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Abstract

In-context learning (ICL) allows LLMs to learn from examples without changing
their weights: this is a particularly promising capability for long-context LLMs
that can potentially learn from many examples. Recently, Lin et al. (2024) pro-
posed URIAL, a method using only three in-context examples to align base LLMs,
achieving non-trivial instruction following performance. In this work, we show
that, while effective, ICL alignment with URIAL still underperforms compared to
instruction fine-tuning on the established benchmark MT-Bench, especially with
more capable base LLMs. We then uncover the most relevant elements for success-
ful in-context alignment, finding the crucial role of the decoding parameters. Based
on these insights, we show that the approach of URIAL can indeed be improved
by adding high-quality, possibly carefully selected via greedy search, demonstra-
tions in context, getting closer to the performance of instruct models. Finally, we
provide the first, to our knowledge, systematic comparison of ICL and instruction
fine-tuning (IFT) for instruction following in the low data regime, where ICL can
be a viable alternative to IFT. Overall, our work advances the understanding of
ICL as an alignment technique and its relationship to IFT. We provide our code at
https://github.com/tml-epfl/icl-alignment.

1 Introduction

The large-scale pre-training phase allows Large Language Models (LLMs) to acquire extensive
knowledge and capabilities (Bubeck et al., 2023). However, these base models struggle to follow
instructions directly from prompts, necessitating further fine-tuning to be used as conversational
models. Inspired by Brown et al. (2020) who showed that LLMs can learn from demonstrations
provided as part of the input—a concept known as in-context learning (ICL)—Lin et al. (2024) have
recently studied the feasibility of in-context alignment (Han, 2023; Li et al., 2023b). They found that
including merely three carefully selected question-answer pairs in the prompt is sufficient to make
base models follow instructions and interact with users at a similar level to instruction-fine-tuned
models on their own benchmark.

Analysis of in-context alignment. In this work, we extend the evaluation of the URIAL prompt
strategy proposed by Lin et al. (2024) across several base models, including GPT-4-Base,1 and on
established instruction following benchmark MT-Bench (Zheng et al., 2023), see Table 2. First, we
show that, although URIAL achieves reasonable performance, it still lags behind instruction-fine-tuned
models. Then, to better understand the success but also weaknesses of in-context alignment, we
analyze which are the most relevant ingredients in URIAL. We find that the decoding parameters in
the LLMs generation (temperature, sampling scheme, etc.) may crucially influence the performance,
and the optimal configuration allows even base models to achieve good scores on MT-Bench.

1We received access to the base GPT-4 model via the OpenAI Researcher Access Program.

NeurIPS 2024 Workshop on Adaptive Foundation Models.

https://github.com/tml-epfl/icl-alignment


Many-shot in-context alignment. Then, we test various strategies to improve in-context alignment,
leveraging recent models with extensive context windows which allow for longer in-context prompts.
In particular, we study the effect of many-shot in-context learning by adding high-quality demonstra-
tions from existing instruction datasets. Unlike what suggested by Lin et al. (2024), this approach
can improve upon URIAL, but only when using high-quality examples, as those from SkillMix.
However, it is still not sufficient to fully close the gap with aligned LLMs, as the performance
plateaus after 10-30 in-context examples. This behavior is in contrast to many-shot ICL for tasks like
summarization (Narayan et al., 2018), translation (Costa-jussà et al., 2022), or classification (Li et al.,
2024), where providing many examples is clearly beneficial (Agarwal et al., 2024; Bertsch et al.,
2024). We further test a simple greedy algorithm to select the in-context examples which optimize
the MT-Bench score. This selection scheme outperforms, with 1 to 3 additional demonstrations, the
many-shot approach with random samples, and allows to further reduce the distance from in-context
aligned models to fine-tuned models.

ICL vs IFT for alignment. While our experiments suggest that ICL cannot match the instruction-
following performance of models aligned through costly fine-tuning, possibly using preference data,
it remains an open question whether ICL can compete with or outperform IFT in the low-data regime.
We provide an extensive evaluation on multiple LLMs and datasets of both approaches when varying
the question-answer dataset size between 3 and 4000 examples. We observe that, with high-quality
data, ICL and IFT achieve almost identical 1st-turn MT-Bench score. Surprisingly, in the 2nd-turn
score, IFT clearly outperforms ICL, with ICL performing even worse than the base model. This
suggests that ICL suffers from some heavy overfitting to the style of the examples shown in context.

Overall, these results, complemented by several ablation studies, provide a more nuanced picture of
ICL as an alignment technique compared to previous works. Moreover, our comparison of ICL to
IFT when using the same data bridges a gap in the literature about understanding these orthogonal
approaches for adapting pre-trained LLMs into conversational models.

2 Uncovering the Limits of ICL for Instruction Following

In the following, we provide an in-depth analysis which aims at (1) systematically comparing the
performance of base models plus URIAL to that of aligned models (see Sec. 2.1), (2) understanding
which components of URIAL (and in-context alignment in general) are most important for its
effectiveness (Sec. 2.2), (3) testing the influence of question-answers format in our task (App. B).

