
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRIORGUIDE: TEST-TIME PRIOR ADAPTATION FOR
SIMULATION-BASED INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Amortized simulator-based inference offers a powerful framework for tackling
Bayesian inference in computational fields such as engineering or neuroscience,
increasingly leveraging modern generative methods like diffusion models to map ob-
served data to model parameters or future predictions. These approaches yield pos-
terior or posterior-predictive samples for new datasets without requiring further sim-
ulator calls after training on simulated parameter-data pairs. However, their applica-
bility is often limited by the prior distribution(s) used to generate model parameters
during this training phase. To overcome this constraint, we introduce PriorGuide,
a technique specifically designed for diffusion-based amortized inference methods.
PriorGuide leverages a novel guidance approximation that enables flexible adapta-
tion of the trained diffusion model to new priors at test time, crucially without costly
retraining. This allows users to readily incorporate updated information or expert
knowledge post-training, enhancing the versatility of pre-trained inference models.

1 INTRODUCTION

Simulation-based inference (SBI) has become a key tool across scientific disciplines, enabling
Bayesian inference for complex systems where the likelihood function p(x |θ) for data x and model
parameters θ is intractable, but one can easily simulate from the forward model x ∼ p(x |θ) (Cranmer
et al., 2020). Within the Bayesian paradigm, prior beliefs about parameters θ are updated with
observed data x to form a posterior distribution p(θ |x) (Gelman et al., 2014). While traditional
methods like Markov Chain Monte Carlo (MCMC; Robert, 2007) are effective when likelihoods are
available, recent amortized inference methods can directly learn the inverse mapping x 7→ p(θ |x)
from observations to posteriors using neural networks (Lueckmann et al., 2017; Radev et al., 2020).
These amortized approaches, once trained, can rapidly infer posterior (parameters) or posterior-
predictive (data) distributions given new observations, significantly speeding up the inference process.

Modern generative models, including diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020;
Song et al., 2021), transformers (Vaswani et al., 2017), and flow-matching techniques (Lipman et al.,
2023), have demonstrated state-of-the-art performance in tackling these inverse modeling tasks for
amortized SBI (Müller et al., 2022; Wildberger et al., 2024; Schmitt et al., 2024; Gloeckler et al., 2024;
Chang et al., 2025; Whittle et al., 2025; Mittal et al., 2025; Hollmann et al., 2025). These models are
trained on vast numbers of simulated parameter-data pairs (θ,x), often drawing parameters θ from a
broad, uniform prior distribution to ensure comprehensive coverage of the parameter space.

However, this reliance on a fixed training prior introduces significant limitations. Practitioners often
possess domain knowledge that, if incorporated as a more specific prior, could substantially improve
inference accuracy. Moreover, prior sensitivity analysis—a crucial step for assessing the robustness
of scientific conclusions to modeling assumptions—becomes cumbersome. This practice is vital
across many disciplines, e.g., economists must validate the policy implications of macroeconomic
models against different theoretical priors (Del Negro & Schorfheide, 2008), climate scientists need
to validate the climate sensitivity estimates over multiple sets of assumptions (Sherwood et al.,
2020), and epidemiologists need to assess the sensitivity of pandemic forecasts to assumptions
about disease transmission (Flaxman et al., 2020). Changing priors is computationally challenging:
non-amortized methods require costly re-simulation for each new prior, while amortized methods
require retraining (Elsemüller et al., 2024). Though practitioners often resort to approximations
like importance sampling to avoid these costs, such methods fail when priors differ substantially.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

True parameters

θ1

Pa
ra

m
et

er
s,
θ

θ
2

Priors

Training prior
New prior

θ1

θ
2

True Posteriors

Training prior
New prior

θ1

θ
2

Sampled Posteriors

PriorGuide low
PriorGuide high
Diffusion model

Time step

D
at

a,
x

Pr
oc

es
s

va
lu

e

True time-series data

Time step

Observed data
Posterior predictive (new)
Posterior predictive (old)

Time step

PriorGuide low
PriorGuide high
Diffusion model

Figure 1: PriorGuide adapts a diffusion model to new prior information at test time for simulator-
based inference—here for a time-series model. Left: Original broad training prior and a new, more
specific target prior. Middle: Corresponding true posterior distributions over parameters (↑) and
predictive data (↓) for each prior, given observed data. Right: Posterior (↑) and posterior-predictive
(↓) samples from the diffusion model trained on the old prior vs. those from PriorGuide at low or high
test-time cost, illustrating PriorGuide’s ability to match the new posterior from the middle column.
This limitation becomes increasingly problematic as the field trends towards foundation models
for SBI (Hollmann et al., 2025; Vetter et al., 2025). While some recent amortized methods offer
inference-time prior adaptation, they are often restricted to specific families of priors (e.g., factorized
histograms or Gaussian mixtures pre-defined at training) or simple constraints (Elsemüller et al.,
2024; Chang et al., 2025; Whittle et al., 2025; Gloeckler et al., 2024). The broader issue is the
impracticality of pre-training over all potential tasks, such as all prior distributions a user might
wish to employ. Recent successes of the test-time compute paradigm (Snell et al., 2025) suggest that
rather than attempting exhaustive amortization for all scenarios, models could be designed to flexibly
incorporate specific requirements, such as a user-defined prior, through dedicated computations at
inference time—an ability which was unattained so far. For a comprehensive discussion of the related
work, we refer the reader to Appendix A.1.

In this paper, we introduce PriorGuide, a novel method that empowers diffusion-based amortized
inference models with the ability to adapt to new prior distributions q(θ) at inference time, without
the need for retraining the original score model trained under prior ptrain(θ).1 PriorGuide leverages
the guidance mechanisms inherent in diffusion models to steer the generative process according to the
new target prior, seamlessly integrating new user-provided information during the sampling process.
Crucially, this approach allows for a trade-off: users can invest more computational resources
at inference time—such as more diffusion steps or adding refinement techniques like Langevin
dynamics—to achieve higher inference fidelity. See Fig. 1 for a conceptual overview.

Contributions Our main contribution is a principled framework for flexibly incorporating new
prior distributions at inference time into pre-trained diffusion models for SBI. We leverage a novel
Gaussian mixture model approximation for effectively turning the target prior q(θ) into a tractable
guidance term for the diffusion sampling process. We demonstrate empirically the effectiveness
of PriorGuide on a range of SBI problems, showing its ability to accurately recover posterior and
posterior-predictive distributions under various inference-time prior specifications. We show how
sampling can be refined with additional Langevin dynamics steps, and study the tradeoff between
test-time compute and inference accuracy within our framework.

2 BACKGROUND

The primary goal in many scientific applications is to infer model parameters θ given observed data
x, or to predict future data x⋆. Bayesian inference provides a framework for computing the posterior

1The intuitive requirement, quantified later, is that q(θ) should reside in regions of non-negligible mass under
ptrain(θ), to avoid out-of-distribution regions where the original score model would be poorly trained.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

distribution over parameters or posterior predictive distribution for new data:

p(θ |x) ∝ p(x |θ) p(θ), (posterior)

p(x⋆ |x) =
∫

p(x⋆ |θ,x) p(θ |x) dθ, (posterior predictive)
(1)

where p(θ) is the prior and p(x |θ) is the likelihood. In many real-world scenarios from finance to
physics, evaluating the likelihood p(x |θ) is intractable, but generating samples x ∼ p(x |θ) from a
simulator is feasible, leading to the field of Simulation-Based Inference (SBI; Cranmer et al. (2020)).

A powerful paradigm within SBI is amortized inference. Instead of performing inference from
scratch for each x, amortized methods train a neural network qϕ once on a large dataset of simu-
lated parameter-data pairs, Dsim = {(θi,xi)}Ni=1. Parameters θi are drawn from a training prior,
ptrain(θ), and data xi ∼ p(x |θi). Once trained, qϕ provides rapid inference for new observations,
amortizing the upfront computational cost. The network qϕ is usually trained to approximate the
posterior p(θ |x) (Lueckmann et al., 2017; Greenberg et al., 2019; Radev et al., 2020), the likelihood
p(x |θ) (Papamakarios et al., 2019), or the posterior predictive distribution p(x⋆ |x) (Garnelo et al.,
2018; Müller et al., 2022). Recently proposed architectures can flexibly perform all of these tasks,
using transformers (Chang et al., 2025) or diffusion models (Gloeckler et al., 2024).

2.1 DIFFUSION MODELS

Diffusion models are a powerful framework for generative modeling that transforms samples from
arbitrary to simple distributions and vice versa through a gradual noising and denoising process
(Sohl-Dickstein et al., 2015). In the forward diffusion process, starting from a distribution p(z0)
we can draw samples from (e.g., joint samples from the training prior and simulator), Gaussian
noise is progressively added to the samples until, at the end of the process (t = 1), the distribution
converges to a simple terminal distribution, typically Gaussian. In the Variance Exploding (VE)
formulation (Song et al., 2021; Karras et al., 2022), the forward diffusion process can be described as:

p(zt) =

∫
p(zt | z0) p(z0) dz0 =

∫
N (zt | z0, σ(t)2I) p(z0) dz0, (2)

where p(zt | z0) is the transition kernel (here Gaussian), σ(t)2 defines the noise variance schedule as
a function of time (typically increasing with t), and zt represents the noisy samples at time t. The
corresponding reverse process reconstructs the original sample distribution from noise, and can be
formulated as either a stochastic differential equation (SDE) or an ordinary differential equation
(ODE). The reverse SDE process takes the form (Song et al., 2021; Karras et al., 2022):

dzt = −2σ̇(t)σ(t)∇z log p(zt) dt+
√

2σ̇(t)σ(t) dωt, (3)

where ∇z log p(zt) is the score function (gradient of the log-density), dωt is a Wiener process
representing Brownian motion (noise), and σ̇(t) is the time derivative of the noise schedule.

Learning the score function The score function ∇z log p(zt) can be approximated using a neural
network s(zt, t), trained to minimize the denoising score matching loss (Hyvärinen & Dayan, 2005;
Vincent, 2011; Song et al., 2021):

LDSM = Et∼p(t)Ez0∼p(z0)Ezt∼N (zt | z0,σ(t)2I)

[
ω(t) ∥s(zt, t)−∇zt

log p(zt | z0)∥22
]
. (4)

Here p(t) is the distribution of noise levels sampled during training and ω(t) weights different noise
levels in the loss. Once trained, the network s(zt, t) approximates the gradient of the log-probability
density of noised distributions and affords sampling through the reverse SDE; Eq. (3). Starting from a
sample zt ∼ N (zt | z0, σ2

maxI) for t = 1 with sufficiently large σmax, integrating the reverse process
backward in time approximately reconstructs the original distribution p(z0).

The diffusion framework’s flexibility stems largely from its ability to incorporate guidance mecha-
nisms, which afford steering the sampling process toward desired outcomes by including additional
information or constraints. Notable examples include classifier guidance (Dhariwal & Nichol, 2021)
and classifier-free guidance (Ho & Salimans, 2022), which afford controlled generation without
retraining the model. For inverse problems, guidance methods exist to incorporate information on
observations (Chung et al., 2023; Song et al., 2023a).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

2.2 DIFFUSION-BASED AMORTIZED SBI

Modern amortized SBI methods leverage highly expressive generative models for multiple inference
tasks. For example, Simformer (Gloeckler et al., 2024) trains a diffusion model on samples from
the joint distribution p(θ,x) = ptrain(θ) p(x |θ). Simformer employs a transformer architecture to
model the score function sϕ(ξt, t,mask) of the noised joint variable ξt = (θt,xt) at diffusion time t.
The mask specifies which components of ξ are conditioned upon and which are to be generated. By
setting the mask appropriately (e.g., conditioning on x to generate θ), Simformer can sample from
various conditionals, including the posterior p(θ |x) and posterior predictive p(x⋆ |x). Crucially,
these learned conditionals are implicitly tied to the training prior ptrain(θ) used to generate the training
data—applying a different prior q(θ) would require retraining the diffusion model with the new prior.

3 PRIORGUIDE

PriorGuide offers a solution to take a diffusion-based amortized SBI model such as Sim-
former (Gloeckler et al., 2024), trained on a training prior ptrain(θ), and adapt it to a new target
prior q(θ) at inference time, without retraining. The objective is to perform standard SBI tasks
such as sampling from the posterior or posterior predictive distribution under the new prior, that is
q(θ |x) ∝ p(x |θ)q(θ) or q(x∗ |x), respectively. The method achieves this by adjusting the score
guidance during the diffusion sampling process. The key relationship for this adaptation is as follows:
Proposition 1. Let the posterior under the original prior be p(θ |x) ∝ ptrain(θ)p(x |θ), and let the
target posterior—the posterior under the new prior—be q(θ |x) ∝ q(θ)p(x |θ). Then, sampling
from q(θ |x) is equivalent to sampling from r(θ)p(θ |x) with r(θ) ≡ q(θ)

ptrain(θ)
the prior ratio.

Proof. We can rewrite the target posterior q(θ |x) as

q(θ |x) ∝ q(θ)p(x |θ) = q(θ)

ptrain(θ)
ptrain(θ)p(x |θ) ∝

q(θ)

ptrain(θ)
p(θ |x) = r(θ)p(θ |x),

where the prior ratio r(θ) ≡ q(θ)
ptrain(θ)

takes the role of an importance weighing function, analogous to
the correction applied in multi-round neural posterior estimation (Lueckmann et al., 2017).
Next, we focus on the task of sampling from the target posterior. First, we show in Section 3.1 how
introducing the new prior amounts to adding a guidance term to the diffusion process for posterior
sampling. In Section 3.2, we develop analytical approximations to make this tractable. Section 3.3
shows how we can provide guarantees using corrective Langevin steps. Finally, in Section 3.4 we
show how our results for posterior sampling readily extend to the posterior predictive case.

3.1 TARGET PRIOR AS GUIDANCE

Assume we have a diffusion model trained under ptrain(θ) to sample from p(θ |x) with learnt score
model s(θt, t,x). PriorGuide leverages the fact that we can relate the score of the target posterior
q(θ |x) to the original score. The marginal pdf at time t of the diffusion process for q(θ |x) is:

q(θt |x) ∝
∫

r(θ0)p(θ0 |x)p(θt |θ0) dθ0, (5)

which is written as an integral over θ0 by noting that q(θ0 |x) ∝ r(θ0)p(θ0 |x) and then we
propagated this to time t by convolution with the transition kernel p(θt |θ0). Thus, the score is:

∇θt
log q(θt |x) = ∇θt

log

∫
r(θ0)p(θ0 |x)p(θt |θ0,x) dθ0 (6)

= ∇θt
log

∫
r(θ0)p(θ0 |θt,x)p(θt |x) dθ0 (7)

= ∇θt
log p(θt |x) +∇θt

log

∫
r(θ0)p(θ0 |θt,x) dθ0 (8)

= s(θt, t,x)︸ ︷︷ ︸
original score

+∇θt
logEp(θ0 | θt,x)︸ ︷︷ ︸

reverse kernel

[
r(θ0)︸ ︷︷ ︸

prior ratio

]
, (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where in Eq. (7) we re-express the joint probability p(θ0 |x)p(θt |θ0,x) = p(θ0,θt |x) as
p(θ0 |θt,x)p(θt |x), which allows us to separate the contribution of the new prior guidance from
the original score model s(θt, t,x). In multiple steps we exploit the fact that multiplicative constants
inside the integral disappear under the score. In conclusion, Eq. (9) expresses the score of the target
(new) posterior as the old score, which we have, plus a guidance term which we can estimate.

Guided diffusion We can draw samples from the posterior distribution via the reverse diffusion
process using the modified score in Eq. (9). The first term is the trained score model and the second
term estimates how the new prior’s influence propagates to time t (guidance term). This is a common
way to implement a guidance function (Chung et al., 2023; Song et al., 2023a;b; Rissanen et al.,
2025), which now depends on the prior ratio. The core challenge lies in evaluating the expectation
over θ0, which is intractable and requires simulating the reverse SDE. To make this tractable, we
develop analytical approximations in the following section.

