinations are assessed based on associations between visual content and textual descriptions. Object-level queries are derived from (i) global appearance frequencies and (ii) co-occurrence frequencies within the video-caption dataset. Event-level queries, however, are constructed based on (i) global appearance patterns and (ii) [subject]-predicate-object] co-occurrence patterns. All samples are curated from WebVid-10M [6].

Audio-Language. Hallucinations derived from associations between audio and text are probed through event-level queries, given the temporal nature of audio. Queries are formed from (i) global appearance frequencies and (ii) subject-oriented co-occurrence patterns, based on data from the Auto-ACD [48].

Visual-Audio-Language. This subcategory explores hallucinations across visual and audio modalities. Queries probe non-existent audio events based on existent co-occurred visual objects and vice versa, with data sourced from AudioCaps [24], focusing on co-occurrence frequencies between visual objects and audio events.

⁶For more details on the construction process and data statistics, please refer to Appendix C.2.

Table 2: Benchmarking proprietary and open-source Audio-Visual LMMs on CMM.

	Sp	urious l	nter-mo	dality C	Correlati	on		Uni-n	nodality	Over-re	eliance		0	$\frac{\textbf{Overall}}{pa\uparrow hr\uparrow}$			
Model	V	L	A	L	V	AL		V	1	4	1	L	Ove	стан			
	pa	hr	pa	hr	pa	hr	pa	hr	pa	hr	pa	hr	pa↑	hr↑			
Proprietary Models																	
Gemini-1.5-Pro	91.0	90.5	94.0	14.5	86.0	67.0	82.5	34.0	90.5	82.0	78.5	61.5	87.1	58.3			
Gemini-2.0-Flash	95.0	83.5	98.5	47.0	97.5	68.0	96.5	36.0	93.0	71.0	94.0	62.5	95.8	61.3			
Gemini-1.5-Flash	93.5	90.0	88.5	39.5	88.5	70.5	79.0	36.5	90.5	86.5	90.5	62.0	88.4	64.2			
Reka-Core	87.0	94.5	25.0	76.0	76.7	85.1	35.6	69.4	80.8	82.7	75.0	76.0	63.7	80.9			
					Open	-Source	Models	ŀ									
GroundingGPT	95.5	36.5	100.	0.0	97.5	18.0	99.5	1.0	98.5	23.5	88.5	7.0	96.6	14.3			
PandaGPT	96.5	27.0	90.5	11.0	84.5	17.5	89.0	13.5	95.0	17.5	87.0	18.5	90.5	17.5			
OneLLM	97.0	67.0	97.5	17.0	97.5	34.5	95.5	11.0	99.0	8.0	75.0	32.0	93.7	28.3			
FAVOR	91.0	55.0	94.5	45.0	94.5	69.0	89.0	21.5	92.0	43.5	92.0	18.5	92.2	42.1			
VideoSalmonn	60.0	71.5	70.0	89.0	67.0	80.0	59.5	90.0	61.0	51.5	59.0	30.5	62.8	68.8			
VideoLLaMA 2	75.0	86.0	77.5	94.0	78.0	98.0	62.0	75.5	80.0	90.0	57.5	43.0	71.7	81.1			
Qwen2.5-Omni	88.5	97.0	92.0	83.5	91.0	97.5	89.5	74.5	82.5	80.0	68.5	85.0	85.3	86.3			

4 Experiments and Discussions

4.1 Implementation Details

Models. We evaluate a diverse set of LMMs on our benchmark, categorized into three groups based on their modality capabilities: models capable of processing both visual and audio inputs, visual-only models, and audio-only models.

- Audio-Visual LMMs. We test a wide range of audio-visual LMMs that are capable of handling video-audio input pairs simultaneously, including proprietary models from [41, 52] and existing open-source models [32, 44, 47, 20, 11, 45, 61] ⁷.
- Visual-Only LMMs. These include models that only take video as inputs without paired audios, including [29, 8, 62, 21, 70, 28, 5]. We evaluate two subsets from CMM for these models, specifically, Visual-Language Spurious Correlation and Visual Dominance.
- Audio-Only LMMs. These include models that only takes audio as inputs, including [25, 51, 18, 13]. We evaluate Audio-Language Spurious Correlation and Audio Dominance.

Evaluation Protocol. All models are evaluated using a sampling decoding strategy with a fixed temperature of 0.2 for consistency. We assess models based on Perception Accuracy (PA) and Hallucination Resistance (HR) metrics (see Sec. 3.1). All models are post-prompted to *answer with yes or no*, where PA and HR are computed based on whether their responses include *yes* or *no*, following [31].

4.2 Main Results

4.2.1 Analyzing Audio-Visual LMMs

The results of LMMs that can process both visual and audio inputs are presented in Tab. 2.

Hallucination Vulnerability from Spurious Inter-Modality Correlations. Visual-Audio LMMs generally achieve PA scores over 80, demonstrating effective multi-modal perception. Extensive efforts to mitigate Visual-Language (VL) spurious correlations have significantly reduced hallucinations, as proprietary models like Reka-core and Gemini-1.5 reach HR scores around 90. In contrast, open-source models like FAVOR and GroundingGPT continue to struggle with VL correlations. However, the introduction of audio intensifies hallucinations across all models. Even Gemini-1.5-Pro only attains a 14.5 HR score for Audio-Language (AL) correlations, highlighting the difficulty in handling these correlations. Moreover, AL correlations cause more severe hallucinations than Visual-Audio-Language (VAL) correlations, likely due to the limited availability of visual-audio-language datasets compared to audio-language data. This imbalance may lead LMMs to form stronger spurious correlations between audio and language, leading to more frequent hallucinations when processing audio-only content.

⁷Omni-LMMs incapable of handling tri-modalities simultaneously are not included, such as [1, 17, 30].

Table 3: Results for Visual-language and Audio-Language.

					0 0		
Model	VL	Cor	Lan	Dom		AL	Cor
	pa	hr	pa	hr	Model	pa	hr
CogVLM2-Video	99.5	44.0	98.0	5.0			
VideoChat2	97.0	66.0	88.0	34.5	Qwen2-Audio	98.5	34.5
InternLM-XC2.5	99.0	73.0	94.5	46.5	Audio-Flamingo	90.5	39.0
PLLaVA	89.5	93.0	75.0	52.0	Audio-Fiailingo	89.5	39.0
ShareGPT4Video	87.5	85.5	79.5	58.0	GAMA-IT	94.5	52.0
LLaVA-OV	94.0	88.0	87.5	69.5	SALMONN	93.0	59.0
Qwen2.5VL	89.0	97.0	66.5	87.0	SALMONN	93.0	39.0

⁽a) Visual-Language LMMs results.

Hallucination Vulnerability from Uni-modality Over-reliance. Models show solid perception capabilities across Uni-modality Over-reliance subcategories, with high PA scores. However, a notable gap emerges when comparing PA and HR scores, highlighting hallucination challenges due to unimodal dependence. Visual Dominance, in particular, proves to be more problematic than Audio Dominance for most models. For instance, Gemini-1.5-Flash achieves an HR of 86.5 in Audio Dominance but only 36.5 in Visual Dominance, suggesting that over-reliance on visual input presents a more significant challenge. This can be attributed to the larger volume of visual training data and a visual-centric bias in video-audio joint datasets. Moreover, Language Dominance reveals the impact of LLM decoders, with steep declines in HR from PA scores, as seen in FAVOR dropping from 92.0 to 18.5. This indicates a strong reliance on language priors, suggesting a need to better balance multi-modal integration.

Response Tendencies of LMMs. Certain models show atypical response patterns. GroundingGPT tends to answer "yes" carelessly, leading to high PA but low HR scores (e.g., 0 in AL correlations). This suggests overconfidence or excessive human alignment during training, as also previously noted by other studies [31]. In contrast, Reka-core and VideoLLaMA2 exhibit cautious tendencies, showing higher HR than PA in many cases and occasionally very low PA scores (e.g., Reka-core's 25.0 PA in AL correlations). This likely reflects safety alignment strategies to reject uncertain inputs with "no" responses. These contrasting response tendencies underscore the varied behavioral patterns in LMMs and highlight the need for more balanced training strategies that ensure accurate, context-dependent responses without overconfidence or excessive caution.

