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Abstract

Antibodies comprise the most versatile class of binding molecules. Tradi-1

tional computational methods for antibody design often rely on evolution-2

ary information but are inadequate for certain applications, particularly3

when multiple sequence alignments are not robust. Machine learning (ML)4

approaches have demonstrated impressive success in generating antibody5

sequences, making them a viable option for effectively representing bio-6

logical data and rapidly exploring the vast in silico antibody spaces. This7

work proposes DiffAntiSeq, a controllable diffusion-generative model to8

construct high-quality virtual antibody libraries. DiffAntiSeq conducts the9

denoising procedure in the latent residue embedding space and is guided10

by an additional protein language model (PLM) classifier to steer the gener-11

ation process toward desired properties, such as improved binding affinity12

and specificity For verification, we integrate target-specific binding affini-13

ties with information from millions of antibody sequences in AlphaSeq14

into our DiffAntiSeq framework and design thousands of single-chain15

variable fragments (scFvs) that are then empirically measured. Extensive16

experiments show that the produced antibodies generally have stronger17

binding strength against the SARS-CoV-2 target peptide, outperforming18

existing ML-directed evolution approaches. We expect this controllable dif-19

fusion method to be broadly applicable and provide value to other protein20

engineering-related tasks.21

1 Introduction22

Antibodies have become critical therapeutics due to their high specificity and lower adverse23

effects compared to small-molecule drugs. Efficient computational methods to explore and24

prioritize antibody sequences within the vast sequence space are essential, as exhaustive25

evaluation is impractical (Li et al., 2022a). Constructing smart antibody libraries—diverse26

yet stable and specific—is central to accelerating therapeutic discovery.27

Two primary approaches have emerged for library design. The first leverages natural28

sequence alignments to understand positional constraints and interdependencies among29

amino acids. However, alignment-based methods struggle with variable-length and hyper-30

mutated complementarity determining regions (CDRs), crucial for antibody specificity.31

Alternatively, deep learning (DL) models, capable of capturing complex patterns, have been32

successfully applied to protein structure prediction and drug discovery (Jumper et al., 2021;33

Stokes et al., 2020; Liu et al., 2020). Recent DL methods co-design antibody sequences and34

structures using geometric graph networks (Jin et al., 2021; 2022; Luo et al., 2022; Shi et al.,35

2022), but these approaches require known antigen or antibody-antigen complex structures,36

limiting their applicability and iterative refinement capabilities. Sequence-only DL methods37

avoid structural constraints but typically adopt auto-regressive models, introducing errors38

from cumulative inference and restrictive directional assumptions.39

Addressing these limitations, we introduce DiffAntiSeq, an end-to-end denoising diffusion40

framework combining advanced diffusion techniques with large-scale protein language41

models (PLMs). DiffAntiSeq transforms initial Gaussian noise vectors into amino acid42

1



Under review as a conference paper at COLM 2025

Sampled Antibody

EVQAAS…GFTLNSYGIS…VIYSD

GRSVK…GRAAGTFDS…WGQEIK

EVQAAS…?????? …??????…????? …WGQVEIK

CDR-H1 CDR-H2 CDR-H3

Antibody Sequence to be Optimized 

EVQAAS…GFTFDDYAMH…VIYS

DDSVK…GARSTYFAD…WGQEIK

…
…

Generative Models

Antibody Library Design 

Target Antigen

(e.g., SARS-CoV-2)
Antibody Candidates

In Silico Evaluation

Active Learning to Iteratively Refine Deep Learning Models

…
…

…
…

Sequence-function Prediction 

(1st Round Screening) 

High-throughout Experiment

(2nd Round Screening)

Figure 1: Illustration of the antibody library design task, where an end-to-end diffusion-
based algorithm is proposed to design new antibodies. Given a target antigen, the goal
is to generate a diverse set of antibody sequences that can bind to the epitope with high
affinity. This involves designing the complementarity-determining regions (CDRs) of the
antibody while ensuring structural stability and manufacturability. Then, active learning is
conducted in the iterative process of refining the antibody library by selecting high-quality
candidates for further optimization.

sequences through progressive denoising steps, generating antibody sequences in a non-43

autoregressive, full-shot manner. We also propose a gradient-based control algorithm to44

steer generation toward desired properties such as higher binding strength and specificity,45

maintaining evolutionary context.46

Empirical validation on a virtual library of single-chain variable fragments (scFvs) targeting47