Ensuring prior coverage A crucial consideration for stable guidance is ensuring the new prior q(θ)
remains within regions adequately covered by the training prior ptrain(θ).2 If q(θ) assigns significant
mass to regions where ptrain(θ) has negligible support (i.e., is out-of-distribution or OOD; Lee et al.,
2018; Nalisnick et al., 2019), two related issues can arise: (a) in these regions, the learned score
s(θt, t,x) is likely a poor representation of the true score, having seen few training examples; and
(b) the prior ratio r(θ) = q(θ)/ptrain(θ) can become arbitrarily large or ill-defined, destabilizing the
guidance mechanism. Lack of coverage can be quantified using standard OOD metrics (Lee et al.,
2018; Nalisnick et al., 2019; Schmitt et al., 2023; Huang et al., 2024). Notably, the requirement that
q(θ) should be covered by ptrain(θ) is typically not restrictive since the common practice is to train
amortized models on broad training priors. This diagnostic check is detailed in Appendix A.4.

3.2 APPROXIMATING THE GUIDANCE FUNCTION

To approximate the guidance term in Eq. (9) efficiently while maintaining flexible test-time priors,
we introduce two approximations. Following recent work (Song et al., 2023a; Peng et al., 2024;
Rissanen et al., 2025), we model the reverse transition kernel as a Gaussian. We then introduce a
novel approach that represents r(θ) as a Gaussian mixture model. This yields an analytical solution
for the guidance, circumventing the issue of estimating the score of an expectation via Monte Carlo,
which would suffer from both bias and variance.

Reverse transition kernel approximation We first approximate the reverse transition kernel
p(θ0 |θt,x) as a multivariate Gaussian distribution:

p(θ0 |θt,x) ≈ N
(
θ0 |µ0|t(θt,x),Σ0|t

)
(10)

whose mean is obtained from the score function via Tweedie’s formula (Song & Ermon, 2019):

µ0|t(θt,x) = θt + σ(t)2∇θt log p(θt |x). (11)

This approximation is common in the guidance literature (Chung et al., 2023; Song et al., 2023a;
Peng et al., 2024; Rissanen et al., 2025; Finzi et al., 2023; Bao et al., 2022). For the covariance matrix
Σ0|t, we adopt a simple yet effective approximation inspired by (Song et al., 2023a; Ho et al., 2022):

Σ0|t =
σ(t)2

1 + σ(t)2
I. (12)

This approximation acts as a time-dependent scaling factor that naturally aligns with the diffusion
process—starting at the identity matrix when t = 1 and approaching zero as t → 0, effectively
increasing the precision of our prior guidance at smaller timesteps. This approximation becomes
exact for all t if the posterior under the original target distribution is p(θ0 |x) = N (θ0 |0, I).
Prior ratio approximation With the goal of obtaining a closed-form solution for the guidance, we
then approximate the prior ratio function r(θ) = q(θ)

p(θ) as a generalized mixture of Gaussians:

r(θ) ≈
K∑
i=1

wiN (θ |µi,Σi), r(θ) ≥ 0, (13)

2Within this coverage, q(θ) can differ substantially from ptrain(θ)—for instance, being more concentrated,
multimodal, or shifted—enabling meaningful prior adaptation.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where {wi,µi,Σi}Ki=1 represent the weights, means and covariance matrices of the mixture. Since
this represents a ratio rather than a distribution, the mixture weights need not be positive nor sum to
one, as long as the ratio remains non-negative, potentially enabling more expressive approximations
such as subtractive mixtures (Loconte et al., 2024). Notably, when p(θ) is uniform, r(θ) reduce
to q(θ), which can be directly specified as a Gaussian mixture. For the more general case of non-
uniform training distributions, obtaining the Gaussian mixture approximation for the ratio is a standard
function approximation task (Sorenson & Alspach, 1971), for which we provide a straightforward
gradient-based fitting procedure in Appendix A.2.

Guidance term Plugging in Eq. (10) and Eq. (13), the guidance from Eq. (9) becomes:

∇θt
logEp(θ0 | θt,x) [r(θ0)] ≈ ∇θt

log

∫ K∑
i=1

wiN (θ0 |µi,Σi)N (θ0 |µ0|t(θt,x),Σ0|t) dθ0.

(14)
This integral can be solved analytically (full derivation in Appendix B), yielding:

∇θt logEp(θ0 | θt,x)[r(θ0)] ≈
K∑
i=1

w̃i(µi − µ0|t(θt))
⊤Σ̃−1

i ∇θt
µ0|t(θt), (15)

where Σ̃i = Σi +Σ0|t and w̃i = wiN (µi |µ0|t(θt,x), Σ̃i)/
∑K

j=1 wjN (µj |µ0|t(θt,x), Σ̃j).

Finally, the PriorGuide update to the mean of the reverse kernel can be expressed concisely using
Tweedie’s formula, Eq. (11), and our derived guidance term, Eq. (15):

µnew
0|t (θt,x) = µ0|t(θt,x) + σ(t)2

K∑
i

w̃i(µi − µ0|t(θt,x))
⊤Σ̃−1

i ∇θtµ0|t(θt,x). (16)

This update intuitively combines the original prediction µ0|t(θt) based on the training prior with a
weighted sum of correction terms from our new prior. The correction magnitude is controlled by both
the noise schedule σ(t)2 and the distance between the mixture components and current prediction.

3.3 ASYMPTOTICALLY CORRECT SAMPLING WITH LANGEVIN DYNAMICS

The diffusion sampling process detailed in Section 3.2 is approximate due to the Gaussian approxima-
tion of the reverse transition kernel p(θ0 |θt,x). However, as stated in the following proposition, this
Gaussian approximation becomes correct on low noise levels, rendering our guidance term accurate.

Proposition 2. As t, σ(t) → 0, the approximation N (θ0 |θt + σ(t)2∇θt
log p(θt),

σ(t)2

1+σ(t)2 I)

converges to the true p(θ0 |θt), under mild regularity conditions on p(θ0).

We provide the exact statement and a proof in Appendix B. Close-by statements are well-known
in the diffusion literature (Finzi et al., 2023; Ho et al., 2022). Thus, the guidance approximation is
correct at low noise levels (up to the GMM prior ratio fit accuracy), and we can run accurate Langevin
dynamics MCMC sampling (Särkkä & Solin, 2019). To incorporate this with the regular diffusion
process, we run NL Langevin steps after each regular diffusion step, effectively transforming the
sampling into an annealed MCMC process that resembles methods used in compositional generation
(Geffner et al., 2023; Du et al., 2023) and early unconditional diffusion models (Song et al., 2021).

Thus, PriorGuide has two main hyperparameters: the number of diffusion steps N > 0, as per any
diffusion model, and the number of interleaved Langevin steps NL ≥ 0. For test-time sampling, the
total number of function evaluations (NFE), or forward passes of the trained network, is N×(NL+1).

3.4 PRIORGUIDE POSTERIOR PREDICTIVE SAMPLING

PriorGuide is readily applied to compute posterior predictive distributions as well under a new
prior. Starting from a diffusion model trained to generate samples from the joint posterior predictive
distribution, p(x⋆,θ |x), we can marginalize over θ to get the posterior predictive p(x⋆ |x). The
joint posterior predictive under the new prior becomes:

q(x⋆,θ |x) = q(x⋆ |θ,x)q(θ |x) ∝ q(x⋆ |θ,x)r(θ)p(θ |x) = r(θ)p(x⋆,θ |x),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

which results in a posterior predictive version of Eq. (9):

∇x⋆
t ,θt log q(x

⋆
t ,θt |x) = s(x⋆

t ,θt, t,x) +∇x⋆
t ,θt logEp(θ0 |x⋆

t ,θt,x) [r(θ0)] . (17)

The posterior predictive and posterior guidance terms differ only in the conditioning information for
the score and reverse transition kernel. Thus, everything presented earlier in this section applies to
this scenario, and the posterior predictive is obtained from the previous formulas with substitutions
p(θ0 |θt,x)→ p(θ0 | ξ⋆t ,x), µ0|t(θt,x)→ µ0|t(ξ

⋆
t ,x) and∇θ → ∇ξ⋆ , where ξ⋆t ≡ (x⋆

t ,θt).

4 EXPERIMENTS

We empirically evaluate PriorGuide across a range of SBI problems, focusing on its ability to
adapt to new priors at test time for posterior and posterior predictive inference. First, Section 4.1
provides an intuitive demonstration on a 2D problem. In Section 4.2, we evaluate posterior inference
on several SBI problems, comparing PriorGuide to existing methods that support test-time prior
adaptation. Section 4.3 examines PriorGuide’s performance on challenging posterior predictive tasks.
Finally, Section 4.4 studies the trade-off between computational cost and inference accuracy. Full
experimental details can be found in Appendix C, with Appendix D.2 reporting additional baseline
results. We also conduct two ablation studies, including an analysis of the sensitivity of PriorGuide
to the distance between training and test-time priors (Appendix D.3) and a study of the impact of the
number of GMM components used to approximate the prior ratio (Appendix D.4).

4.1 ILLUSTRATIVE EXAMPLE OF TEST-TIME PRIOR ADAPTATION

We illustrate PriorGuide’s capabilities on Two Moons, a two-dimensional SBI model with a bimodal
posterior (Greenberg et al., 2019). We train the diffusion model under a uniform prior ptrain(θ)
over [−1, 1]2, and test how PriorGuide handles a new prior q(θ) at test time. Fig. A1 shows that
PriorGuide incorporates the new prior, matching well the true Bayesian posterior under the new prior.

4.2 TEST-TIME PRIOR ADAPTATION FOR POSTERIOR INFERENCE

We evaluate PriorGuide’s posterior inference capabilities on six SBI problems (see Table A1), rang-
ing from established SBI benchmarks to real models from engineering and neuroscience: Two
Moons (Lueckmann et al., 2021); the Ornstein-Uhlenbeck Process (OUP; Uhlenbeck & Ornstein,
1930); the Turin model of radio propagation (Turin et al., 1972); the Gaussian Linear model (Lueck-
mann et al., 2021) and its high-dimensional variant; and the Bayesian Causal Inference model of
multisensory perception (BCI; Körding et al., 2007). Training priors ptrain(θ) for the base diffusion
model (Simformer; Gloeckler et al., 2024) were uniform or Gaussian; details in Appendix C.

For baselines, we consider the base Simformer (no prior adaptation) and the Amortized Conditioning
Engine (ACE; Chang et al., 2025), one of several approaches (Elsemüller et al., 2024; Whittle
et al., 2025) that amortizes test-time prior adaptation for posterior inference by pre-training on
a variety of possible (factorized) priors. PriorGuide is more flexible than ACE by not needing
pretraining on specific priors—instead, it modifies a diffusion-based amortized inference model at
runtime—, and can represent correlated and non-factorized priors. Detailed comparisons against
additional non-amortized methods—including classic algorithms (rejection sampling and sampling-
importance-resampling) and neural likelihood estimation (NLE; Papamakarios et al., 2019) with
MCMC—are provided in Appendix D.2. While often computationally expensive, these methods
serve as fundamental benchmarks for posterior sampling.

We consider three different families of target priors: mild, strong and mixture. Mild and strong
priors are defined as multivariate Gaussian distributions with means drawn from a uniform box
and diagonal covariance matrices, where the strong priors have smaller standard deviations; these
represent scenarios with varying degrees of available information. Mixture priors are defined as a
mixture distribution with two multivariate Gaussian components with the same setup as the strong
priors; this can represent situations with distinct, competing hypotheses about the parameter values.
For each prior family, we randomly generate ten possible prior parameterizations q(i)(θ), sample
ten parameter vectors θi,j ∼ q(i)(θ) from that prior, and simulate one observed dataset per θi,j ,
xi,j ∼ p(x |θi,j) to evaluate the methods. See Appendix C.3.1 for the full procedure.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Posterior inference (θ). Mean (standard dev.) over 5 independent training runs (10 random
target priors × 10 simulated datasets). Significantly best results (Wilcoxon signed-rank test) in bold.

qmild(θ) qstrong(θ) qmixture(θ)

RMSE C2ST MMTV RMSE C2ST MMTV RMSE C2ST MMTV

Two
Moons

Simformer 0.39(0.19) 0.56(0.05) 0.21(0.10) 0.39(0.20) 0.75(0.06) 0.54(0.13) 0.33(0.22) 0.68(0.08) 0.42(0.17)
ACE 0.34(0.16) 0.83(0.04) 0.23(0.07) 0.09(0.03) 0.79(0.05) 0.35(0.12) 0.16(0.15) 0.80(0.07) 0.34(0.14)

PriorGuide 0.37(0.16) 0.52(0.02) 0.11(0.04) 0.09(0.04) 0.52(0.02) 0.08(0.02) 0.20(0.17) 0.55(0.05) 0.16(0.11)

OUP
Simformer 0.18(0.07) 0.58(0.08) 0.18(0.11) 0.24(0.08) 0.73(0.08) 0.37(0.10) 0.23(0.09) 0.70(0.08) 0.33(0.11)

ACE 0.17(0.07) 0.58(0.03) 0.11(0.05) 0.14(0.04) 0.56(0.03) 0.12(0.05) 0.17(0.07) 0.62(0.08) 0.20(0.11)
PriorGuide 0.17(0.06) 0.52(0.02) 0.08(0.04) 0.13(0.04) 0.51(0.02) 0.06(0.02) 0.15(0.06) 0.51(0.02) 0.07(0.04)

Turin
Simformer 0.22(0.03) 0.80(0.03) 0.31(0.04) 0.23(0.03) 0.95(0.02) 0.56(0.07) 0.23(0.03) 0.94(0.02) 0.50(0.06)

ACE 0.21(0.02) 0.78(0.03) 0.27(0.04) 0.17(0.02) 0.92(0.04) 0.47(0.07) 0.19(0.03) 0.91(0.03) 0.44(0.06)
PriorGuide 0.14(0.02) 0.64(0.06) 0.13(0.03) 0.06(0.01) 0.55(0.04) 0.08(0.03) 0.13(0.06) 0.62(0.08) 0.19(0.12)

Gaussian
Linear 10D

Simformer 0.29(0.02) 0.89(0.02) 0.30(0.03) 0.31(0.03) 1.00(0.00) 0.65(0.03) 0.30(0.03) 0.99(0.00) 0.61(0.05)
ACE 0.22(0.02) 0.67(0.04) 0.12(0.02) 0.10(0.01) 0.78(0.06) 0.19(0.04) 0.19(0.05) 0.96(0.03) 0.40(0.11)

PriorGuide 0.31(0.08) 0.53(0.03) 0.05(0.01) 0.23(0.09) 0.54(0.05) 0.06(0.02) 0.26(0.09) 0.57(0.06) 0.12(0.06)

Gaussian
Linear 20D

Simformer 0.29(0.02) 0.95(0.01) 0.29(0.02) 0.30(0.02) 1.00(0.00) 0.64(0.02) 0.30(0.02) 1.00(0.00) 0.63(0.03)
ACE 0.22(0.02) 0.72(0.06) 0.11(0.02) 0.10(0.01) 0.82(0.05) 0.16(0.03) 0.20(0.04) 0.99(0.01) 0.44(0.09)

PriorGuide 0.27(0.07) 0.54(0.03) 0.05(0.01) 0.28(0.12) 0.58(0.03) 0.11(0.03) 0.28(0.10) 0.59(0.05) 0.14(0.06)

BCI
Simformer 0.79(0.13) 0.86(0.05) 0.35(0.09) 1.03(0.16) 0.98(0.01) 0.61(0.09) 0.99(0.24) 0.98(0.02) 0.63(0.09)

ACE 0.55(0.12) 0.84(0.08) 0.28(0.10) 0.31(0.13) 0.82(0.09) 0.29(0.12) 1.02(0.37) 0.97(0.02) 0.56(0.11)
PriorGuide 0.56(0.10) 0.88(0.06) 0.41(0.08) 0.25(0.04) 0.72(0.10) 0.21(0.12) 0.87(0.68) 0.78(0.13) 0.37(0.27)

0 12 24
Time step

0

5

10

Pr
oc

es
s v

al
ue

OUP

0 50 100
Time step

0.0

0.5

1.0

Po
w

er

Turin
Simformer
PriorGuide
ACE
Observed data
True data

Figure 2: Example posterior predictive distributions for OUP and Turin models (strong priors).