4.2.2 Analyzing Visual-only and Audio-only LMMs

Visual and audio-only LMMs show superior perception accuracy in their respective domains compared to Visual-Audio LMMs, as evidenced by higher PA scores in Tab. 3a and Tab. 3b. However, this advantage does not extend to mitigating hallucinations. Similar to Visual-Audio LMMs, single-modality models remain vulnerable to hallucinations caused by spurious inter-modality correlations. Despite previous efforts to address VL correlations, some models still exhibit poor HR scores, such as CogVLM2-Video, which scores 44. Furthermore, AL correlations pose even greater challenges, with audio-only LMMs scoring between 30 and 60 in HR, underscoring the insufficient mitigation of hallucinations in audio-text interactions, likely due to the limited attention this issue has received in prior research [40]. Additionally, most Visual-only LMMs exhibit low HR scores for Language Dominance, hovering around 50. This indicates a strong reliance on language priors, leading to hallucinations when visual input conflicts with linguistic expectations. These findings further strengthen our identification of the two key factors driving hallucinations.

4.3 Discussions

Effects of Probing Granularities. Our benchmark includes both object-level and event-level probing questions across subcategories⁸. As shown in Tab. 4, most models show lower PA scores for event-level queries than object-level ones, highlighting the challenge posed by temporal complexity and the limited availability of event-oriented training data. For Visual-Language (VL) spurious correlations, event-level probing yields higher HR scores than object-level probing. This may be due to the scarcity of event-level annotations in visual-text pretraining data, while object-level annotations are more prevalent, fostering stronger spurious correlations. Conversely, within Language Dominance under

⁽b) Audio-Language LMMs results.

⁸Audio-related subcategories exclusively contain event-level queries due to their temporal nature.

Table 4: Effects of Probing Modalities.

Table 5: Effects of LLM Sizes.

Model	Visua	l Prob	Audio	o Prob	Model	LLM Size	VL	Cor	Lan	Dom
Wodel	pa	hr	pa	hr	Model	LLIVI SIZE	pa	hr	pa	hr
Reka-Core	96.6	86.7	57.1	83.5		7B	89.5	93.0	75.0	52.0
Gemini-1.5-Flash	94.0	92.0	83.0	49.0	PLLaVA	13B	86.5	96.5	75.5	65.0
Gemini-1.5-Pro	92.0	90.0	80.0	44.0		34B	91.0	94.5	75.5	74.0
FAVOR	94.0	85.0	95.0	53.0		0.5B	96.5	91.5	81.0	55.0
GroundingGPT	96.0	35.0	99.0	1.0	LLaVA-OV	7B	94.0	88.0	87.5	69.5
VideoLLaMA2	84.0	99.0	72.0	97.0		72B	84.5	93.5	89.5	75.5

Unimodal over-reliance, HR scores are lower for event-level queries. This pattern is likely due to the autoregressive nature of large language models, which increases reliance on language priors as the length of processed sequences grows, heightening the risk of hallucinations, especially when longer event-related common-sense knowledge is involved.

Effects of Probing Modalities. The Visual-Audio-Language (VAL) subcategory examines spurious correlations arising from the co-occurrence of visual objects and audio events. It includes two probing types: (1) object-level queries about non-existent visual objects when frequently co-occurring audio events are present, and (2) event-level queries about non-existent audio events when frequently co-occurring visual objects are present. Despite both probing types originating from similar co-occurrence patterns, HR scores for event-level (audio) probing are significantly lower than those for object-level (visual) probing across all models (Tab. 4). This finding aligns with our analysis of Visual and Audio Dominance under Unimodal over-reliance, suggesting a bias towards visual data due to its abundance in training and the visual-centric nature of joint visual-audio pretraining. As a result, models tend to over-rely on visual cues, leading to more pronounced hallucinations when predicting non-existent audio events.

Effects of LLM Sizes. We analyzed the impact of LLM decoder sizes on two LMMs, PLLaVA and LLaVA-OneVision. As shown in Tab. 5, increasing the LLM size has minimal influence on HR scores for Visual-Language spurious correlations, supporting our claim that these correlations primarily arise from global appearance and co-occurrence patterns in training data. In contrast, larger LLM sizes consistently improve HR scores for Language Dominance. For example, LLaVA-OneVision's HR score increases from $55.0\ (0.5B\ LLM)$ to $75.5\ (34B\ LLM)$, suggesting that larger LLMs are more adept at managing complex or contradictory multi-modal inputs. Smaller LLMs, however, are more susceptible to overfitting to linguistic priors, leading to higher hallucination rates when faced with content that deviates from expected patterns.

Due to space constraints, potential future directions and additional analyses—including the effects of focus prompting, QA formatting, and question templates—are provided in Appendix D and B.

5 Related Works

Large Multi-modal Models. Recent LMMs like LLaVA [36] and Flamingo [3] utilize transformer architectures to enhance cross-modal understanding, enabling nuanced visual-text comprehension for tasks such as visual question answering and image-based dialogue. Beyond static image-text tasks, recent approaches have aimed to extend multi-modal capabilities by incorporating additional modalities like video and audio [11, 58, 13, 1, 45, 68, 64, 17], fostering richer context and enhancing the model's ability to handle a diverse range of multi-modal scenarios.

Hallucinations in LMMs. Hallucination, particularly object hallucination, has been extensively studied in LMMs that process image and text. This phenomenon arises when a model generates content inconsistent with the actual objects present in the input image. Various benchmarks have been developed to assess hallucination in vision-language tasks [31, 54, 19, 39, 9, 65, 67, 37], and several mitigation techniques have been proposed [4, 27, 22, 66, 49, 60]. However, research on hallucinations in LMMs beyond image-text tasks remains limited, with relatively few studies addressing hallucinations involving additional modalities such as audio and video [59, 40]. A concurrent effort, AVHBench [50], investigates unimodal over-reliance in audio-visual settings but does not address inter-modality correlation effects.

6 Conclusions

To the best of our knowledge, this paper is the first to systematically investigate and verify the two key contributors to hallucinations in Large Multi-modal Models (LMMs) across language, visual, and audio modalities: over-reliance on unimodal priors and spurious inter-modality correlations. We introduce The Curse of Multi-Modality (CMM) benchmark, which features nuanced subcategories and granularities along with diagnostic metrics, enabling precise diagnosis of model limitations and guiding targeted improvements. By benchmarking various LMMs across diverse multi-modal contexts, we identified key vulnerabilities in current models, such as unbalanced multi-modal integration and biases arising from pretraining datasets. Our analyses provide fundamental insights into multi-modal learning, highlighting the need for improved alignment across multi-modal inputs and offering foundational guidance for developing more robust and reliable LMMs.