2.1 Systematic evaluation of URIAL

We compare the performance of several base models with the URIAL in-context prompt to that of
their instruction fine-tuned versions. Table 2 shows the results on MT-Bench (Zheng et al., 2023),
one of the most popular benchmarks for instruction following ability of LLMs. We compare several
LLMs of different sizes and capabilities, ranging from Llama-2-7B (Touvron et al., 2023) to the
base GPT-4 model (OpenAI, 2023). We observe that base models with URIAL achieve competitive
performance on the 1st-turn score, but cannot match that of their instruction fine-tuned counterparts
in all cases except for Llama-2-70B and Mistral-7B-v0.1 (both originally included in Lin et al. (2024),
unlike most others). Conversely, the 2nd-turn score with URIAL is significantly worse than for
instruction-tuned LLMs: we hypothesize that this is because no multi-turn demonstrations are given
in context.

2.2 What matters for in-context alignment via URIAL?

Decoding parameters. To clarify the influence of these parameters that were not explicitly discussed
in Lin et al. (2024), we compute the performance of base LLM, base LLM with URIAL, and fine-tuned
LLM when varying decoding configurations. In Fig. 1 we fix the repetition penalty to 1.15, and
vary temperature and top-p, for the Mistral-7B-v0.2 models. Surprisingly, we notice that with the
decoding parameters of URIAL (temperature = 0, top-p = 1) even the base model without any
in-context example achieves reasonable MT-Bench score (6.61 vs 7.00 of URIAL). Moreover, the
temperature value appears to have the most influence of the performance of the base model. With
URIAL, almost all configurations provide very similar results, with the exception of temperature = 1,
top-p = 1 (possibly because it allows the sampling of generated tokens from the tail of the token
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(b) Base model with URIAL
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(c) Instruct model
Figure 1: Effect of decoding parameters on the 1st-turn MT-Bench scores across models. We
vary temperature and top-p, with a fixed repetition penalty of 1.15 as used in the URIAL codebase.
See the complete results in App. E.2.
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Figure 2: Scaling the number of demonstrations for alignment with ICL on Mistral-7B-v0.2. We
measure the alignment performance of different settings using the MT-Bench score. See the results
on Llama-3.1-8B in Fig. 6.

distribution, thus producing low-quality text). Finally, the aligned model performs similarly across
all decoding schemes, with slightly better results than URIAL. These results suggest that (1) the
decoding parameters are an overlooked factor contributing to the success of in-context alignment, and
(2) fine-tuning adjusts the sampling distribution of language models so that even with high-variance
decoding configurations the generated text preserves high quality. We provide additional analysis for
no repetition penalty (i.e. = 1) in Fig. 10 and Llama-3.1-8B in Fig. 11 in App. E.2: these extensive
experiments further validate, with different base LLMs and settings, that the decoding scheme is a
crucial factor for the instruction-following behavior of base models, and also affects, but to lower
degree, in-context alignment.

3 Many-Shot In-Context Learning for Instruction Following

Sec. 2.1 indicate that URIAL alone is not able, in most cases, to reach the performance of instruct
models. In the following, we explore whether we can close this gap. We focus on Mistral-7B-v0.2
(Jiang et al., 2023) and Llama-3.1-8B (Dubey et al., 2024) since (a) both URIAL and the aligned
model achieve competitive performance in Table 2, and (b) these base models have context windows
of 32k and 128k respectively, which can fit many examples (around 50 for Mistral-7B-v0.2 and more
than 200 for Llama-3.1-8B). Details on the experimental setup are in App. A.

3.1 Scaling up the number of in-context demonstrations

Given the success of many-shot ICL (Agarwal et al., 2024), we test the effect of increasing the
number of in-context demonstrations. We sample random examples from the SkillMix dataset, since
it contains high-quality question-answer pairs. We consider two scenarios: (1) all demonstrations
are randomly chosen from SkillMix (the set of rules from URIAL is kept), and (2) we add the new
demonstrations on top of the URIAL examples. In Fig. 2, we report the results on MT-Bench when
varying the number of demonstrations. We repeat sampling with 5 random seeds and show mean and
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Table 1: Improved in-context (IC) alignment by adding to URIAL prompt the demonstrations
found via greedy search. We find the optimal IC prompts in an incremental way by selecting query-
response pairs from the high-quality SkillMix dataset. We report the 1st-turn score on MT-Bench and
the length-controlled (LC) win rates on AlpacaEval 2.0 when using different IC prompts.

Model Mistral-7B-v0.2 Llama-3.1-8B

MT-Bench (1st) AlpacaEval 2.0 MT-Bench (1st) AlpacaEval 2.0

URIAL (3 examples) 7.00 8.22 6.95 7.28
URIAL + greedy search (1 ex.) 7.52 7.53 7.61 8.61
URIAL + greedy search (2 ex.) 7.47 7.78 7.77 8.16
URIAL + greedy search (3 ex.) 7.43 8.55 7.81 8.19

standard deviation over the corresponding results. We observe that for both base LLMs, the 1st-turn
score increases with 3, 10 and 20 examples, but then plateaus without clear benefits from scaling up
beyond 30 demonstrations (for Llama-3.1-8B the trend becomes even slightly negative with more
than 100 examples). Thus, we find that adding up to 30 high-quality examples from SkillMix can
improve alignment via ICL. This result contrasts with the findings of Lin et al. (2024), which showed
that URIAL performed better with 3 demonstrations than with 8.