We measure each method’s performance using: 1) the root mean squared error (RMSE) between
the true parameter and the samples from the estimated posterior; 2) the classifier two-sample test
(C2ST) between the estimated posterior samples and ground-truth posterior samples; 3) the mean
marginal total variation distance (MMTV) between the estimated vs. ground-truth posterior samples.
For RMSE and MMTV, lower is better, while for C2ST, closer to 0.5 is better.

Results in Table 1 show that PriorGuide largely improves inference accuracy over the base Simformer
model in all scenarios, making use of the prior information provided at test time, and achieves leading
performance in most cases, especially when stronger prior beliefs (strong and mixture) are presented.

4.3 TEST-TIME PRIOR ADAPTATION FOR DATA PREDICTION

We next evaluate PriorGuide’s ability to perform posterior predictive inference under new target
priors, focusing on forecasting or retrocasting scenarios, as shown in Fig. 1. We use the OUP and
Turin models, both of which generate time series trajectories (Fig. 2). We employ the same procedure
and test-time prior setup (mild, strong, and mixture) from Section 4.2. For each target prior, we
condition the model on partial trajectories: in half of the cases, the first 30% of the trajectory, and for
the other half, the last 30%. The task is always to predict the unobserved 70% of the trajectory.3

We evaluate the performance of all methods using RMSE and the maximum mean discrepancy
(MMD) with an exponentiated quadratic kernel between the ground-truth trajectory xo and generated
posterior predictive samples. Fig. 2 shows how example posterior predictive distributions from
PriorGuide closely match the true data. Results in Table 2 show that PriorGuide can generate reliable
posterior predictive samples and achieve performance on par with or better than other methods.

4.4 TEST-TIME REFINEMENT VIA CORRECTIVE LANGEVIN DYNAMICS

PriorGuide supports improving the sampling quality by adding Langevin dynamic steps to the
diffusion process, at the cost of additional test-time compute. We examine posterior inference

3This task formulation prevents simple data interpolation as induced by sampling time indices randomly.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 2: Data prediction (x). Mean (standard dev.) over 5 independent training runs (10 random
target priors × 10 simulated datasets). Significantly best results (Wilcoxon signed-rank test) in bold.

qmild(θ) qstrong(θ) qmixture(θ)

RMSE MMDx RMSE MMDx RMSE MMDx

OUP
Simformer 0.32(0.10) 0.44(0.24) 0.39(0.11) 0.54(0.24) 0.34(0.11) 0.47(0.25)

ACE 0.26(0.08) 0.44(0.31) 0.22(0.06) 0.30(0.20) 0.24(0.10) 0.38(0.31)
PriorGuide 0.28(0.09) 0.45(0.28) 0.21(0.05) 0.29(0.17) 0.25(0.11) 0.34(0.22)

Turin
Simformer 0.14(0.01) 0.49(0.09) 0.14(0.01) 0.49(0.09) 0.14(0.01) 0.48(0.09)

ACE 0.16(0.03) 0.62(0.19) 0.16(0.03) 0.61(0.20) 0.16(0.03) 0.61(0.19)
PriorGuide 0.13(0.01) 0.47(0.08) 0.13(0.01) 0.46(0.07) 0.13(0.01) 0.46(0.09)

100 1000
Number of Function Evaluations

0.04

0.05

0.06

0.07

0.08

M
M

TV

(·) Langevin steps(·) Langevin steps

Diffusion Steps:
25
50
75

100
250
500

Pareto FrontierPareto Frontier

(0)

(2)

(2) (8)
(16)

(32)

(0)
(0)
(1)

(4)

(1)
(1)

(2)

(0)

(4)

(2)
(4)

(16)(8)

(4)(1)

(0)

(8)

(2)

(32)

(8)

(1)

(4)

(16)

(2)

(8)
(32)(4) (8)

(a) Posterior inference on OUP, strong priors

100 1000
Number of Function Evaluations

0.07

0.08

0.09

0.10

0.11

0.12

M
M

TV

(·) Langevin steps(·) Langevin steps

Diffusion Steps:
25
50

100

Pareto FrontierPareto Frontier

(0)

(2)
(4)

(8)
(8)

(0)

(1)
(2) (1)

(4)

(2)

(8)(4)

(b) Posterior inference on Turin, strong priors

Figure 3: Pareto frontiers with respect to number of function evaluations (NFEs) and MMTV on
posterior inference for OUP and Turin, with varying number of diffusion and Langevin steps.

accuracy—measured by MMTV, but similar results hold for other metrics—on the OUP and Turin
models as a function of the number of diffusion steps N and Langevin steps NL. These two can be
combined into a single computational cost metric, the number of function evaluations (NFEs), i.e.
calls to the score model. In Fig. 3, we visualize the relationship between MMTV, N and NL. The
Pareto front shows that the best posterior inference is achieved by combining moderate diffusion
steps (N ∼ 25–50) with increasing Langevin corrections if the NFE budget allows it.

5 DISCUSSION

PriorGuide enables amortized diffusion-based SBI models to adapt to new prior distributions without
retraining, an example of the test-time compute paradigm in extending pre-trained model capabilities
with dedicated computations at test time which repurpose diffusion guidance for Bayesian inference.

Limitations PriorGuide’s effectiveness relies on the new prior q(θ) having substantial overlap with
the training prior ptrain(θ); out-of-distribution (OOD) target priors can lead to inaccurate learned
scores and unstable guidance. The method also employs approximations—a Gaussian for the reverse
transition kernel p(θ0 |θt,x) and a Gaussian mixture model for the prior ratio function r(θ)—which
can introduce inaccuracies, particularly for complex prior ratio shapes. Furthermore, current guidance
calculations, involving matrix operations for the GMM components, may pose scalability challenges
for high-dimensional parameter spaces (dim(θ)≫ 10). PriorGuide sampling can be computationally
intensive: although our method avoids retraining the base model—a key benefit with expensive
simulators (e.g., Turin model)—the iterative guided diffusion, particularly with interleaved Langevin
refinement steps (NL), incurs a cost. The number of function evaluations (NFEs) increases with
diffusion (N) and Langevin steps, creating an accuracy-speed trade-off. This may render PriorGuide
less suited than fully amortized methods for applications requiring very rapid inference.

Conclusions The ability of PriorGuide to decouple expensive simulator runs (for training the base
model) from the specification of changing prior beliefs offers significant practical advantages. It
allows for post-hoc prior sensitivity analyses and facilitates the direct incorporation of domain expert
knowledge post-training, reducing the overall computational footprint in scientific workflows by
avoiding the need for repeated model retraining when assumptions change.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work uses only synthetic datasets, with no sensitive data involved. The methods are for research
purposes and pose no foreseeable ethical risks. We have followed the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

We provide an anonymized codebase in the supplementary materials. All experiments use synthetic
datasets. Algorithmic details are presented in Appendix A, and all experimental details are specified
in Appendix C.

REFERENCES

Luigi Acerbi. Variational Bayesian Monte Carlo. Advances in Neural Information Processing Systems
(NeurIPS), 31, 2018.

Luigi Acerbi, Kalpana Dokka, Dora E Angelaki, and Wei Ji Ma. Bayesian comparison of explicit
and implicit causal inference strategies in multisensory heading perception. PLoS computational
biology, 14(7):e1006110, 2018.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-DPM: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. In International Conference on Learning
Representations (ICLR), 2022.

Wessel P Bruinsma, Stratis Markou, James Requeima, Andrew YK Foong, Tom R Andersson, Anna
Vaughan, Anthony Buonomo, J Scott Hosking, and Richard E Turner. Autoregressive conditional
neural processes. In International Conference on Learning Representations (ICLR), 2023.

Gabriel Cardoso, Sylvain Le Corff, Eric Moulines, et al. Monte carlo guided denoising diffusion
models for bayesian linear inverse problems. In The Twelfth International Conference on Learning
Representations.

Paul E Chang, Nasrulloh Loka, Daolang Huang, Ulpu Remes, Samuel Kaski, and Luigi Acerbi.
Amortized probabilistic conditioning for optimization, simulation and inference. In Proceedings of
the International Conference on Artificial Intelligence and Statistics (AISTATS). PMLR, 2025.

Hyungjin Chung, Jeongsol Kim, Michael T Mccann, Marc L Klasky, and Jong Chul Ye. Diffusion
posterior sampling for general noisy inverse problems. In International Conference on Learning
Representations (ICLR), 2023.

Kyle Cranmer, Johann Brehmer, and Gilles Louppe. The frontier of simulation-based inference.
Proceedings of the National Academy of Sciences, 117(48):30055–30062, 2020.

Marco Del Negro and Frank Schorfheide. Forming priors for DSGE models (and how it affects the
assessment of nominal rigidities). Journal of Monetary Economics, 55(7):1191–1208, 2008.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In
Advances in Neural Information Processing Systems (NeurIPS), volume 34, pp. 8780–8794. Curran
Associates, Inc., 2021.

Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A
filtering perspective. In The Twelfth International Conference on Learning Representations, 2024.

Yilun Du, Conor Durkan, Robin Strudel, Joshua B Tenenbaum, Sander Dieleman, Rob Fergus, Jascha
Sohl-Dickstein, Arnaud Doucet, and Will Sussman Grathwohl. Reduce, reuse, recycle: Composi-
tional generation with energy-based diffusion models and mcmc. In International conference on
machine learning, pp. 8489–8510. PMLR, 2023.

Lasse Elsemüller, Hans Olischläger, Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, and
Stefan T Radev. Sensitivity-aware amortized Bayesian inference. Transactions on Machine
Learning Research (TMLR), 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Marc Anton Finzi, Anudhyan Boral, Andrew Gordon Wilson, Fei Sha, and Leonardo Zepeda-Núñez.
User-defined event sampling and uncertainty quantification in diffusion models for physical
dynamical systems. In Proceedings of the International Conference on Machine Learning (ICML),
pp. 10136–10152. PMLR, 2023.

Seth Flaxman, Swapnil Mishra, Axel Gandy, H Juliette T Unwin, Thomas A Mellan, Helen Coupland,
Charles Whittaker, Harrison Zhu, Tresnia Berah, Jeffrey W Eaton, et al. Estimating the effects of
non-pharmaceutical interventions on covid-19 in europe. Nature, 584(7820):257–261, 2020.

Daniel Foreman-Mackey. corner.py: Scatterplot matrices in python. The Journal of Open Source
Software, 1(2):24, jun 2016. doi: 10.21105/joss.00024. URL https://doi.org/10.21105/
joss.00024.

Marta Garnelo, Dan Rosenbaum, Chris J Maddison, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo J Rezende, and SM Ali Eslami. Conditional neural processes. In Proceedings
of the International Conference on Machine Learning (ICML), pp. 1704–1713, 2018.

Tomas Geffner, George Papamakarios, and Andriy Mnih. Compositional score modeling for
simulation-based inference. In International Conference on Machine Learning, pp. 11098–11116.
PMLR, 2023.

Andrew Gelman, John B Carlin, Hal S Stern, Aki Vehtari, and Donald B Rubin. Bayesian data
analysis, volume 3nd edition. Chapman and Hall/CRC, 2014.

Manuel Gloeckler, Michael Deistler, Christian Weilbach, Frank Wood, and Jakob H Macke. All-
in-one simulation-based inference. In Proceedings of the International Conference on Machine
Learning (ICML), pp. 15735–15766, 2024.

David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation for
likelihood-free inference. In Proceedings of the International Conference on Machine Learning
(ICML), pp. 2404–2414. PMLR, 2019.

Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free mcmc with amortized approxi-
mate ratio estimators. In International conference on machine learning, pp. 4239–4248. PMLR,
2020.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. NeurIPS 2021 Workshop on Deep
Generative Models and Downstream Applications., 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Advances in
Neural Information Processing Systems (NeurIPS), volume 33, pp. 6840–6851. Curran Associates,
Inc., 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J.
Fleet. Video diffusion models. In Advances in Neural Information Processing Systems (NeurIPS),
volume 35, pp. 18954–18967. Curran Associates, Inc., 2022.

Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
foundation model. Nature, 637(8045):319–326, 2025.

Daolang Huang, Ayush Bharti, Amauri Souza, Luigi Acerbi, and Samuel Kaski. Learning robust
statistics for simulation-based inference under model misspecification. In Advances in Neural
Information Processing Systems (NeurIPS), volume 36. Curran Associates, Inc., 2024.

Bobby Huggins, Chengkun Li, Marlon Tobaben, Mikko J Aarnos, and Luigi Acerbi. PyVBMC:
Efficient Bayesian inference in Python. Journal of Open Source Software, 8(86):5428, 2023.

Aapo Hyvärinen and Peter Dayan. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(4), 2005.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems (NeurIPS),
volume 35, pp. 26565–26577. Curran Associates, Inc., 2022.

11

https://doi.org/10.21105/joss.00024
https://doi.org/10.21105/joss.00024

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Konrad P Körding, Ulrik Beierholm, Wei Ji Ma, Steven Quartz, Joshua B Tenenbaum, and Ladan
Shams. Causal inference in multisensory perception. PLoS One, 2(9):e943, 2007.

Cheuk Kit Lee, Paul Jeha, Jes Frellsen, Pietro Lio, Michael Samuel Albergo, and Francisco Var-
gas. Debiasing guidance for discrete diffusion with sequential monte carlo. arXiv preprint
arXiv:2502.06079, 2025.

Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
out-of-distribution samples and adversarial attacks. In Advances in Neural Information Processing
Systems (NeurIPS), volume 31. Curran Associates, Inc., 2018.

Julia Linhart, Gabriel Victorino Cardoso, Alexandre Gramfort, Sylvain Le Corff, and Pedro LC
Rodrigues. Diffusion posterior sampling for simulation-based inference in tall data settings. arXiv
preprint arXiv:2404.07593, 2024.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In International Conference on Learning Representations
(ICLR), 2023.

Lorenzo Loconte, Aleksanteri M. Sladek, Stefan Mengel, Martin Trapp, Arno Solin, Nicolas Gillis,
and Antonio Vergari. Subtractive mixture models via squaring: Representation and learning. In
International Conference on Learning Representations (ICLR), 2024.

David Lopez-Paz and Maxime Oquab. Revisiting classifier two-sample tests. In International
Conference on Learning Representations (ICLR), 2017.

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher,
and Jakob H Macke. Flexible statistical inference for mechanistic models of neural dynamics. In
Advances in Neural Information Processing Systems (NeurIPS), volume 30. Curran Associates,
Inc., 2017.

Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H Macke. Likelihood-
free inference with emulator networks. In Symposium on Advances in Approximate Bayesian
Inference, pp. 32–53. PMLR, 2019.

Jan-Matthis Lueckmann, Jan Boelts, David Greenberg, Pedro Goncalves, and Jakob Macke. Bench-
marking simulation-based inference. In Proceedings of the International Conference on Artificial
Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research, pp. 343–351.
PMLR, 2021.

Sarthak Mittal, Niels Leif Bracher, Guillaume Lajoie, Priyank Jaini, and Marcus Brubaker. Amortized
in-context Bayesian posterior estimation. arXiv preprint arXiv:2502.06601, 2025.

Samuel Müller, Noah Hollmann, Sebastian Pineda Arango, Josif Grabocka, and Frank Hutter.
Transformers can do Bayesian inference. In International Conference on Learning Representations
(ICLR), 2022.

Eric Nalisnick, Akihiro Matsukawa, Yee Whye Teh, Dilan Gorur, and Balaji Lakshminarayanan. Do
deep generative models know what they don’t know? In International Conference on Learning
Representations (ICLR), 2019.

Tung Nguyen and Aditya Grover. Transformer Neural Processes: Uncertainty-aware meta learning
via sequence modeling. In Proceedings of the International Conference on Machine Learning
(ICML), pp. 123–134. PMLR, 2022.

George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with Bayesian
conditional density estimation. Advances in Neural Information Processing Systems (NeurIPS),
29, 2016.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-
free inference with autoregressive flows. In Proceedings of the 22nd International Conference on
Artificial Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research, pp.
837–848. PMLR, 2019.

