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Abstract

Antibodies comprise the most versatile class of binding molecules. Tradi-
tional computational methods for antibody design often rely on evolution-
ary information but are inadequate for certain applications, particularly
when multiple sequence alignments are not robust. Machine learning (ML)
approaches have demonstrated impressive success in generating antibody
sequences, making them a viable option for effectively representing bio-
logical data and rapidly exploring the vast in silico antibody spaces. This
work proposes DiffAntiSeq, a controllable diffusion-generative model to
construct high-quality virtual antibody libraries. DiffAntiSeq conducts the
denoising procedure in the latent residue embedding space and is guided
by an additional protein language model (PLM) classifier to steer the gener-
ation process toward desired properties, such as improved binding affinity
and specificity For verification, we integrate target-specific binding affini-
ties with information from millions of antibody sequences in AlphaSeq
into our DiffAntiSeq framework and design thousands of single-chain
variable fragments (scFvs) that are then empirically measured. Extensive
experiments show that the produced antibodies generally have stronger
binding strength against the SARS-CoV-2 target peptide, outperforming
existing ML-directed evolution approaches. We expect this controllable dif-
fusion method to be broadly applicable and provide value to other protein
engineering-related tasks.

1 Introduction

Antibodies have become critical therapeutics due to their high specificity and lower adverse
effects compared to small-molecule drugs. Efficient computational methods to explore and
prioritize antibody sequences within the vast sequence space are essential, as exhaustive
evaluation is impractical (Li et al., 2022a). Constructing smart antibody libraries—diverse
yet stable and specific—is central to accelerating therapeutic discovery (Stokes et al., 2020).

Two primary approaches have emerged for library design. The first leverages natural
sequence alignments to understand positional constraints and interdependencies among
amino acids. However, alignment-based methods struggle with variable-length and hyper-
mutated complementarity-determining regions (CDRs), crucial for antibody specificity.

Alternatively, deep learning (DL) models, capable of capturing complex patterns, have been
successfully applied to protein structure prediction and drug discovery (Jumper et al., 2021;
Liu et al., 2020; Wu et al., 2021; 2022a; 2023b;a; 2025b; Tang et al., 2024; Deng et al., 2025).
Recent DL methods co-design antibody sequences and structures using geometric graph
networks (Jin et al., 2021; 2022; Luo et al., 2022; Shi et al., 2022), but these approaches require
known antigen or antibody-antigen complex structures, limiting their applicability and
iterative refinement capabilities. Sequence-only DL methods avoid structural constraints
but typically adopt auto-regressive models, introducing errors from cumulative inference
and restrictive directional assumptions.
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Figure 1: Illustration of the antibody library design task, where an end-to-end diffusion-
based algorithm is proposed to design new antibodies. Given a target antigen, the goal
is to generate a diverse set of antibody sequences that can bind to the epitope with high
affinity. This involves designing the complementarity-determining regions (CDRs) of the
antibody while ensuring structural stability and manufacturability. Then, active learning is
conducted in the iterative process of refining the antibody library by selecting high-quality
candidates for further optimization.

Addressing these limitations, we introduce DiffAntiSeq, an end-to-end denoising diffusion
framework combining advanced diffusion techniques with large-scale protein language
models (PLMs). DiffAntiSeq transforms initial Gaussian noise vectors into amino acid
sequences through progressive denoising steps, generating antibody sequences in a non-
autoregressive, full-shot manner. We also propose a gradient-based control algorithm to
steer generation toward desired properties such as higher binding strength and specificity,
maintaining evolutionary context.

Empirical validation in a virtual library of single-chain variable fragments (scFv) targeting
SARS-CoV-2 shows that more than 70% of antibodies generated by DiffAntiSeq outperform
the initial candidates. Comparative experiments with state-of-the-art DL-based methods,
including BioTransfer (Li et al., 2023) and DiffAb (Luo et al., 2022), confirm that DiffAntiSeq
significantly improves antibody quality, underscoring its efficacy in antibody library design.