References

- [1] Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 technical report. *arXiv* preprint arXiv:2412.08905, 2024.
- [2] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- [3] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.
- [4] Wenbin An, Feng Tian, Sicong Leng, Jiahao Nie, Haonan Lin, QianYing Wang, Guang Dai, Ping Chen, and Shijian Lu. Agla: Mitigating object hallucinations in large vision-language models with assembly of global and local attention. *arXiv preprint arXiv:2406.12718*, 2024.
- [5] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. ArXiv, abs/2502.13923, 2025.
- [6] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisserman. Frozen in time: A joint video and image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international conference on computer* vision, pages 1728–1738, 2021.
- [7] Ali Furkan Biten, Lluís Gómez, and Dimosthenis Karatzas. Let there be a clock on the beach: Reducing object hallucination in image captioning. In *Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision*, pages 1381–1390, 2022.
- [8] Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Bin Lin, Zhenyu Tang, et al. Sharegpt4video: Improving video understanding and generation with better captions. *arXiv preprint arXiv:2406.04325*, 2024.
- [9] Xiang Chen, Chenxi Wang, Yida Xue, Ningyu Zhang, Xiaoyan Yang, Qiang Li, Yue Shen, Lei Liang, Jinjie Gu, and Huajun Chen. Unified hallucination detection for multimodal large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 3235–3252, Bangkok, Thailand, August 2024. Association for Computational Linguistics.
- [10] Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv preprint arXiv:2312.14238, 2023.
- [11] Zesen Cheng, Sicong Leng, Hang Zhang, Yifei Xin, Xin Li, Guanzheng Chen, Yongxin Zhu, Wenqi Zhang, Ziyang Luo, Deli Zhao, et al. Videollama 2: Advancing spatial-temporal modeling and audio understanding in video-llms. *arXiv* preprint arXiv:2406.07476, 2024.
- [12] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April 2023), 2(3):6, 2023.
- [13] Yunfei Chu, Jin Xu, Qian Yang, Haojie Wei, Xipin Wei, Zhifang Guo, Yichong Leng, Yuanjun Lv, Jinzheng He, Junyang Lin, et al. Qwen2-audio technical report. *arXiv preprint arXiv:2407.10759*, 2024.
- [14] Giovanna Maria Dimitri. A short survey on deep learning for multimodal integration: Applications, future perspectives and challenges. *Computers*, 11(11):163, 2022.
- [15] Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating large multi-modality models. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 11198–11201, 2024.
- [16] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

- [17] Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Yangze Li, Zuwei Long, Heting Gao, Ke Li, Xiawu Zheng, Rongrong Ji, Xing Sun, Caifeng Shan, and Ran He. Vita-1.5: Towards gpt-40 level real-time vision and speech interaction. *ArXiv*, abs/2501.01957, 2025.
- [18] Sreyan Ghosh, Sonal Kumar, Ashish Seth, Chandra Kiran Reddy Evuru, Utkarsh Tyagi, S Sakshi, Oriol Nieto, Ramani Duraiswami, and Dinesh Manocha. Gama: A large audio-language model with advanced audio understanding and complex reasoning abilities. arXiv preprint arXiv:2406.11768, 2024.
- [19] Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen, Furong Huang, Yaser Yacoob, et al. Hallusionbench: an advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14375–14385, 2024.
- [20] Jiaming Han, Kaixiong Gong, Yiyuan Zhang, Jiaqi Wang, Kaipeng Zhang, Dahua Lin, Yu Qiao, Peng Gao, and Xiangyu Yue. Onellm: One framework to align all modalities with language. 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 26574–26585, 2023.
- [21] Wenyi Hong, Weihan Wang, Ming Ding, Wenmeng Yu, Qingsong Lv, Yan Wang, Yean Cheng, Shiyu Huang, Junhui Ji, Zhao Xue, et al. Cogvlm2: Visual language models for image and video understanding. arXiv preprint arXiv:2408.16500, 2024.
- [22] Qidong Huang, Xiaoyi Dong, Pan Zhang, Bin Wang, Conghui He, Jiaqi Wang, Dahua Lin, Weiming Zhang, and Nenghai Yu. Opera: Alleviating hallucination in multi-modal large language models via over-trust penalty and retrospection-allocation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13418–13427, 2024.
- [23] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.
- [24] Chris Dongjoo Kim, Byeongchang Kim, Hyunmin Lee, and Gunhee Kim. Audiocaps: Generating captions for audios in the wild. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 119–132, 2019.
- [25] Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro. Audio flamingo: A novel audio language model with few-shot learning and dialogue abilities. arXiv preprint arXiv:2402.01831, 2024.
- [26] Dana Lahat, Tülay Adali, and Christian Jutten. Multimodal data fusion: an overview of methods, challenges, and prospects. *Proceedings of the IEEE*, 103(9):1449–1477, 2015.
- [27] Sicong Leng, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing. Mitigating object hallucinations in large vision-language models through visual contrastive decoding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13872– 13882, 2024.
- [28] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint arXiv:2408.03326, 2024.
- [29] Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang, Yi Liu, Zun Wang, Jilan Xu, Guo Chen, Ping Luo, et al. Mvbench: A comprehensive multi-modal video understanding benchmark. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 22195–22206, 2024.
- [30] Yadong Li, Jun Liu, Tao Zhang, Song Chen, Tianpeng Li, Zehuan Li, Lijun Liu, Lingfeng Ming, Guosheng Dong, Dawei Pan, Chong Li, Yuanbo Fang, Dong-Ling Kuang, Mingrui Wang, Chenglin Zhu, Youwei Zhang, Hongyu Guo, Fengyu Zhang, Yuran Wang, Bowen Ding, Wei Song, Xu Li, Yuqiu Huo, Zheng Liang, Shusen Zhang, Xin Wu, Shuai Zhao, Lin-Xiao Xiong, Yozhen Wu, Jiahui Ye, Wenhao Lu, Bowen Li, Yan Zhang, Yaqi Zhou, Xin Chen, Lei Su, Hongda Zhang, Fuzhong Chen, Xu Dong, Na Nie, Zhiying Wu, Bin Xiao, Ting Li, Shunya Dang, Ping Zhang, Yijia Sun, Jincheng Wu, Jinjie Yang, Xionghai Lin, Zhi-Xing Ma, Ke-Ye Wu, Jia Li, Ai-Min Yang, Hui Liu, Jianqiang Zhang, Xiaoxi Chen, Guangwei Ai, Wentao Zhang, Yicong Chen, Xiaoqin Huang, Kun Li, Wenjing Luo, Yi qun Duan, Lingling Zhu, Ran Xiao, Zhengquan Su, Jiani Pu, Dian Wang, Xu Jia, Tianyu Zhang, Mengyu Ai, Mang Wang, Yu Qiao, Lei Zhang, Yanjun Shen, Fan Yang, Miao Zhen, Yijie Zhou, Mingyang Chen, Fei Li, Chenzheng Zhu, Keer Lu, Yaqi Zhao, Hao Liang, Youquan Li, Yanzhao Qin, Lin-Lin Sun, Jianhua Xu, Haoze Sun, Mingan Lin, Zenan Zhou, and Weipeng Chen. Baichuan-omni-1.5 technical report. 2025.