Next, we observe that in-context alignment does not improve the second-turn score. In fact, adding
more examples continues to decrease performance, even falling below that of the base models. This
behavior is likely due to the presence of only single-turn examples in the prompt, causing the LLM to
respond in the same style without adapting to more complex conversations. Overall, these results show
that, unlike in the setting of Agarwal et al. (2024); Bertsch et al. (2024), simply scaling the number of
ICL examples is not sufficient to consistently improve the instruction following performance.

Finally, we notice that on Llama-3.1-8B, using three examples from SkillMix attain, on average,
better performance than using the three examples of URIAL. Overall, there is no significant difference
in the scaling behavior between using or not using the URIAL demonstrations. Thus, we conclude
that the success of in-context alignment is only partially dependent on the demonstrations themselves,
provided they are of sufficient quality (see also Sec. 4).

3.2 Greedy search for effective demonstrations

Given the limited success of adding random demonstrations to URIAL, we try to greedily maximize
the MT-Bench score by testing 100 high quality instructions from SkillMix as the 4th additional
example to URIAL. For each resulting ICL prompt, we compute the MT-Bench score with GPT-
4-Turbo as judge instead of GPT-4 (used in MT-Bench) as the former is faster, cheaper, and helps
mitigate potential overfitting to the benchmark score. We then repeat this procedure sequentially to
find a 5th and a 6th demonstration, restricting the search space at each round to only instructions
leading to a high enough MT-Bench score to reduce the computational cost (see details in App. A.3).

We add the results of the greedy search to the plots in Fig. 2, computing the true MT-Bench (i.e., with
GPT-4 as judge). For both base models, the 4th example found by greedy search is sufficient to match
the best 1st-turn score achieved by scaling the in-context examples with random demonstrations (see
Sec. 3.1). In Table 1, we provide the details of these results: the 4th ICL example yields a significant
improvement over URIAL, e.g., from 6.95 to 7.61 for Llama-3.1-8B, with only a further +0.20 given
by the 5th and 6th. Overall, this evaluation further indicates that the improvement in instruction
following one can achieve with in-context alignment quickly saturates when increasing the number of
examples. In Fig. 5, we show the distribution of the scores (with GPT-4-Turbo as judge) at step of the
greedy search when using Llama-3.1-8B as base model (the analog for Mistral-7B-v0.2 in App. E.1).
Most demonstrations improve the score when added as the 4th example on top of URIAL (as shown
in the first plot), but no further progress is observed with additional demonstrations.

We further test the IC prompts found by the greedy search on the AlpacaEval 2.0 (Li et al., 2023a)
benchmark, where we measure length-controlled win rate. As shown in Table 1, using the examples
given by greedy search leads to better results than plain URIAL on AlpacaEval 2.0, without directly
optimizing for it. This improvement indicates that the found IC prompt does not completely overfit to
the MT-Bench score, although the gains are less consistent than on MT-Bench.
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Figure 3: Comparison of ICL vs IFT for alignment in the low data regime. We measure the
alignment performance of different settings for Mistral-7B-v0.2 using the MT-Bench score. See the
results on Llama-3.1-8B in Fig. 7.

4 A Comparison of ICL vs IFT for Instruction Following

The results from the previous sections strongly suggest that in-context alignment might not be as
competitive as sophisticated, computationally heavy alignment techniques. However, it is unclear
how it compares to more lightweight approaches, such as IFT, when applied to a small number of
examples. In the low-data regime, the choice between ICL and IFT can be viewed as a decision
between allocating resources for fine-tuning (which permanently modifies the model’s weights) or
increasing inference time by adding the in-context prompt each time. The description of experiment
setups is shown in App. A.4.

Results on Mistral-7B-v0.2. Fig. 3 shows that IFT and ICL on SkillMix (violet and green curves
respectively) perform almost identically in 1st-turn score until 50 examples are used. Beyond this
point, increasing the number of training examples consistently improves the performance of IFT. The
strong performance of IFT in the low-data regime is particularly surprising, as one might expect
overfitting when training on very few examples (as few as 3) over several epochs, yet this does not
occur. Finally, ICL and IFT show nearly opposite trends for the 2nd-turn score: increasing the dataset
size benefits IFT (almost reaching the performance of the instruct model) but detrimental to ICL.
This behavior suggests that, while IFT is less flexible due to the model weights being updated, it
generalizes better to tasks different from those used for alignment (recall that the instructions in
SkillMix are single-turn only). The results on Llama-3.1-8B and the discussion of data quality are
shown in App. C.

5 Conclusions

In this work, we have first illustrated that ICL via URIAL is a good baseline for instruction-following
alignment, but with a few limitations: it typically performs slightly worse than IFT on single-turn
conversations and does not generalize well to multi-round ones. Then, we have uncovered the key
components for IC alignment: e.g. the decoding parameters alone can, surprisingly, make base
models reasonably good at instruction following. Adding in-context high-quality demonstrations
improves performance beyond what previously suggested (Lin et al., 2024), but not enough to reach
LLMs aligned with sophisticated methods (e.g., RLHF). We conjecture that via ICL, the LLM can
learn to infer the response style, but the overall learning signal is not sufficiently strong to benefit
from a large amount of examples, despite the long context windows of recent LLMs.