2 Method

2.1 Task Formulation

We represent the antibody sequence composed of n residues as a = [a1, ..., an] ∈ A, where
ai ∈ V is an amino acid token. V is the token vocabulary that consists of twenty amino acid
tokens and four auxiliary tokens (i.e., ’PAD’, ’END’, ’START’, ’UNKNOWN’). The CDRs
of this antibody are a m-length subsequence of a denoted as b = [b1, ..., bm], where bi = aei
and ei is the index of CDR residue bi in the antibody a. The antigen sequence is consisted
of n′ amino acids, represented as c = [c1, ..., cn′ ] ∈ C, and its corresponding structure is
denoted as Gag, which can be obtained by X-ray crystallography or via computational tools
like AlphaFold (Jumper et al., 2021).

Controllable antibody generation refers to the task of sampling antibody sequences b
from a PLM, represented as a conditional distribution pPLM(a | c). In some settings, the
full antibody sequence a is partially known, and the goal shifts to optimizing specific
regions, such as CDRs. This leads to conditional generation of CDRs b via pPLM(b | a, c) or
pPLM(b | a− b, c), where a− b denotes the framework region. We extend this formulation
by introducing a ground-truth mapping function f : A × C → Y ⊂ R, where A and
C denote the spaces of antibody and antigen sequences, respectively, and f (·) evaluates
properties such as binding affinity or specificity for a given antibody–antigen pair (a, c).

Our objective is to train a generative model µθ(· | c,Gag) that, conditioned on the antigen
sequence c and its structure Gag, can construct a virtual antibody library Va of size at most
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Figure 2: A. The diffusion model iteratively denoises a given antibody sequence whose
CDRs are filled with Gaussian vectors into residue vectors. It yields an intermediate latent
variable of decreasing noise level xT ...x0. A final rounding layer is followed to transfer
the residue vectors to discrete antibody sequences. B. The generated antibody sequences
are forwarded into large-scale pre-trained protein language models (PLM) to obtain the
sequence representations, fed into a fully-connected layer to forecast the antibody function
further. Quantitative affinity data measured by high-throughput experiments are used to
supervise the training of this deep learning model.

K. The goal is to maximize the average binding score across the generated antibodies while
promoting diversity. Formally, we solve:

max
Va

Ea∈Va [ f (a, c,Gag)], s.t., card(Va) ≤ K, (1)

where card(·) computes the element number of the set Va.

2.2 Preliminary of Diffusion Models

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021;
Song & Ermon, 2019) are latent variable models that generate data x0 ∈ Rd by reversing a
Markovian diffusion process. Starting from Gaussian noise xT ∼ N (0, I), DDPMs iteratively
denoise a latent trajectory xT → · · · → x0 to recover samples from the data distribution.
Each reverse step is modeled as a Gaussian transition pθ(xt−1|xt) = N (µθ(xt, t), Σθ(xt, t)),
where µθ and Σθ are predicted by deep networks such as U-Net (Ronneberger et al., 2015)
or Transformers (Vaswani et al., 2017).

The forward (noising) process adds Gaussian noise to data over T steps via q(xt|xt−1) =
N (

√
1− βtxt−1, βtI), with a predefined variance schedule {βt}T

t=1. This process produces
tractable posteriors q(xt−1|xt, x0), enabling efficient training by minimizing a variational
bound on the log-likelihood log pθ(x0):

Ex1:T∼q(·|x0)

[
log

q(xT |x0)

pθ(xT)
+

T

∑
t=2

log
q(xt−1|xt, x0)

pθ(xt−1|xt)
− log pθ(x0|x1)

]
. (2)

To improve training stability, Ho et al. (2020) propose simplifying the loss using closed-form
KL divergences between Gaussians, yielding a weighted mean-squared error:

LELBO(x0) =
T

∑
t=1

γt Ext∼q(xt |x0)

[
∥µθ(xt, t)− µ̂(xt, x0)∥2

]
, (3)

where µ̂(xt, x0) denotes the mean of the posterior q(xt−1|xt, x0), and γt is a weighting
schedule. Although no longer a true ELBO, this objective empirically improves sample
quality and stabilizes training (Nichol & Dhariwal, 2021).