- [31] Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating object hallucination in large vision-language models. *arXiv preprint arXiv:2305.10355*, 2023.
- [32] Zhaowei Li, Qi Xu, Dong Zhang, Hang Song, Yiqing Cai, Qi Qi, Ran Zhou, Junting Pan, Zefeng Li, Vu Tu, et al. Groundingspt: Language enhanced multi-modal grounding model. In *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 6657–6678, 2024.
- [33] Paul Pu Liang, Amir Zadeh, and Louis-Philippe Morency. Foundations & trends in multimodal machine learning: Principles, challenges, and open questions. *ACM Computing Surveys*, 56(10):1–42, 2024.
- [34] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13*, pages 740–755. Springer, 2014.
- [35] Fuxiao Liu, Kevin Lin, Linjie Li, Jianfeng Wang, Yaser Yacoob, and Lijuan Wang. Mitigating hallucination in large multi-modal models via robust instruction tuning. In *The Twelfth International Conference on Learning Representations*, 2023.
- [36] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2024.
- [37] Yuanxin Liu, Shicheng Li, Yi Liu, Yuxiang Wang, Shuhuai Ren, Lei Li, Sishuo Chen, Xu Sun, and Lu Hou. Tempcompass: Do video llms really understand videos? *arXiv preprint arXiv:* 2403.00476, 2024.
- [38] Holy Lovenia, Wenliang Dai, Samuel Cahyawijaya, Ziwei Ji, and Pascale Fung. Negative object presence evaluation (nope) to measure object hallucination in vision-language models. *arXiv* preprint *arXiv*:2310.05338, 2023.
- [39] Jiahao Nie, Gongjie Zhang, Wenbin An, Yap-Peng Tan, Alex C Kot, and Shijian Lu. Mmrel: A relation understanding dataset and benchmark in the mllm era. *arXiv* preprint arXiv:2406.09121, 2024.
- [40] Taichi Nishimura, Shota Nakada, and Masayoshi Kondo. On the audio hallucinations in large audio-video language models. *arXiv preprint arXiv:2401.09774*, 2024.
- [41] Aitor Ormazabal, Che Zheng, Cyprien de Masson d'Autume, Dani Yogatama, Deyu Fu, Donovan Ong, Eric Chen, Eugenie Lamprecht, Hai Pham, Isaac Ong, et al. Reka core, flash, and edge: A series of powerful multimodal language models. arXiv preprint arXiv:2404.12387, 2024.
- [42] Anna Rohrbach, Lisa Anne Hendricks, Kaylee Burns, Trevor Darrell, and Kate Saenko. Object hallucination in image captioning. arXiv preprint arXiv:1809.02156, 2018.
- [43] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. Advances in Neural Information Processing Systems, 35:25278–25294, 2022.
- [44] Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and Deng Cai. Pandagpt: One model to instruction-follow them all. *ArXiv*, abs/2305.16355, 2023.
- [45] Guangzhi Sun, Wenyi Yu, Changli Tang, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun MA, Yuxuan Wang, and Chao Zhang. video-SALMONN: Speech-enhanced audio-visual large language models. In Forty-first International Conference on Machine Learning, 2024.
- [46] Guangzhi Sun, Wenyi Yu, Changli Tang, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and Chao Zhang. Fine-grained audio-visual joint representations for multimodal large language models. arXiv preprint arXiv:2310.05863, 2023.
- [47] Guangzhi Sun, Wenyi Yu, Changli Tang, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and Chao Zhang. Fine-grained audio-visual joint representations for multimodal large language models. ArXiv, abs/2310.05863, 2023.
- [48] Luoyi Sun, Xuenan Xu, Mengyue Wu, and Weidi Xie. Auto-acd: A large-scale dataset for audio-language representation learning. In *ACM Multimedia* 2024, 2024.
- [49] Zhiqing Sun, Sheng Shen, Shengcao Cao, Haotian Liu, Chunyuan Li, Yikang Shen, Chuang Gan, Liang-Yan Gui, Yu-Xiong Wang, Yiming Yang, et al. Aligning large multimodal models with factually augmented rlhf. arXiv preprint arXiv:2309.14525, 2023.

- [50] Kim Sung-Bin, Oh Hyun-Bin, JungMok Lee, Arda Senocak, Joon Son Chung, and Tae-Hyun Oh. Avhbench: A cross-modal hallucination benchmark for audio-visual large language models. arXiv preprint arXiv:2410.18325, 2024.
- [51] Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and Chao Zhang. Salmonn: Towards generic hearing abilities for large language models. arXiv preprint arXiv:2310.13289, 2023.
- [52] Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.
- [53] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann LeCun, and Saining Xie. Eyes wide shut? exploring the visual shortcomings of multimodal llms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9568–9578, 2024.
- [54] Junyang Wang, Yiyang Zhou, Guohai Xu, Pengcheng Shi, Chenlin Zhao, Haiyang Xu, Qinghao Ye, Ming Yan, Ji Zhang, Jihua Zhu, et al. Evaluation and analysis of hallucination in large vision-language models. arXiv preprint arXiv:2308.15126, 2023.
- [55] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.
- [56] Xintong Wang, Jingheng Pan, Liang Ding, and Chris Biemann. Mitigating hallucinations in large vision-language models with instruction contrastive decoding. *arXiv* preprint arXiv:2403.18715, 2024.
- [57] Yi Wang, Yinan He, Yizhuo Li, Kunchang Li, Jiashuo Yu, Xin Ma, Xinhao Li, Guo Chen, Xinyuan Chen, Yaohui Wang, et al. Internvid: A large-scale video-text dataset for multimodal understanding and generation. arXiv preprint arXiv:2307.06942, 2023.
- [58] Yi Wang, Kunchang Li, Xinhao Li, Jiashuo Yu, Yinan He, Guo Chen, Baoqi Pei, Rongkun Zheng, Jilan Xu, Zun Wang, et al. Internvideo2: Scaling video foundation models for multimodal video understanding. arXiv preprint arXiv:2403.15377, 2024.
- [59] Yuxuan Wang, Yueqian Wang, Dongyan Zhao, Cihang Xie, and Zilong Zheng. Videohallucer: Evaluating intrinsic and extrinsic hallucinations in large video-language models. arXiv preprint arXiv:2406.16338, 2024
- [60] Yun Xing, Yiheng Li, Ivan Laptev, and Shijian Lu. Mitigating object hallucination via concentric causal attention. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
- [61] Jin Xu, Zhifang Guo, Jinzheng He, Hangrui Hu, Ting He, Shuai Bai, Keqin Chen, Jialin Wang, Yang Fan, Kai Dang, Bin Zhang, Xiong Wang, Yunfei Chu, and Junyang Lin. Qwen2.5-omni technical report. ArXiv, abs/2503.20215, 2025.
- [62] Lin Xu, Yilin Zhao, Daquan Zhou, Zhijie Lin, See Kiong Ng, and Jiashi Feng. Pllava: Parameter-free llava extension from images to videos for video dense captioning. arXiv preprint arXiv:2404.16994, 2024.
- [63] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. *arXiv preprint arXiv:2407.10671*, 2024.
- [64] Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li, Weilin Zhao, Zhihui He, et al. Minicpm-v: A gpt-4v level mllm on your phone. arXiv preprint arXiv:2408.01800, 2024.
- [65] Moon Ye-Bin, Nam Hyeon-Woo, Wonseok Choi, and Tae-Hyun Oh. Beaf: Observing before-after changes to evaluate hallucination in vision-language models. In *European Conference on Computer Vision (ECCV)*, 2024.
- [66] Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun, and Tat-Seng Chua. Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 13807–13816, June 2024.
- [67] Weiyun YWang, Yiming Ren, Haowen Luo, Tiantong Li, Chenxiang Yan, Zhe Chen, Wenhai Wang, Qingyun Li, Lewei Lu, Xizhou Zhu, et al. The all-seeing project v2: Towards general relation comprehension of the open world. In European Conference on Computer Vision (ECCV), 2024.

- [68] Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou, Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin Yuan, Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui, Tianxiang Sun, Yugang Jiang, and Xipeng Qiu. Anygpt: Unified multimodal llm with discrete sequence modeling. In *Annual Meeting of the Association for Computational Linguistics*, 2024.
- [69] Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language model for video understanding. *arXiv* preprint arXiv:2306.02858, 2023.
- [70] Pan Zhang, Xiaoyi Dong, Yuhang Zang, Yuhang Cao, Rui Qian, Lin Chen, Qipeng Guo, Haodong Duan, Bin Wang, Linke Ouyang, et al. Internlm-xcomposer-2.5: A versatile large vision language model supporting long-contextual input and output. *arXiv preprint arXiv:2407.03320*, 2024.
- [71] Yiyang Zhou, Chenhang Cui, Jaehong Yoon, Linjun Zhang, Zhun Deng, Chelsea Finn, Mohit Bansal, and Huaxiu Yao. Analyzing and mitigating object hallucination in large vision-language models. *arXiv* preprint arXiv:2310.00754, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the claims made in the paper.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: Yes

Justification: Please refer to Appendix E for limitations.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how
 they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems
 of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers
 as grounds for rejection, a worse outcome might be that reviewers discover limitations that
 aren't acknowledged in the paper. The authors should use their best judgment and recognize
 that individual actions in favor of transparency play an important role in developing norms that
 preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
 honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.

- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sec. 4.1 for details, where evaluation protocols are given. All data and codes are provided to ensure the reproducibility.

Guidelines

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions
 to provide some reasonable avenue for reproducibility, which may depend on the nature of the
 contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: Links to benchmark data and evaluation codes are provided for submission.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: Please refer to Sec. 4.1 and Appendix A for benchmark evaluation and analysis details. No training is conducted in this paper.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Our benchmark adopts a Yes/No evaluation paradigm with a very low sampling temperature, leading to highly deterministic responses and minimal variance, rendering statistical fluctuations negligible.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report
 a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
 not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Please refer to Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.

- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This research confirms with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Please refer to Appendix G.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or
 why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used
 as intended and functioning correctly, harms that could arise when the technology is being used
 as intended but gives incorrect results, and harms following from (intentional or unintentional)
 misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies
 (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the
 efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]

Justification: Please refer to Appendix H, where we describe how we avoid unsafe data.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary
 safeguards to allow for controlled use of the model, for example by requiring that users adhere to
 usage guidelines or restrictions to access the model or implementing safety filters.

- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Justification: Please refer to Appendix I, where we clearly specify licenses for existing assets, including models we have evaluated and the codes we use.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- · For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: All data and codes introduced in this paper is well documented with proper license.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations,
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

This paper does not include crowdsourcing and research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main
- · According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not include crowdsourcing and research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

A Experimental Details

A.1 Qualitative Demonstrations

For the demonstrations in the main paper Fig.2, we use three advanced LMMs capable of processing both visual and audio inputs. Gemini-1.5-pro [52], FAVOR-13B [46], and VideoLLaMA2-7B [11]. The case studies presented in the main paper Fig.2 analyze hallucination tendencies by computing p_{θ} ("yes"/"no" | v, a', x) and p_{θ} ("yes"/"no" | v', a, x), using VideoLLaMA2-7B as a representative model.

Furthermore, we extend our experiments from Fig.2 of the main paper, to justify existing tri-modality models over-rely on uni-modal priors to response [31, 27]. To achieve this, we sampled 20 failure cases with questions asking non-existent objects/events for each open-sourced LMM under the over-rely on visual and audio priors in CMM subsets (where the LMM's output probability on those test cases, but the ground truth answer is "no"). As shown in Fig. 4, we plotted the average along with standard deviations across blur/noise steps applied to specific input modalities. The observed trends align with our original findings in Figure 2, demonstrating that reducing information from the dominant modality forces the model to rely more on the targeted modality, effectively decreasing hallucination rates. This highlights the critical impact of modality dominance on hallucinations and underscores the necessity of robust cross-modal integration, particularly in scenarios involving mutual exclusion.

A.2 Quantitative Validation

For the quantitative validation shown in main paper Fig.3, we curate 200 samples for each subcategory of hallucination.

Visual-Language Experiments. Each sample is a video-only raw file associated with a probing question targeting the existence of a non-existent object, while a frequently co-occurring object is present. The co-occurrence scores are computed from the WebVid-10M dataset [6], from which the video samples are also sourced. For instance, a video containing a bird is queried with "Did you see trees in the video?" since "bird" and "tree" frequently co-occur in the pretraining data, although no tree is visually present in the sample.

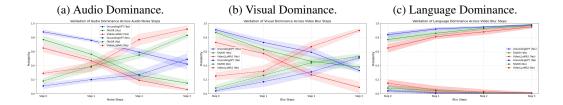


Figure 4: Validation experiments on overreliance on unimodal priors.

Audio-Language Experiments. Given the temporal nature of audio, all queries are event-level. Each audio-only raw file is associated with a question about a non-existent audio event, while the subject of a related event can be recognized. For example, a dog whimpering is queried with "Did you hear dog barking?" Co-occurrence scores are computed from the audio-text pretraining dataset Auto-acd [48], which also provides the audio samples.

Audio-Visual Experiments. The co-occurrence scores are derived from the video-audio dataset AudioCaps [24], containing video samples with corresponding audio tracks. Each sample is queried about a non-existent visual object with a frequently co-occurring audio event, or vice versa.

The above experiments are conducted on three open-source LMMs that support both visual and audio inputs: FAVOR-13B [46], GroundingGPT-7B [32], and VideoLLaMA2-7B [11]. The frequencies displayed in the main paper Fig.3 represent the aggregated results across all three models.

B Additional Experiments

We provide additional experiments in this section.

B.1 Effects of Focus Prompting

Table 6: Effects of prompting LMMs to focus on the key modality.

Model	Visua	l Dom	Audio	Dom
Model	pa	hr	pa	hr
Gemini-1.5-Flash	99.5	44.0	98.0	5.0
+ focus	97.0	66.0	88.0	34.5
GroundingGPT + focus	99.0	73.0	94.5	46.5
	89.5	93.0	75.0	52.0
FAVOR	87.5	85.5	79.5	58.0
+ focus	94.0	88.0	87.5	69.5
VideoLLaMA2	87.5	95.5	83.0	84.0
+ focus	87.5	95.5	83.0	84.0

We conduct experiments prompting LMMs to focus on a single modality. Specifically, in scenarios where LMMs tend to rely on audio while ignoring visual inputs, we prompt them to focus more on the visual content. A similar approach is applied when LMMs over-rely on visual inputs while ignoring audio. As shown in Tab. 6, such prompting can reduce hallucinations to some extent. However, the improvements are not consistent across models and metrics, suggesting challenges in addressing hallucinations among tri-modalities. Furthermore, this approach presupposes prior knowledge of the decisive input modality, which is impractical in real-world scenarios.

B.2 Effects of QA formatting

To avoid the potential influence of yes-no tendency [35], where LMMs tend to answer with *yes*, we reformulate our questions with multiple-choice formats, as demonstrated in Tab. 7. Such modifications ensures that LMMs cannot simply rely on yes-no tendencies to answer. CMM results with reformated questions are summarized in Tab. 8. Such results indicate that a leading proprietary LMM like Gemini-1.5-Flash suffers less from yes-no

Table 7: Example of different QA formatting.

Yes or No Formatting							
Question	Did you hear bird chirping in the audio? Please answer with yes or no.						
Ground Truth	No.						
A or B Formatti	A or B Formatting						
Question	Did you hear bird chirping in the audio? A. Yes. B. No.						
Ground Truth	Select the best option for the question. B.						

tendency. This also suggests that CMM poses challenges in robustness to existing models in tri-modality scenarios, which is less attended to in previous hallucination evaluations [31, 39, 19, 67].

Table 8: Effects of QA formatting. FAVOR and GroundingGPT do not follow instructions to response with A or B, thus not included.

Model	Spurious	s Correlation	Unimoda	al Overreliance
Wiodei	pa	hr	pa	hr
Gemini-1.5-Flash w. A or B	90.2	66.7	86.7	61.7
	94.0	60.8	94.7	52.1
Video-LLaMA2	76.8	92.7	66.5	69.5
w. A or B	94.7	44.5	94.0	25.2

B.3 Effect of Question Template

Table 9: Question Template Variations.

Tem	Template 1							
Q A	Did you hear bird chirping in the audio? No.							
Template 2								
Q A	Can you hear bird chirping in the audio? No.							
Tem	Template 3							
Q A	Is bird chirping audible in the audio? No.							

To evaluate the potential influence of question template variations on results, we ask six LMMs with three prompt variations, as listed in Tab. 9. The quantitative results are summarized in Tab. 10. As the table indicates, most existing models are drastically affected by question templates variations, suggesting challenges in tri-modality alignment. We hope such results inspire future designs that suffer less from these issues.

B.4 Evaluation of GPT-Series Models

As the GPT-series models do not support audio inputs, we evaluated three flagship models (GPT-4.1, GPT-4.1 mini, and GPT-4.1 nano) on the visual–language (VL) subsets of our CMM benchmark.

Across all models, hallucination resistance (*HR*) is consistently lower for event-level queries than for object-level ones, reflecting the difficulty of overcoming temporal or event-based language priors. The vulnerability becomes

Table 10: Effects of Question Template.

