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ABSTRACT

Deepfake detectors excel in familiar scenarios but falter when faced with new
generation techniques. Improving their generalization can be achieved through
synthetic data during training or one-class anomaly detectors. However, existing
techniques, limited to non-negative-curvature spaces, struggle to effectively identify
counterfeit features on the intricate and diverse non-Euclidean human face manifold.
Human faces defy simple Euclidean geometry due to their complexity. To overcome
this limitation, we introduce a novel and efficient deepfake detector, called CTru,
that learns a rich representation of facial geometry across multiple-curvature spaces
in a self-supervised manner. During inference, the fakeness score is computed
by integrating angle-based similarity in spherical space and model confidence in
hyperbolic space with Busemann distance. CTru establishes new SoTA results on
various challenging datasets in both cross-dataset and cross-manipulation scenarios,
while being trained only on pristine faces, highlighting its impressive generalization
performance. Code source will be made available.

1 INTRODUCTION

Cutting-edge improvements in deep generative models, like GANs (Goodfellow et al., 2014), diffusion
models (Ho et al., 2020), and normalizing flows (Dinh et al., 2017), have enabled the creation of
highly authentic counterfeit images. This has given rise to malevolent alterations of human faces,
or “deepfakes”, which constitute a significant menace to both individuals and society (Oltermann,
2022; Chowdhury & Lubna, 2020). In response, efforts are underway to develop tools to detect these
forgeries. Existing detectors (Masi et al., 2020; Chollet, 2017; Dang et al., 2020; Rössler et al., 2019;
Hsu et al., 2020) currently rely on datasets containing both authentic and fake faces to learn a binary
decision boundary (Li et al., 2020b; Jiang et al., 2020; Korshunov & Marcel, 2018; Dolhansky et al.,
2019; 2020; Rössler et al., 2019; Yang et al., 2019). While effective on familiar deepfake types,
these detectors struggle to generalize when confronted with new facial manipulations, limiting their
practical utility (Zi et al., 2021).
One effective approach to improve the generalization of deepfake detectors is to incorporate synthetic
data (or pseudo-fakes) during training, which encourages the models to learn more adaptable decision
boundaries. Many state-of-the-art (SoTA) detectors (Zhao et al., 2021; Shiohara & Yamasaki, 2022;
Chen et al., 2022a; Li et al., 2020a; Chen et al., 2022b) follow this strategy by either generating
additional fake images to enrich the diversity of available deepfakes or relying exclusively on synthetic
deepfakes for training the detection models. However, those classification-based approaches are
prone to over-fitting on training data, leading to the exploration of alternative approaches. One-class
anomaly detection (OC-AD) techniques provide a promising solution to identifying anomalies/fakes
in data that deviate from expected patterns (real faces) (Feng et al., 2023; Larue et al., 2023).
However, in these methods, the feature representation learned in non-negative-curvature space and
the Euclidean-based distances appear sub-optimal for faces. Unlike the assumptions of a Euclidean
manifold, which presumes a flat and linear space, the intricate shapes and curvatures of facial features
such as the nose, eyes, and mouth defy adequate description through Euclidean geometry alone. The
human face is not a rigid structure; facial expressions are non-linear deformations of facial features
(e.g., when a person smiles, the shape of the face undergoes complex transformations). In other
words, human faces challenge Euclidean geometry with their dynamic and non-linear features.

In this paper, we present a novel approach called named CTru (“ConTrastive learning in opposite-
curvature space”), a self-supervised AD method that leverages the power of hypersphere and hy-
perbolic geometry to learn a rich representation in spaces with different curvatures. By training in
hyperbolic space, as demonstrated in Khrulkov et al. (2020), semantic similarities and hierarchical
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relationships between images can be captured effectively. As a result, our features convey richer
information compared to detectors relying solely on loss in hypersphere space. Hyperbolic space
offers a more flexible and expressive geometry, making it better suited for handling complex facial
structures. To our best knowledge, we are the first to propose a deepfake detector that learns a
representation in spaces with different curvatures.

Our contributions can be summarized as follows: 1) We propose a novel deepfake detector named
CTru, designed to learn a representation across multiple-curvature spaces, with an enhanced capability
to model the image. 2) Our multi-objective learning method uses complementary losses to extract
high-level semantic features from images during training. We then leverage these features to develop
efficient “fakeness” scores based on the model confidence in hyperbolic space and cosine similarity
in hypersphere space. 3) CTru establishes new SoTA results on various challenging datasets in both
cross-dataset and cross-manipulation scenarios, while using only pristine faces during training. CTru
not only outperforms its counterparts in terms of higher accuracy and faster inference speed but also
demonstrates superior versatility, as it does not require prior knowledge of the face. In other words, it
is a more robust and generic detector.

2 RELATED WORK

Deepfake detection. Numerous deepfake detectors have been proposed in the literature (Tolosana
et al., 2020; Aneja & Nießner, 2020; He et al., 2021; Shao et al., 2022; Zhihao et al., 2022; Dong
et al., 2022). Early detectors relied on detecting the visual artifacts of deepfake-generation techniques
(Amerini et al., 2019; Li & Lyu, 2018; Afchar et al., 2018; Das et al., 2021; Guo et al., 2022),
while others used frequency-domain representations to discriminate between real and fake images
(Rössler et al., 2019; Liu et al., 2021; Qian et al., 2020; Fei et al., 2022). Some models utilized
temporal features for deepfake detection (Guan et al., 2022; Feng et al., 2023; Zheng et al., 2021;
Zhuang et al., 2022), while others focused on continual learning (Kim et al., 2021; Li et al., 2023)
to avoid catastrophic forgetting across different types of fakes. Recent approaches to generalize
across different generation techniques include using dedicated augmentation techniques to synthesize
forged images and then training a binary classification model, such as Face-Xray (Li et al., 2020a),
self-blended images (SBI) (Shiohara & Yamasaki, 2022), SLADD (Chen et al., 2022a), PCL (Zhao
et al., 2021), and OST (Chen et al., 2022b).
Those existing classification-based approaches frequently encounter issues with overfitting to the
training data, prompting the exploration of alternative strategies. One promising solution is to use
OC-AD techniques. While plenty of works detect deepfakes via a binary classifier, very few reframe
the problem as self-supervised OC-AD. Feng et al. (2023) demonstrated the effectiveness of AD in
detecting deepfakes. Larue et al. (2023) used an OC-AD approach to detect deepfakes.