2.3 Diffusion Models for Antibody Sequence Design

Applying a continuous diffusion model to a discrete antibody sequence is challenging. A
recent study (Luo et al., 2022) sets the forward diffusion process in a way that converts
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Algorithm 1 DiffAntiSeq Sampling Process
1: Input: diffusion model µθ(·), classifier fτ(·), initial noise level σ0, gradient scale s,

antigen sequence c and structure Gag
2: xT ← sample from N (0, σ0I)
3: for t from T to 1 do
4: µt−1, Σt−1 ← µθ

(
xt, t|c,Gag

)
5: xt−1 ← sample from N

(
µt−1 + sΣt−1∇xt log pτ(y | xt), Σt−1

)
▷ Gradients

from an extra binding affinity classifier fτ(·) is used as guidance
6: end for
7: a← pθ(x0) ▷ Rounding function maps x0 from latent space X to discrete token space
A

8: Return a

the multinomial distribution to the uniform distribution of twenty residue types. This is
inevitably suboptimal because it constrains the noise to be a 20-dimensional vector. Here,
we borrow the idea from natural language generation (NLG) (Li et al., 2022b; He et al., 2023;
Lovelace et al., 2024; Lyu et al., 2023; Liu et al., 2024a;b) and perturb the distribution of
residues in a much higher-dimensional vector space, where the noise can be more complex
and unconstrained.

To begin with, an embedding function hϕ(·) is first introduced to map each amino acid to a
vector in Rd. Then the embedding of an antibody or antigen sequence is obtained as the
two formulas:

hϕ(a) = [hϕ(a1), ..., hϕ(an)] ∈ Rnd, hϕ(c) = [hϕ(c1), ..., hϕ(cm)] ∈ Rmd. (4)

It is worth noting that we propose to jointly train the diffusion model parameters θ and
residue embeddings ϕ. In preliminary experiments, we explored pretrained residue em-
beddings based on ESM-2 (Lin et al., 2022) but found fixed embeddings inferior to the
end-to-end training paradigm. After that, a Markov transition is implemented to transfer
from discrete amino acids a to x0 in the forward process, as qϕ (x0 | a) = N

(
hϕ(a), σ0I

)
.

In the reverse process, we add a trainable rounding step, parameterized by pθ (a | x0) =
∏n

i=1 pθ (ai | xi), where pθ (ai | xi) is a Softmax distribution. Then, our final training loss is
written as follows:

L(a) = Ex0:T∼qϕ(x0:T |a)
[
LELBO (x0) + ∥hϕ(a)− µθ(x1, 1|c,Gag)∥2 − log pθ(a|x0)

]
, (5)

where LELBO (x0) is derived from Equation 3. Since the learned embeddings hϕ(·) define a
mapping from discrete residue types a to continuous latent space X , the inverse process
requires a similar operation to round a predicted x̂0 back to a discrete antibody sequence. In
particular, (Li et al., 2022b) demonstrate that to directly predict the mean of pθ(xt−1|xt) by
µθ(xt, t|c,Gag) for each denoising step t needs careful tuning, and empirical experiments
show that the model usually fails to generate x0 that commits to a sequence with high
probability pθ . As an alternative choice, we re-parameterize LELBO so that our model is
forced to explicitly emphasize x0 in every term of the loss objective, and it takes the following
form:

L′ELBO (x0) =
T

∑
t=1

γtExt∼q(xt |x0)

[∥∥µθ

(
xt, t|c,Gag

)
− x0

∥∥2
]

, (6)

where our model µθ

(
xt, t|c,Gag

)
forecasts x0 immediately. This forces the network to attain

x0 in every step, and (Li et al., 2022b) proved that this objective helps x0 quickly converge to
the token embeddings.

2.4 Target-specific Generation with Desired Antibody Properties

Ideally, the construction of an antibody library ought to satisfy several important require-
ments. For instance, antibodies need to bind to target molecules with improved binding
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strength or specificity. Besides, the library should have rich sequence diversity. To meet
these goals, we consider the problem of controllable antibody generation.