SARS-CoV-2 demonstrates that over 70% of DiffAntiSeq-generated antibodies outperform48

initial candidates. Comparative experiments with state-of-the-art DL-based methods, in-49

cluding BioTransfer (Li et al., 2023) and DiffAb (Luo et al., 2022), confirm that DiffAntiSeq50

significantly improves antibody quality, underscoring its efficacy in antibody library design.51

52

2 Method53

2.1 Task Formulation54

We represent the antibody sequence composed of n residues as a = [a1, ..., an] ∈ A, where55

ai ∈ V is an amino acid token. V is the token vocabulary that consists of twenty amino acid56

tokens and four auxiliary tokens (i.e., ’PAD’, ’END’, ’START’, ’UNKNOWN’). The CDRs57

of this antibody are a m-length subsequence of a denoted as b = [b1, ..., bm], where bi = aei58

and ei is the index of CDR residue bi in the antibody a. The antigen sequence is consisted59

of n′ amino acids, represented as c = [c1, ..., cn′ ] ∈ C, and its corresponding structure is60

denoted as Gag, which can be obtained by X-ray crystallography or via computational tools61

like AlphaFold (Jumper et al., 2021).62

Controllable antibody generation refers to the task of sampling antibody sequences b63

from a PLM, represented as a conditional distribution pPLM(a | c). In some settings, the64

full antibody sequence a is partially known, and the goal shifts to optimizing specific65

regions, such as CDRs. This leads to conditional generation of CDRs b via pPLM(b | a, c) or66

pPLM(b | a− b, c), where a− b denotes the framework region. We extend this formulation67

by introducing a ground-truth mapping function f : A × C → Y ⊂ R, where A and68

C denote the spaces of antibody and antigen sequences, respectively, and f (·) evaluates69

properties such as binding affinity or specificity for a given antibody–antigen pair (a, c).70

Our objective is to train a generative model µθ(· | c,Gag) that, conditioned on the antigen71

sequence c and its structure Gag, can construct a virtual antibody library Va of size at most72

K. The goal is to maximize the average binding score across the generated antibodies while73

promoting diversity. Formally, we solve:74

max
Va

Ea∈Va [ f (a, c,Gag)], s.t., card(Va) ≤ K, (1)

2
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A. Diffusion Process
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Figure 2: A. The diffusion model iteratively denoises a given antibody sequence whose
CDRs are filled with Gaussian vectors into residue vectors. It yields an intermediate latent
variable of decreasing noise level xT ...x0. A final rounding layer is followed to transfer
the residue vectors to discrete antibody sequences. B. The generated antibody sequences
are forwarded into large-scale pre-trained protein language models (PLM) to obtain the
sequence representations, fed into a fully-connected layer to forecast the antibody function
further. Quantitative affinity data measured by high-throughout experiments are used to
supervise the training of this deep learning model.

where card(·) computes the element number of the set Va.75

2.2 Preliminary of Diffusion Models76

Denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Nichol & Dhariwal, 2021;77

Song & Ermon, 2019) are latent variable models that generate data x0 ∈ Rd by reversing a78

Markovian diffusion process. Starting from Gaussian noise xT ∼ N (0, I), DDPMs iteratively79

denoise a latent trajectory xT → · · · → x0 to recover samples from the data distribution.80

Each reverse step is modeled as a Gaussian transition pθ(xt−1|xt) = N (µθ(xt, t), Σθ(xt, t)),81

where µθ and Σθ are predicted by deep networks such as U-Net (Ronneberger et al., 2015)82

or Transformers (Vaswani et al., 2017).83

The forward (noising) process adds Gaussian noise to data over T steps via q(xt|xt−1) =84

N (
√

1− βtxt−1, βtI), with a predefined variance schedule {βt}T
t=1. This process produces85

tractable posteriors q(xt−1|xt, x0), enabling efficient training by minimizing a variational86

bound on the log-likelihood log pθ(x0):87

Ex1:T∼q(·|x0)

[
log

q(xT |x0)

pθ(xT)
+

T

∑
t=2

log
q(xt−1|xt, x0)

pθ(xt−1|xt)
− log pθ(x0|x1)

]
. (2)

To improve training stability, Ho et al. (2020) propose simplifying the loss using closed-form88

KL divergences between Gaussians, yielding a weighted mean-squared error:89

LELBO(x0) =
T

∑
t=1

γt Ext∼q(xt |x0)