Hyperbolic geometry has become popular for their powerful geometrical representations with
minimal distortion (Balazevic et al., 2019; Keller-Ressel & Nargang, 2020). Different alternatives
have been proposed for various layers and components in deep neural networks (Ho et al., 2020; Dinh
et al., 2017). Recent works have explored prototype-based approaches with hyperbolic output spaces,
including few-shot learning and zero-shot recognition Atigh et al. (2021).
Hierarchical learning in hyperbolic spaces. Distinguished by its constant negative curvature,
hyperbolic geometry offers a valuable perspective for analyzing semantic similarities and hierarchical
relationships among high-dimensional data. (Nickel & Kiela, 2017; Liu et al., 2019; Khrulkov et al.,
2020; Peng et al., 2021) advocate for the use of hyperbolic spaces as more suitable alternatives
to standard Euclidean spaces for representing hierarchical structures. Additionally, they excel in
depicting tree-like structures and taxonomies (Ganea et al., 2018; Long et al., 2020; Liu et al., 2020).

3 PROPOSED METHOD

A constant curvature space is a smooth Riemannian manifold. The curvature sign dictates the space
type. A negative curvature represents a hyperbolic space, and we use the Poincare ball model in
this work. A zero curvature implies the Euclidean space, whereas a positive curvature denotes a
hypersphere space. Our CTru (Fig. 1) learns the generic features in spaces of different curvatures.
Notation. For the sake of notation simplicity and without loss of generality, in the follows, we denote
x and y as any two points in a space of positive or negative curvature, while the subscript E extends
to Euclidean (i.e., xE is a point in Euclidean space). For the sake of detail, in Section 3.3, x and y
belong to Sd (hypershpere space), while in Section 3.4, x and y belong to Hd (hyperbolic space).
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Figure 1: Overview of our method. (a) Given a pristine face, its abnormal version is first generated.
(b) Using only one encoder fe, an embedding z is obtained and then projected to the hypersphere Sd
and hyperbolic Hd spaces using two non-parameter functions fSp and fHp . (c)-(d) Resulting vectors
are attracted to their class prototypes using LS and LH.

3.1 OVERVIEW OF CTRU
We are given a training batch {(Ii)}Bi=1 with B examples of pristine faces. We generate a batch
of abnormal samples {(I′i, ỹi)}Bi=1 by applying a data augmentation I′i = psf (Ii, ỹloc, ỹtyp) where
ỹi ∈ [1 . . C] and C = Nloc ×Ntyp is the number of different anomaly configurations (Section 3.2).
CTru is composed of: (i) an encoder fe(θ) that maps an abnormal face I′i to a feature vector
(embedding) zi ∈ Rd; (ii) two non-parameter projectors, fS

p and fH
p , which respectively L2 normalizes

zi to produce a vector in a spherical space Sd, and applies the exponential map to zi to produce a
vector in an hyperbolic space Hd.
Briefly speaking, CTru learns by projecting the inputs onto the Sd and Hd manifolds and attracting
the projected embeddings to their self-supervised class labels, which are represented by predefined
prototypes P = {p1, ..,pC}. CTru uses two losses, LS and LH, and the global loss is

LCTru

(
θ,P , {(zi, ỹi)}Bi=1

)
= LS

(
θ,P , {(fS

p(zi), ỹi)}Bi=1

)
+λ ·LH

(
θ,P , {(fH

p (zi), ỹi)}Bi=1

)
(1)

where λ > 0 is the balancing hyper-parameter, that is 1 in all of our experiments for simplicity.

How to generate the predefined evenly distributed prototypes (used for spherical and hyperbolic
spaces)? A three-step method is proposed: (1) First, we initialize the C prototypes pi as evenly
distributed class centroids in the spherical space Sd, leveraging the vertices of the C-simplex (C ≤
d+ 1), as in Lange & Wu (2008). (2) Next, we add zero-dimensional vectors to the prototypes to
embed them in Rd, ensuring they are d-dimensional. (3) Finally, we use the Gram-Schmidt process to
compute a random basis of Rd and project the prototypes pi onto this basis to obtain final prototypes.

3.2 GENERATING ABNORMAL REGIONS IN THE PRISTINE FACE

Our approach involves generating highly realistic and diverse abnormal face versions by applying a
rich augmention, denoted as psf(.), to a real face I ∈ [0, 255]W×H×3. It consists of selecting from a
2D grid embedding the facial region a square patch at a chosen location ỹloc ∈ [1 . . Nloc], applying
a specific type of alteration ỹtyp ∈ [1 . . Ntyp], and utilizing the blending augmentation, which is
proved efficient in forgery detection (Li et al., 2020a; Chen et al., 2022a; Shiohara & Yamasaki,
2022), to generate the final abnormal face. Formally, the augmentation can be written as:

psf (I, ỹloc, ỹtyp) = I⊙ loc(I, ỹloc)︸ ︷︷ ︸
target

+typ(I, ỹtyp)⊙ [1− loc(I, ỹloc)]︸ ︷︷ ︸
source

(2)

where ⊙ is the element-wise multiplication, loc(.) returns the binary mask of the ỹloc-th patch of
interest, typ(.) alters an image with the ỹtyp-th abnormal type, and 1 is an image with only ‘1’s.