		Spurious	Inter-mod	ality Co	rrelation	ı		Uni-modality Over-reliance					0	v romo11
	V	L	AL	,	V	AL	•	V	A]	L	- 0	verall
	pa	hr	pa	hr	pa	hr	pa	hr	pa	hr	pa	hr	ра	hr
						Gemini	-1.5-Flas	h						
+ prompt 1	93.5	90.0	88.5	39.5	88.5	70.5	79.0	36.5	90.5	86.5	90.5	62.0	88.4	64.2
+ prompt 2	96.0	82.5	93.0	38.5	97.5	51.8	97.0	23.5	95.5	72.0	94.0	59.5	95.5	
+ prompt 3	96.5	81.0	87.0	53.5	97.5	59.0	95.5	20.0	96.0	71.0	97.5	45.0	95.0	
Δ	3.0	9.0	6.0	14.0	9.0	18.7	18.0	16.5	5.5	15.5	7.0	17.0	7.1	9.6
						Groun	dingGPT	•						
+ prompt 1	95.5	36.5	100.0	0.0	97.5	18.0	99.5	1.0	98.5	23.5	88.5	7.0	96.6	14.3
+ prompt 2	97.0	46.5	100.0	0.0	97.5	28.5	97.0	0.5	96.0	38.5	90.5	14.0	96.3	
+ prompt 3	97.5	42.0	99.5	0.0	94.5	52.0	82.0	2.5	96.5	43.5	91.0	13.5	93.5	
Δ	2.0	10.0	0.5	0.0	3.0	34.0	17.5	2.0	2.5	20.0	2.5	7.0	3.1	11.3
						Pan	daGPT							
+ prompt 1	96.5	27.0	90.5	11.0	84.5	17.5	89.0	13.5	95.0	17.5	87.0	18.5	90.5	
+ prompt 2	99.0	8.5	94.5	0.0	95.5	7.5	94.5	4.0	97.0	7.5	98.0	1.5	96.6	
+ prompt 3	98.5	2.0	94.5	0.5	96.0	1.0	98.0	4.5	99.0	0.0	98.5	0.0	97.5	1.3
Δ	2.5	25.0	4.0	11.0	11.5	16.5	9.0	9.5	4.0	17.5	11.5	188.5	7.0	16.2
						FA	VOR							
+ prompt 1	91.0	55.0	94.5	45.0	94.5	69.0	89.0	21.5	92.0	43.5	92.0	18.5	92.2	
+ prompt 2	92.5	54.5	91.5	58.5	91.0	77.5	91.5	25.5	93.0	56.0	89.0	20.5	91.4	
+ prompt 3	98.5	32.0	96.0	43.0	95.0	58.0	87.0	23.5	89.0	47.5	88.0	23.5	92.3	
Δ	7.5	23.0	4.5	15.5	4.0	19.5	4.5	4.0	4.0	12.5	4.0	5.0	0.9	10.9
						Video-	Salmonr	l						
+ prompt 1	60.0	71.5	70.0	89.0	67.0	80.0	59.5	90.0	61.0	51.5	59.0	30.5	62.8	
+ prompt 2	67.5	63.0	82.5	76.5	73.0	80.5	78.5	66.0	56.5	57.0	64.5	20.0	70.4	
+ prompt 3	81.5	29.5	82.5	63.0	78.0	73.0	81.5	54.5	74.0	39.0	67.5	17.0	77.5	
Δ	21.5	42.0	12.5	26.0	11.0	7.5	22.0	35.5	17.5	18.0	8.5	13.5	14.7	22.8
						Video	LLaMA2							
+ prompt 1	75.0	86.0	77.5	94.0	78.0	98.0	62.0	75.5	80.0	90.0	57.5	43.0	71.7	81.1
+ prompt 2	89.0	90.5	81.0	89.5	86.5	96.5	71.0	64.0	82.0	92.0	83.5	25.5	82.2	76.3
+ prompt 3	82.5	91.0	82.0	86.5	86.5	93.5	72.0	62.0	83.0	90.0	70.5	47.5	79.4	
Δ	14.0	5.0	4.5	7.5	8.5	4.5	10.0	13.5	3.0	2.0	26.0	17.5	10.5	4.8
Model		Gra	nulariy	PA	H	IR	N	lodel		Gra	anulari	ty	PA	HR
GPT-4.1		0	bject	97.	0 03	3.9	GPT-4.1		1		Object	(90.0	94.0
O1 1 -7.1			vent	85.		5.0	U	7.1	L		Event		79.0	81.0
GPT-4.1	mini		bject	93.		2.9	G	PT-4.1	l mini		Object		85.0	91.0
O1 1-7.1	1111111		vent	84.		5.0	U	1 1 T.			Event		58.0	76.0
CDT 4.1	mome							DT 4 1	1					
GPT-4.1	папо	Ō	bject	98.	0 84	2.8	GPT-4.1 nano			,	Object		81.0	63.0

⁽a) VL Correlations subset.

Event

89.9

90.0

Event

75.3

35.4

increasingly pronounced for smaller models: *HR* on event-level queries drops from 81.0 (GPT-4.1) to 35.4 (GPT-4.1 nano), demonstrating the sensitivity of lightweight architectures to language dominance.

B.5 Chain-of-Thought (CoT) Reasoning Experiments

We further examined the effect of explicit Chain-of-Thought (CoT) prompting using the instruction: "Think step-by-step and then answer with yes or no at the end." Each cell in Table 12 reports Perception Accuracy (PA) / Hallucination Resistance (HR).

Analysis. CoT prompting introduces a clear trade-off between reasoning and perception. **Cautious reasoners** (Gemini models) tend to lose perception accuracy while gaining limited hallucination resistance, indicating interference between linguistic reasoning and visual grounding. **Over-confident reasoners** (PandaGPT) display the opposite pattern—stronger PA but catastrophic HR collapse—suggesting amplification of pre-existing biases.

⁽b) Language Dominance subset.

riginal vs. Chain-of-Thought (CoT) performance	e comparison across	benchmark subsets
angmarys. Cham-or-inought (Corribiniance	5 COHIDALISON ACTOSS	Denema

Model	Setting	VL Corr.	AL Corr.	VAL Corr.	Visual Dom.	Audio Dom.	Lang. Dom.
Gemini-1.5 Pro	Original	91.0 / 90.5	94.0 / 14.5	86.0 / 67.0	82.5 / 34.0	90.5 / 82.0	78.5 / 61.5
	CoT	70.5 / 81.0	70.0 / 69.0	70.5 / 55.5	55.0 / 32.0	71.5 / 65.0	56.0 / 66.0
Gemini-1.5 Flash	Original	93.5 / 90.0	88.5 / 39.5	88.5 / 70.5	79.0 / 36.5	90.5 / 86.5	90.5 / 62.0
	CoT	86.5 / 90.0	72.0 / 69.0	82.5 / 77.0	76.5 / 43.5	88.0 / 80.5	84.0 / 74.5
Gemini-2.0 Flash	Original	95.0 / 83.5	98.5 / 47.0	97.5 / 68.0	96.5 / 36.0	93.0 / 71.0	94.0 / 62.5
	CoT	87.5 / 92.0	92.0 / 53.5	92.0 / 76.5	88.5 / 38.5	83.0 / 78.5	86.5 / 66.0
Qwen2.5-Omni	Original	88.5 / 97.0	92.0 / 83.5	91.0 / 97.5	89.5 / 74.5	82.5 / 80.0	68.5 / 85.0
	CoT	89.0 / 97.5	92.5 / 82.0	87.0 / 97.5	86.0 / 79.0	77.0 / 85.5	66.5 / 83.0
PandaGPT	Original	96.5 / 27.0	90.5 / 11.0	84.5 / 17.5	89.0 / 13.5	95.0 / 17.5	87.0 / 18.5
	CoT	98.0 / 15.0	95.0 / 2.0	96.0 / 3.0	97.0 / 4.0	99.0 / 2.0	96.0 / 3.0
Video-Salmonn	Original	60.0 / 71.5	70.0 / 89.0	67.0 / 80.0	59.5 / 90.0	61.0 / 51.5	59.0 / 30.5
	CoT	60.0 / 62.0	71.5 / 85.5	63.5 / 84.5	59.0 / 85.5	55.0 / 57.0	53.5 / 37.5

Mixed responders (QwenOmni and Video-Salmonn) exhibit minimal or inconsistent changes. These results show that longer reasoning chains may intensify reliance on language priors and weaken perceptual grounding.