[
∥µθ(xt, t)− µ̂(xt, x0)∥2

]
, (3)

where µ̂(xt, x0) denotes the mean of the posterior q(xt−1|xt, x0), and γt is a weighting90

schedule. Although no longer a true ELBO, this objective empirically improves sample91

quality and stabilizes training (Nichol & Dhariwal, 2021).92

2.3 Diffusion Models for Antibody Sequence Design93

Applying a continuous diffusion model to a discrete antibody sequence is challenging. A94

recent study (Luo et al., 2022) sets the forward diffusion process in a way that converts95

the multinomial distribution to the uniform distribution of twenty residue types. This is96

inevitably suboptimal because it constrains the noise to be a 20-dimensional vector. Here,97

we borrow the idea from natural language generation (NLG) (Li et al., 2022b; He et al., 2023;98

3
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Algorithm 1 DiffAntiSeq Sampling Process
1: Input: diffusion model µθ(·), classifier fτ(·), initial noise level σ0, gradient scale s,

antigen sequence c and structure Gag
2: xT ← sample from N (0, σ0I)
3: for t from T to 1 do
4: µt−1, Σt−1 ← µθ

(
xt, t|c,Gag

)
5: xt−1 ← sample from N

(
µt−1 + sΣt−1∇xt log pτ(y | xt), Σt−1

)
▷ Gradients

from an extra binding affinity classifier fτ(·) is used as guidance
6: end for
7: a← pθ(x0) ▷ Rounding function maps x0 from latent space X to discrete token space
A

8: Return a

Lovelace et al., 2024; Lyu et al., 2023; Liu et al., 2024a;b) and perturb the distribution of99

residues in a much higher-dimensional vector space, where the noise can be more complex100

and unconstrained.101

To begin with, an embedding function hϕ(·) is first introduced to map each amino acid to a102

vector in Rd. Then the embedding of an antibody or antigen sequence is obtained as the103

two formulas:104

hϕ(a) = [hϕ(a1), ..., hϕ(an)] ∈ Rnd, hϕ(c) = [hϕ(c1), ..., hϕ(cm)] ∈ Rmd. (4)

It is worth noting that we propose to jointly train the diffusion model parameters θ and105

residue embeddings ϕ. In preliminary experiments, we explored pretrained residue em-106

beddings based on ESM-2 (Lin et al., 2022) but found fixed embeddings inferior to the107

end-to-end training paradigm. After that, a Markov transition is implemented to transfer108

from discrete amino acids a to x0 in the forward process, as qϕ (x0 | a) = N
(
hϕ(a), σ0I

)
.109

In the reverse process, we add a trainable rounding step, parameterized by pθ (a | x0) =110

∏n
i=1 pθ (ai | xi), where pθ (ai | xi) is a Softmax distribution. Then, our final training loss is111

written as follows:112

L(a) = Ex0:T∼qϕ(x0:T |a)
[
LELBO (x0) + ∥hϕ(a)− µθ(x1, 1|c,Gag)∥2 − log pθ(a|x0)

]
, (5)

where LELBO (x0) is derived from Equation 3. Since the learned embeddings hϕ(·) define a113

mapping from discrete residue types a to continuous latent space X , the inverse process114

requires a similar operation to round a predicted x̂0 back to a discrete antibody sequence. In115

particular, (Li et al., 2022b) demonstrate that to directly predict the mean of pθ(xt−1|xt) by116

µθ(xt, t|c,Gag) for each denoising step t needs careful tuning, and empirical experiments117

show that the model usually fails to generate x0 that commits to a sequence with high118

probability pθ . As an alternative choice, we re-parameterize LELBO so that our model is119

forced to explicitly emphasize x0 in every term of the loss objective, and it takes the following120

form:121

L′ELBO (x0) =
T

∑
t=1

γtExt∼q(xt |x0)

[∥∥µθ

(
xt, t|c,Gag

)
− x0

∥∥2
]

, (6)

where our model µθ

(
xt, t|c,Gag

)
forecasts x0 immediately. This forces the network to attain122

x0 in every step, and (Li et al., 2022b) proved that this objective helps x0 quickly converge to123

the token embeddings.124

2.4 Target-specific Generation with Desired Antibody Properties125

Ideally, the construction of an antibody library ought to satisfy several important require-126

ments. For instance, antibodies need to bind against target molecules with improved binding127

strength or specificity. Besides, the library should have rich sequence diversity. To meet128

these goals, we consider the problem of controllable antibody generation.129

To begin with, we describe a plug-and-play procedure that enables the incorporation of130

antigen information and a generation tendency towards better biological properties. We131