Moreover, to the best of our knowledge, we have provided the first systematic comparison of ICL and
IFT for instruction following when using the same (small) number of demonstrations. Surprisingly,
the two approaches are roughly equivalent in terms of single-turn conversation performance. However,
models trained via IFT, unlike ICL, can generalize to multi-round conversations, which are out-of-
distribution compared to the examples used for alignment. Overall, our work provides a deeper and
more complete understanding of how in-context alignment works, as well as of its potential and
limitations, in particular in comparison to fine-tuning.
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Table 2: Systematic comparison of URIAL to aligned models on MT-Bench across different base
LLMs. For several recent model families, we compare the performance on instruction following tasks
of the base LLMs plus URIAL (i.e. in-context alignment) to that of the instruct models, fine-tuned
with sophisticated techniques like supervised instruction fine-tuning and RLHF. In most cases, the
fine-tuned models outperform URIAL. * denotes the result taken from the URIAL GitHub repository.

Model 1st-turn 2nd-turn Average

Llama-2-7B + URIAL * 5.75 3.91 4.83
Llama-2-7B-Instruct 7.14 5.91 6.53

Llama-2-70B + URIAL * 7.61 6.61 7.11
Llama-2-70B-Instruct 7.37 7.03 7.20

Llama-3-8B + URIAL * 6.84 4.65 5.75
Llama-3-8B-Instruct 8.29 7.42 7.86

Llama-3-70B + URIAL * 7.71 5.09 6.40
Llama-3-70B-Instruct 8.96 8.51 8.74

Llama-3.1-8B + URIAL * 6.95 5.31 6.13
Llama-3.1-8B-Instruct 8.27 7.73 8.00

Mistral-7B-v0.1 + URIAL * 7.49 5.86 6.67
Mistral-7B-Instruct-v0.1 7.31 6.39 6.85

Mistral-7B-v0.2 + URIAL * 6.99 5.55 6.27
Mistral-7B-Instruct-v0.2 8.06 7.21 7.64

Mixtral-8x22B-v0.1-4bit + URIAL 8.28 7.14 7.71
Mixtral-8x22B-Instruct-v0.1-4bit 8.78 8.25 8.52

GPT-4-Base + URIAL 7.96 5.04 6.50
GPT-4 (March 2023) * 8.96 9.03 8.99
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Figure 4: Influence of the individual components of URIAL. We report 1st and 2nd turn MT-Bench
score for every subset of the three demonstrations of URIAL with Mistral-7B-v0.2. We test each
configuration with (“Rule + Examples”) and without (“Examples-Only”) the URIAL set of rules in
the in-context prompt. We observe a clear increasing trend in 1st-turn score with more examples, but
a decrease in the 2nd-turn performance. The set of rules does not seem to influence the results. The
randomness for 0 and 3 examples is caused by the small fluctuations in the score of the GPT-4 judge.

A Experimental Details

In this section, we show more details about the experiments we conducted in the paper.

A.1 Datasets and base models

We select instruction-following demonstrations for the base LLMs to learn in context from open-
sourced instruction fine-tuning datasets: (a) SkillMix-4k (Kaur et al., 2024) is an automated approach
for synthesizing diverse, high-quality IFT data. It primarily involves two stages: first leveraging the
LLMs to propose a set of critical "skills" for instruction-following, from which a pair of skills are
randomly chosen to facilitate synthetic data generation based on powerful LLMs. (b) Evol-Instruct-
70k (Xu et al., 2024) contains 70k training examples with varying complexity and is well-known for
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Figure 5: The distribution of the 1st-turn MT-Bench score (GPT-4-Turbo as judge) on Llama-
3.1-8B obtained by adding multiple instructions from SkillMix (Kaur et al., 2024) as a 4th
(a), 5th (b), 6th (c) demonstration to URIAL. The dashed lines of various colors refer to the
1st-turn MT-Bench score of the obtained searching results. A majority of the 4th examples contribute
positively to the model’s instruction-following performance, but the improvement quickly diminishes
when running the greedy search for 5th and 6th demonstrations.
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Figure 6: Scaling the number of demonstrations for alignment with ICL on Llama-3.1-8B. We
measure the alignment performance of different settings using the MT-Bench score. ICL with more
demonstrations quickly saturates and does not bridge the performance gap between the base model
and its aligned counterpart. In particular, the ICL alignment performance of 3 random examples from
the high-quality SkillMix dataset surpasses that of 3 examples from URIAL.

the use to build the series of WizardLM models. SkillMix-4k is the primary dataset for all experiments
in the paper and Evol-Instruct-70k is solely used for scaling experiments and ablation study of data
quality.

We compare ICL performance across multiple models that have sufficiently large context windows:

1. Mistral-7B-v0.2 (Jiang et al., 2023) has 7.3 billion model parameters. On many established
benchmarks, it outperforms LLMs that have significantly more parameters, such as Llama-
2-13B and Llama-1-34B. The trained context length of Mistral-7B-v0.2 is 32k tokens.

2. Llama-3.1-8B (Dubey et al., 2024) is the newest and most powerful 8B model from Meta
when we are writing, and it supports multilingual dialogue use cases. It supports input texts
containing up to 128k tokens.

In some experiments, the following base LLMs are used:

1. Llama-2-7B-80k (Fu et al., 2024) is a variant of Llama-2-7B model fine-tuned with 80k
context on a carefully designed long-document data mixture.