C Data Details

C.1 Data Statistics

Length Distribution. We summarize the audio and video length distributions of CMM in Fig. 5. We summarize three types of input data involved in CMM, including (a) 400 audio-only samples, (b) 800 video-only samples, and (c) remaining 1200 paired audio-visual samples. The audio-only data are extracted from the large-scale Auto-ACD, where most samples contain approximately 10 seconds of audio, and the length distribution of our audio-only samples follows the characteristics.

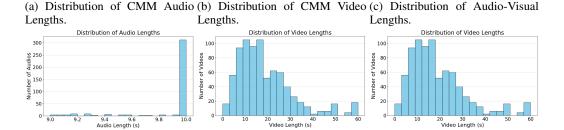


Figure 5: Length Distribution.

Object/Event Statistics. We provide the statistics of objects and events in detail. Specifically, we include the most frequent 10 existent and non-existent objects, visual events and audio events in Fig. 6. The full distributions of object, visual event and audio event frequency are summarized in Fig. 7, Fig. 8, and Fig. 9, respectively. It should be pointed out that our aim is not to replicate natural distribution with our benchmark. Instead, we highlight tri-modal test cases that challenge existing LMMs with spurious inter-modality spurious correlations and over-reliance on uni-modal priors, whereby we hope inspiring more robust and safe models that suffer less from hallucinations.

C.2 Benchmark Data Construction Details

The benchmark is designed to evaluate hallucination scenarios across multiple modalities, targeting specific LMM tendencies such as Over Reliance on individual modalities and spurious inter-modality correlations. It comprises video, audio, and textual inputs with probing questions aimed at assessing the presence or absence of objects or events in these modalities. Precise annotation is employed to ensure a thorough evaluation of LMM performance in multimodal contexts.

C.2.1 Over Reliance on Unimodal Priors

To assess how LMMs may excessively depend on a single modality (visual, audio, or language), we construct targeted probing queries that test this Over Reliance while potentially neglecting complementary information.

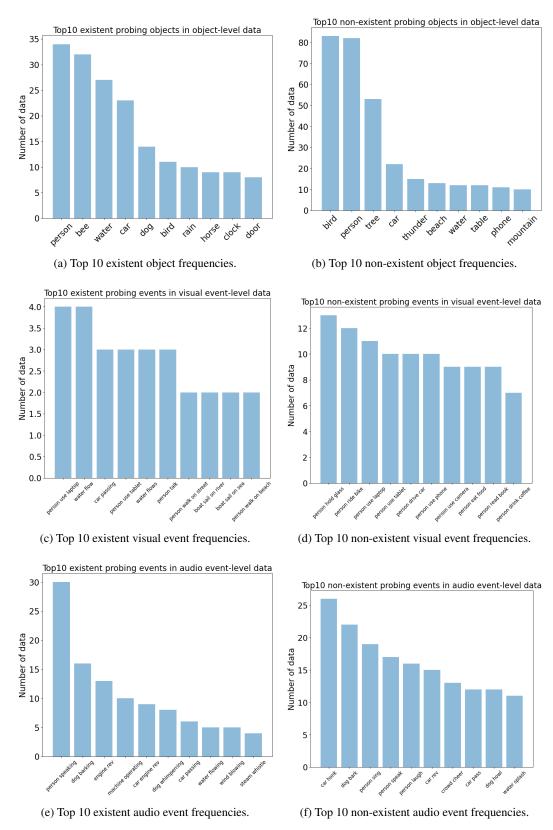


Figure 6: Statistics of object and event frequencies in our probing questions.

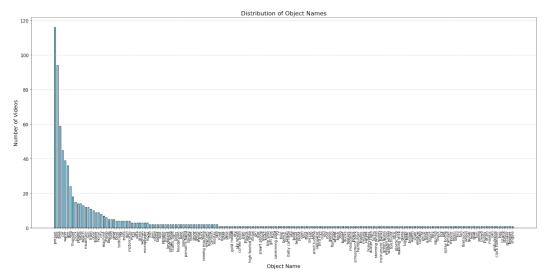


Figure 7: Distribution of Object Names.

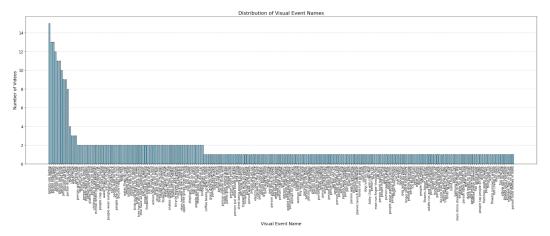


Figure 8: Distribution of Visual Event Names.

Visual Dominance. The Visual Dominance subcategory examines the extent to which LMMs over-rely on visual content, potentially leading to hallucinated sound events that are often associated with visual objects. All probing questions focus on audio events. For queries about existent sound events, the ground truth "yes" is derived from direct human annotation. To identify non-existent sound events, we use the AudioCaps dataset [24], which provides short captions describing the audio track. Objects associated with these audio events are extracted using LLaMA3 [16] from the audio caption, while visual objects are identified from video frames using InternVL2 [10]. Samples where visual objects do not correspond to any audio content are filtered and manually verified, with the ground truth set to "no." All raw video-audio pairs are sourced from AudioCaps.

Audio Dominance. The Audio Dominance subcategory explores how LMMs may over-rely on audio cues, leading to hallucinations of visual content. Here, questions probe the presence of visual objects. For existent objects, the ground truth "yes" is annotated manually. To find non-existent objects, we filter samples where the objects indicated by audio cues are not visually present in the video. These samples undergo manual review to ensure accurate annotation, with the ground truth as "no." All raw video-audio pairs are also sourced from AudioCaps.

Language Dominance. The Language Dominance subcategory targets hallucinations caused by the LMMs' dependence on language priors from pretraining corpora. This category focuses on common-sense events and object attributes. We manually define sets of typical events (e.g., "fish swim in water") and object characteristics (e.g., "yellow banana"). Videos depicting anti-common-sense scenarios (e.g., "fish fly in the air," "black banana") are then collected from YouTube. For queries probing existent content, the ground truth "yes" corresponds to the

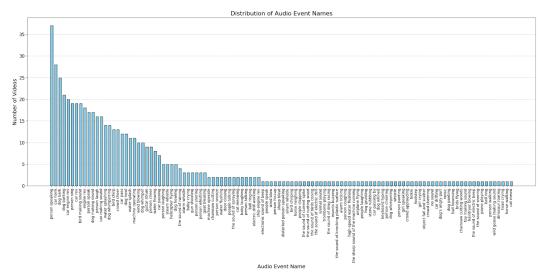


Figure 9: Distribution of Audio Event Names.

anti-common-sense object/event depicted in the video. Conversely, non-existent content queries, which are the common-sense versions that do not match the video, have the ground truth "no."

Each subcategory includes 200 video-audio or video-only samples, each accompanied by two probing questions: one querying an existent object/event ("yes"), and another probing a non-existent one ("no"). For subcategories containing both object- and event-level probing, the dataset is balanced with equal numbers of object- and event-level queries.

C.2.2 Spurious Inter-modality Correlations

This section outlines the construction of queries targeting *Spurious Inter-modality Correlations*, where hallucinations arise from misleading associations between different modalities learned during pretraining. These correlations are probed at both object- and event-level granularities.

Visual-Language. This occurs when LMMs hallucinate visual objects due to associations learned from patterns in video-caption pretraining data. Queries in this subcategory are developed based on two factors: global appearance frequencies and co-occurrence patterns within the data.

Object-level queries are derived from two sources: (i) global appearance frequencies, where the model is asked about frequent objects that are absent in the video (e.g., "Did you see a tree in the video?" when no tree is present), and (ii) co-occurrence patterns, where queries target non-existent objects that are often seen alongside other objects in the pretraining data (e.g., "Did you see a phone in the video?" when a human is present but no phone).