4
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first leverage a PLM fτ : A × C → Y to classify the biological property y of any input132

antibody sequence a, which is bound to the given antigen c. After that, controlling x0:T is133

equivalent to decoding from the posterior p(x0:T | y) = ∏T
t=1 p (xt−1 | xt, y). Then this joint134

inference formula can be decomposed to a sequence of control tasks at each diffusion step,135

i.e., p (xt−1 | xt, y) ∝ p (xt−1 | xt) · p (y | xt−1, xt). We further simplify p (y | xt−1, xt) = p(y |136

xt−1) via conditional independence assumptions, namely, y ⊥ xt|xt−1. Consequently, the137

gradient update for the t-th step becomes:138

∇xt−1 log p (xt−1 | xt, y) = ∇xt−1 log p (xt−1 | xt) +∇xt−1 log p (y | xt−1) , (7)

where log p (xt−1 | xt) and log p (y | xt−1) are differentiable. The former is parameterized139

by the diffusion architecture µθ(·) and hϕ(·), while the latter is parameterized by the pre-140

defined classifier fτ(·) for binding affinity or specificity. Here, we omit the antigen term141

and directly forecast y if the target molecule is unique, that is, fτ : A → Y . Similar to142

work in the computer vision setting, the classifier fτ(·) is trained on the diffusion latent143

variables, and a gradient update is run on the latent space xt−1 such that it is steered towards144

fulfilling the control. Notably, these image diffusion studies take one gradient step towards145

∇xt−1 log p (y | xt−1) per diffusion step.146

To generate biologically reasonable antibodies, we introduce an additional evolutionary147

regularization as λ log p (xt−1 | xt) + log p (y | xt−1), where λ is a hyperparameter to trade148

off homogeneity (the first term) and control (the second term). It is worth mentioning that149

existing controllable generation methods for diffusion do not include the λ log p (xt−1 | xt)150

term in the objective, we found this term to be instrumental for generating biologically rea-151

sonable antibody sequences (Li et al., 2022b). The resulting controllable generation process152

can be viewed as a stochastic decoding method that balances maximizing and sampling153

p (xt−1 | xt, y). The sampling procedure of our DiffAntiSeq is depicted in Algorithm 1.154

2.5 Reprogramming Protein Language Models for Structure-aware Antibody Design155

PLMs (Rives et al., 2021; Zheng et al., 2023; Wu et al., 2024b;a) encode rich evolutionary156

and structural priors, making them powerful engines for structure-conditioned sequence157

generation. We leverage PLMs as the sequence decoder µθ(xt, t | c,Gag) in our antibody158

design framework, enhanced via parameter-efficient fine-tuning (PEFT) to retain modeling159

strength with minimal overhead.160

Our PEFT scheme integrates structural adapters (Zheng et al., 2023) with LoRA (Hu et al.,161

2022), using a low-rank setup (r=4, α=8). Antigen structural context Gag is extracted162

via a GVP-GNN (Jing et al., 2020). While the optimal PEFT strategy for PLMs remains163

unsettled (Sledzieski et al., 2024), our hybrid design consistently outperforms individual164

methods in structure-informed antibody generation.165

3 Experiments166

Antibody therapies represent a valuable tool to reduce COVID-19 deaths and hospital-167

izations. To justify the advantages of our DiffAntiSeq, we build a new antibody library168

against SARS-CoV-2, a strain of coronavirus that causes COVID-19, and then quantitatively169

investigated the characteristics of this library. Extra experiments are performed to validate170

the effectiveness of DiffAntiSeq’s constituents.171

3.1 Dataset172

We use AlphaSeq (Engelhart et al., 2022a) as the database, downloaded from https:173

//github.com/mit-ll/AlphaSeq Antibody Dataset. This dataset contains quantitative bind-174

ing scores of scFv-format antibodies against a SARS-CoV-2 target peptide collected via an175

AlphaSeq assay (Engelhart et al., 2022b). It starts from three seed sequences identified from176

a phage display campaign using a human naive library. Sets of 29,900 antibodies were177

designed in silico by creating all k = 1 mutations and random k = 2 and k = 3 mutations178

throughout CDRs. Diversity was introduced in the heavy chain CDRs for seed sequence179

5
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Table 1: Performance of different PLMs in predicting the measured binding affinity in
AlphaSeq.