2. Mixtral-8x22B-v0.1-4bit is a variant of Mixtral-8x22B-v0.1 (Jiang et al., 2024), which is a
pre-trained generative sparse Mixture of Experts, quantized with 4-bit precision. It contains
∼176B parameters and ∼44B active during inference, and it has a 65k context window.
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Figure 7: Comparison of ICL vs IFT for alignment in the low data regime. We measure the
alignment performance of different settings for Llama-3.1-8B using the MT-Bench score. IFT
with more demonstrations keeps improving the alignment performance, almost bridging the gap
between the base model and its aligned counterpart. IFT-aligned models perform well on multi-turn
conversations, unlike with ICL. Finally, data quality has significant impact on both IFT and ICL: the
higher-quality SkillMix leads to better performance than Evol-Instruct.

Table 3: Importance of question-answer matching of demonstrations for in-context alignment.
We report the 1st-turn MT-Bench score of Mistral-7B-v0.2 and Llama-3.1-8B when varying the
structure of the in-context examples {(Xi, Yi)}i, where Xi is the query and Yi is the corresponding
ground-truth answer.

In-context prompt URIAL (3 examples) URIAL + Greedy Search (6 examples)

Mistral-7B-v0.2 Llama-3.1-8B Mistral-7B-v0.2 Llama-3.1-8B

no demonstrations 6.52 6.25 6.52 6.25
X only (no Y ) 5.90 4.48 5.53 5.10
Y only (no X) 6.94 6.83 7.02 6.98
circular shift of Y 5.04 5.69 5.59 2.13
in-domain random Y 6.24 6.26 4.63 5.49
out-of-domain random Y 4.13 3.73 1.50 4.36
correct Y 6.99 6.95 7.43 7.81

We use the same decoding configuration as what is used in URIAL (Lin et al., 2024). Concretely, we
employ greedy decoding, i.e., temperature = 1.0, for all models, including base and instruction fine-
tuned models, to maximize reproducibility and secure a fair and robust evaluation. Top− p = 1.0 is
adopted to keep the full cumulative probability distribution. Besides, we use repetitionpenalty =
1.152 on base models to prevent degeneration.

A.2 Evaluation

MT-Bench (Zheng et al., 2023), consists of 80 high-quality and challenging questions that have
two-round interaction, designed to examine the multi-turn conversation and instruction-following
capability of models. It features 8 common categories of user prompts: coding, math, reasoning,
extraction, roleplay, writing, humanities/social science, and STEM.

AlpacaEval 2.0 (Li et al., 2023a) provides 805 test instructions, on which we generate new responses
using the target model, and then calculate the score by competing with the baseline model (i.e.,
GPT-4-Turbo) judged by a designated automatic evaluator. We apply the AlpacaEval 2.0 benchmark

2As in the codebase at https://github.com/Re-Align/URIAL/blob/main/run_scripts/
mt-bench/_run_mt_bench.sh.
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# Instruction  
Below is a list of conversations between a human and an AI assistant (you).  
As an AI assistant, you will engage in conversations with users, responding to their queries which are presented 
under the heading "# Query:".  
Your responses should be entered under the heading "# Answer:".  
You excel in a wide range of tasks including, but not limited to, providing general information, conducting 
reasoning, engaging in role-play, creative writing, planning, and solving mathematical and coding problems.  
Your responses should be well-structured, comprehensive, and aim to thoroughly address the user's query or 
problem at hand. 
(N New Demonstrations) 
# Query: 
``` 
[Query] 
``` 
# Answer: 
``` 
[Answer] 
``` 
(3 URIAL Demonstrations) 
# Query: 
``` 
[Query] 
``` 
# Answer: 
``` 
[Answer] 
```

Figure 8: The prompt template for doing ICL in our work. Note that the words in orange are solely
for illustration purposes and do not appear in the real prompts. The mixture of new demonstrations
we test in our experiments is inserted before URIAL demonstrations.

in our experiments to ensure that the effective demonstrations found through greedy search don’t
overfit to MT-Bench.

A.3 Greedy search

Firstly, we randomly sample 100 examples from the high-quality IFT dataset, SkillMix-4k, and
then create 100 new 4-shot prompts by adding each one of the 100 sampled examples, as the fourth
demonstration, to the original 3-shot URIAL prompt. We evaluate the resulting instruction-following
performance for each prompt on MT-Bench but with GPT-4-Turbo as the judge since GPT-4-Turbo
is cheaper and faster than GPT-4 (the original LLM judge for MT-Bench evaluation), and also has
a high correlation with human judgment. Finally, the example with the highest 1st-turn MT-Bench
score is chosen.

We continue our greedy search for the proper fifth and sixth demonstration in a more restricted search
space due to the heavy computational cost of the search process. We keep reducing the search space
by applying a threshold of 1st-turn MT-Bench score (i.e., 6.2 in our experiments). Similarly, we add
each example from the new search space on top of the best (N-1)-shot prompt found in previous steps
and generate a set of new N-shot prompts. Then we run the MT-bench evaluation with GPT-4-Turbo
as the judge for multiple times and select the best (N+1)-shot prompt.

A.4 Scaling experiments

The recently released LLMs with increasingly large context windows allow using many more shots
for ICL than are typically used. Prior works Agarwal et al. (2024); Bertsch et al. (2024) have shown
that many-shot ICL, compared to few-shot ICL, can make task-specific fine-tuning less essential and
allows LLMs to tackle a wider range of tasks without specification. Therefore, we want to examine
if the instruction-following performance of base LLMs could benefit from many-shot ICL through
various scaling experiments, and systematically compare ICL with IFT. In the following, we add
more details about these scaling experiments, including the prompt template, data selection for both
ICL and IFT, and training hyper-parameters for IFT experiments.