To begin with, we describe a plug-and-play procedure that enables the incorporation of
antigen information and a generation tendency towards better biological properties. We
first leverage a PLM fτ : A × C → Y to classify the biological property y of any input
antibody sequence a, which is bound to the given antigen c. After that, controlling x0:T is
equivalent to decoding from the posterior p(x0:T | y) = ∏T

t=1 p (xt−1 | xt, y). Then this joint
inference formula can be decomposed to a sequence of control tasks at each diffusion step,
i.e., p (xt−1 | xt, y) ∝ p (xt−1 | xt) · p (y | xt−1, xt). We further simplify p (y | xt−1, xt) = p(y |
xt−1) via conditional independence assumptions, namely, y ⊥ xt|xt−1. Consequently, the
gradient update for the t-th step becomes:

∇xt−1 log p (xt−1 | xt, y) = ∇xt−1 log p (xt−1 | xt) +∇xt−1 log p (y | xt−1) , (7)

where log p (xt−1 | xt) and log p (y | xt−1) are differentiable. The former is parameterized
by the diffusion architecture µθ(·) and hϕ(·), while the latter is parameterized by the pre-
defined classifier fτ(·) for binding affinity or specificity. Here, we omit the antigen term
and directly forecast y if the target molecule is unique, that is, fτ : A → Y . Similar to
work in the computer vision setting, the classifier fτ(·) is trained on the diffusion latent
variables, and a gradient update is run on the latent space xt−1 such that it is steered towards
fulfilling the control. Notably, these image diffusion studies take one gradient step towards
∇xt−1 log p (y | xt−1) per diffusion step.

To generate biologically reasonable antibodies, we introduce an additional evolutionary
regularization as λ log p (xt−1 | xt) + log p (y | xt−1), where λ is a hyperparameter to trade
off homogeneity (the first term) and control (the second term). It is worth mentioning that
existing controllable generation methods for diffusion do not include the λ log p (xt−1 | xt)
term in the objective; we found this term to be instrumental for generating biologically rea-
sonable antibody sequences (Li et al., 2022b). The resulting controllable generation process
can be viewed as a stochastic decoding method that balances maximizing and sampling
p (xt−1 | xt, y). The sampling procedure of our DiffAntiSeq is depicted in Algorithm 1.

2.5 Reprogramming Protein Language Models for Structure-aware Antibody Design

PLMs (Rives et al., 2021; Zheng et al., 2023; Wu et al., 2024b;a) encode rich evolutionary
and structural priors, making them powerful engines for structure-conditioned sequence
generation. We leverage PLMs as the sequence decoder µθ(xt, t | c,Gag) in our antibody
design framework, enhanced via parameter-efficient fine-tuning (PEFT) to retain modeling
strength with minimal overhead.

Our PEFT scheme integrates structural adapters (Zheng et al., 2023) with LoRA (Hu et al.,
2022), using a low-rank setup (r=4, α=8). Antigen structural context Gag is extracted
via a GVP-GNN (Jing et al., 2020). While the optimal PEFT strategy for PLMs remains
unsettled (Sledzieski et al., 2024), our hybrid design consistently outperforms individual
methods in structure-informed antibody generation.

3 Experiments

Antibody therapies represent a valuable tool to reduce COVID-19 deaths and hospital-
izations. To justify the advantages of our DiffAntiSeq, we built a new antibody library
against SARS-CoV-2, a strain of coronavirus that causes COVID-19, and then quantitatively
investigated the characteristics of this library. Extra experiments are performed to validate
the effectiveness of DiffAntiSeq’s constituents.

3.1 Dataset

We use AlphaSeq (Engelhart et al., 2022a) as the database, downloaded from https:
//github.com/mit-ll/AlphaSeq Antibody Dataset. This dataset contains quantitative bind-
ing scores of scFv-format antibodies against a SARS-CoV-2 target peptide collected via an
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Table 1: Performance of different PLMs in predicting the measured binding affinity in
AlphaSeq.

Model Fine-tune RMSE ↓ Spearman ↑ Pearson ↑
Transformer – 1.2958 0.37 0.41

General PLMs
ProtTrans ✗ 0.8025 0.54 0.61

ESM-1 ✗ 0.6817 0.70 0.76
ESM-2 ✗ 0.6221 0.72 0.77

MSA-1b ✗ 0.6318 0.71 0.75

Antibody PLMs
AbLang ✗ 0.5622 0.74 0.79

AntiBERTa ✗ 0.5297 0.76 0.80
EATLM ✗ 0.4966 0.81 0.85

EATLM ✓ 0.2352 0.93 0.97

Table 2: The affinity statistics of different designed antibody datasets in Kd (the lower the
better), including the original AlphaSeq and other DL-generated libraries.