Troels Pedersen. Stochastic multipath model for the in-room radio channel based on room electro-
magnetics. IEEE Transactions on Antennas and Propagation, 67(4):2591–2603, 2019.

Xinyu Peng, Ziyang Zheng, Wenrui Dai, Nuoqian Xiao, Chenglin Li, Junni Zou, and Hongkai
Xiong. Improving diffusion models for inverse problems using optimal posterior covariance. In
International Conference on Learning Representations (ICLR), 2024.

Stefan T Radev, Ulf K Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. Bayesflow:
Learning complex stochastic models with invertible neural networks. IEEE Transactions on Neural
Networks and Learning Systems, 33(4):1452–1466, 2020.

Severi Rissanen, Markus Heinonen, and Arno Solin. Free hunch: Denoiser covariance estimation for
diffusion models without extra costs. In International Conference on Learning Representations
(ICLR), 2025.

Christian P Robert. The Bayesian Choice: From Decision-theoretic Foundations to Computational
Implementation, volume 2nd edition. Springer, 2007.

Christian P. Robert and George Casella. Monte Carlo Statistical Methods. Springer Texts in Statistics.
Springer, New York, 2nd edition, 2004. ISBN 0-387-21239-6.

Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations. Cambridge University Press,
2019.

Marvin Schmitt, Paul-Christian Bürkner, Ullrich Köthe, and Stefan T Radev. Detecting model
misspecification in amortized Bayesian inference with neural networks. In DAGM German
Conference on Pattern Recognition, pp. 541–557. Springer, 2023.

Marvin Schmitt, Valentin Pratz, Ullrich Köthe, Paul-Christian Bürkner, and Stefan T. Radev. Consis-
tency models for scalable and fast simulation-based inference. In Advances in Neural Information
Processing Systems (NeurIPS), 2024.

Louis Sharrock, Jack Simons, Song Liu, and Mark Beaumont. Sequential neural score estima-
tion: Likelihood-free inference with conditional score based diffusion models. In International
Conference on Machine Learning, pp. 44565–44602. PMLR, 2024.

Steven C Sherwood, Mark J Webb, James D Annan, Kyle C Armour, Piers M Forster, Julia C
Hargreaves, Gabriele Hegerl, Stephen A Klein, Kate D Marvel, Eelco J Rohling, et al. An
assessment of earth’s climate sensitivity using multiple lines of evidence. Reviews of Geophysics,
58(4):e2019RG000678, 2020.

Francesco Silvestrin, Chengkun Li, and Luigi Acerbi. Stacking variational Bayesian Monte Carlo.
arXiv preprint arXiv:2504.05004, 2025.

Marta Skreta, Tara Akhound-Sadegh, Viktor Ohanesian, Roberto Bondesan, Alan Aspuru-Guzik, Ar-
naud Doucet, Rob Brekelmans, Alexander Tong, and Kirill Neklyudov. Feynman-kac correctors in
diffusion: Annealing, guidance, and product of experts. In Forty-second International Conference
on Machine Learning.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling LLM test-time compute optimally
can be more effective than scaling model parameters. In International Conference on Learning
Representations (ICLR), 2025.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In Proceedings of the International Conference
on Machine Learning (ICML), pp. 2256–2265. PMLR, 2015.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion
models for inverse problems. In International Conference on Learning Representations (ICLR),
2023a.

Jiaming Song, Qinsheng Zhang, Hongxu Yin, Morteza Mardani, Ming-Yu Liu, Jan Kautz, Yongxin
Chen, and Arash Vahdat. Loss-guided diffusion models for plug-and-play controllable generation.
In Proceedings of the International Conference on Machine Learning (ICML), pp. 32483–32498.
PMLR, 2023b.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. In International
Conference on Learning Representations (ICLR). ICLR, May 2021.

H.W. Sorenson and D.L. Alspach. Recursive Bayesian estimation using Gaussian sums. Automatica,
7(4):465–479, 1971. ISSN 0005-1098.

Sean Talts, Michael Betancourt, Daniel Simpson, Aki Vehtari, and Andrew Gelman. Validating
Bayesian inference algorithms with simulation-based calibration. arXiv preprint arXiv:1804.06788,
2018.

Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel Kaski, and Michael U Gutmann. Likelihood-
free inference by ratio estimation. Bayesian Analysis, 17(1):1–31, 2022.

James Thornton, Louis Béthune, Ruixiang ZHANG, Arwen Bradley, Preetum Nakkiran, and
Shuangfei Zhai. Composition and control with distilled energy diffusion models and sequen-
tial monte carlo. In The 28th International Conference on Artificial Intelligence and Statistics.

George L Turin, Fred D Clapp, Tom L Johnston, Stephen B Fine, and Dan Lavry. A statistical model
of urban multipath propagation. IEEE Transactions on Vehicular Technology, 21(1):1–9, 1972.

George E Uhlenbeck and Leonard S Ornstein. On the theory of the brownian motion. Physical
Review, 36(5):823, 1930.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems (NeurIPS), volume 30. Curran Associates, Inc., 2017.

Aki Vehtari, Daniel Simpson, Andrew Gelman, Yuling Yao, and Jonah Gabry. Pareto smoothed
importance sampling. Journal of Machine Learning Research, 25(72):1–58, 2024.

Julius Vetter, Manuel Gloeckler, Daniel Gedon, and Jakob H Macke. Effortless, simulation-efficient
Bayesian inference using tabular foundation models. arXiv preprint arXiv:2504.17660, 2025.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural Computa-
tion, 23(7):1661–1674, 2011.

George Whittle, Juliusz Ziomek, Jacob Rawling, and Michael A Osborne. Distribution trans-
formers: Fast approximate Bayesian inference with on-the-fly prior adaptation. arXiv preprint
arXiv:2502.02463, 2025.

Frank Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin, 1(6):80–83, 1945.

Jonas Wildberger, Maximilian Dax, Simon Buchholz, Stephen Green, Jakob H Macke, and Bernhard
Schölkopf. Flow matching for scalable simulation-based inference. In Advances in Neural
Information Processing Systems (NeurIPS), volume 36. Curran Associates, Inc., 2024.

Luhuan Wu, Brian Trippe, Christian Naesseth, David Blei, and John P Cunningham. Practical and
asymptotically exact conditional sampling in diffusion models. Advances in Neural Information
Processing Systems, 36:31372–31403, 2023.

Wang Yuyan, Michael Evans, and David J Nott. Robust Bayesian methods using amortized simulation-
based inference. arXiv preprint arXiv:2504.09475, 2025.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Appendix
The full appendix is organized as follows:

• Appendix A provides an extended description of related work and our method.

• Appendix B presents mathematical proofs and derivations.

• Appendix C describes our experimental and statistical procedures.

• Appendix D shows supplementary experimental results and analyses.

• Appendix E details computational and software resources.

A METHOD DETAILS

In this section we start with an extended discussion of related work (Appendix A.1). We then detail
the main PriorGuide algorithm (Appendix A.2), the Langevin dynamics step size (Appendix A.3),
and the prior coverage diagnostics (Appendix A.4).

A.1 EXTENDED RELATED WORK

Section 2 in the main paper situates PriorGuide within the broader context of Simulation-Based
Inference (SBI) and diffusion models. Here we explore those connections in more detail.

Amortized SBI and prior specification The output of standard amortized SBI techniques, such as
Neural Posterior Estimation (NPE) (Greenberg et al., 2019; Lueckmann et al., 2017; Papamakarios &
Murray, 2016), is tied to the fixed prior, ptrain(θ), used during their training phase. Modifying this
prior traditionally requires retraining the entire amortized model, which can be prohibitive given
expensive simulators. PriorGuide offers a solution specifically for diffusion-based amortized models,
enabling adaptation to a new prior q(θ) by modifying the sampling process itself, thus bypassing the
need for retraining. Other SBI techniques such as Neural Likelihood Estimation (NLE) (Papamakarios
et al., 2019; Lueckmann et al., 2019) and Neural Ratio Estimation (NRE) (Hermans et al., 2020;
Thomas et al., 2022) do not amortize posterior inference, in that they only approximate the likelihood
(or likelihood ratio), and traditional approximate inference techniques such as MCMC or variational
inference need to be run to obtain a posterior by combining the surrogate likelihood (or likelihood
ratio) with a prior.

Diffusion models for SBI PriorGuide enhances versatile diffusion-based SBI models like Sim-
former (Gloeckler et al., 2024), which we use as our base model. As described in the main text,
Simformer leverages a transformer-based diffusion model over the joint space of parameters and
data, p(θ,x), allowing it to provide amortized samples from arbitrary conditionals (e.g., posteriors,
likelihoods) once trained, though this training inherently uses a fixed prior. Other diffusion-based
SBI methods include techniques to combine learned scores from posteriors of individual observations
to handle multiple data sources (Geffner et al., 2023; Linhart et al., 2024) and methods that focus
on efficient (sequential) training of posterior score models (Sharrock et al., 2024). Since these
approaches ultimately yield score functions for posteriors (conditioned on their respective training
priors), PriorGuide’s test-time score guidance mechanism could also adapt these trained models to
new prior beliefs post-hoc.

Amortized prior adaptation A few recent amortized methods achieve prior flexibility by training
over a meta-prior—a distribution or predefined set of possible prior specifications—to learn how to
incorporate different prior information at runtime. For instance, the Amortized Conditioning Engine
(ACE; Chang et al., 2025) allows users to specify factorized priors at runtime by encoding each
one-dimensional prior density as a normalized histogram over a predefined grid; its transformer
architecture is trained to process these specific histogram-based prior encodings alongside observed
data. Similarly, the Distribution Transformer (DT; Whittle et al., 2025) learns a direct mapping from
a prior, itself represented as a Gaussian mixture model (GMM), to a GMM posterior, using attention
mechanisms to transform the prior components based on the data. Sensitivity-aware SBI (Elsemüller
et al., 2024) focuses on providing efficient sensitivity analysis to various modeling choices, including
different priors, represented by a discrete set of possible alternative prior specifications. All of
these methods enable prior adaptation by relying on their pre-training across a chosen meta-prior.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

PriorGuide, conversely, does not amortize prior adaptation, implementing it as a test-time computation
that can flexibly handle new target priors.

Prior misspecification Effective PriorGuide use requires the target prior q(θ) to overlap substantially
with the training prior ptrain(θ) to prevent the trained score model from operating out-of-distribution
(OOD). This concern for reliable inference echoes broader SBI efforts that address simulator misspeci-
fication and its impact on inference reliability using techniques like MMD or robust statistics (Schmitt
et al., 2023; Huang et al., 2024). Similarly, Yuyan et al. (2025) explore robust SBI with classes of
priors and assess potential prior-likelihood conflicts. While this paper proposes a simple diagnostics
to ensure the new prior is compatible with the learned score model, other techniques from the SBI
literature could be used.

Score-based guidance PriorGuide’s core mechanism is a novel application of score-based guidance.
While the general idea of guiding diffusion models is well-established for inverse problems and
conditional generation (Dhariwal & Nichol, 2021; Ho & Salimans, 2022; Chung et al., 2023; Song
et al., 2023a;b), PriorGuide’s specific contribution lies in deriving and applying a guidance term for
the prior ratio, akin to an importance ratio term. Moreover, its analytical approximation using a
GMM for the ratio is tailored to this prior adaptation task. This contrasts with other guidance methods
that often focus on incorporating information from a known forward (observation) model (e.g., linear
operators imaging; Chung et al., 2023; Finzi et al., 2023) or specific loss functions (Song et al.,
2023b). Further, the literature either tends to focus on the analytic case where the guidance function is
Gaussian (Song et al., 2023a; Peng et al., 2024; Rissanen et al., 2025) or entirely forego an analytical
integral while keeping the Gaussian reverse approximation (Song et al., 2023b). Our approach strikes
a middle ground between analytic tractability and flexible, non-Gaussian guidance functions. The
approximation of the reverse transition kernel and its covariance also adapts approaches seen in works
like (Song et al., 2023a; Ho et al., 2022).

A number of works has considered Monte Carlo corrections to approximate inference time mod-
ifications to diffusion models, such as guidance. Wu et al. (2023); Dou & Song (2024); Cardoso
et al.; Thornton et al.; Lee et al. (2025); Skreta et al. propose variants of Sequential Monte Carlo
for asymptotically exact modifications to the generative distribution. Du et al. (2023); Geffner
et al. (2023) use MCMC corrections for compositional generation. Early work on using Langevin
dynamics in unconditional score based generative models includes Song & Ermon (2019) and the
predictor-corrector sampler from Song et al. (2021).

A.2 PRIORGUIDE INFERENCE ALGORITHM

Algorithm 1 details the PriorGuide posterior inference algorithm and Algorithm 2 contains the
posterior predictive inference version.

FITGMM subroutine The FITGMM(p(θ), q(θ), K) subroutine takes as input two distributions,
p(θ) and q(θ), and fits a generalized Gaussian mixture model (GMM) with K components to
approximate the ratio r(θ) = q(θ)/p(θ), as described in Section 3 of the main text. This is a standard
GMM but coefficients are not constrained to sum to one. The subroutine returns the approximated
ratio as the weights, means, and covariance matrices of the mixture. This is implemented as a
stochastic optimization procedure over the parameters of the generalized mixture by minimizing the
L2 error between the GMM and the ratio (see Appendix C.3.2).

A.3 LANGEVIN DYNAMICS STEP SIZE

Since Langevin dynamics becomes exact only at small step sizes, a schedule for the step size is an
important detail of the PriorGuide algorithm. At larger noise levels σ(t), the distribution p(zt) is
more spread out and thus we can take larger steps, while a smaller step size is necessary for lower
σ(t) levels. We take inspiration from the similarity of the Euler-Maruyama reverse SDE sampler and
the Langevin dynamics algorithm (see, e.g., (Karras et al., 2022)), and calibrate the step size such
that the noise added in the sampling step is proportional to the noise added in the Euler-Maruyama
step when moving to the next noise level. In particular, the update rule for Langevin dynamics at
noise level σ(t) is

zt ← zt + δ(t)∇z log p(zt) +
√
2δ(t)ε, ε ∼ N (0, I), δ(t) = η

σ̇(t)σ(t)∆t

2
, (A1)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1 PriorGuide posterior inference

1: Input: Trained diffusion-based inference modelM, training prior ptrain(θ), test-time prior q(θ),
number of mixture components K for the prior ratio, min diffusion time Tmin, max diffusion
time Tmax, generation schedule nonlinearity parameter ρ, number of diffusion steps N , Langevin
ratio η, number of Langevin steps NL, conditioning information x.

2: Output: Posterior samples θTmin
at time Tmin.

3: {r(θ) | {wi,µi,Σi}Ki } ← FITGMM(ptrain(θ), q(θ),K), with r(θ) ≈ q(θ)
ptrain(θ)

4: tN , . . . , t0 ← Linspace(1, 0, N)ρ · (Tmax − Tmin) + Tmin

5: θtN ∼ N (0, σ(Tmax)
2I)

6: for j = N → 1 do
7: t = tj ,∆t = tj−1 − tj
8: for ℓ = 1→ NL do
9: Compute original score s(θt, t,x) usingM

10: Compute prior guidance sp ← ∇θt logEp(θ0 | θt,x)[r(θ0)] with {wi,µi,Σi}Ki
11: Compute guided score sL ← s(θt, t,x) + sp
12: Langevin dynamics step θt ← θt + η σ̇(t)σ(t)

2 sL +
√
ησ̇(t)σ(t)ε, ε ∼ N (0, I)

13: end for
14: Compute original score s(θt, t,x) usingM
15: Compute prior guidance sp ← ∇θt

logEp(θ0 | θt,x)[r(θ0)] with {wi,µi,Σi}Ki
16: Compute new guided score s̃← s(θt, t,x) + sp
17: Euler-Maruyama step θtj−1

← θt + 2σ̇(t)σ(t)∆ts̃+
√
2σ̇(t)σ(t)∆tε, ε ∼ N (0, I)

18: end for
19: return θt0

Algorithm 2 PriorGuide posterior predictive inference

1: Input: Trained diffusion-based inference modelM, training prior ptrain(θ), test-time prior q(θ),
number of mixture components K for the prior ratio, min diffusion time Tmin, max diffusion
time Tmax, generation schedule nonlinearity parameter ρ, number of diffusion steps N , Langevin
ratio η, number of Langevin steps NL, conditioning information x.