ICL Random. We construct the set of in-context demonstrations based on the high-quality data
we select from SkillMix-4k or Evol-Instruct-70k dataset. Through randomly sampling from the
high-quality dataset for multiple times, we generate a series of in-context demonstration sets that
each contains N examples, where N ∈ {0, 7, 17, 27, 37, 47} for Mistral-7B-v0.2 model (32k context
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length) and N ∈ {0, 7, 17, 27, 37, 47, 97, 147, 197, 247} for Llama-3.1-8B model (128k context
length), and insert the N demonstrations into the prompt template for ICL as shown in Fig 8. Note
that the prompt template is strictly following the one used in URIAL paper and we only replace the
demonstrations used for the ICL purpose. The average performance and standard deviations are
computed over 5 random seeds.

ICL Random (no URIAL). We generate a series of in-context demonstration sets by ran-
domly sampling from the high-quality IFT dataset, and each set contains N examples,
where N ∈ {3, 10, 20, 30, 40, 50} for Mistral-7B-v0.2 model (32k context length) and N ∈
{3, 10, 20, 30, 40, 50, 100, 150, 200, 250} for Llama-3.1-8B model (128k context length). URIAL
examples will not be added to the context, so it ensures the total number of in-context examples are
the same as the Random group. The average performance and standard deviations are computed over
5 random seeds.

ICL Greedy Search. Following the procedure we mention in Sec. A.3, ideally we can get as
many optimal examples as we want if we have sufficient OpenAI API credits. Thus it allows us
to create another series of in-context demonstration sets by selecting another N examples for each
N ∈ {1, 2, 3} in the paper. The resulting mixture of in-context demonstrations is then placed in the
corresponding location of the prompt template as shown in Fig. 8.

Table 4: Details of training hyperparameters for IFT experiments.
Data Size # GPUs Epochs LR LR Scheduler Batch Size Context Win. Len. WD Warmup Rate

Mistral-7B-v0.2

3 2 6 2e-6 Cosine 2 2048 0.01 0.03
10 4 6 2e-6 Cosine 8 2048 0.01 0.03
20 4 6 2e-6 Cosine 8 2048 0.01 0.03
30 4 6 2e-6 Cosine 8 2048 0.01 0.03
40 4 6 2e-6 Cosine 8 2048 0.01 0.03
50 4 6 2e-6 Cosine 8 2048 0.01 0.03
100 4 6 2e-6 Cosine 8 2048 0.01 0.03
300 4 6 2e-6 Cosine 8 2048 0.01 0.03
1000 4 15 2e-6 Cosine 128 2048 0.01 0.03
2000 4 15 2e-6 Cosine 128 2048 0.01 0.03
4000 4 15 2e-6 Cosine 128 2048 0.01 0.03

Llama-3.1-8B

3 2 6 4e-6 Cosine 2 2048 0.01 0.03
10 4 6 4e-6 Cosine 8 2048 0.01 0.03
20 4 6 4e-6 Cosine 8 2048 0.01 0.03
30 4 6 4e-6 Cosine 8 2048 0.01 0.03
40 4 6 4e-6 Cosine 8 2048 0.01 0.03
50 4 6 4e-6 Cosine 8 2048 0.01 0.03
100 4 6 4e-6 Cosine 8 2048 0.01 0.03
300 4 6 4e-6 Cosine 8 2048 0.01 0.03
1000 4 15 4e-6 Cosine 128 2048 0.01 0.03
2000 4 15 4e-6 Cosine 128 2048 0.01 0.03
4000 4 15 4e-6 Cosine 128 2048 0.01 0.03

IFT. We run instruction fine-tuning the base LLMs (Mistral-7B-v0.2 and Llama-3.1-8B) either
with tens of examples (i.e., few-sample regime) or thousands of examples. The training examples
are randomly sampled from existing IFT datasets, SkillMix-4k and Evol-Instruct-70k. The mean
score and standard deviations are calculated over multiple random seeds. More specifically, we use
5 random seeds for Mistral-7B-v0.2 model and 3 random seeds for Llama-3.1-8B model due to a
restricted compute budget. In particular, since the size of SkillMix dataset is 4k, the randomness of
IFT with 4k examples primarily comes from optimization process and scoring evaluation with GPT-4,
otherwise part of randomness also comes from data sampling process. We list the details of training
hyper-parameters used in IFT experiments in Table. 4. We always select the last model checkpoint to
run evaluation.
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Table 5: Improved in-context demonstrations selected from Evol-Instruct-70k dataset for
Mistral-7B-v0.2 base model. We report the 1st-turn score on MT-Bench and the length-controlled
(LC) win rates on AlpacaEval 2.0 when using different IC prompts.

Model MT-Bench (1st) AlpacaEval 2.0

URIAL (3 examples) 6.99 8.09
URIAL + greedy search (1 ex.) 7.46 7.91
URIAL + greedy search (2 ex.) 7.69 8.38
URIAL + greedy search (3 ex.) 7.68 9.22

B Importance of question-answer matching

Surprisingly, Min et al. (2022) showed that using demonstrations with random labels does not
significantly impair the results of ICL on classification and multiple choice tasks. We conduct a similar
study for instruction following, see Table 3. Denoting {(Xi, Yi)}i the set of in-context examples,
with Xi the query and Yi the corresponding ground-truth answer, we test several configurations on
two sets of {(Xi, Yi)}i: the 3 URIAL examples and the 3 URIAL examples with the 3 examples found
by our greedy search from Sec. 3.2 (to check the effect of increasing the number of demonstrations).