Dataset mean std min 25% 50% 75% max

AlphaSeq 3.6810 1.2385 -1.4271 3.0367 3.8399 4.5104 7.3483
dyMEAN (Kong et al., 2023) 4.0691 0.9336 1.9605 3.4207 4.0640 4.7341 6.5002

DiffAb (Luo et al., 2022) 3.9879 1.0258 1.5485 3.3315 3.9742 4.6649 6.5322
ProGen2 (Nijkamp, 2023) 0.8658 1.0297 -2.6447 0.1149 0.6385 1.4354 6.0774

BioTransfer (Li et al., 2022a) 0.6655 1.0103 -2.6903 -0.0696 0.4282 1.2141 5.5576

DiffAntiSeq 0.4650 1.0300 -2.9571 -0.2706 0.2409 1.0274 5.5098

AlphaSeq assay (Engelhart et al., 2022b). It starts from three seed sequences identified from
a phage display campaign using a human naive library. Sets of 29,900 antibodies were
designed in silico by creating all k = 1 mutations and random k = 2 and k = 3 mutations
throughout CDRs. Diversity was introduced in the heavy chain CDRs for seed sequence
one, in the light chain CDRs for seed sequence two, and independently in the heavy and
light chain CDRs of seed sequence three, for a total of four sets. Of the 119,600 designs,
104,972 were successfully built into the AlphaSeq library and were subsequently measured
with 71,384 designs, resulting in a predicted affinity value for at least one of the triplicate
measurements. Data include antibodies with predicted affinity measurements ranging
from -1.43 to 7.35. We use Kd as the primary metric for binding affinity, directly provided
by the AlphaSeq dataset. Lower Kd values indicate stronger binding. To our knowledge,
this dataset is the largest publicly available dataset that contains antibody sequences, anti-
gen sequences, and quantitative measurements. It provides an opportunity to serve as a
benchmark to evaluate antibody-specific representation models for DL.

3.2 Results and Analysis

3.2.1 Binding Affinity Prediction

We first train a standalone PLM to predict binding affinity, serving dual purposes: validating
the effectiveness of generated libraries and acting as a classifier to propagate gradients and
guide the diffusion process. We evaluate various general-purpose PLMs, including Prot-
Trans (Elnaggar et al., 2021), ESM-1, ESM-2 (Lin et al., 2022), and MSA-1b (Rao et al., 2021),
as well as antibody-specific PLMs such as AbLang (Olsen et al., 2022), AntiBERTa (Leem
et al., 2022), and EATLM (Wang et al., 2023). These PLMs are tested under linear-probing
and fully fine-tuned settings, with results summarized in Tab. 1.

Notably, antibody-specific PLMs generally outperform general-purpose models, with
EATLM achieving the best performance. EATLM records the lowest RMSE (0.4966) and the
highest Spearman and Pearson correlations. Further fine-tuning EATLM yields even better
results, reducing RMSE to 0.2352 and increasing Spearman and Pearson correlations to
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Figure 3: Measured affinity distributions of antibodies in different datasets. A DiffAntiSeq-
optimized antibody library outperforms other ML-directed evolution approaches with a
high percentage of success.

Figure 4: Structural visualization of selected antibody examples in our DiffAntiSeq library
against the peptide epitope (the grey segment) from a SARS-CoV-2 Spike protein, which
usually elicits strong T cell responses in COVID-19 patients. The complex structures are
obtained via Alphafold-3.

0.93 and 0.97, respectively. These results highlight EATLM’s capability as a highly accurate
adjudicator, effectively validating the efficacy of various antibody design algorithms.