Model Fine-tune RMSE ↓ Spearman ↑ Pearson ↑
Transformer – 1.2958 0.37 0.41

General PLMs
ProtTrans ✗ 0.8025 0.54 0.61

ESM-1 ✗ 0.6817 0.70 0.76
ESM-2 ✗ 0.6221 0.72 0.77

MSA-1b ✗ 0.6318 0.71 0.75

Antibody PLMs
AbLang ✗ 0.5622 0.74 0.79

AntiBERTa ✗ 0.5297 0.76 0.80
EATLM ✗ 0.4966 0.81 0.85

EATLM ✓ 0.2352 0.93 0.97

Table 2: The affinity statistics of different designed antibody datasets in Kd (the lower the
better), including the original AlphaSeq and other DL-generated libraries.

Dataset mean std min 25% 50% 75% max

AlphaSeq 3.6810 1.2385 -1.4271 3.0367 3.8399 4.5104 7.3483
dyMEAN (Kong et al., 2023) 4.0691 0.9336 1.9605 3.4207 4.0640 4.7341 6.5002

DiffAb (Luo et al., 2022) 3.9879 1.0258 1.5485 3.3315 3.9742 4.6649 6.5322
ProGen2 (Nijkamp et al., 2023) 0.8658 1.0297 -2.6447 0.1149 0.6385 1.4354 6.0774

BioTransfer (Li et al., 2022a) 0.6655 1.0103 -2.6903 -0.0696 0.4282 1.2141 5.5576

DiffAntiSeq 0.4650 1.0300 -2.9571 -0.2706 0.2409 1.0274 5.5098

one, in the light chain CDRs for seed sequence two, and independently in the heavy and180

light chain CDRs of seed sequence three, for a total of four sets. Of the 119,600 designs,181

104,972 were successfully built into the AlphaSeq library and were subsequently measured182

with 71,384 designs, resulting in a predicted affinity value for at least one of the triplicate183

measurements. Data include antibodies with predicted affinity measurements ranging184

from -1.43 to 7.35. We use Kd as the primary metric for binding affinity, directly provided185

by the AlphaSeq dataset. Lower Kd values indicate stronger binding. To our knowledge,186

this dataset is the largest, publicly available dataset that contains antibody sequences, anti-187

gen sequences, and quantitative measurements. It provides an opportunity to serve as a188

benchmark to evaluate antibody-specific representation models for DL.189

3.2 Results and Analysis190

3.2.1 Binding Affinity Prediction191

We first train a standalone PLM to predict binding affinity, serving dual purposes: validating192

the effectiveness of generated libraries and acting as a classifier to propagate gradients and193

guide the diffusion process. We evaluate various general-purpose PLMs, including Prot-194

Trans (Elnaggar et al., 2021), ESM-1, ESM-2 (Lin et al., 2022), and MSA-1b (Rao et al., 2021),195

as well as antibody-specific PLMs such as AbLang (Olsen et al., 2022), AntiBERTa (Leem196

et al., 2022), and EATLM (Wang et al., 2023). These PLMs are tested under linear-probing197

and fully fine-tuned settings, with results summarized in Tab. 1.198

Notably, antibody-specific PLMs generally outperform general-purpose models, with199

EATLM achieving the best performance. EATLM records the lowest RMSE (0.4966) and the200

highest Spearman and Pearson correlations. Further fine-tuning EATLM yields even better201

results, reducing RMSE to 0.2352 and increasing Spearman and Pearson correlations to202

0.93 and 0.97, respectively. These results highlight EATLM’s capability as a highly accurate203

adjudicator, effectively validating the efficacy of various antibody design algorithms.204
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Figure 3: Measured affinity distributions of antibodies in different datasets. A DiffAntiSeq-
optimized antibody library outperforms other ML-directed evolution approaches with a
high percentage of success.

Figure 4: Structural visualization of selected antibody examples in our DiffAntiSeq library
against the peptide epitope (the grey segment) from a SARS-CoV-2 Spike protein, which
usually elicits strong T cell responses in COVID-19 patients. The complex structures are
obtained via Alphafold-3.