2: Output: Posterior predictive samples x⋆
Tmin

at time Tmin.
3: {r(θ) | {wi,µi,Σi}Ki } ← FITGMM(ptrain(θ), q(θ),K), with r(θ) ≈ q(θ)

ptrain(θ)

4: tN , . . . , t0 ← Linspace(1, 0, N)ρ · (Tmax − Tmin) + Tmin

5: x⋆
tN ∼ N (0, σ(Tmax)

2I)

6: θ⋆
tN ∼ N (0, σ(Tmax)

2I)
7: ξtN = (θtN ,x⋆

tN)
8: for j = N → 1 do
9: t = tj ,∆t = tj−1 − tj

10: for ℓ = 1→ NL do
11: Compute original score s(ξt, t,x) usingM
12: Compute prior guidance sp ← ∇ξt

logEp(θ0 | ξt,x)[r(θ0)] with {wi,µi,Σi}Ki
13: Compute guided score sL ← s(ξt, t,x) + sp
14: Langevin dynamics step ξt ← ξt + η σ̇(t)σ(t)

2 sL +
√
ησ̇(t)σ(t)ε, ε ∼ N (0, I)

15: end for
16: Compute original score s(ξt, t,x) usingM
17: Compute prior guidance sp ← ∇ξt

logEp(θ0 | ξt,x)[r(θ0)] with {wi,µi,Σi}Ki
18: Compute new guided score s̃← s(ξt, t,x) + sp
19: Euler-Maruyama step ξtj−1 ← ξt + 2σ̇(t)σ(t)∆ts̃+

√
2σ̇(t)σ(t)∆tε, ε ∼ N (0, I)

20: end for
21: return x⋆

t0

where ∆t is the step size for the next step in the reverse SDE, and η is a scaling parameter. η = 1
corresponds to the same noise level as the reverse Euler-Maruyama step. The overall scaling η can be

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

tuned to lower values for improved accuracy of the MCMC procedure, at the cost of slower mixing.
We use η = 0.5 for all our experiments.

A.4 OOD DIAGNOSTIC FOR TEST-TIME PRIORS

We assess out-of-distribution (OOD) behavior using a Monte Carlo sample-based diagnostic that
estimates the mass of the test-time prior q(θ) falling into the α-quantile of the training prior ptrain(θ).
We outline the procedures as follows:

• First, we compute the log-density threshold t under ptrain.

– Draw Mp samples {θ(i)}Mp

i=1 ∼ ptrain.
– Compute their log-densities ℓi = log ptrain(θ

(i)).
– Let t be the empirical α-quantile of {ℓi}, i.e. t = quantile

(
{ℓi}, α

)
.

– By construction, we have Prptrain
[log ptrain(θ) < t] ≈ α.

• Then, we estimate the OOD fraction under q.

– Draw Mq samples {ϕ(j)}Mq

j=1 ∼ q.

– Evaluate each under p: ℓ′j = log p(ϕ(j)).

– Count the fraction r̂ with ℓ′j < t: r̂ = 1
Mq

∑Mq

j=1

[
ℓ′j < t

]
.

– If r̂ > α, declare q OOD.

Across all simulators, we employ a quantile threshold of α = 0.001, chosen as 10/Ntrain, where
Ntrain is the number of simulated parameters used to train the amortized method. We verify that each
newly constructed prior (procedures detailed in Appendix C.3.1) successfully passes the above OOD
diagnostics.

Validity of the prior ratio For the prior ratio r(θ) = q(θ)/ptrain(θ) to be well-defined, we require
ptrain(θ) = 0→ q(θ) = 0, i.e. the target prior cannot have nonzero density where the training prior
has zero density. This is not fully addressed by the OOD diagnostic, which looks for substantial
overlap of prior mass. To avoid pointwise issues with zero-density regions (e.g., when ptrain(θ) is
a bounded uniform distribution), we further truncate the tails of q(θ), setting its density to zero if
ptrain(θ) = 0. Note that this is done after the OOD check, which means that this adjustment only
affects the far tails of q(θ), with negligible influence on inference performance.

B THEORETICAL RESULTS

We provide in this section full derivations and proofs of our theoretical results. This includes the
derivation of the guidance term (Appendix B.1) and extended statements and proofs for Proposition 1
(Appendix B.2) and Proposition 2 (Appendix B.3) from the main text.

B.1 DERIVATION OF THE GUIDANCE TERM

Here we provide a detailed derivation for the guidance term, Eq. 15 from the main text. We start from
Eq. 14, which writes the guidance as the score of the expectation of the prior ratio under the reverse
transition kernel, which are approximated by a Gaussian mixture model and a Gaussian, respectively:

∇θt
logEp(θ0 | θt,x)[r(θ0)] ≈ ∇θt

log

∫ K∑
i=1

wiN (θ0|µi,Σi)N (θ0|µ0|t(θt),Σ0|t)dθ0, (A2)

= ∇θt
log

K∑
i=1

wi

∫
N (µi|θ0,Σi)N (θ0|µ0|t(θt),Σ0|t)dθ0. (A3)

The step above uses the symmetry property of Gaussian distributions: if a ∼ N (µ,Σ) then µ ∼
N (a,Σ). This allows us to swap θ0 and µi in the first Gaussian. Furthermore, using the standard
result for the convolution of two Gaussian distributions:∫

N (x|µ1,Σ1)N (µ1|µ2,Σ2)dµ1 = N (x|µ2,Σ1 +Σ2), (A4)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

we get

∇θt logEp(θ0 | θt,x)[r(θ0)] ≈ ∇θt
log

K∑
i=1

wiN (µi|µ0|t(θt),Σi +Σ0|t). (A5)

For notational convenience, we define Σ̃i = Σi +Σ0|t continuing with the derivation:

= ∇θt
log

K∑
i=1

wiN (µi|µ0|t(θt), Σ̃i), (A6)

=
∇θt

∑K
i=1 wiN (µi|µ0|t(θt), Σ̃i)∑K

j=1 wjN (µj |µ0|t(θt), Σ̃j)
(chain rule), (A7)

=

∑K
i=1 wiN (µi|µ0|t(θt), Σ̃i)∇θt

logN (µi|µ0|t(θt), Σ̃i)∑K
j=1 wjN (µj |µ0|t(θt), Σ̃j)

(since∇f = f∇ log f), (A8)

=

∑K
i=1 wiN (µi|µ0|t(θt), Σ̃i)∇θt

(
− 1

2 (µ0|t(θt)− µi)
⊤Σ̃−1

i (µ0|t(θt)− µi)
)

∑K
j=1 wjN (µj |µ0|t(θt), Σ̃j),

(A9)

=

∑K
i=1 wiN (µi|µ0|t(θt), Σ̃i)(µi − µ0|t(θt))

TΣ̃−1
i ∇θtµ0|t(θt)∑K

j=1 wjN (µj |µ0|t(θt), Σ̃j)
. (A10)

Finally, with the following definitions:

Σ̃i = Σi +Σ0|t (A11)

w̃i =
wiN (µi |µ0|t(θt,x), Σ̃i)∑K

j=1 wjN (µj |µ0|t(θt,x), Σ̃j)
(A12)

we obtain

∇θt
logEp(θ0 | θt,x)[r(θ0)] ≈

K∑
i=1

w̃i(µi − µ0|t(θt))
⊤Σ̃−1

i ∇θt
µ0|t(θt), (A13)

which is Eq. 15 in the main text.

B.2 PROOF OF PROPOSITION 1

This proposition is fully derived in the main paper, we only include here a natural assumption to
guarantee the existence of the ratio (see also Appendix A.4).

Let r(θ) ≡ q(θ)
ptrain(θ)

the prior ratio. We assume that ptrain(θ) = 0→ q(θ) = 0 almost everywhere, i.e.
q(θ) needs to be zero outside the support of ptrain(θ), except for a set of measure zero.

Proposition (Proposition 1). Let the posterior under the original prior be p(θ |x) ∝ ptrain(θ)p(x |θ),
and let the target posterior—the posterior under the new prior—be q(θ |x) ∝ q(θ)p(x |θ). Then,
sampling from q(θ |x) is equivalent to sampling from r(θ)p(θ |x) with r(θ) the prior ratio.

Proof. We can rewrite the target posterior q(θ |x) as

q(θ |x) ∝ q(θ)p(x |θ) = q(θ)

ptrain(θ)
ptrain(θ)p(x |θ) ∝

q(θ)

ptrain(θ)
p(θ |x) = r(θ)p(θ |x),

where the prior ratio r(θ) ≡ q(θ)
ptrain(θ)

takes the role of an importance weighing function, and the above
equality applies almost everywhere.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B.3 PROOF OF PROPOSITION 2

We provide here the extended statement, with explicit regularity conditions, and then the full proof.

Proposition (Proposition 2). As t, σ(t) → 0, the approximation N (θ0 |θt +

σ(t)2∇θt
log p(θt),

σ(t)2

1+σ(t)2 I) converges to the true p(θ0 |θt), assuming that p(θ0) is two
times differentiable everywhere and∇2

θ0
p(θ0) is bounded.

Notation To be more precise about the different distributions involved, let us denote p0(θ0) as
the marginal distribution of the clean data, pt(θt) the marginal distribution at noise level σ(t),
pt | 0(θt |θ0) = N (θt |θ0, σ(t)2I) and p0 | t(θ0 |θt) =

pt | 0(θt | θ0)p0(θ0)

pt(θt)
. Let us also drop the

dependence t from the notation σ(t), and simply refer to σ, since we do not have to refer to
derivatives of σ(t) in the proof.

Proof. First, note that as σ → 0, σ2

1+σ2 = σ2 +O(σ4) via a Taylor expansion. In other words, our
denoising variance is σ2I up to fourth-order or higher corrections in σ, which become negligible at
low σ. We can thus first show the result for N (θ0 |θt + σ(t)2∇θt log p(θt), σ

2I), and at the end we
will see that it will trivially transfer to the σ2

1+σ2 I case as well.

Rescaled coordinates Set

s =
θ0 − θt

σ
, ϕd(s) = (2π)−d/2 exp

(
−1

2
||s||2

)
(A14)

so that we can express the forward noising distribution as

pt | 0(θt |θ0) = σ−dϕd(s) (A15)

Taylor expansion for the true posterior density Since p0(θ0) is two times differentiable every-
where, the multivariate Taylor theorem gives

p0(θt + σs) = p0(θt) + σ∇θtp0(θt)
⊤s+

σ2

2
s⊤∇2

b(s)p0(b(s))s (A16)

where b(s) ∈ {ts : 0 ≤ t ≤ 1} is some point between θt and θ0, chosen separately for each s.

Hence, the unnormalised posterior density can be written as

σ−dϕd(s)

[
p0(θt) + σ∇θt

p0(θt)
⊤s+

σ2

2
s⊤∇2

b(s)p0(b(s))s

]
(A17)

The normalizing constant can be expanded as

pt(θt) =

∫
σ−dϕd(s)

[
p0(θt) + σ∇θtp0(θt)

⊤s+
σ2

2
s⊤∇2

b(s)p0(b(s))s

]
σdds (A18)

= p0(θt) + σ

∫
ϕd(s)∇θtp0(θt)

⊤sds︸ ︷︷ ︸
=0

+σ2 1

2

∫
ϕd(s)s

⊤∇2
b(s)p0(b(s))sds︸ ︷︷ ︸

=C1(θt)

(A19)

= p0(θt) + σ2C1(θt) (A20)

where the odd-powered term in the Taylor expansion goes to zero due to the symmetry of the integral.
The integral in the second-order term is finite since we assume∇2

b(s)p0(b(s)) is finite everywhere.

The reciprocal of the normalizing constant is

1

p0(θt) + σ2C1(θt)
=

1

p0(θt)
− 1

p0(θt)2
σ2C1(θt) +O(σ4) (A21)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

obtained with the Taylor series 1
a+ε = 1

a −
1
a2 ε + O(ε2). Thus, the normalised posterior can be

expressed as

σ−dϕd(s)
[
p0(θt) + σ∇θt

p0(θt)
⊤s+ σ2

2 s⊤∇2
b(s)p0(b(s))s

]
p0(θt) + σ2C1(θt)

(A22)

= σ−dϕd(s)

[
p0(θt) + σ∇θt

p0(θt)
⊤s+

σ2

2
s⊤∇2

b(s)p0(b(s))s

](
1

p0(θt)
− 1

p0(θt)2
σ2C1(θt) +O(σ4)

)
(A23)

= σ−dϕd(s)

[
1 + σ

∇θtp0(θt)
⊤

p0(θt)
s+ σ2

(
1

2
s⊤∇2

b(s)p0(b(s))s−
1

p0(θt)
C1(θt)

)
+O(σ3)

]
(A24)

= σ−dϕd(s)
[
1 + σ∇θt log p0(θt)

⊤s+ σ2C2(s,θt) +O(σ3)
]
. (A25)

Here, we abstract away C2(s,θt), since later in the proof we only care about the fact that it has a
finite integral

∫
|ϕd(s)C2(s,θt)|ds.

Taylor expansion for our approximate posterior density Note that the score ∇θt
log pt(θt) =

∇θtpt(θt)

pt(θt
, and we can reuse our earlier calculation:

∇θt
log pt(θt) =

∇θt
p0(θt) + σ2∇θt

C1(θt)

p0(θt) + σ2C1(θt)
(A26)

=
(
∇θtp0(θt) + σ2∇θtC1(θt)

)(1

p0(θt)
− 1

p0(θt)2
σ2C1(θt) +O(σ4)

)
(A27)

=
∇θt

p0(θt)

p0(θt
+ σ2(∇θt

C1(θt)−
∇θt

p0(θt)

p0(θt)2
C1(θt)) +O(σ4) (A28)

= ∇θt log p0(θt) +O(σ2). (A29)
This yields a formula for our posterior mean:

θt + σ2∇θt log pt(θt) = θt + σ2∇θt log p0(θt) +O(σ4). (A30)
Now, define:

q(θ0) = N (θ0 |θt + σ2∇θt log p(θt), σ
2I) (A31)

= σ−dϕd(s− σ∇θt log p(θt)), s =
θ0 − θt

σ
. (A32)

Then we can Taylor expand our posterior approximation in terms of the shift s→ s−σ∇θt
log p(θt):

q(σs+ θt) = σ−dϕd(s)[1 + σ∇θt log pt(θt)
⊤s+

1

2
σ2∇θt log pt(θt)

⊤(ss⊤ − I)∇θt log pt(θt) +O(σ3)]

(A33)

= σ−dϕd(s)[1 + σ∇θt
log p0(θt)

⊤s+
1

2
σ2∇θt

log p0(θt)
⊤(ss⊤ − I)∇θt

log p0(θt) +O(σ3)]

(A34)

= σ−dϕd(s)[1 + σ∇θt
log p0(θt)

⊤s+ σ2C3(s,θt) +O(σ3)]. (A35)
where in the second line we used Eq. (A29) and ignored resulting terms that are higher order than σ2.