3.2.2 Antibody Library Design

We rigorously compare DiffAntiSeq with BioTransfer, dyMEAN, and DiffAb by reporting
the mean, standard deviation, minimum, and maximum binding affinities of AlphaSeq and
other generated antibody libraries in Tab. 2. Additionally, we visualize the distribution
of measured affinities in Fig. 3 and also draw a couple of complex structures predicted
by Alphafold-3 in Fig. 4. Our results show that DiffAntiSeq achieves the highest library
success rate. Antibodies generated using DiffAntiSeq-optimized libraries exhibit signifi-
cantly stronger binding affinities compared to the baselines, with an increased frequency
of beneficial mutations. Interestingly, libraries designed using DiffAb perform worse than
those designed using AlphaSeq, suggesting that an unconditional diffusion model may
not be ideal for target-specific antibody design. This underscores the importance of contin-
uous diffusion models in overcoming the discrete nature of amino acids. These findings
demonstrate the strong potential of controllable diffusion models, such as DiffAntiSeq, for
antibody library design.

3.3 Evaluation of Antibody Library

To further evaluate the designed libraries, we select the top 10 best antibody sequences
from each library and employ a 3-step pipeline to estimate its binding affinity more thor-
oughly. Specifically, we use ESM-Fold (Lin et al., 2022) to predict antibody structures,
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Table 3: Quantitative evaluation of sequence diversities among different library design
algorithms.

Method Average Aff. Normalized ED

AlphaSeq 3.68 0.54
dyMEAN (Kong et al., 2023) 4.06 0.22

DiffAb (Luo et al., 2022) 3.98 0.28
ProGen2 (Nijkamp, 2023) 0.86 0.64

BioTransfer (Li et al., 2022a) 0.66 0.45

DiffAntiSeq 0.46 0.49

HADDOCK (De Vries et al., 2010) to acquire the complexes, and Rosetta (Das & Baker, 2008)
to estimate binding affinities against the target antigen. The results indicate that libraries
designed by DiffAntiSeq achieved an average ∆∆G of -31.5 kcal/mol, surpassing AlphaSeq
(-25.4 kcal/mol) and BioTransfer (-24.7 kcal/mol). Moreover, enhanced binding interfaces
with improved hydrophobic and electrostatic interactions were observed in DiffAntiSeq
antibodies. This highlights DiffAntiSeq’s ability to produce high-affinity antibodies by
optimizing binding interfaces through targeted mutations (Wu & Li, 2025).

3.3.1 Additional Results

In addition to binding affinity measurement, we provide a comprehensive assessment of
the sequence diversity of designed antibody libraries. Specifically, we leverage the edit
distance (i.e., Levenshtein distance) to calculate the similarity between all pairs of sequences
in the library. Lower similarity scores indicate higher diversity. Edit distance measures the
minimum number of single-character edits (insertions, deletions, or substitutions) required
to change one sequence into another.

Considering that differently designed sequences can have different lengths of CDRs, we
utilize the normalized edited distance. That is a scaled version of edit distance and more suit-
able for comparing sequences of varying lengths, defined as Normalized Edit Distance =

Edit Distance
max( Length of Seq 1, Length of Seq 2) . As a consequence, the range of normalized edit distance
is between 0 and 1. 0 means the sequences are identical, while 1 means the sequences are
completely different (no common characters).

The results in Tab. 3 highlight key trade-offs between sequence diversity and binding
affinity across antibody design methods. ProGen2 achieves the highest sequence diversity
(normalized edit distance = 0.64), outperforming even the original AlphaSeq dataset (0.54).
This high diversity can be attributed to ProGen2’s extensive pretraining on a vast corpus
of protein sequences, including genomics, metagenomics, and immune repertoire data.
However, this comes at the cost of lower binding affinity (0.86). In contrast, structure-based
methods like DiffAb and dyMEAN exhibit lower diversity (0.28 and 0.22, respectively) but
achieve stronger binding affinities (3.98 and 4.06), as they prioritize structural optimization
over sequence exploration. DiffAntiSeq strikes a balance, maintaining moderate diversity
(0.49) while achieving the best affinity score (0.46), demonstrating its ability to generate
high-quality, diverse antibody libraries. This balance underscores the practical effectiveness
of DiffAntiSeq in antibody design.

4 Conclusion

Despite the importance of therapeutic antibodies, designing early-stage antibody therapeu-
tics remains a time and cost-intensive endeavor. In this paper, we propose a controllable
denoising diffusion algorithm called DiffAntiSeq with two main innovations. Firstly, it
performs continuous diffusion on the latent space despite the inherently discrete nature of
amino acids. Secondly, we control the diffusion process via gradients to generate antibodies
with desired properties. Comprehensive experiments demonstrate the ability of DiffAntiSeq
to rapidly design large libraries of potently binding antibodies. Our framework can also be
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extended to other domains of protein engineering where large-scale functional mutagenesis
screens are applied. We envision our algorithm to solve real-world drug discovery problems.