The position of forged patch. We employ the grid scheme as in Larue et al. (2023) to generate
masks by dividing the face into a grid of Nloc = Nrows ×Ncols cells. The landmarks extracted using
a facial landmark detector are utilized to align the face and crop it into a bounding rectangle. The
face portion is then divided into a grid of cells and a mask is generated for each cell at position ỹloc.
The type of the anomaly. To generate different types of abnormal regions, commonly used image
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augmentation techniques are used. We categorized the augmentation techniques based on the type of
the anomaly: (1) anomalies in the frequency domain, and (2) in the spatial domain. The first category
includes downscaling followed by upscaling and JPEG compression, while the second category
includes Gaussian noise, color jittering, and blurring. In other words, Ntyp = 2.

3.3 LEARNING IN POSITIVELY CURVED SPACE

We define a sphere model with a positive curvature of 1 as Sdr =
{
xE ∈ Rd+1 : ∥xE∥ = r, r > 0

}
,

where r represents the radius. Our model works with L2 normalized features, fS
p(zi) = zi/∥zi∥2,

meaning that r = 1. Therefore, in the rest of the paper, we simply denote the space Sd. The
distance between two points is determined by the shortest path between them on the manifold, also
known as the geodesic distance. In this space, the geodesic is the arc connecting the two points.
The resulting function is called the induced geodesic distance function, defined as: distS(x,y) =
r × cos−1

(
⟨x,y⟩ r−2

)
. This space is bounded, meaning that the distance between any two points

cannot be arbitrarily large: 0 ≤ distS(x,y) ≤ rπ (r = 1 in our model).

When working in this space, we inspire by the supervised contrastive learning (Khosla et al., 2020)
(SCL) which is proven to be more efficient than the cross entropy loss. SCL involves two stages: (1)
jointly training the encoder fe and projection head, denoted as fp, to solve the task; (2) replacing fp
with a linear layer and training this layer to solve the classification task with the frozen representation
fe. To further improve the feature learnt while simplifying the training step by merging both phases,
the bounded contrastive regression loss is proposed (Larue et al., 2023). This loss employs a set
of predefined prototypes positioned on the sphere which act as class centers. This loss biases the
supervised contrastive loss, resulting in embeddings from the same class being pulled closer to the
corresponding predefined class centers. By doing so, the loss effectively encourages embeddings of
the same class to be grouped together, while simultaneously pushing apart embeddings from different
classes. The loss is defined as follows:

LS

(
θ,P , {(zS

i , ỹi)}Bi=1

)
=

∑
i∈I

−1

|P(i)|

log
esim(z

S
i,pỹi)∑

n∈N (i)

esim(z
S
i,z

S
n)

+
∑

p∈P(i)

log
esim(z

S
i,z

S
p)∑

n∈N (i)

esim(z
S
i,z

S
n)


(3)

where |·| is the cardinal function, sim (xa,xb) = ⟨xa,xb⟩/(∥xa∥ · ∥xb∥) is the cosine similarity,
I = {1, ..., B} is the set of indices in the batch, N (i) is the set of indices {n ∈ [1 . . B] | n ̸=
i} that forms a negative pair with the i-th sample in the batch, P(i) is the set of indices
{p ∈ [1 . . B] | p ̸= i, ỹp = ỹi} that forms positive pairs with the i-th sample in the batch, where
a positive pair consists of two samples with the same label. Our method relies on L2-normalized
vectors, the features have a unit norm and lie on the unit hypersphere. We use cosine similarity as
the basis for the loss function, which is invariant to the magnitude of the embeddings and depends
only on the angle between the two vectors. However, this approach has a drawback: the norm of
embeddings may not be an indicator reliable enough for detecting fake samples during inference. We
propose therefore to use a complementary objective in a hyperbolic space to learn richer features.

3.4 LEARNING IN NEGATIVELY CURVED SPACE

To improve the performance of our detector by capturing additional features specific to abnormal
faces within a hyperbolic space, we opt to embed our data in the Poincaré ball which leverages
the distinctive properties inherent to hyperbolic geometry (Atigh et al., 2021). We aim to unveil
novel discriminative features that are challenging to capture within Euclidean geometry, as in the
spherical space, we propel the extracted feature vectors, projected into Poincaré ball mode, towards
their respective predefined prototypes (ideal points).

Poincaré ball model is a hyperbolic space defined as: Hd
r =

{
xE ∈ Rd : ∥xE∥2 < r2, r > 0

}
,

where r represents the radius. In hyperbolic spaces, the traditional vector space formalism does not
apply. A gyrovector formalism is therefore introduced (Rassias, 2010) to perform operations such as
addition. In particular, for a pair of points x and y in the space, their Möbius addition is defined as:
x⊕ry = (1+2r−2⟨x,y⟩+r−2∥y∥2)x+(1−r−2∥x∥2)y

1+2r−2⟨x,y⟩+r−4∥x∥2∥y∥2 . A remarkable feature of hyperbolic geometry is that
the length of circles and the area of disks grow exponentially, in contrast to Euclidean geometry where
they grow linearly and quadratically, respectively. In this space, the induced geodesic distance is
defined as: distH(x,y) = 2r × tanh−1

(
r−1 ∥−x⊕r y∥

)
. In hyperbolic geometry, the exponential
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map exprx is a function that allows us to map a Euclidean vector to the hyperbolic manifold. More
specifically, for a point x in the hyperbolic space Hd

r and a vector vE in the tangent space TxHd
r
∼=

Rd, the exponential map is defined as: exprx(vE) = x ⊕r

(
r tanh

(
∥vE∥λr(x)

2r

)
vE

∥vE∥

)
, where

λr(x) =
2

1−r−2∥x∥2 is the conformal factor in Riemannian geometry.