Total variation bound

The total variation distance is

∥p0 | t − q∥TV =
1

2

∫
Rd

|p0 | t(θ0)− q(θ0)| dθ0. (A36)

Now, plugging in Eq. (A25) and Eq. (A35), we get (note dθ0 = σdds)
1

2

∫ ∣∣σ−dϕd(s)
[
1 + σ∇θt log p0(θt)

⊤s+ σ2C2(s,θt) +O(σ3)
]

(A37)

− σ−dϕd(s)[1 + σ∇θt
log p0(θt)

⊤s+ σ2C3(s,θt) +O(σ3)]
∣∣σdds (A38)

=
1

2

∫ ∣∣σ2ϕd(s)(C2(s,θt)− C3(s,θt) +O(σ3))
∣∣ds ≤ σ2C4(θt) +O(σ3). (A39)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Thus, the total variation distance converges at a rate σ2. To see the final step more clearly, we can
bound the integral with the triangle inequality:∫ ∣∣σ2ϕd(s)(C2(s,θt)− C3(s,θt) +O(σ3))

∣∣ds (A40)

≤ σ2

∫ ∣∣ϕd(s)C2(s,θt)
∣∣ds+ σ2

∫ ∣∣ϕd(s)C3(s,θt)
∣∣ds+O(σ3). (A41)

(A42)

Recall the definitions of C3, C2 and C1:

C1(θt) =
1

2

∫
ϕd(s)s

⊤∇2
b(s)p0(b(s))sds (A43)

C2(s,θt) =

(
1

2
s⊤∇2

b(s)p0(b(s))s−
1

p0(θt)
C1(θt)

)
(A44)

1

2
C3(s,θt) = ∇θt

log p0(θt)
⊤(ss⊤ − I)∇θt

log p0(θt). (A45)

We can see that the terms depending on σ2 are finite, due to the assumption that the Hessian of p0 is
finite everywhere. Thus,

C4(θt) =

∫ ∣∣ϕd(s)(C2(s,θt)
∣∣ds+ ∫ ∣∣ϕd(s)(C3(s,θt)

∣∣ds. (A46)

Finally, we note that σ2

1+σ2 → σ2 as σ → 0. Thus, the the convergence result here applies to the case

where the posterior covariance approximation is σ2

1+σ2 I.

C EXPERIMENTAL DETAILS

This section provides extended methodological and experimental details. We describe the simulator
models used in our experiments (Appendix C.1), the training setup for each method (Appendix C.2),
the testing procedure (Appendix C.3), and the statistical methodology for evaluation (Appendix C.4).

C.1 SIMULATORS

Two Moons (Greenberg et al., 2019) is a widely used benchmark in SBI, designed as a two-
dimensional task that presents a posterior distribution with both global (bimodality) and local
(crescent shape) structure. For a given parameter vector θ = (θ1, θ2) ∈ R2, the simulator generates
data x ∈ R2 according to the following process:

a ∼ U(−π/2, π/2),
r ∼ N (0.1, 0.012),

p = (r cos(a) + 0.25, r sin(a)),

xT = p+

(
−|θ1 + θ2|√

2
,
−θ1 + θ2√

2

)
.

The training prior we use is ptrain(θ) = U([−1, 1]2). To obtain ground-truth posterior samples, we
perform rejection sampling using the new prior as a proposal distribution. Rejection sampling relies
on finding a constant M such that f(θ) ≤Mq(θ), where f(θ) = p(x |θ) · q(θ) is the target density
and q(θ) is the proposal density. In this Two Moons model, we set M to be the upper bound of the
likelihood p(x |θ) which is achieved at r = 0.1.

Ornstein-Uhlenbeck Process (OUP) (Uhlenbeck & Ornstein, 1930) is a well-established stochastic
process frequently applied in financial mathematics and evolutionary biology for modeling mean-
reverting dynamics (Uhlenbeck & Ornstein, 1930). The model is defined as:

yt+1 = yt +∆yt, ∆yt = θ1 [exp(θ2)− yt] ∆t+ 0.5w, for t = 1, . . . , T,

where we set T = 25, ∆t = 0.2, and initialize x0 = 10. The noise term follows a Gaussian
distribution, w ∼ N (0,∆t). The original prior is a uniform distribution, U([0, 2] × [−2, 2]), over

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

the latent parameters θ = (θ1, θ2). For numerical convenience, we reparameterize the parameter
space by mapping the original parameters to [−1, 1]2, yielding ptrain(θ) = U([−1, 1]2). We perform
inference in this normalized parameter space and later rescale the sampled parameters to the original
space during simulation. The simulated data are also normalized using standardization. We use
normalized parameter-data pairs (θ̃, x̃) to train all amortized inference models.

Since the OUP likelihood is implicit, obtaining ground-truth posterior samples is intractable—the
kind of problem that requires simulation-based inference. As a practical surrogate, we adopt a neural
posterior estimation (NPE) model (Greenberg et al., 2019)—trained on one million simulations
(compared to the 10,000 simulations used for our diffusion-based inference model)—to serve as
ground truth. We then applied simulation-based calibration (SBC) (Talts et al., 2018) to verify that
the NPE model remained well-calibrated across virtually all observation seeds for each new prior.

Turin (Turin et al., 1972) is a widely used time-series model for simulating radio wave propagation
(Turin et al., 1972; Pedersen, 2019). This model generates high-dimensional, complex-valued time-
series data and is governed by four key parameters: G0 determines the reverberation gain, T controls
the reverberation time, λ0 defines the arrival rate of the point process, and σ2

N represents the noise
variance.

The model assumes a frequency bandwidth of B = 0.5 GHz and simulates the transfer function Hk

at Ns = 101 evenly spaced frequency points. The observed transfer function at the k-th frequency
point, Yk, is defined as:

Yk = Hk +Wk, k = 0, 1, . . . , Ns − 1,

where Wk represents additive zero-mean complex Gaussian noise with circular symmetry and variance
σ2
W . The transfer function Hk is expressed as:

Hk =

Npoints∑
l=1

αl exp(−j2π∆fkτl),

where the time delays τl are sampled from a homogeneous Poisson point process with rate λ0, and
the complex gains αl are modeled as independent zero-mean complex Gaussian random variables.
The conditional variance of the gains is given by:

E[|αl|2|τl] =
G0 exp(−τl/T)

λ0
.

To obtain the time-domain signal ỹ(t), an inverse Fourier transform is applied:

ỹ(t) =
1

Ns

Ns−1∑
k=0

Yk exp(j2πk∆ft),

where ∆f = B/(Ns − 1) represents the frequency spacing. Finally, the real-valued output is com-
puted by taking the absolute square of the complex signal and applying a logarithmic transformation:

y(t) = 10 log10(|ỹ(t)|2).

In Turin, the true parameter bounds are: G0 ∈ [10−9, 10−8], T ∈ [10−9, 10−8], λ0 ∈ [107, 5×
109], σ2

N ∈ [10−10, 10−9]. We follow a similar normalization setup as in OUP. First, we define the
training prior as ptrain(θ) = U([0, 1]4) and rescale the sampled parameters θ̃ to the original space
using the true parameter bounds. Then, we normalize the simulator outputs using standardization and
use normalized (θ̃, x̃) pairs to train all inference models.

The Turin likelihood is also implicit. Therefore, we use a similar setup to the OUP case by training
an NPE model with one million simulations and validating its reliability using SBC.

Gaussian Linear (Lueckmann et al., 2021) is a standard SBI benchmark task used to infer the
mean of a multivariate Gaussian distribution when the covariance is fixed. In this model, both the
parameters θ and the data x are 10-dimensional vectors. The simulator is defined as:

x|θ ∼ N (θ,Σs),

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

where Σs = 0.1 · I10 with I10 is the 10-dimensional identity matrix. The training prior for the
parameters θ is a 10-dimensional Gaussian distribution ptrain(θ) = N (0, 0.1 · I10).
We also consider a 20-dimensional variant of the Gaussian Linear model, which follows the same
fundamental setup as its 10-dimensional counterpart. In this version, both the parameters θ and the
data x are 20-dimensional vectors.

In all experiments, the test-time priors are constructed as Gaussian or mixture distributions with
Gaussian components. Consequently, each new prior has a closed-form posterior, which we use as
the ground-truth posterior.

Bayesian Causal Inference model (BCI) is a common model in computational cognitive neuro-
science to represent how the brain determines whether multiple sensory stimuli originate from a
common source (Körding et al., 2007). This BCI model simulates an observer’s responses in an
audiovisual localization task. The observer is presented with auditory (SA) and visual (SV) spatial
cues—expressed as horizontal location in degrees of visual angle—and must report the perceived
location of one of them. The model assumes the observer performs Bayesian causal inference to
determine whether the cues originate from a common source or independent sources, and then makes
a model-averaged estimate of the target stimulus location (Körding et al., 2007; Acerbi et al., 2018).

In this BCI model we consider five underlying physical parameters: standard deviation of visual
sensory noise (σV), standard deviation of auditory sensory noise (σA), standard deviation of the
Gaussian spatial prior over source locations (σs), prior probability that auditory and visual cues
share a common cause (psame), and standard deviation of motor noise in the response (σm). We
assume the mean of the Gaussian spatial prior µp is set to 0 (central tendency), and a small lapse
rate λ = 0.02, the probability of making a random response. Additionally, a fixed auditory rescaling
factor ρA = 4/3 is applied to auditory stimulus locations to account for audiovisual adaptation in
this experiment.

The simulation process for each trial i (out of 98 fixed trials) proceeds as follows:

1. Given true stimulus locations SV,i and SA,i, and the modality to be reported (visual or
auditory).

2. Sensory measurements xV,i and xA,i are drawn:

xV,i ∼ N (SV,i, σ
2
V)

xA,i ∼ N (ρASA,i, σ
2
A)

3. The observer combines these measurements with a spatial prior p(s) = N (s;µp, σ
2
s).

4. Causal inference is performed to compute the posterior probability of a common source,
P (C = 1|xV,i, xA,i), using the prior psame and the likelihoods of the measurements under
common-cause (C = 1) and independent-causes (C = 2) hypotheses.

5. A model-averaged estimate of the relevant source location, ŝi, is computed:

ŝi = P (C = 1|xV,i, xA,i)·µC=1(xV,i, xA,i)+(1− P (C = 1|xV,i, xA,i))·µC=2(xV,i, xA,i, report_modalityi),

where µC=1 and µC=2 are the posterior mean estimates under the respective causal hypothe-
ses.

6. A noisy motor response R′
i is generated: R′

i ∼ N (ŝi, σ
2
m).

7. With probability λ, the response R′
i is replaced by a lapse response drawn uniformly from

U(−45◦, 45◦). The final response is Ri.

The output data x is a 98-dimensional vector (R1, . . . , R98). These responses correspond
to a fixed experimental design: a 7 × 7 Cartesian grid of stimulus locations SV , SA ∈
{−15,−10,−5, 0, 5, 10, 15}◦. For each of the 49 unique (SV , SA) pairs, one visual-report trial
and one auditory-report trial are included, totaling 98 trials.

The model’s five parameters are internally represented in an unconstrained space: σV , σA, σs, σm are
parameterized by their logarithms, and psame by its logit, denoted by the vector θ:

θ = (θ1, θ2, θ3, θ4, θ5) = (log σV , log σA, log σs, log σm, logit psame). (A47)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table A1: Characteristics of the simulator models.

Model dim(θ) dim(x) ptrain(θ)

Two-Moons 2 2 Uniform
OUP 2 25 Uniform
Turin 4 101 Uniform
Gaussian Linear 10D 10 10 Gaussian
Gaussian Linear 20D 20 20 Gaussian
BCI 5 98 Gaussian

The original prior over these 5 unconstrained parameters follows a broad multivariate Gaussian
distribution informed by the literature, with independent components:

θ1, θ2 ∼ N (log 2, 0.352), θ3 ∼ N (log 5, 0.52), θ4 ∼ N (log 0.3, 0.352), θ5 ∼ N (0, 12). (A48)

For numerical convenience, we reparameterize the parameter space by defining the training prior
as a 5-dimensional Gaussian distribution ptrain(θ) = N (0, I5). Similar to the setup in OUP and
Turin, we rescale the sampled parameters to the original space during simulation and normalize the
simulated data using standardization. We use normalized parameter-data pairs (θ̃, x̃) to train all
amortized inference models.

The likelihood function for this model involves integrating over latent sensory measurements and is
computationally intensive. To obtain ground-truth posterior samples for BCI, we run the Variational
Bayesian Monte Carlo (VBMC) algorithm (Acerbi, 2018; Huggins et al., 2023). Using VBMC’s
internal diagnostics, we retain ten reliable variational posteriors and merge them via posterior stacking
(Silvestrin et al., 2025) to obtain the final ground-truth posterior.

Table A1 summarizes the key properties of the simulator models in our experiments.

C.2 TRAINING SETUP

For all methods that require training, we use 10,000 simulated datasets from the simulator to train
the model. Note that PriorGuide is a test-time technique that does not require separate training. For
PriorGuide, we use the same base diffusion model as Simformer. Details on the model configurations
and dataset setups are provided below.

Simformer We adopt a similar setup as the Simformer paper Gloeckler et al. (2024), using the
Variance Exploding Stochastic Differential Equation (VE-SDE) technique Song et al. (2021). It is
defined by

fVE−SDE(x, t) = 0, gVE−SDE(t) = σmin

(
σmax

σmin

)t√
2 logσmax

σmin
. (4)

Throughout all experiments, we set σmax = 15, σmin = 10−4, and run the process over the time
interval t ∈ [10−5, 1]. We use a transformer configuration similar to Simformer Gloeckler et al.
(2024), with 6 layers, 4 heads (size 10), a token dimension 40, and a 128-dimensional Gaussian
Fourier embedding for diffusion time. MLP blocks use a hidden dimension of 150. In all experiments,
the condition mask was sampled per batch by uniformly selecting one of the following: joint, posterior,
likelihood, or two random masks. Random masks were drawn from Bernoulli distributions with
p = 0.3 and p = 0.7, respectively. We use the same setup for all of the simulators.

We train all the Simformer models using a batch size of 1,000 and an initial learning rate of 0.001. A
linear learning rate schedule is used to decay the learning rate to 1× 10−6, starting at half of the total
number of training steps and completing by the final step. The optimizer combines adaptive gradient
clipping with a maximum norm of 10.0 and the Adam optimizer Kingma & Ba (2015). Early stopping
is applied based on validation loss, with the number of training steps constrained to a minimum of
5,000 and a maximum of 100,000 steps.

Amortized Conditioning Engine (ACE) ACE (Chang et al., 2025) is a type of Neural Process
(NP) (Garnelo et al., 2018; Nguyen & Grover, 2022; Müller et al., 2022), a family of models that
learn to perform amortized inference by conditioning on a context set of input-output pairs to predict

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

outputs for a target set of inputs. Differently from other neural processes which focus on pure data
prediction, ACE is trained to condition on, and predict, both data and latent variables (e.g., model
parameters in the case of SBI). During training, ACE was provided with simulator parameters that
were randomly assigned to either the context or target set, so the model learns to generalize across
varying observational conditions. For each experiment, a random number of data points Nd were
sampled for the context set, with the remaining used as targets. Specifically, Nd ∼ U(1, 2) for
Two-Moons, Nd ∼ U(7, 25) for OUP, Nd ∼ U(30, 101) for Turin, Nd ∼ U(3, 10) for Gaussian
Linear, and Nd ∼ U(29, 98) for BCI.

Furthermore, ACE can be trained with a meta-prior (a distribution of priors) over latent variables,
where each prior is expressed as a factorized histogram, affording amortized test-time prior adaptation.
For the ACE baseline, we use the same prior generation process as the original ACE paper (Chang
et al., 2025), which constructs diverse priors through a hierarchical method over a bounded range.
For each latent variable θl, the prior is sampled either from a mixture of Gaussians (with 80%
probability) or a uniform distribution. When using a Gaussian mixture, the number of components
K is drawn from a geometric distribution with parameter q = 0.5, and one of three configurations
is chosen at random: shared means with varying standard deviations, varying means with shared
standard deviations, or both means and standard deviations varying. Means and standard deviations
are sampled from predefined uniform distributions based on the latent variable’s range, and mixture
weights are drawn from a Dirichlet distribution with α0 = 1. The resulting mixture is discretized
into a histogram over Nbins = 100 uniform bins by evaluating CDF differences at bin edges and
normalizing. If a uniform prior is selected, equal probability is assigned to all bins.

For the network setup, we use a configuration similar to that of the ACE paper Chang et al. (2025).
The ACE model has a 64-dimensional embedding, 6 transformer layers, 4 attention heads, and MLP
blocks with hidden dimension 128. The output head includes 20 MLP components with hidden
dimension 128. Training was carried out in 5×104 steps with batch size 32 and learning rate 5×10−4

using the Adam optimizer with the cosine annealing scheduler.