First, we do not use any demonstration, i.e., the original base models: with the decoding parameters
found in the previous section, this already achieves reasonable results. Surprisingly, providing the
questions without the answers (second row in Table 3) degrades the performance, while the opposite,
answers only, is effective (0.4-0.7 higher scores than the base model). Next, we permute the answers
Yis with a circular shift of one position, so that all correct answers are still contained in the prompt
but matched with the wrong question: this significantly degrades the performance, especially with
more examples (URIAL + Greedy Search), e.g. Llama-3.1-8B attains a score of only 2.13 (note that
the minimum score is 1). Also, for each question, we sample a new answer from those provided for
other instructions in the same category (in-domain): e.g., a question about coding is paired with an
answer from a different coding question, ensuring that, while the content may be incorrect, the style
remains appropriate. Although worse than the original one, this configuration achieves decent scores.
Finally, we sample answers from instructions belonging to different out-of-domain categories, so that
even their style does not match what expected for each question: this leads to the worst performance.

These results show that not all the conclusions from Min et al. (2022) apply to ICL used for instruction
following. Most importantly, using answers with correct content and, especially, correct style is
crucial for the success of ICL. This property becomes even more evident when increasing the number
of examples (to 6 instead of 3), and motivates us to use a highly-curated instruction dataset like
SkillMix in experiments in the next sections. Finally, this result suggests that ICL for instruction
following works differently compared to other less open-ended tasks.

C A comparison of ICL vs IFT on Llama-3.1-8B

Results on Llama-3.1-7B. As shown in Fig. 7, ICL outperforms IFT when using between 3 and
30 demonstrations, though IFT remains effective even with these few examples on this base model.
However, we note that IFT matches or exceeds the best performance of ICL (obtained with 20-30
examples) only when using 2k or 4k examples (the entire SkillMix), which represents two orders of
magnitude more data. This result confirms that ICL with high-quality data is a viable alternative to
IFT when only a limited number of demonstrations are available. Finally, the observations for the
2nd-turn scores are consistent with those for Mistral-7B-v0.2, with IFT consistently outperforming
ICL.

Effect of data quality. Finally, we test the effect of using lower-quality instructions compared to
SkillMix. In this experiment, we repeat the ICL vs. IFT comparison using random demonstrations
from Evol-Instruct-70k (Xu et al., 2024), and show the results in Fig. 3. With Evol-Instruct data,
both ICL (red curve) and IFT (yellow curve) perform significantly worse than their counterparts
using SkillMix. This trend is consistent across the number of examples, base models, and for both
single-turn and multi-turn instructions. Interestingly, the performance gap between IFT on SkillMix
and Evol-Instruct is significantly smaller on Llama-3.1-8B than on Mistral-7B-v0.2, suggesting that
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Table 6: Transferability of greedy search IC prompt to other LLMs. We use the 1st-turn score on
MT-Bench and the length-controlled (LC) win rates on AlpacaEval (AE) 2.0 when using various IC
prompts on different base models.

Model MT-B (1st) AE 2.0

Base model: Llama-2-7B-80k
URIAL (3 examples) 5.19 1.81
URIAL + greedy search (1 ex.) 5.56 1.50
URIAL + greedy search (2 ex.) 5.57 1.84
URIAL + greedy search (3 ex.) 5.10 2.91

Base model: Mixtral-8x22B-v0.1-4bit
URIAL (3 examples) 8.28 14.77
URIAL + greedy search (1 ex.) 8.36 15.74
URIAL + greedy search (2 ex.) 7.79 13.20
URIAL + greedy search (3 ex.) 8.58 14.68
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Figure 9: The distribution of the 1st-turn MT-Bench score (GPT-4-Turbo as judge) on Mistral-
7B-v0.2 obtained by adding multiple instructions from SkillMix (Kaur et al., 2024) as a 4th
(a); 5th (b); 6th (c) demonstration to URIAL. The dashed lines of various colors refer to the
1st-turn MT-Bench score of the obtained searching results. A majority of the 4th examples have
positive contributions to the model’s instruction-following performance, but the improvement quickly
diminishes when running the greedy search for more optimal demonstrations.

better pre-trained models may partially compensate for lower-quality fine-tuning data. Finally, we
notice that ICL with 3 examples from Evol-Instruct gets worse 1st-turn scores than URIAL (with
also 3 examples), whereas ICL with 3 examples from SkillMix matches (on Mistral-7B-v0.2) or
outperforms (on Llama-3.1-8B) URIAL (see also discussion in Sec. 3.1). These observations further
confirm the importance of instruction quality for alignment, whether in the context of in-context
learning or instruction fine-tuning.