In hyperbolic geometry, points situated at infinity are referred to as ideal points. These points reside
on the boundary of the ball in the Poincaré model. Notably, the set of ideal points in hyperbolic space
shares identical topological properties with the hypersphere Sdr , as demonstrated in (Atigh et al.,
2021) (see the difference between (Atigh et al., 2021) and ours in Section 3.6). Consequently, our
generated evenly-distributed predefined points in Section 3.1 can serve as ideal prototypes and can be
effectively employed for embedding prototypes into hyperbolic space. Henceforth, we consider a
Poincaré ball with r = 1 and denote it simply as Hd throughout the remainder of this paper.

To accurately measure the distance between embeddings and prototypes in hyperbolic space, relying
on geodesic distance Section 3.4 is not a viable option. This is because every point zH

i in the Poincaré
ball Hd is infinitely far from any prototypes p ∈ P in the boundary sphere Sd. We use therefore
an alternative approach involving the Busemann function, which provides a normalized distance
function from a point on the boundary of hyperbolic space to another point. It can be defined as:

bus
(
zH
i ,p

)
= lim

t→∞

{
distH(γp(t), z

H
i )− t

}
(4)

where γp(t) is the geodesic at p and zH
i = fH

p (zi) = exp0(zi). The Busemann function can be
analytically solved in Hd and have the following closed form:

busH(z
H
i ,p) = log

(∥p− zH
i ∥2

1− ∥zH
i ∥2

)
(5)

Our loss function in negatively curved space is defined as the sum of Busemann functions with respect
to each embedding and its corresponding class prototype:

LH

(
θ,P , {(zH

i , ỹi)}Bi=1

)
=

∑
i∈[1. .B]

busH(z
H
i ,pỹi) (6)

By minimizing Eq. (6), we bring the embeddings closer to the class prototypes, which correspond
to the ideal points at the boundary of the Poincaré ball. In Atigh et al. (2021), a regularization
term was also employed to address the issue of overconfidence, where values close to the ideal
boundary were penalized to improve the overall performance. However, in our CTru model, we
conducted experiments and found that the use of a penalized term did not impact the deepfake
detection performance. This maybe due to the fact that our CTru model already employs dual losses
in two spaces, with the same predefined prototypes. In the spherical space, the non-overlapping loss
LS does not reach 0, which prevents overconfidence in the hyperbolic space.

3.5 INFERENCE

Leveraging the acquired features, we devise a novel and highly effective “fakeness” score that
considers the model’s confidence in hyperbolic space and the cosine similarity in hypersphere space.
Our framework exhibits a hybrid nature, wherein the origin holds a unique significance. Viewed from
a Euclidean perspective, the local volumes within the Poincaré ball expand exponentially from the
origin towards the boundary. The learned embeddings tend to position more generic or ambiguous
objects closer to the origin, while situating more specific objects nearer to the boundary. This property
aligns with findings presented In Khrulkov et al. (2020). The distance to the origin provides a natural
measure of uncertainty that can serve as a reliable indicator of model confidence. Specifically, input
images that are familar to the model (pristine images) will be mapped closer to the boundary, while
confusing ones such as deepfakes will be closer to the origin. This indicator, denoted as scrconf, is
the first term in Eq. (7). In spherical space, we leverage the standard cosine similarity between the
projected input and its corresponding prototypes. This indicator, denoted as scralig, is the second
term in Eq. (7) (by “alignment”, we mean the angle between the embeddings and the predefined
prototypes will be aligned to reduce the loss). Formally, given a testing image Itest, its “fakeness”
score is computed as:
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Figure 2: Left: Inherent hierarchical structure of different manipulations in FF++ represented as a
tree. Right: t-SNE projection of embeddings for fake images from the FF++ in the Poincaré ball
model. Dotted line circles indicate leaf nodes. CTru effectively captures coarse semantic differences
closer to the origin in hyperbolic space (e.g., Reenactment vs. Replacement), with finer-grained
distinctions positioned farther away (e.g., Face2Face vs. NeuralTextures).

scrfake(Itest) = max
c∈[1. .C]

busH (exp0(fe(Itest)),pc)︸ ︷︷ ︸
Confidence (scrconf)

×
(
1− sim

(
fS
p(fe(Itest)),pc

))︸ ︷︷ ︸
Alignment (scralig)

(7)

Our experimental results in Table 1 demonstrate the effectiveness of combining both score in detecting
a wide range of deepfake manipulations with high accuracy. We also conducted an ablation study,
examining the use of either scrconf with LH or scralig with LS as detailed in Section 4.5