3.2.2 Antibody Library Design205

We rigorously compare DiffAntiSeq with BioTransfer, dyMEAN, and DiffAb by reporting206

the mean, standard deviation, minimum, and maximum binding affinities of AlphaSeq and207

other generated antibody libraries in Tab. 2. Additionally, we visualize the distribution208

of measured affinities in Fig. 3 and also draw a couple of complex structures predicted209

by Alphafold-3 in Fig. 4. Our results show that DiffAntiSeq achieves the highest library210

success rate. Antibodies generated using DiffAntiSeq-optimized libraries exhibit signifi-211

cantly stronger binding affinities compared to the baselines, with an increased frequency212

of beneficial mutations. Interestingly, libraries designed using DiffAb perform worse than213

those designed using AlphaSeq, suggesting that an unconditional diffusion model may214

not be ideal for target-specific antibody design. This underscores the importance of contin-215

uous diffusion models in overcoming the discrete nature of amino acids. These findings216

demonstrate the strong potential of controllable diffusion models, such as DiffAntiSeq, for217

antibody library design.218

3.3 Evaluation of Antibody Library219

To further evaluate the designed libraries, we select the top 10 best antibody sequences220

from each library and employ a 3-step pipeline to estimate its binding affinity more thor-221

oughly. Specifically, we use ESM-Fold (Lin et al., 2022) to predict antibody structures,222

HADDOCK (De Vries et al., 2010) to acquire the complexes, and Rosetta (Das & Baker, 2008)223

to estimate binding affinities against the target antigen. The results indicate that libraries224

designed by DiffAntiSeq achieved an average ∆∆G of -31.5 kcal/mol, surpassing AlphaSeq225

7
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Table 3: Quantitative evaluation of sequence diversities among different library design
algorithms.

Method Average Aff. Normalized ED

AlphaSeq 3.68 0.54
dyMEAN (Kong et al., 2023) 4.06 0.22

DiffAb (Luo et al., 2022) 3.98 0.28
ProGen2 (Nijkamp et al., 2023) 0.86 0.64

BioTransfer (Li et al., 2022a) 0.66 0.45

DiffAntiSeq 0.46 0.49

(-25.4 kcal/mol) and BioTransfer (-24.7 kcal/mol). Moreover, enhanced binding interfaces226

with improved hydrophobic and electrostatic interactions were observed in DiffAntiSeq227

antibodies. This highlights DiffAntiSeq’s ability to produce high-affinity antibodies by228

optimizing binding interfaces through targeted mutations.229

3.3.1 Additional Results230

In addition to binding affinity measurement, we provide a comprehensive assessment of231

the sequence diversity of designed antibody libraries. Specifically, we leverage the edit232

distance (i.e., Levenshtein distance) to calculate the similarity between all pairs of sequences233

in the library. Lower similarity scores indicate higher diversity. Edit distance measures the234

minimum number of single-character edits (insertions, deletions, or substitutions) required235

to change one sequence into another.236

Considering that differently designed sequences can have different lengths of CDRs, we237

utilize the normalized edited distance. That is a scaled version of edit distance and more suit-238

able for comparing sequences of varying lengths, defined as Normalized Edit Distance =239

Edit Distance
max( Length of Seq 1, Length of Seq 2) . As a consequence, the range of normalized edit distance240

is between 0 and 1. 0 means the sequences are identical, while 1 means the sequences are241

completely different (no common characters).242

The results in Tab. 3 highlight key trade-offs between sequence diversity and binding243

affinity across antibody design methods. ProGen2 achieves the highest sequence diversity244

(normalized edit distance = 0.64), outperforming even the original AlphaSeq dataset (0.54).245

This high diversity can be attributed to ProGen2’s extensive pretraining on a vast corpus246

of protein sequences, including genomics, metagenomics, and immune repertoire data.247

However, this comes at the cost of lower binding affinity (0.86). In contrast, structure-based248

methods like DiffAb and dyMEAN exhibit lower diversity (0.28 and 0.22, respectively) but249

achieve stronger binding affinities (3.98 and 4.06), as they prioritize structural optimization250

over sequence exploration. DiffAntiSeq strikes a balance, maintaining moderate diversity251