D Transferability of In-Context Prompts

In Table 6, we report the performance of applying the in-context examples found by greedy search
(added to URIAL) on Mistral-7B-v0.2 and Evol-Instruct-70k dataset (see Table. 5) to Llama-2-7B-
80k (Fu et al., 2024) and Mixtral-8x22B-v0.1-4bit (Jiang et al., 2024). Adding the new examples
does not provide a consistent improvement: while it can increase the MT-Bench score (+0.47 on
Llama-2-7B-80k, +0.30 on Mixtral-8x22B-v0.1-4bit), it can also, in some cases, give worse results
than the original URIAL. Similarly, it yields mixed results when measured by win rate on AlpacaEval
2.0, which was not optimized by the greedy search. This analysis suggests that the most effective ICL
demonstrations might vary across base LLMs, potentially because of differences in their pre-training.
This could further explain why URIAL underperforms on multiple models in Table 2, especially
on those which have become available only recently and were not used for selecting the URIAL
examples.
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Figure 10: The 1st-turn MT-Bench scores of model generations with and without ICL across
different decoding schemes. We mainly consider two hyper-parameters: temperature and top-p. The
heatmaps show the answering quality of the base model with and without URIAL in the context is
sensitive to the setups of decoding schemes. Surprisingly, with proper decoding parameters, the base
model alone is already capable of following instructions.

E Additional experiments

E.1 Greedy Search on Mistral-7B-v0.2

In this section, we show the distribution of the resulting scores (with GPT-4-Turbo as the judge)
for each step of the greedy search on SkillMix-4k dataset when using Mistral-7B-v0.2 as the base
model. Similar to the finding on Llama-3.1-8B model (see Sec. 3.2), the majority of demonstrations
increase the alignment performance, as measured by 1st-turn MT-Bench score, when added as the
fourth example on top of URIAL, and few progress is made with more demonstrations. We show
more details of greedy search results on Mistral-7B-v0.2 in Fig. 9.

E.2 More experiments on decoding schemes

We show more results of decoding schemes under different settings in this section, as supplementary
to the main results in Sec. 2.2. Specifically, in Fig. 10, we turn off the repetition penalty (i.e.,
repetitionpenalty = 1.0) and show the 1st-turn MT-Bench scores on Mistral-7B-v0.2 when varying
the values of temperature and top-p. Moreover, we repeat the same experiment procedure but on a
different base model, Llama-3-8B, and show heatmaps in Fig. 11.

E.3 A Breakdown examination of URIAL-aligned models

The test set of MT-Bench (Zheng et al., 2023) is comprised of high-quality questions that belong to 8
common categories: coding, math, reasoning, extraction, roleplay, writing, humanities/social science,
and STEM. In Table 7, we present the per-category performance on MT-Bench for each model in
order to have a more detailed comparison between the URIAL-aligned models and the corresponding
instruct models. The results suggest fine-tuning is almost always better than URIAL (ICL) and
only underperforms in a minority of cases on particular base models, such as Mistral-7B-v0.1 and
Llama-2-70B.
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Figure 11: The 1st-turn MT-Bench scores of Llama-3.1-8B generations with and without URIAL
in the context across different decoding schemes. We mainly consider two hyper-parameters:
temperature and top-p.

Table 7: A breakdown examination of URIAL-aligned models and corresponding instruct models
across different categories on MT-Bench. * denotes the results taken from the URIAL GitHub
repository.

Model coding math reasoning extraction humanities roleplay stem writing Average

Llama-2-7B + URIAL * 1.65 1.60 3.45 3.40 8.08 7.48 6.80 6.20 4.83
Llama-2-7B-Instruct 2.95 2.40 5.20 6.33 9.58 7.83 8.88 9.05 6.53

Llama-2-70B + URIAL * 4.15 3.60 6.10 7.70 9.75 7.33 8.75 9.50 7.11
Llama-2-70B-Instruct 3.75 4.10 5.95 7.40 9.85 7.90 9.13 9.50 7.20

Llama-3-8B + URIAL * 4.15 2.60 3.50 5.25 8.90 7.30 8.15 6.13 5.75
Llama-3-8B-Instruct 5.95 5.05 6.15 9.16 9.90 9.05 8.95 8.70 7.86

Llama-3-70B + URIAL * 4.35 3.80 4.95 6.20 8.00 7.25 8.55 8.10 6.40
Llama-3-70B-Instruct 7.85 7.35 6.25 9.75 10.00 9.30 9.60 9.80 8.74

Llama-3.1-8B + URIAL * 4.35 3.25 3.95 5.95 9.00 6.95 8.00 7.60 6.13
Llama-3.1-8B-Instruct 6.40 6.50 5.70 8.78 9.80 9.00 8.60 9.20 8.00

Mistral-7B-v0.1 + URIAL * 4.60 3.40 4.90 7.75 9.08 7.65 8.28 7.75 6.67
Mistral-7B-Instruct-v0.1 4.35 3.95 6.30 6.75 9.45 7.45 7.70 8.85 6.85

Mistral-7B-v0.2 + URIAL * 3.80 3.35 4.50 7.45 8.95 6.70 7.43 7.98 6.27
Mistral-7B-Instruct-v0.2 5.45 3.40 6.50 8.50 9.90 8.65 9.30 9.40 7.64

Mixtral-8x22B-v0.1-4bit + URIAL 5.25 5.85 6.00 9.20 9.80 8.65 8.30 8.60 7.71
Mixtral-8x22B-Instruct-v0.1-4bit 7.10 7.03 7.00 9.10 9.65 8.90 9.65 9.70 8.52

GPT-4-Base + URIAL 5.55 5.98 6.90 8.20 5.93 6.90 6.45 6.10 6.50
GPT-4 (March 2023) * 8.55 6.80 9.00 9.38 9.95 8.90 9.70 9.65 8.99
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