3.6 RELATIONSHIP WITH THE CLOSEST PREVIOUS WORKS

Relation to hyperbolic learning-based prototypes. Atigh et al. (2021) is the pioneering work that
employs the Busemann function as a learning objective. Its main contribution involves integrating
a penalty term, log(1− |zH

i |2), to prevent vectors from approaching the ideal boundary excessively,
mitigating the overconfidence issue. The penalty was scaled by ϕ(d), a function dependent on the
dimension d. This function should be linear, specifically ϕ(d) = s× d, as the dimension increases,
where s ∈ [0, 1] is the slope parameter.
Considering our loss LH , we also employ the Busemann function to compute proximities to ideal
prototypes but without the penalty term. This is equivalent to fixing the slope parameter s to 0.
As shown in Equation 7, in Hd, the distance to the ideal prototype, represented by the Busemann
function, serves as the confidence metric and thus should not be penalized.
Furthermore, we differ by using evenly distributed ideal prototypes, as detailed in Section 3.1, instead
of randomly sampling them from the unit sphere. This allows our points to remain ideal in Hd, while
also leveraging optimal properties for the contrastive learning of these points in Sd using LS.
Exploring hierarchy in face-related tasks. Few recent studies explore hierarchy in face-related
tasks. In Gu et al. (2022), deepfake detection is conducted across two hierarchical levels: locally for
individual frames and globally using a contrast paradigm applied to video data spanning multiple
frames. CTru takes a higher-level abstraction approach that mainly focus on the inherent hierarchical
structure in the deepfake dataset, as shown in Fig. 2. Guo et al. (2023) identifies the inherent
hierarchical structure in deepfake datasets, and classifies manipulated images with multiple labels at
different levels in Euclidean space. In contrast, our approach operates without explicit labels, whether
hierarchical or single-label, to learn more appropriate feature space.

4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Datasets and evaluation metrics. Our model is trained on the FaceForensics++ (FF++) dataset, as
in Tack et al. (2020); Chen et al. (2022a); Zhao et al. (2021). We use only 720 pristine training videos
during training and include a maximum of one frame per video when constructing optimization
batches. To evaluate CTru in cross-manipulation settings, we assess its performance on the testing
portion of the FF++ dataset. This dataset includes videos generated using four generation techniques:
Deepfakes (DF) (DeepFakes.), Face2Face (F2F) (Thies et al., 2020), NeuralTextures (NT) (Thies
et al., 2019), and FaceSwap (FS) (FaceSwap.). To evaluate the performance of CTru in cross-dataset
scenarios, we incorporate three additional datasets: Celeb-DF-v2 (Li et al., 2020b), DeepFake
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Table 1: Comparison of CTru and SoTA in the cross-dataset scenario. CTru not only surpasses the
second-best method but does so without requiring prior knowledge of face images. * use an additional
large-scale dataset (1M or 14M images), ViT has more than five times the parameters as ours.

Method Pristine Test set - AUC (%)

only Celeb-DF (v2) DFDC DFDC-p Average

Two-branch (Masi et al., 2020) 76.6 - - 76.6
LipForensics (Haliassos et al., 2021) 82.4 73.5 - 77.9
Face X-ray (Li et al., 2020a) 79.5 65.5 - 72.5
SLADD (Chen et al., 2022a) 79.7 - 76.0 77.8
PCL+I2G (Zhao et al., 2021) ✓ 90.0 67.5 74.4 77.3
SBI (Shiohara & Yamasaki, 2022) ✓ 85.9 69.8 74.9 76.9
OST (Chen et al., 2022b) 74.8 - 83.3 79.1
UIA-ViT (Zhuang et al., 2022) ✓ 82.4 - 75.8 79.1
FTCN-TT (Zheng et al., 2021) 86.9 74.0 - 80.4
LTTD (Guan et al., 2022) ✓ 89.3 - 80.4 -
IIL (Dong et al., 2023) ✓ - - 73.8 -
IIL + SBI ✓ - - 79.6 -
IID (Huang et al., 2023) ✓ 82.0 - 81.2 -
TALL + EffNet* (Xu et al., 2023) 83.4 67.1 - 75.3
TALL + ViT-B* (Xu et al., 2023) 86.6 74.1 - 80.3
SeeABLE (Larue et al., 2023) ✓ 87.3 75.9 86.3 83.2

CTru (ours) ✓ 89.4 77.0 87.9 84.8

Detection Challenge preview (DFDC-p) and DFDC public (DFDC) (Dolhansky et al., 2020). As our
evaluation metric, we adopt Area Under the Receiver Operating Characteristic Curve (AUC) as in
prior research (Guan et al., 2022; Chen et al., 2022b; Larue et al., 2023).

Data preprocessing and augmentation. For datasets without provided face crops, we perform the
following preprocessing steps: (1) we first extract 50 frames from each video and apply RetinaNet
(Deng et al., 2020) to detect the face regions, and then (2) we use Dlib (King, 2009) to extract
the 68-point facial landmark. For each image, the global transformations are first applied with the
following operations: random translations, random scaling followed by center cropping, and random
shifting of HSV channel values. Then for each patch (we use a 4 × 4 grid, Nloc = 16, details in
Section 3.2), we genereated its forged version in both spatial and frequency domains (Ntyp = 2).
In the spatial domain, we use random shifting of HSV, RGB channel values, random scaling of
the brightness and contrast. In the frequency domain, one of the following operators is used: (1)
down-sampling, sharpening/blending filter, and JPEG compression. The hyperparameter values
were selected in a way that resulted in visually subtle anomaly without major artifacts, similarly to
Shiohara & Yamasaki (2022); Larue et al. (2023), and are detailed in Appendix.

Training strategy. We employ the AdamW optimizer with an initial learning rate of 0.002 and
no weight decay. The model is trained for 200 epochs using the cosine scheduler without restart,
preceded by a linear warmup of 20 epochs. We use a batch size of 64. Images are resized to 299×299
before being fed into the model. As many other recent detectors (Shiohara & Yamasaki, 2022; Larue
et al., 2023), EffNetb4 (Tan & Le, 2019) with 19M parameters was used as backbone by default. We
also include a single linear projection on top of the backbone to generate a 100-dimensional vector
(d = 100). The output of EffNetb4 is a 1794-dimensional vector and in our experiments we obtain
the similar performance with d = 100 or 200. Training is conducted on two NVIDIA V100 GPUs
and requires approximately 16 hours, while during inference, CTru achieves a frame rate of 74fps on
a PC with RTX3060.