Event-level queries similarly explore global appearance frequencies by probing events that frequently occur in pretraining data but are not present in the video. For co-occurrence patterns, event-level queries are designed around subject-fixed action-object pairs, such as "Did you see a person using a phone in the video?" when the person is engaged in a different action like walking.

Both global frequencies and co-occurrence data are extracted from the large-scale video-caption pretraining dataset WebVid10M. Probing samples are curated accordingly from the same source.

Audio-Language. This subcategory assesses correlations learned from audio-caption pretraining, leading to potential hallucinations of audio events based on their appearance or co-occurrence in the training data. Due to the temporal nature of audio, all queries are event-level.

Event-level queries focus on global appearance frequencies, probing for hallucinated audio events that are common in the pretraining data but absent from the audio track (e.g., "Did you hear a dog barking?" when no such sound exists). Co-occurrence queries involve subject-fixed action-object pairs, targeting frequently co-occurring events (e.g., "Did you hear a dog barking?" when only dog whimpering is present).

The dataset Auto-acd is used for constructing these queries, ensuring a balanced representation of global appearance and co-occurrence-based patterns.

Visual-Audio-Language. The Visual-Audio-Language subcategory captures cross-modal hallucinations, where visual objects are hallucinated based on audio cues, and vice versa.

Object-level queries target visual objects that are hallucinated based on associated sound events (e.g., "Did you see a tree in the video?" when bird chirping is present without any tree visible).

Event-level queries test for non-existent audio events that are frequently co-occurred with visual objects in training data (e.g., "Did you hear car revving?" when a human is visible without any car sound).

The co-occurrence frequencies between visual objects and audio events are computed using the Auto-ACD dataset, with the visual and audio content manually checked and annotated by human reviewers. Queries are evenly split between probing audio events and visual objects.

For all subcategories, there is a balance between object-level and event-level queries. Additionally, the samples constructed from global appearance frequencies and co-occurrence patterns are evenly distributed.

C.3 Frequent Patterns in Pretraining Datasets

The following outlines the frequent global appearances and co-occurrence patterns derived from major pretraining datasets, which is used to construct our benchmark. These patterns reflect common associations across modalities, contributing to spurious correlations within LMMs during pretraining.

Patterns in Pretraining Datasets

Visual-Language Correlations from WebVid-10M

- · Object-level
 - Top appeared objects: [beach, boat, car, city, flower, mountain, person, phone, tree, water]
 - Top co-occurrences: [beach-person, car-person, city-person, dog-person, food-person, laptop-person, mountain-person, phone-person, tree-person, water-person]
- Event-level
 - Top appeared events: [person drinks coffee, person drives car, person eats food, person holds glass, person reads book, person rides bike, person uses camera, person uses laptop, person uses phone, person uses tablet]
 - Top co-occurred (subject)-(action object) pairs: [person-drinks coffee, person-drives car, person-eats food, person-holds glass, person-reads book, person-rides bike, person-uses camera, person-uses laptop, person-uses phone, person-uses tablet]

Audio-Language Correlations from Auto-acd

- Event-level (since audio is inherently temporal)
 - Top appeared events: [bird chirps, car passes, car revs, crowd cheers, dog barks, guitar strums, person laughs, person sings, person speaks, water splashes]
 - Top co-occurred (subject)-(action object) pairs: [car-honks, car-passes, car-revs, dog-barks, dog-howls, dog-whimpers, person-cheers, person-laughs, person-sings, person-speaks]

Visual-Audio-Language from AudioCaps

- Cross-modality (visual object)-(audio event) co-occurrences
 - Top co-occurrences: [person-bird chirping, tree-bird chirping, tree-car passing, person-dog barking, car-person speaking, table-person speaking, tree-person walking, person-water splashing, dog-person speaking, person-car revving, water-person speaking]

D Future Directions

Our analysis identifies key vulnerabilities in current LMMs, representing only a subset of broader challenges. These include but are not limited to unbalanced cross-modal integration, often with visual dominance overshadowing audio or text cues; spurious inter-modality correlations arising from training biases; overreliance on linguistic priors from large-scale LLM pretraining; and divergent response tendencies—either overconfident approval or overly cautious rejection. To address these challenges, we propose several potential directions for reference:

• Balanced Multi-modal Training Data. Creating datasets with balanced modality representation and diverse temporal annotations to reduce visual biases and improve event-level understanding.

- Advanced Cross-modal Fusion. Implementing dynamic fusion strategies to adjust modality importance based on context can improve multimodal integration and reduce hallucination.
- Mitigating Linguistic Priors. Fine-tuning LMMs with contextually diverse prompts and incorporating visual/audio fact-checking mechanisms can decrease overreliance on language priors.
- Refined Safety Alignment. Establishing balanced response strategies to avoid overconfidence or excessive caution ensures accurate interpretation, even for ambiguous inputs.

E Limitation

While our study introduces a structured benchmark to evaluate hallucinations in LMMs, several limitations remain. First, although our analysis identifies two key contributors—unimodal prior overreliance and spurious inter-modality correlations—these do not exhaustively capture all possible causes of hallucination. Other underexplored factors, such as modality misalignment due to temporal inconsistency or more complex and entangled scenarios, may also contribute and warrant further investigation.

Second, current open-source Visual-Audio-Language (VAL) models exhibit limited instruction-following capabilities and display a strong response bias toward affirmative answers. Despite our efforts to mitigate this via prompt formatting and binary answer constraints, this bias persists, which may confound evaluation and necessitate the development of more robust instruction-following capability.

Lastly, our benchmark focuses on short, binary probing questions. While effective for diagnosis, this format may not fully reflect the complexity of real-world multimodal tasks, where nuanced, multi-step reasoning and open-ended generation are required. Extending evaluations to cover such settings remains an important direction for future work.

F Computation Resource

For benchmark evaluation, the majority of experiments are conducted using open-source models ranging from 7B to 13B parameters. These models can be deployed on a single GPU with 40–80GB of memory, with inference times ranging from a few minutes to approximately 30 minutes, depending on the implementation efficiency of each model's codebase.

For experiments involving larger model sizes (34B and 72B) used in the analysis of LLM size effects, 2–4 80GB-GPUs are required to support inference. Evaluations of proprietary models are performed via their respective official APIs, as these models are not publicly available for local deployment.

G Broader Impacts

This work presents a systematic benchmark for evaluating hallucinations in large multimodal models (LMMs) across language, visual, and audio modalities. By identifying key failure modes and providing fine-grained diagnostics, our framework can facilitate the development of more reliable and robust multimodal systems. This has potential benefits in applications such as assistive technologies, education, and content moderation, where accurate multimodal understanding is critical.

While improved model reliability may accelerate deployment in real-world scenarios, we emphasize that our contribution is primarily diagnostic in nature. We release the benchmark and evaluation results to support transparency and reproducibility. We hope this work encourages continued research into model alignment and robustness, and informs best practices for safe and responsible development of LMMs.

H Safeguard

All data included in our benchmark have undergone rigorous manual verification to ensure safety and appropriateness for public research use. Each sample—whether sourced from licensed datasets such as AudioCaps and WebVid-10M or manually collected from YouTube—was individually reviewed to exclude any content involving identifiable individuals, private settings, or potentially harmful, sensitive, or inappropriate material.

In addition to verifying the multimodal inputs, we manually reviewed all associated probing questions to ensure they are neutral, non-offensive, and free from bias. This careful curation process reflects our commitment to responsible data sharing and minimizes risks related to misuse or unintended harms.

We encourage responsible use of the benchmark and provide clear documentation on its intended purpose: evaluating hallucination robustness in LMMs. Researchers are advised to use the benchmark solely for academic and diagnostic purposes and not for fine-tuning generative models without proper safety measures.

I License for Existing Assets

The models we use to evaluate CMM in this paper, including proprietary models such as Gemini and Reka Core, open-source models like VideoSalmonn and VideoLLaMA 2, are under permissive license for academic purpose. For code with which we implement our evaluation, we use VLMEvalkit [15] for most models, which is with Apache-2.0 license and permissive to use.