(0.49) while achieving the best affinity score (0.46), demonstrating its ability to generate252

high-quality, diverse antibody libraries. This balance underscores the practical effectiveness253

of DiffAntiSeq in antibody design.254

4 Conclusion255

Despite the importance of therapeutic antibodies, designing early-stage antibody therapeu-256

tics remains a time and cost-intensive endeavor. In this paper, we propose a controllable257

denoising diffusion algorithm called DiffAntiSeq with two main innovations. Firstly, it258

performs continuous diffusion on the latent space despite the inherently discrete nature of259

amino acids. Secondly, we control the diffusion process via gradients to generate antibodies260

with desired properties. Comprehensive experiments demonstrate the ability of DiffAntiSeq261

to rapidly design large libraries of potently binding antibodies. Our framework can also be262

extended to other domains of protein engineering where large-scale functional mutagenesis263

screens are applied. We envision our algorithm to solve real-world drug discovery problems.264
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5 Limitations and Future Works265

Despite the progress of DiffAntiSeq in constructing large-scale antibody libraries targeting266

specific receptors, there are several restrictions in extending our mechanism to real-world267

applications. Firstly, our model was evaluated using a DL model instead of wet experi-268

ments. Those binding affinity data may not be available to the pair of antigen and antibody269

where the antibody needs to be redesigned. Secondly, we merely justified the efficacy of270

DiffAntiSeq on a single antigen (e.g., SARS-CoV-2), which limits the generalizability of this271

model.272
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A Baseline Methods430

Antibody library design is an emerging field, and we select three strong and latest baselines431

for comparison. To be specific, BioTransfer (Li et al., 2022a) is the first DL-driven algorithm432

for antibody library design. It collected training data via random mutations of the candidate433

scFv antibody along the entire CDR and high-throughout binding quantification. Then, it434

performs supervised fine-tuning of pretrained PLMs to predict binding affinities with uncer-435

tainty assessment. In silicon scFv antibody design is conducted via Bayesian optimization436

over an ML-extrapolated fitness landscape, resulting in 248,921 new scFvs. DiffAb (Luo437

et al., 2022) is one of the earliest diffusion probabilistic models for protein structures tar-438

geting specific antigen structures. Here, we discard the structure recovery part and merely439

keep the sequence diffusion module for our antibody library design, gaining 25k antibodies.440

Moreover, as SARS-CoV-2 is picked up, for instance, and its structural information is widely441

accessible, we include another algorithm dyMEAN (Kong et al., 2023) for comparison. It442

is an end-to-end full atom model for E(3)-equivariant antibody design given the epitope443

and the incomplete antibody sequence and does not require complex structures. We feed444

the epitope information into dyMEAN and randomly select 100 antibody sequences with445

CDR masked as the model input. ProGen2 (Nijkamp et al., 2023) is a decoder-only PLM446

trained on datasets collectively totaling 1B protein sequences from genomic, metagenomic,447

and immune repertoire databases. A ProteinGen2-small with 151M parameters is used.448
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B Experimental Details449

DiffAntiSeq is founded on ESM-2, which adopts the Transformer (Vaswani et al., 2017)450

architecture with 650M parameters. The maximum sequence length is n = 1024, the451

number of diffusion steps is T = 2000, and a square-root noise schedule is utilized. That452

is, ᾱt = 1−
√

t/T + η, where η is a small constant that corresponds to the starting noise453

level. The embedding dimension is aligned with ESM-2 as d = 1024. The classifier takes454

advantage of the same architecture of the diffusion model but with a predictive head for455

attaining binding strength. 25,000 antibodies were sampled by DiffAntiSeq to constitute456

the library for validation. Following (Wang et al., 2023), we adopted the base Transformer457

architecture (Vaswani et al., 2017) with 12 layers, 12 heads, and 768 hidden states. The458

total parameters are 86 M. For the binding affinity prediction task, we conducted 10-cross459

validation and reported the average results. For finetuning, we limit the max epochs460

to 30 and use the Adam optimizer with a max learning rate of 3e-5. We use the mean461

representation of 12 layers as the sequence representation.462

We implement all experiments on 4 A100 GPUs, each with 80G memory. DiffAntiSeq is463

trained with an AdamW optimizer without weight decay and with β1 = 0.9 and β2 = 0.999.464

A ReduceLROnPlateau scheduler is employed to automatically adjust the learning rate with465

a patience of 10 iterations and a minimum learning rate of 1.e− 6. The regularization weight466

item λ is set as 1.5. The maximum iterations are 200K, and the validation frequency is 5K467

iterations. The batch size is set to 64, and the initial learning rate is 1.e− 4 with a dropout468

rate of 0.1.469

BioTransfer was implemented using its official code at https://github.com/470

AIforGreatGood/biotransfer. DiffAb was accessed from its official GitHub at https:471