C.3 TESTING PROCEDURE

C.3.1 TEST-TIME PRIOR GENERATIONS

We provide additional details about generating test-time priors q in different scenarios. All the
generated test-time priors have passed the OOD diagnostic detailed in Appendix A.4 with a quantile
threshold α = 0.001.

Training prior definition For uniform training priors, let ptrain be defined as a uniform distribution
over a D-dimensional hypercube

∏D
i=1[ai, bi]. We define si = (bi − ai)/

√
12 for each dimension

(the standard deviation of a uniform distribution over the range). For Gaussian training priors, ptrain
is a multivariate normal distribution with diagonal covariance, with mean mi and standard deviation
si along each dimension.

Target priors We first consider the cases where the test-time prior q is a multivariate Gaussian
distribution q(θ) = N (θ |µ,σ2I). The procedure to generate a test prior is as follows, separately
for each dimension 1 ≤ i ≤ D:

• We first set the standard deviation σmild
i = 0.5 ·si and σstrong

i = 0.2 ·si for mildly informative
and strongly informative priors, respectively.

• We define the sampling lower (Li) and upper (Ui) bounds for the mean of the target prior
based on the class of training prior:

Li =

{
ai + 3σi (Uniform)
mi − 3si (Gaussian) , Ui =

{
bi − 3σi (Uniform)
mi + 3si (Gaussian) . (A49)

• With the bounds chosen, we sample the target prior mean for each coordinate, µi, from
µi ∼ U(Li, Ui). (A50)

This procedure ensures that the target prior is well-overlapping with the training prior.

Finally, we define

qmild(θ) = N (θ |µ,Σmild), qstrong(θ) = N (θ |µ,Σstrong) (A51)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

where Σmild = diag
[
σmild
1

2
, . . . , σmild

D
2
]

and Σstrong = diag
[
σstrong
1

2
, . . . , σstrong

D

2
]
.

We then consider q as a mixture Gaussian distribution with two components

qmixture(θ) = πN (θ |µ1,Σ
strong) + (1− π)N (θ |µ2,Σ

strong). (A52)

We sample the mean vector for each component using the above procedures with strongly informative
standard deviations. The mixture weights are sampled from π ∼ U(0.2, 0.8).

C.3.2 POSTERIOR INFERENCE

For each prior type—mild, strong and mixture—we construct 10 priors qi following the procedure
detailed in Appendix C.3.1. For each target prior qi, we draw 10 parameter vectors θij . For each
parameter vector θij , we simulate one observed dataset, yielding a pair (θij ,xij). For a given tested
method, we perform posterior inference by drawing 1,000 posterior samples θ using the method
conditioned on each xij , repeating this evaluation across 5 independent training runs. Consequently,
each amortized inference model produces 5×10×10 = 500 collections of 1,000 θ posterior samples
for each prior type.

Remark on prior specification By sampling the ground-truth parameters θij from the target
prior qi, we are ensuring that these priors are informative or well-specified, i.e., the prior used for
inference matches the true data generation process (Gelman et al., 2014). This is not a requirement
of our method—PriorGuide can steer sampling towards any user-specified prior at test time (under
the assumptions mentioned in the paper), steering the inference process towards the true Bayesian
posterior under the given prior. Notably, a well-specified prior (or any reasonably specified prior) will
on average improve inference accuracy, while a badly specified prior might hinder performance—this
is a general property of Bayesian inference, which is reflected in PriorGuide. To avoid potential
confusion, in this paper we focused on well-specified priors.

Simformer With a trained Simformer modelM, we perform the same generation procedure as
(Gloeckler et al., 2024), with a number of diffusion steps N = 500.

PriorGuide Following Algorithm 1, we use the same set of core hyperparameters across all
simulators—Two-Moons, OUP, Turin, Gaussian Linear, and BCI—unless otherwise noted. These
include a trained diffusion-based inference modelM (same as Simformer above), a training prior
distribution ptrain(θ), and a test-time prior distribution q(θ). The diffusion process is controlled by a
minimum time Tmin = 1× 10−10, a maximum time Tmax = 1.0, a generation schedule nonlinearity
parameter ρ = 2 and a Langevin ratio η = 0.5. For Two Moons, OUP, Turin and Gaussian Linear,
we set the number of diffusion steps as N = 25 and the number of Langevin steps as NL = 8. For
BCI, we set N = 250 and NL = 0. In our experiments, we found that PriorGuide works better on
BCI with a relatively large number of diffusion steps. The test-time compute across all simulators
resides in the regime of 102 NFEs (number of function evaluations, i.e. calls to the score model).

As detailed in Section 3 of the main text, we approximate the prior ratio r(θ) by fitting a Gaussian
mixture model (cf. FITGMM in Algorithm 1). For Two Moons, OUP and Turin, we do not need to fit
a GMM since the training prior ptrain is a uniform distribution, thus r(θ) = q(θ). For this reason,
we can directly use the target prior q(θ) as the GMM parameterization for r(θ). For Gaussian Linear
and BCI, which have a Gaussian training prior, we fit a GMM with K = 20 components to the ratio
r(θ) by optimizing the L2 loss with gradient descent. For numerical convenience, we parameterize
the GMM components with diagonal covariance matrices.4 The optimization is carried out in 1× 106

steps with batch size 1,000 and learning rate 0.01 using the Adam optimizer (Kingma & Ba, 2015).
We verified both via the L2 loss and via visualizations that the GMM fits achieved a satisfactory ratio
approximation.

Amortized conditioning engine In ACE, first, we convert the test-time prior q(θ) generated in
Appendix C.3.1 into a binned histogram distribution using the same steps discussed in Appendix C.2.
Using the offline true data we have already sampled, we then condition on the full data (x) in the
context set and predict the parameters θ independently to obtain the posterior. Using this posterior
distribution, which is a Gaussian Mixture Model (GMM), we then sample θ according to the number
of posterior samples specified earlier. Note that ACE only supports factorized priors, so the mixture

4Note that PriorGuide also supports full covariance matrix representations for the GMM components of r(θ).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

prior q cannot be specified correctly within ACE (i.e., ACE will represent the prior as a product of
marginals).

C.3.3 POSTERIOR PREDICTIVE INFERENCE

In the data prediction task (posterior predictive), with equal probability we condition on the first 30%
or the last 30% of the values in x, and then predict the remaining portion of x. Note that in this task,
we do not condition on θ. We draw 100 samples from the data predictions for evaluation.

Simformer and PriorGuide We use the same hyperparameter settings and a similar procedure as
in the posterior inference setup (Appendix C.3.2). In this case, the diffusion inference model will
condition on the selected 30% values of x to generate the remaining 70%. The steps for performing
posterior predictive inference with PriorGuide are outlined in Algorithm 2.

Amortized conditioning engine For ACE, similar to the posterior inference setup, we first convert
the prior into a binned histogram distribution. We then place the portion of x to be conditioned on
into the context set. Data prediction is performed autoregressively by first randomly permuting the
order of the target data points. This procedure is adapted from Bruinsma et al. (2023), as ACE is a
neural process-based method. Consistent with the findings in Bruinsma et al. (2023), we observed
that using random ordering for the autoregressive procedure yields the most robust performance.

C.3.4 PARETO FRONTIERS OF TEST-TIME COMPUTE ASSIGNMENTS

PriorGuide supports improving the sampling quality by adding Langevin dynamic steps to the
diffusion process, at the cost of additional test-time compute. With the same testing setup described
above (Appendix C.3.2), we applied PriorGuide to posterior inference in the OUP and Turin simulators
to investigate the influence of additional Langevin dynamic steps. We measure the test-time compute
(including diffusion steps N and Langevin steps NL) in the number of function evaluations (NFEs),
i.e. calls to the score model, recalling the basic relation NFE = N×(NL+1). We tested the posterior
inference performance in the regime up to 103 NFEs and presented Pareto-efficient assignments of
test-time compute.

C.4 STATISTICAL METHODOLOGY

C.4.1 EVALUATION METRICS

Root Mean Squared Error (RMSE) measures the average magnitude of the errors between the
predicted posterior samples and the ground-truth. A lower RMSE indicates a more concentrated
prediction around the true parameters or data points. The RMSE is defined as

RMSE =

√√√√ 1

LNpost

L∑
l=1

Npost∑
j=1

(
yl − ŷl,j

)2
, (A53)

where L is the feature dimension, Npost is the number of posterior samples, yi,l is the ground-truth
and ŷl,j is the prediction for the l-th feature (data point or parameter) and j-th posterior sample. In
posterior inference experiments, we compute the RMSE between Npost = 1, 000 samples and the
ground-truth parameters. Conversely, in data prediction experiments, we compute the RMSE between
Npost = 100 predicted data points and the ground-truth.

Classifier Two-Sample Test (C2ST; (Lopez-Paz & Oquab, 2017)) is a method to assess whether two
sets of samples originate from the same distribution. In our context, it is used to compare the estimated
posterior samples against samples from a reference posterior distribution. In our experiments, a
random forest classifier is trained to distinguish between samples from the two distributions. An
accuracy close to 0.5 suggests that the two distributions are indistinguishable.

Mean Marginal Total Variation Distance (MMTV) quantifies the dissimilarity between two multi-
variate distributions by considering their marginal distributions, defined as

MMTV(p, q) =

D∑
d=1

∫ ∞

−∞

∣∣pMd (xd)− qMd (xd)
∣∣

2D
dxd, (A54)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where pMd and qMd denote the marginal densities of p and q along the d-th dimension. An MMTV
metric of 0.2 indicates that, on average across dimensions, the posterior marginals have an 80%
overlap, often indicated as a desirable threshold for an approximate posterior (Acerbi, 2018).

Maximum Mean Discrepancy (MMD) measures the distance between the mean embeddings of the
distributions in a reproducing kernel Hilbert space. For our evaluations, we employ the MMD with
with an exponentiated quadratic kernel with a lengthscale of 1.

C.4.2 SIGNIFICANCE TESTING

To assess the statistical significance of the differences in performance between methods, we employ
the Wilcoxon signed-rank test (Wilcoxon, 1945). In our experimental comparisons, we use this test
to determine if the observed differences in metric scores between PriorGuide and baseline methods
are statistically significant across multiple benchmark problems or datasets. The test evaluates the
null hypothesis that the median difference between paired observations is zero, providing a p-value to
indicate the significance of any observed deviation from this null hypothesis. We consider a result to
be significantly different if the p-value is below 0.05.

D ADDITIONAL EXPERIMENTAL RESULTS

We present here additional experimental results. First, in Appendix D.1, we provide a visual example
of test-time adaptation to supplement the discussion in Section 4.1. In Appendix D.2, we introduce
additional baselines, including rejection sampling, sampling-importance-resampling and neural
likelihood estimation (NLE; Papamakarios et al., 2019) with MCMC, to provide a broader comparison.
We also present a study on the model’s sensitivity to the distance between training and test-time priors
(Appendix D.3) and conduct an ablation study on the GMM prior ratio approximation (Appendix D.4).
Furthermore, we include example posterior visualizations for the BCI model (Appendix D.5) and an
analysis of training and test wall-clock time costs for Simformer and PriorGuide (Appendix D.6).

D.1 ILLUSTRATION OF TEST-TIME PRIOR ADAPTATION ON TWO MOONS

This section provides the figure referenced in Section 4.1, illustrating the core capability of PriorGuide.
We use the Two Moons model to provide an intuitive visualization of test-time prior adaptation.
The base diffusion model is trained under a uniform prior ptrain(θ) over [−1, 1]2. At test time, we
introduce a more localized Gaussian prior and employ PriorGuide to guide the diffusion sampling
towards the correct posterior distribution (Fig. A1).

−0.6 −0.2 0.2
µ1

−0.2

0.2

0.6

µ 2

Original Posterior

−0.6 −0.2 0.2
µ1

New Prior

−0.6 −0.2 0.2
µ1

New Posterior

Diffusion model samples
PriorGuide samples
True parameters
New prior

Figure A1: Left: Original Two Moons posterior and posterior samples from the base diffusion model
trained on a uniform prior. Middle: New prior information about the parameters becomes available.
Right: PriorGuide steers the diffusion process to match the Bayesian posterior under the new prior.

D.2 ADDITIONAL BASELINES

D.2.1 REJECTION SAMPLING, AND SAMPLING IMPORTANT RESAMPLING

In addition to the main results, we compare PriorGuide against two straightforward sampling-based
baselines: Sampling-Importance-Resampling (SIR) and Rejection Sampling (RS). Both methods are
widely used and theoretically consistent. However, their efficiency deteriorates rapidly when the
proposal distribution—in our case, the posterior from the base model under the training prior—is a

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

poor match for the target posterior under the new test-time prior, particularly under high-dimensional
or complex posterior geometries. Our experiments quantify this inefficiency and provide a direct
performance comparison under matched computational budgets, highlighting the practical advantages
of PriorGuide.

Setup. For SIR, we drew 20,000 samples from the base diffusion model, applied importance
weights, and evaluated performance alongside two diagnostics: effective sample size (ESS) and
the k̂ instability measure (Vehtari et al., 2024), where k̂ > 0.7 indicates instability. For RS, we
continued sampling until either 1,000 accepted samples (matching PriorGuide) were obtained or
a two-hour time limit on an Nvidia A100 GPU was reached. All three methods (PriorGuide, RS,
and SIR) rely on samples from the same Simformer model, with PriorGuide requiring additional
per-sample computation. This allows us to align costs directly. As shown in Table A7, generating
a single PriorGuide sample is roughly as expensive as producing 20 base Simformer samples. For
our comparison we use 1,000 PriorGuide samples, 20,000 SIR samples, and cap RS at two hours to
equalize compute budgets. This cap is generous as RS acceptance rates are very low, while PriorGuide
sampling itself takes about ∼150 seconds (see Table A7). Results are summarized below.

Table A2: Posterior inference (θ) results on Turin with RS and SIR, under strong (S) and mixture (M)
test-time priors.

Dataset Method RMSE C2ST MMTV Acc Rate (%) ESS (%) k̂

Turin (S)

Simformer 0.23± 0.04 0.95± 0.02 0.55± 0.07 — — —
ACE 0.18± 0.02 0.92± 0.03 0.47± 0.08 — — —
PriorGuide 0.06± 0.01 0.55± 0.03 0.08± 0.02 — — —
Diffusion + SIR 0.06± 0.01 0.81± 0.07 0.18± 0.24 0.02± 0.01 0.35± 0.42
Diffusion + RS 0.06± 0.01 0.56± 0.04 0.08± 0.02 0.63± 0.33 — —

Turin (M)

Simformer 0.24± 0.04 0.95± 0.02 0.52± 0.07 — — —
ACE 0.20± 0.03 0.91± 0.03 0.45± 0.07 — — —
PriorGuide 0.14± 0.05 0.64± 0.09 0.21± 0.12 — — —
Diffusion + SIR 0.09± 0.03 0.80± 0.07 0.19± 0.22 0.02± 0.01 0.39± 0.38
Diffusion + RS 0.09± 0.02 0.55± 0.03 0.08± 0.04 0.49± 0.35 — —

Table A3: Posterior inference (θ) results on BCI with RS and SIR, under strong (S) and mixture (M)
test-time priors.

Dataset Method RMSE C2ST MMTV Acc Rate (%) ESS (%) k̂

BCI (S)

Simformer 0.89± 0.09 0.97± 0.02 0.66± 0.09 — — —
ACE 0.34± 0.15 0.91± 0.05 0.40± 0.17 — — —
PriorGuide 0.24± 0.04 0.81± 0.11 0.33± 0.19 — — —
Diffusion + SIR 0.22± 0.03 0.95± 0.04 0.63± 0.32 0.01± 0.01 1.28± 0.98
Diffusion + RS Fail Fail Fail ∼ 0 — —

BCI (M)

Simformer 1.07± 0.18 0.99± 0.01 0.63± 0.10 — — —
ACE 1.00± 0.31 0.97± 0.02 0.58± 0.10 — — —
PriorGuide 0.79± 0.70 0.78± 0.11 0.35± 0.24 — — —
Diffusion + SIR 0.25± 0.03 0.95± 0.04 0.79± 0.31 0.00± 0.00 2.61± 1.78
Diffusion + RS Fail Fail Fail ∼ 0 — —

Table A4: Posterior inference (θ) results on Gaussian Linear 20D with RS and SIR, under strong (S)
and mixture (M) test-time priors.