5 Limitations and Future Works

Despite the progress of DiffAntiSeq in constructing large-scale antibody libraries targeting
specific receptors, there are several restrictions in extending our mechanism to real-world
applications. Firstly, our model was evaluated using a DL model instead of wet experiments.
Those binding affinity data may not be available for the pair of antigen and antibody
where the antibody needs to be redesigned. Secondly, we merely justified the efficacy of
DiffAntiSeq on a single antigen (e.g., SARS-CoV-2), which limits the generalizability of this
model.
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A Baseline Methods

Antibody library design is an emerging field, and we select three strong and recent baselines
for comparison. To be specific, BioTransfer (Li et al., 2022a) is the first DL-driven algorithm
for antibody library design. It collected training data via random mutations of the candidate
scFv antibody along the entire CDR and high-throughput binding quantification. Then, it
performs supervised fine-tuning of pretrained PLMs to predict binding affinities with uncer-
tainty assessment. In silicon scFv antibody design is conducted via Bayesian optimization
over an ML-extrapolated fitness landscape, resulting in 248,921 new scFvs. DiffAb (Luo
et al., 2022) is one of the earliest diffusion probabilistic models for protein structures tar-
geting specific antigen structures. Here, we discard the structure recovery part and merely
keep the sequence diffusion module for our antibody library design, gaining 25k antibodies.
Moreover, as SARS-CoV-2 is picked up, for instance, and its structural information is widely
accessible, we include another algorithm dyMEAN (Kong et al., 2023) for comparison. It
is an end-to-end full atom model for E(3)-equivariant antibody design, given the epitope
and the incomplete antibody sequence, and does not require complex structures. We feed
the epitope information into dyMEAN and randomly select 100 antibody sequences with
CDR masked as the model input. ProGen2 (Nijkamp, 2023) is a decoder-only PLM trained
on datasets collectively totaling 1B protein sequences from genomic, metagenomic, and
immune repertoire databases. A ProteinGen2-small with 151M parameters is used.
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B Experimental Details

DiffAntiSeq is founded on ESM-2, which adopts the Transformer (Vaswani et al., 2017)
architecture with 650M parameters. The maximum sequence length is n = 1024, the
number of diffusion steps is T = 2000, and a square-root noise schedule is utilized. That
is, ᾱt = 1−

√
t/T + η, where η is a small constant that corresponds to the starting noise

level. The embedding dimension is aligned with ESM-2 as d = 1024. The classifier takes
advantage of the same architecture of the diffusion model, but with a predictive head for
attaining binding strength. 25,000 antibodies were sampled by DiffAntiSeq to constitute
the library for validation. Following (Wang et al., 2023), we adopted the base Transformer
architecture (Vaswani et al., 2017) with 12 layers, 12 heads, and 768 hidden states. The
total parameters are 86 M. For the binding affinity prediction task, we conducted a 10-
fold validation and reported the average results. For finetuning, we limit the max epochs
to 30 and use the Adam optimizer with a max learning rate of 3e-5. We use the mean
representation of 12 layers as the sequence representation.

We implement all experiments on 4 A100 GPUs, each with 80G memory. DiffAntiSeq is
trained with an AdamW optimizer without weight decay and with β1 = 0.9 and β2 = 0.999.
A ReduceLROnPlateau scheduler is employed to automatically adjust the learning rate with
a patience of 10 iterations and a minimum learning rate of 1.e− 6. The regularization weight
item λ is set as 1.5. The maximum iterations are 200K, and the validation frequency is 5K
iterations. The batch size is set to 64, and the initial learning rate is 1.e− 4 with a dropout
rate of 0.1.

BioTransfer was implemented using its official code at https://github.com/
AIforGreatGood/biotransfer. DiffAb was accessed from its official GitHub at https:
//github.com/luost26/diffab. dyMEAN was examined using its publicly available code
at https://github.com/THUNLP-MT/dyMEAN. ProGen2 was conducted using its official
release at https://github.com/enijkamp/progen2. The antibody protocol of HADDOCK
was used via the code at https://github.com/haddocking/HADDOCK-antibody-antigen.