4.2 CROSS-DATASET PERFORMANCE

Table 1 compares the performance of CTru to many SoTA competitors in multiple categories: (1)
pseudo-deepfake based methods, (2) video-based techniques, (3) transformer-based methods.All
models are trained on FF++ and tested on datasets not seen during training. CTru demonstrates the
best overall performance, even though it only uses twenty percent of videos from FF++ (720 pristine
videos from the training set). Unlike other competitors, CTru does not require complex multi-head
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adversarial training schemes or the inclusion of deepfake examples during training. We do not rely
on additional information as used in video-based techniques (CTru operates on a frame-by-frame
basis) or employ more powerful transformer backbones. In future work, we intend to expand CTru
to encompass video-based techniques, utilizing transformer-like models, with the aim of achieving
enhanced performance.

4.3 CROSS-MANIPULATION PERFORMANCE

CTru was evaluated on the four manipulation methods of FF++ (Table 2) following the stan-
dard evaluation protocol as in Shiohara & Yamasaki (2022). The raw version of FF++
was used for training, and the HQ (compression c23) version was considered for testing.

Table 2: Cross-manipulation evaluation on FF++
HQ. Existing methods (in Table 1) were not all
evaluated in this protocol.

Method Test set - AUC (%)

DF F2F FS NT Avg.

Face X-ray (Li et al., 2020a) - - - - 87.3
SBI (Shiohara & Yamasaki, 2022) 97.5 89.0 96.4 82.8 91.4
OST (Chen et al., 2022b) - - - - 98.2
SLADD (Chen et al., 2022a) - - - - 98.4
SeeABLE (Larue et al., 2023) 99.2 98.8 99.1 96.9 98.5

CTru (ours) 99.5 99.2 99.5 97.3 98.9

When videos are compressed, forgery traces can
be dampened and become more difficult to de-
tect in Euclidean or spherical space. This is why
methods that rely solely on non-negative curva-
ture spaces tend to yield lower results. In con-
trast, CTru specifically considers local anoma-
lies and treats them in both hyperspherical and
hyperbolic spaces, which provides additional
advantages and enables us to achieve better per-
formance even when the global forgery traces
are less significant. CTru achieved the best per-
formance among all competing detectors.

4.4 ROBUSTNESS ANALYSIS

We evaluated CTru on contaminated samples using various perturbation methods by adopting the
standard evaluation framework proposed in Jiang et al. (2020), which has been widely used in
(Haliassos et al., 2021; Guan et al., 2022; Haliassos et al., 2022). CTru was trained on the FF++
raw dataset, and subsequent inference was carried out on the test split, which had been intentionally
degraded using diverse perturbations (Table 3). It is interesting to note that faces are already cropped

Table 3: Robustness evaluation for different corruptions (CS: color saturation, CC: color contrast,
BW: block-wise noise, GNC: gaussian noise, GB: gaussian blur, PX: pixelation). * use additional
data during training, the direct performance comparison is unfair. F: Frame-based, V: video-based.

Method Modality CS CC BW GNC GB PX Clean Avg / Drop
Xception (Chollet, 2017) F 99.3 98.6 99.7 53.8 60.2 74.2 99.8 81.0 / -17.8
SBI (Shiohara & Yamasaki, 2022) F 98.1 96.5 95.3 73.5 78.3 87.9 99.9 88.3 / -11.6
SeeABLE (Larue et al., 2023) F 98.2 96.5 96.1 76.3 82.8 91.1 99.6 90.2 / -9.4
LipForensics (Haliassos et al., 2021) V* 99.9 99.6 87.4 73.8 96.1 95.6 99.9 92.1 / -7.8
LTTD (Guan et al., 2022) V* 98.9 96.4 96.1 82.6 97.5 98.6 99.4 95.0 / -4.4
RealForensics (Haliassos et al., 2022) V* 99.8 99.6 98.9 79.7 95.3 98.4 99.8 95.3 / -4.5
CTru (ours) F 99.6 97.3 95.2 74.2 89.9 96.8 99.7 92.2 / -7.5

and resized before being input to the models; therefore, resizing is not evaluated as a form of
corruption. Among various frame-based methods, including Xception, Face X-ray, and LipForensics,
our CTru demonstrates a remarkable level of robustness against perturbations, while achieving better
performance. However, for the specific type of Gaussian noise, two other methods, LTTD and
RealForensics, outperform CTru. This maybe due to the fact that these models use additional data
during training. For instance, LTTD is a video transformer-based method which is more complex
than ours, while RealForensics trained the model on both vision and sound data, where the sound
modality remains unaffected by this type of perturbation, resulting in improved performance.

4.5 ABLATION STUDY

Contribution of different losses and scores. To investigate the impact of LH and LS, we conducted
an ablation study in both cross-manipulation (FF++, HQ) and cross-dataset (DFDC) scenarios. We
evaluated our method by keeping both losses or removing one of them. We also considered the
“guidance” loss LG used in Larue et al. (2023). Specifically, LG is a specialized loss that relies on LS
and incorporates prior knowledge about face geometry.
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Table 4: Contribution of different losses.
SeeABLE and CTru are in the second and
third blocks, respectively.

LSCL LG LS LH scheduler FF++ DFDC

✓ 91.6 66.8
✓ 51.4 51.6

✓ 94.8 68.5
✓ 91.3 62.3

✓ ✓ best fixed λ 97.4 74.1
✓ ✓ varying λ 98.5 75.9

✓ ✓ λ = 1 98.9 77.0
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Figure 3: Distributions of the normalized scores of the
pristines (blue) and fakes (red) from the DFDC dataset
using LH (left), LS (middle), and LCTru (right).