Dataset Method RMSE C2ST MMTV Acc Rate (%) ESS (%) k̂

Gaussian
Linear 20D (S)

Simformer 0.30± 0.02 1.00± 0.00 0.64± 0.02 — — —
ACE 0.10± 0.01 0.80± 0.04 0.15± 0.02 — — —
PriorGuide 0.21± 0.08 0.58± 0.03 0.10± 0.02 — — —
Diffusion + SIR 0.15± 0.02 ∼ 1 ∼ 1 0.00± 0.00 10.85± 1.32
Diffusion + RS Fail Fail Fail ∼ 0 — —

Gaussian
Linear 20D (M)

Simformer 0.30± 0.01 1.00± 0.00 0.64± 0.02 — — —
ACE 0.24± 0.03 1.00± 0.00 0.52± 0.07 — — —
PriorGuide 0.24± 0.08 0.59± 0.06 0.14± 0.09 — — —
Diffusion + SIR 0.15± 0.01 ∼ 1 ∼ 1 0.00± 0.00 10.61± 1.12
Diffusion + RS Fail Fail Fail ∼ 0 — —

Results. Under equal computational budgets, the results exhibit a dimensionality-driven behavior
consistent with performance expectations of Monte Carlo methods in moderate dimensions (Robert
& Casella, 2004). For the 4-dimensional Turin example (Table A2), the simple baselines remain

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

viable, with performance roughly comparable to PriorGuide (sometimes slightly better, sometimes
worse). RS achieves acceptable metrics but with highly variable acceptance rates, yielding only
98–126 accepted samples out of 20k.

Conversely, in the 5-dimensional BCI problem (Table A3), these baselines catastrophically fail.
Rejection sampling produces zero accepted samples on most runs, while SIR’s k̂ > 0.7 indicates
statistical instability that makes its estimates unreliable. This transition due to dimensionality (4D vs.
5D) and the increased posterior complexity reveal a threshold where simple methods go from mildly
unreliable to completely unusable, while PriorGuide maintains consistent performance across both
problems.

Extending the analysis further to the 20D Gaussian Linear problem confirms this trend (Table A4).
Despite being given a generous budget of 20k proposals (whereas each PriorGuide sample costs only
a fraction of a Simformer sample), SIR and RS fail completely, while PriorGuide continues to deliver
stable performance.

Larger computational budget. To examine behavior with substantially more compute, we ran
rejection sampling until reaching 1,000 accepted samples or an 8-hour limit on a single Nvidia A100
GPU (up to ∼3.1M proposals) on Turin and BCI examples. While this setting is not typical for
practitioners, it allows us to probe performance under very large budgets. In this regime, rejection
sampling could sometimes match or slightly outperform PriorGuide. On Turin with a strong or
mixture prior, both methods achieved similar accuracy (RMSE ≈0.06–0.09, C2ST ≈0.54–0.62,
MMTV ≈0.07–0.19) with acceptance rates of 0.38–0.57%. On BCI, rejection sampling occasionally
improved RMSE and MMTV (e.g., 0.22 vs. 0.63 RMSE on BCI-M), but acceptance was extremely
low (0.06–0.16%), many runs hit the timeout, and some produced only a handful of accepted samples.

These results illustrate a trade-off: simple methods can approach strong performance if one is
willing to spend hours of compute, but they remain unreliable and inefficient. PriorGuide achieves
comparable quality in minutes (∼160 s for 1k samples), making it suitable for interactive use, repeated
posterior evaluations, and sensitivity analysis, rather than only in very large-budget scenarios.

D.2.2 NEURAL LIKELIHOOD ESTIMATION WITH MCMC

As an additional natural baseline, we evaluate a method based on neural likelihood estimation (NLE;
Papamakarios et al., 2019) followed by MCMC sampling. This two-stage method is a representative
of several likelihood-based approaches in SBI (Lueckmann et al., 2021), which trains a neural
density estimator (e.g. a normalizing flow) to form a surrogate of the likelihood function p(x |θ)
(Papamakarios et al., 2019). Once the surrogate is trained, it is then used with a standard MCMC
algorithm to draw samples from the posterior distribution p(θ |xo) for a given observation xo.

While decoupling likelihood learning from posterior sampling is conceptually natural in SBI, we find
this approach may lack robustness even in low-dimensional cases, particularly for problems with
multi-modal posterior geometries. For instance, when this approach is applied in the bimodal Two
Moons simulator Appendix C.1, the MCMC sampler guided by the learned likelihood often becomes
trapped in a single posterior mode and fails to discover the other (Fig. A2). This failure is a known
MCMC limitation that the sampler can easily get stuck in modes.

D.3 SENSITIVITY TO THE DISTANCE BETWEEN TRAINING AND TEST-TIME PRIORS

To investigate the sensitivity of PriorGuide to the distance between the training and test-time priors,
we conduct an experiment using the Gaussian Linear 10D model. We use the same training prior as
in Section 4: a 10-dimensional Gaussian distribution ptrain(θ) = N (0, 0.1 · I10). For the test-time
priors, we use strongly informative standard deviations (σstrong

i = 0.2 · si) and systematically shift
their means (µq) away from the center of the training prior (µp). We quantify this shift using several
metrics, including the Mahalanobis distance (d′), the 2-Wasserstein distance, and our proposed
out-of-distribution (OOD) diagnostic (Appendix A.4).

The results, presented in Table A5, reveal how PriorGuide’s performance responds to this increasing
prior shift. The key take-home message is that PriorGuide is robust and degrades gracefully rather
than failing catastrophically. For small to moderate shifts (e.g., d′ ≤ 2), performance remains nearly
identical to the no-shift scenario, with all metrics (C2ST, MMTV, RMSE) showing negligible changes.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0.4 0.2 0.0 0.2 0.4
1

0.4

0.2

0.0

0.2

0.4

2

NLE+MCMC Samples 0.0000
0.0024
0.0048
0.0072
0.0096
0.0120
0.0144
0.0168

N
or

m
al

iz
ed

 P
os

te
ri

or
 D

en
si

ty

Figure A2: Failure case of the NLE with MCMC baseline on the Two Moons problem. The posterior
is approximated by running an MCMC sampler on a learned neural likelihood.

As the prior is shifted into a substantially different region, we observe a smooth and predictable
decline in accuracy. For instance, at an extreme shift where d′ = 4.4, PriorGuide achieves an MMTV
of 0.16, indicating that the generated posterior marginals have an 84% overlap with the ground truth
on average across all dimensions, which corresponds to a reasonable posterior approximation (Acerbi,
2018). This analysis confirms that PriorGuide provides provides meaningful approximations even
when the test-time prior is far from what was seen during training.

Table A5: Sensitivity analysis of posterior inference to prior shift. The degree of shift is quantified
using both d′ (Mahalanobis distance) and 2-Wasserstein distance. The results indicate that PriorGuide
maintains competitive performance even under substantial prior shifts.

∥µq − µp∥ d′ 2-Wasserstein OOD Frac. C2ST MMTV RMSE

0.00 0.00 0.84 0.00 0.52± 0.05 0.05± 0.01 0.21± 0.10
0.32 0.44 0.89 0.00 0.53± 0.06 0.06± 0.02 0.20± 0.08
0.63 0.88 1.05 0.00 0.54± 0.07 0.06± 0.02 0.23± 0.09
0.95 1.32 1.27 0.00 0.56± 0.08 0.07± 0.03 0.32± 0.13
1.26 1.76 1.52 0.00 0.59± 0.09 0.08± 0.04 0.41± 0.15
1.58 2.20 1.79 0.02 0.61± 0.09 0.10± 0.04 0.58± 0.14
1.90 2.64 2.07 1.00 0.62± 0.09 0.10± 0.04 0.73± 0.16
2.21 3.08 2.37 1.00 0.64± 0.08 0.11± 0.04 0.84± 0.18
2.53 3.52 2.66 1.00 0.65± 0.08 0.12± 0.05 1.04± 0.19
2.85 3.96 2.97 1.00 0.67± 0.08 0.14± 0.05 1.25± 0.19
3.16 4.40 3.27 1.00 0.70± 0.08 0.16± 0.06 1.42± 0.24

D.4 IMPACT OF GMM COMPONENT COUNT ON PRIOR RATIO APPROXIMATION

We conduct an additional ablation study on the influence of the number of GMM components used to
approximate the prior ratio. To isolate this effect, this experiment uses a controlled setup that differs
from the main experiments: we evaluate performance using one target prior and one trained diffusion
model, with metrics averaged across ten observations generated from that prior. As shown in Table A6,
sampling speed remains efficient even with very large GMMs (e.g. 200 components), indicating that
it is not a bottleneck at this stage. In contrast, the performance of PriorGuide is sensitive to the quality
of the prior ratio approximation when using very few components. We therefore recommend that
users fit a flexible and highly expressive GMM tailored to their specific application to ensure accurate
and stable guidance. In practice, we see that 20 components are enough in our experiments.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Table A6: Ablation study illustrating the influence of the number of GMM components used to
approximate the prior ratio.

Dataset #GMM
components

Time cost (s)
per sample C2ST MMTV RMSE

Gaussian
Linear 10D

2 0.02± 0.00 0.97± 0.01 0.31± 0.05 0.20± 0.03
20 0.02± 0.00 0.55± 0.04 0.09± 0.04 0.23± 0.07

200 0.02± 0.00 0.56± 0.05 0.11± 0.04 0.28± 0.11

BCI
2 0.18± 0.01 1.00± 0.00 0.72± 0.04 1.71± 0.21
20 0.18± 0.01 0.88± 0.10 0.57± 0.24 1.36± 0.66

200 0.18± 0.01 0.88± 0.10 0.57± 0.24 1.36± 0.65

D.5 BAYESIAN CAUSAL INFERENCE (BCI) MODEL POSTERIOR SAMPLES VISUALIZATION

In Fig. A3, we visualize the ground-truth posterior distribution alongside samples generated by
Simformer (no prior adaptation) and with PriorGuide applied to the same base Simformer model. We
use the corner package (Foreman-Mackey, 2016), which displays pairwise joint distributions and
marginal histograms of the parameters.

1.8

2.4

3.0

A

3.0

4.5

s

0.3
0

0.4
5

m

2.4 3.2 4.0

V

0.2

0.4

0.6

p s
am

e

1.8 2.4 3.0

A

3.0 4.5

s

0.3
0

0.4
5

m

0.2 0.4 0.6

psame

(a)

1.8

2.4

3.0

A

3.0

4.5

s

0.3
0

0.4
5

m

2.4 3.2 4.0

V

0.2

0.4

0.6

p s
am

e

1.8 2.4 3.0

A

3.0 4.5

s

0.3
0

0.4
5

m

0.2 0.4 0.6

psame

(b)

Figure A3: Posterior samples for the Bayesian causal inference (BCI) model, for a randomly chosen
dataset. Ground-truth samples are shown in black, and the dashed black lines and black dot indicate
the true parameter values. (a) Original Simformer samples (green) without prior adaptation, and (b)
PriorGuide samples (orange) under a mild prior. Incorporating prior information with PriorGuide
steers the inference toward more plausible parameter regions, especially for parameters such as σm

and psame which are less constrained by the data alone, resulting in posterior samples that more closely
match the ground-truth posterior under the same prior, as shown in (b).

D.6 TRAINING VS. TEST-TIME COST ANALYSIS

We summarize in Table A7 the estimated wall-clock time required by PriorGuide to produce 1,000
posterior samples under each simulator, measured on a system equipped with an Nvidia Ampere A100
GPU. For comparison, we also report the cost of retraining a diffusion inference model (Simformer,
(Gloeckler et al., 2024)) with 10,000 simulations, which includes both the neural network training and
the simulator call required to create its training set. As Table A7 demonstrates, PriorGuide achieves
more than a tenfold speedup across most simulators, with the greatest gains observed in scenarios
(e.g., Turin) where the simulator calls are most computationally expensive.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table A7: A comparison of time costs (seconds) between performing PriorGuide posterior inference
and retraining Simformer, including neural network training and generating new training data.

Simulator PriorGuide testing Simformer retraining and testing

Total Simulation Training Sampling

Two Moons 9.7 314.4 13.5 295.2 5.7
OUP 25.1 305.7 9.2 289.4 7.1
Turin 159.9 9346.6 8300.4 1037.4 8.8

Gaussian Linear 16.8 266.1 3.8 255.2 7.1
BCI 158.8 1063.1 49.1 1005.7 8.3

E COMPUTATIONAL RESOURCES AND SOFTWARE

Computational resources Most experiments presented in this work are performed on a cluster
equipped with AMD MI250X GPUs, while some additional experiments in the appendix are per-
formed on a cluster equipped with Nvidia Ampere A100 GPUs. The total computational resources
consumed for this research, including all development stages and experimental runs, are estimated to
be approximately 30,000 GPU hours.

Software The core code base is built upon the Simformer repository (https://github.
com/mackelab/simformer, License: MIT), using JAX (https://docs.jax.dev/en/
latest/, License: Apache-2.0) and PyTorch (https://pytorch.org/, License: modified
BSD license). The implementations of the Two Moons and Gaussian Linear simulators are based on
sbibm (https://github.com/sbi-benchmark/sbibm, License: MIT). For the ground-
truth posterior generation, we utilize sbi (https://sbi-dev.github.io/sbi/latest/,
License: Apache-2.0) and PyVBMC (https://acerbilab.github.io/pyvbmc/, License:
BSD 3-Clause). Our implementation of the ACE baseline uses the repository provided by (Chang et al.,
2025) (https://github.com/acerbilab/amortized-conditioning-engine, Li-
cense: Apache-2.0).

F USE OF LARGE LANGUAGE MODELS

We acknowledge the use of Large Language Models (LLMs) to support various stages of the
research. In the initial phase, LLMs were utilized for inspirations, helping to explore methodological
approaches and find existing works. In the development phase, LLMs served as programming
assistants to aid tasks such as implementing algorithms and debugging. LLMs also supported the
writing process, providing assistance with polishing the manuscript for clarity, conciseness, and
grammatical correctness.

34

https://github.com/mackelab/simformer
https://github.com/mackelab/simformer
https://docs.jax.dev/en/latest/
https://docs.jax.dev/en/latest/
https://pytorch.org/
https://github.com/sbi-benchmark/sbibm
https://sbi-dev.github.io/sbi/latest/
https://acerbilab.github.io/pyvbmc/
https://github.com/acerbilab/amortized-conditioning-engine

	Introduction
	Background
	Diffusion models
	Diffusion-based amortized SBI

	PriorGuide
	Target prior as guidance
	Approximating the guidance function
	Asymptotically correct sampling with Langevin dynamics
	PriorGuide posterior predictive sampling

	Experiments
	Illustrative example of test-time prior adaptation
	Test-time prior adaptation for posterior inference
	Test-time prior adaptation for data prediction
	Test-time refinement via corrective Langevin dynamics

	Discussion
	Method details
	Extended related work
	PriorGuide inference algorithm
	Langevin dynamics step size
	OOD Diagnostic for test-time priors

	Theoretical results
	Derivation of the guidance term
	Proof of Proposition 1
	Proof of Proposition 2

	Experimental details
	Simulators
	Training setup
	Testing procedure
	Test-time prior generations
	Posterior inference
	Posterior predictive inference
	Pareto frontiers of test-time compute assignments

	Statistical methodology
	Evaluation metrics
	Significance testing

	Additional experimental results
	Illustration of test-time prior adaptation on Two Moons
	Additional baselines
	Rejection Sampling, and Sampling Important Resampling
	Neural likelihood estimation with MCMC

	Sensitivity to the distance between training and test-time priors
	Impact of GMM component count on prior ratio approximation
	Bayesian causal inference (BCI) model posterior samples visualization
	Training vs. test-time cost analysis

	Computational resources and software
	Use of Large Language Models