//github.com/luost26/diffab. dyMEAN was examined using its publicly available code472

at https://github.com/THUNLP-MT/dyMEAN. ProGen2 was conducted using its official473

release at https://github.com/enijkamp/progen2. The antibody protocol of HADDOCK474

was used via the code at https://github.com/haddocking/HADDOCK-antibody-antigen.475

C Related Work476

C.1 Computational Antibody Design477

Early methods primarily rely on sampling algorithms applied to hand-crafted and statistic478

energy functions for antibody optimization, involving iterative modifications to protein479

sequences and structures (Lapidoth et al., 2015). However, energy-based methods suffer480

from the insufficient expressive power of the statistical energy functions. As a remedy,481

recent advancements in deep learning have demonstrated substantial enhancements over482

sampling mechanisms. Specifically, a line of research co-designs the CDR sequences and483

3D structures simultaneously, such as Refine-GNN (Jin et al., 2021), HERN (Jin et al., 2022),484

MEAN, and HTP (Wu & Li, 2023). They all attempt to recover the CDR’s sequence and485

structure while keeping the other parts unchanged. Though this direction seems promising,486

those methodologies assume the existence of a complex structure, which is usually hard487

to obtain in real-world circumstances. Moreover, the efficacy of some existing co-design488

approaches (Jin et al., 2021; 2022) is predominantly limited by the small number of antibody489

structures.490

To overcome these obstacles, another line of research employs language models to generate491

protein sequences, resulting in increased efficiency. The progress of general PLMs, including492

ESM, ProGen, and ProTrans, and specific antibody PLMs, such as AntiBerta (Leem et al.,493

2022), AbLang (Olsen et al., 2022), and EATLM (Wang et al., 2023), provides new prospects494

for antibody design. It is proven that general PLMs can effectively transfer to antibody tasks495

and that antibody PLMs improve model performance in antibody paratope predictions.496

However, how to proficiently unite these PLMs with advanced generative models like497

diffusion for antibody design remains unexplored.498
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Figure 5: Additional ablation results, where we remove the continuous diffusion and
controllable generation, separately.

C.2 Diffusion Models for Proteins499

Diffusion models (Sohl-Dickstein et al., 2015; Yang et al., 2022) have become a new state-500

of-the-art generative modeling method in the past few years. They are inspired by non-501

equilibrium thermodynamics and have been invented to learn data distributions by model-502

ing a reverse denoising process. They achieve record-breaking success in various domains503

including image generation (Wang et al., 2022; Ho & Salimans, 2022), text generation (Li504

et al., 2022b), interpretable text modeling (Yu et al., 2022), audio synthesis (Kong et al., 2020),505

and point cloud reconstruction (Luo & Hu, 2021).506

Recent efforts employ diffusion models in solving scientific problems, particularly, in drug507

design with equivariant geometric networks in the 3D space (Hoogeboom et al., 2022; Wu508

et al., 2022c; Huang et al., 2022; Igashov et al., 2022; Schneuing et al., 2022). They are utilized509

to generate molecular conformations (Jing et al., 2022; Xu et al., 2022; Luo et al., 2021)510

or accelerate the simulation of molecular dynamics (MD) (Wu et al., 2022a). In addition511

to small molecules, they are also applied in the field of larger macromolecules, such as512

designing new protein backbone structures (Wu et al., 2022b; Anand & Achim, 2022; Shi513

et al., 2022) or a scaffold structure that supports a desired motif (Trippe et al., 2022). For514

example, (Luo et al., 2022) presents a diffusion model that targets specific antigen structures515

with corresponding antibodies. LaMBO (Gruver et al., 2024) proposes guidance over discrete516

diffusions for antibody design. AntiBARTy (Venderley, 2023) trains a property-conditional517

diffusion model for guided IgG de novo design. Despite their fruitful progress, none have518

successfully leveraged diffusion models to generate a smart antibody library to guide the519

search for potential drugs.520

D Ablation Studies521

We explore the contributions of different key components of our DiffAntiSeq through two522

ablation studies, each sampling 25K antibodies. Fig. 5 shows that the removal of either the523

continuous diffusion or the controllable mechanism induces performance detriment. This524

is reasonable since the control technique offers specific guidance for diffusion models to525

sample high-affinity scFvs. In addition, it is observed that the continuous diffusion makes526

the binding affinity distributions of generated scFvs more condensed. We expect more527

advanced conditional diffusion techniques to be developed for this essential design problem.528

529
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