As the “fakeness” score during inference, we utilized only the first term in Eq. (7) when using only
LH. When using LS and/or LG, we did not have scrconf in Eq. (7). For a fair comparison, we used the
norm of embeddings instead of scrconf in Eq. (7), as it has been shown to improve out-of-distribution
performance (Tack et al., 2020). Specifically, we replaced scrconf in Eq. (7) with ∥fe(Itest)∥. When
used alone, LS and LH already performed satisfactorily, while the LG loss did not work, likely due
to its reliance on prior knowledge and dependence on LS. When LS was combined with LG, we
observed very interesting results. However, these results were dependent on the learning scheduler λ,
which involves hyperparameters that control the balance between the two losses. For instance, when
combining LS and LG, several scenarios were considered: (1) λ was set to different values (ranging
from 0.5 to 5) and the best results were reported, and (2) λ was gradually increased or decreased
from 0 to 5 or from 5 to 0, respectively. When we used LS and LH together, we did not require any
learning scheduler (λ = 1), and we achieved new SoTA results. These findings suggest that the two
losses are independent yet complementary, simplifying the training process for CTru and making it
applicable to a wider range of forensic detection applications without the need for specific geometric
constraints as prior knowledge. We further provide visualizations of score distributions for pristine
and fake samples obtained from the DFDC dataset using different scores in Figure 3. Using both
spaces and scores shows superior separation, resulting in enhanced performance.

Backbone impact. Table 5 shows the performance of CTru with several popular CNN backbones.
Similar to recent detectors, CTru works best with EffNet-b4 compared to ResNet-50 and Xception.

Table 5: Backbone impact.

Encoder FF++

ResNet50 95.4
Xception 95.8
EffNetb4 98.9

Table 6: Representation learning. *: two-stage with linear probing
while others are one-stage.

Dataset LCE Atigh et al. (2021) LsCL* LH + our points LS Ours

CIFAR10 94.9 92.3 95.0 94.1 95.2 95.4
CIFAR100 76.1 65.8 76.3 68.0 76.7 77.8

Performance of learnt representation. We further demonstrate the performance of feature repre-
sentations learned with different losses using CIFAR10/100 with ResNet-18 backbone in Table 6
(considering larger backbones/datasets for future work). Among methods, LsCL is a two-stage ap-
proach: it discards the projection layer and necessitates training an additional linear layer using
cross-entropy, while others are one-stage. Atigh et al. (2021), “LH + our points”, LS, and “Ours” use
cosine similarity between the learnt features and prototypes for classification. LH with our predefined
prototypes outperforms Atigh et al. (2021) (the advantage of the latter compared to CE (cross entropy)
becomes more pronounced when the output features have low dimensions). LS surpasses LsCL, and
“Ours” performs the best, proving the strength of our learned features in image classification task.

5 CONCLUSION

This paper proposes a novel deepfake detector named CTru based on self-supervised anomaly
detection on both hyperbolic and hypersphere spaces. During inference, CTru calculates an fakeness
score by combining angle-based similarity in spherical space and model confidence in hyperbolic
space with Busemann distance. Remarkably, CTru outperforms all the existing SoTA deepfake
detectors on various challenging datasets, including both cross-dataset and cross-manipulation
scenarios, despite being trained solely on pristine faces.
Broader impact. Outstanding results of CTru using only pristine faces highlight the promise of
self-supervised anomaly representation learning in spaces with different curvatures for forensic
applications, warranting further exploration.
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APPENDIX

In Section A, we will delve into the implementation details while Section B will offer insights into
its relation to the closest literature. We then discuss the exponential growth of hyperbolic spaces
and proximity to class (ideal) prototypes in Section C. Finally, in order to make to paper more
self-contained, we provide a complete proof for the closed form of Busemann fonction in the Poincaré
ball model (Atigh et al., 2021) in appendix D.

A IMPLEMENTATION DETAILS

The position of the forged patch. We provide a detailed description of the function loc(·) which was
used in the “grid” masking strategy in Section 3.2. This function takes the index ỹloc ∈ [1 . . Nloc] as
input and generates a binary mask Mỹloc

corresponding to the ỹloc-th patch of interest using the grid
masking scheme as depicted in Fig. 4 (right).

Given a face image represented as I ∈ [0, 255]W×H×3, we employ the dlib 68-landmark detector
(King, 2009) to extract facial landmarks. Subsequently, a rectangle crop is obtained by determining
the bounding box that encapsulates all the landmarks. This rectangular region is further divided into
a grid consisting of Nloc = Nrows ×Ncols cells. In order to visualize each region of interest, we
employ colored patches as depicted in Fig. 4 (left). The ỹloc-th mask Mỹloc

∈ [0, 1]W×H×1 is then
defined as the intersection between the ỹloc-th region of interest and the convex hull formed by the
landmarks.

Augmentation parameters. The following hyperparameter values were selected in a way that
resulted in visually subtle artifacts, similarly to Shiohara & Yamasaki (2022). Specifically, we
applied: (i) random scaling (followed by center cropping) by up to 5%, (ii) random shifting of HSV
channel values by up to 0.1, and (iii) random translations of up to 3% and 1.5% of the image width
and height, respectively. We also used more fine augmentations: (i) random shifting of HSV channel
values by up to 0.3, (ii) shifting of RGB channel values by up to 20, (iii) random scaling of the
brightness and contrast by a factor of up to 0.1, or (iv) down-sampling by a factor of 2 or 4, (v) a
sharpening filter and blending with the original with an α value in the range [0.2, 0.5], (vi) JPEG
compression with a quality factor between 30 and 70.

Figure 4: Left: illustration of the 4×4 grid scheme, where the face is divided into a grid of 16 cells
(each cell is denoted by a different color). Right: The mask Mỹloc

is obtain by setting 1 to the pixels
having the same color as the cell at position ỹloc and 0 otherwise, in this case ỹloc = 7.