C Related Work

C.1 Computational Antibody Design

Early methods primarily rely on sampling algorithms applied to hand-crafted and statistical
energy functions for antibody optimization, involving iterative modifications to protein
sequences and structures (Lapidoth et al., 2015; Wu et al., 2025a). However, energy-based
methods suffer from the insufficient expressive power of the statistical energy functions. As a
remedy, recent advancements in deep learning have demonstrated substantial enhancements
over sampling mechanisms. Specifically, a line of research co-designs the CDR sequences
and 3D structures simultaneously, such as Refine-GNN (Jin et al., 2021), HERN (Jin et al.,
2022), MEAN, and HTP (Wu & Li, 2023). They all attempt to recover the CDR’s sequence and
structure while keeping the other parts unchanged. Though this direction seems promising,
those methodologies assume the existence of a complex structure, which is usually hard
to obtain in real-world circumstances. Moreover, the efficacy of some existing co-design
approaches (Jin et al., 2021; 2022) is predominantly limited by the small number of antibody
structures.

To overcome these obstacles, another line of research employs language models to generate
protein sequences, resulting in increased efficiency. The progress of general PLMs, including
ESM, ProGen, and ProTrans, and specific antibody PLMs, such as AntiBerta (Leem et al.,
2022), AbLang (Olsen et al., 2022), and EATLM (Wang et al., 2023), provides new prospects
for antibody design. It is proven that general PLMs can effectively transfer to antibody tasks
and that antibody PLMs improve model performance in antibody paratope predictions.
However, how to proficiently unite these PLMs with advanced generative models like
diffusion for antibody design remains unexplored.
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Figure 5: Additional ablation results, where we remove the continuous diffusion and
controllable generation, separately.

C.2 Diffusion Models for Proteins

Diffusion models (Yang et al., 2022) have become a new state-of-the-art generative modeling
method in the past few years. They are inspired by non-equilibrium thermodynamics and
have been invented to learn data distributions by modeling a reverse denoising process.
They achieve record-breaking success in various domains including image generation (Wang
et al., 2022; Ho & Salimans, 2022), text generation (Li et al., 2022b), interpretable text model-
ing (Yu et al., 2022), audio synthesis (Kong et al., 2020), and point cloud reconstruction (Luo
& Hu, 2021).

Recent efforts employ diffusion models in solving scientific problems, particularly, in drug
design with equivariant geometric networks in the 3D space (Hoogeboom et al., 2022; Wu
et al., 2022d; Huang et al., 2022; Igashov et al., 2022; Schneuing et al., 2022). They are utilized
to generate molecular conformations (Jing et al., 2022; Xu et al., 2022; Luo et al., 2021)
or accelerate the simulation of molecular dynamics (MD) (Wu et al., 2022b). In addition
to small molecules, they are also applied in the field of larger macromolecules, such as
designing new protein backbone structures (Wu et al., 2022c; Anand & Achim, 2022; Shi
et al., 2022) or a scaffold structure that supports a desired motif (Trippe et al., 2022). For
example, (Luo et al., 2022) presents a diffusion model that targets specific antigen structures
with corresponding antibodies. LaMBO (Gruver et al., 2024) proposes guidance over discrete
diffusions for antibody design. AntiBARTy (Venderley, 2023) trains a property-conditional
diffusion model for guided IgG de novo design. Despite their fruitful progress, none have
successfully leveraged diffusion models to generate a smart antibody library to guide the
search for potential drugs.

D Ablation Studies

We explore the contributions of different key components of our DiffAntiSeq through two
ablation studies, each sampling 25K antibodies. Fig. 5 shows that the removal of either the
continuous diffusion or the controllable mechanism induces performance detriment. This is
reasonable since the control technique provides specific guidance for diffusion models to
sample high-affinity scFv molecules. In addition, it is observed that the continuous diffusion
makes the binding affinity distributions of generated scFvs more condensed. We anticipate
the development of more advanced conditional diffusion techniques for this crucial design
problem.
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