B RELATIONSHIP WITH THE CLOSEST PREVIOUS WORKS

Relation to methods that generate pseudo-fakes for deepfake detection.

Unlike other approaches (Zhao et al., 2021; Chen et al., 2022a; Shiohara & Yamasaki, 2022; Li et al.,
2020a) that use data augmentation to create pseudo-fake examples from pristine data and train binary
classifiers, we deliberately create localized abnormalities in a controlled manner, without directly
aiming to learn the boundary between pristine and pseudo-fake samples.

Relation to one-class deepfake anomaly detectors.
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While sharing the concept of OC-AD, CTru differs from SeeABLE (Larue et al., 2023) in several
ways. Firstly, SeeABLE uses two losses in spherical spaces, whereas CTru uses multiple-curvature
spaces, enabling it to capture richer geometric features of human faces. Secondly, the ‘guidance’
loss in SeeABLE relies on facial geometric constraints as prior knowledge, while CTru uses two
independent and complementary losses (Eq. (3) and Eq. (6)) that do not require prior knowledge of
the image domain. Thus, CTru is a more versatile model applicable to a broader range of forensic
detection tasks. Thirdly, SeeABLE requires a specific learning scheduling for the two losses, while
CTru does not, simplifying its training process. CTru outperforms SeeABLE in terms of speed and
performance in all evaluated settings. Once trained, CTru achieves a frame rate of 74fps on a PC with
RTX 3060, whereas SeeABLE achieves 67fps (for comparison of performance, see Section 4).

C THE EXPONENTIAL RELATIONSHIP IN HYPERBOLIC SPACES AND
PROXIMITY TO CLASS PROTOTYPES

0.0 0.2 0.4 0.6 0.8 1.0

r

0

1

2

3

4

5 Euclidean

Poincaré

Figure 5: Distance from the origin in the
Euclidean and Poincaré ball space as a
function of a vector having a norm of r.

Our objective is to enhance the proximity of embeddings
to the class prototype in two differently-curved spaces. In
the hypersphere space, the prototypes pi and embeddings
zS
i lie in the same space. However, in the hyperbolic space,

the prototypes are positioned on the boundary of the (open)
Poincaré ball and cannot be reached by the hypersphere
embedding zH

i . To accomodate this, we employed an
approach that positions our prototypes as ideal points,
which correspond to points at infinity from the origin in
hyperbolic geometry. We will provide a visualization for
this phenomenon within the Poincaré ball model.

In Fig. 5, we present a plot depicting the relationship be-
tween the Euclidean distance from the origin of a vector
distR (r xE/∥xE∥,0) of norm r and the Hyperbolic dis-
tance Section 3.4 from the origin of its hyperbolic projec-
tion distH (expr0 (r xE/∥xE∥) ,0), across different radius
r ∈ R+. Specifically, the plot reveals that as r approaches
the normalized radius of the ball (i.e., r = 1), the distance
from the origin exhibits a linear relationship with the vector’s norm in Euclidean space. However, in
the Poincaré ball space, this relationship follows an exponential pattern. Consequently, as the vector
approaches the boundary of the ball, the distances become infinitely large.

D COMPLETE PROOF FOR THE CLOSED FORM BUSEMANN FUNCTION IN
POINCARÉ BALL MODEL

For the sake of completeness, we also include an adapted version of the proof of Atigh et al. (2021).
Starting from the definition of the Busemann function:

bus
(
zH
i ,p

)
= lim

t→∞

{
distH(γp(t), z

H
i )− t

}
In the Poincaré model, the unit-speed geodesic γp(t) from the origin towards the ideal point p is
given by:

γp(t) = p tanh

(
t

2

)
.

By substituting this expression into the definition and using the hyperbolic distance as defined
in Section 3.4, we can derive the following representation of the Busemann function:

busH(p, z
H
i ) = lim

t→∞

{
cosh−1(1 + x(t))− t

}
, x(t) = 2

∥p tanh( t2 )− zH
i ∥2

(1− tanh( t2 )
2)(1− ∥zH

i ∥2)
.
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By expressing the inverse hyperbolic cosine using the logarithm cosh−1(x) = log(x+
√
x2 − 1),

we obtain:

cosh−1(1 + x(t)) = log
(
1 + x(t) +

√
x(t)2 + 2x(t)

)
= log(2x(t) + o(x(t)))

where little o represents a lower-order term in Landau’s notation. Consequently, we can deduce that:

busH(z
H
i ,p) = lim

t→∞
{log(2x(t) + o(x(t)))− t}

= lim
t→∞

log
(
2e−tx(t) + e−to(x(t))

)
= log

(
2 lim
t→∞

e−tx(t) + 0
)

By utilizing the fact that tanh( t2 ) =
et−1
et+1 , we can conclude that:

lim
t→∞

e−tx(t) =
∥p− zH

i ∥2
2(1− ∥zH

i ∥2)
.

The following closed form can be derived, as stated in Eq. (5):

busH(z
H
i ,p) = log

(∥p− zH
i ∥2

1− ∥zH
i ∥2

)

16


	Introduction
	Related work
	Proposed method
	Overview of CTru 
	Generating abnormal regions in the pristine face
	Learning in positively curved space
	Learning in negatively curved space
	Inference
	Relationship with the closest previous works

	Experiments
	Experiment settings
	Cross-dataset performance
	Cross-manipulation performance
	Robustness analysis
	Ablation study

	Conclusion
	Implementation details
	Relationship with the closest previous works
	 The exponential relationship in hyperbolic spaces and proximity to class prototypes
	Complete proof for the closed form Busemann function in Poincaré ball model

