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ABSTRACT

Implicit Neural Representations (INRs) provide a continuous function learning
framework for discrete signal representations. Using positional embeddings and /
or specialized activation functions, INRs have overcome many limitations of tra-
ditional discrete representations. However, existing work primarily focuses on the
use of a single activation function throughout the network, which often requires
an exhaustive search for optimal activation parameters tailored to each signal and
INR application. We hypothesize that this approach may restrict the representation
power and generalization capabilities of INRs; limiting their broader applicability.
In this paper, we introduce AINR, a method that adaptively learns the most suit-
able activation functions for INRs from a predefined dictionary. This dictionary
includes activation functions such as Raised Cosines (RC), Root Raised Cosines
(RRC), Prolate Spheroidal Wave Function (PSWF), Sinc, Gabor Wavelet, Gaus-
sian, and Sinusoidal. Our method identifies the activation atom that is mostly
matched for each layer of the INR based on the given signal. Experimental results
demonstrate that AINR not only significantly improves INR performance across
various tasks, such as image representation, image inpainting, 3D shape represen-
tation, novel view synthesis, super resolution, and reliable edge detection, but also
eliminates the need for the previously required exhaustive search for activation
parameters, which had to be conducted even before INR training could begin.

1 INTRODUCTION

Implicit Neural Representations (INRs), also known as coordinate-based neural networks, operate
by learning a continuous (implicit) functional representation when provided with the coordinates
of an explicit signal representation. In general, an INR is structured as a multilayer perceptron
(MLP) with several fully connected layers, where the explicit signal’s coordinates serve as the input.
Through the learning process of the MLP, the explicit representation is encoded into the weights and
biases of the neural network. A distinctive feature of INRs is their versatility in handling different
types of signals, from two-dimensional images through three-dimensional shapes and beyond. For
example, in the context of images, an INR utilizes the coordinates from a two-dimensional grid
to produce the corresponding color values at those coordinates, effectively learning a continuous
representation for the image.

INRs stand in contrast to traditional discrete signal representation techniques, offering a more flexi-
ble and potentially more efficient means of representing complex signals (Dupont et al., 2021). Once
the conversion of an explicit signal representation to an implicit representation through an INR is
completed, a continuous functional relationship between the signal’s coordinates and its values is
established. This learned continuous implicit functional relationship, facilitated by INRs, serves as
a robust representation mechanism for the underlying signal, allowing it to perform operations like
precise querying of the learned representation and differentiation, etc. In contrast, discrete repre-
sentations of signals encounter limitations in operations such as querying, which are constrained
by quantized interpolations, and also differentiation may not yield desired outputs due to the dis-
crete nature. Therefore, the inherent capabilities of INRs offer significant advantages in accurately
representing and manipulating signals compared to discrete representations. In addition, while the
memory requirement for conventional representations increases exponentially with the signal reso-
lution, INRs are not tied to the resolution, making this approach highly memory-efficient (Dupont
et al., 2021; Strümpler et al., 2022).
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Despite the potential advantages of using INRs for the applications mentioned above, their per-
formance critically depends on the architecture of the MLP, particularly the choice of activation
function. Traditional activation functions, such as ReLU, Sigmoid, and Tanh, which are commonly
used in deep learning models, have shown very poor performance in INRs (Sitzmann et al., 2020;
Tancik et al., 2020). This inefficiency is primarily due to their inability to effectively pass the high-
frequency components of signals through the network (Yüce et al., 2022). As a solution, Tancik
et al. (2020) proposed a fixed coordinate transformation prior to training, commonly referred to as
positional embedding, which embeds high-frequency content into the input coordinates of an INR.
While positional embeddings can enhance representation, Sitzmann et al. (2020) found that they suf-
fer from limited representational capacity and struggle to generalize effectively. To mitigate these
issues, they introduced sinusoidal activations, with a specific frequency and a carefully designed
MLP weight initialization, bypassing the need for positional embeddings. Nevertheless, the reliance
on exact weight initialization and frequency tuning for sinusoidal activations presents a significant
limitation, despite their generalization strength. Ramasinghe & Lucey (2022) relaxed the stringent
weight initialization requirements, and further improvement was achieved by using Gabor wavelets
as activation functions (Saragadam et al., 2023), which leverages their strong space-frequency local-
ization. Nonetheless, these non-linear activations still require specific activation function parameters
to be determined for each discrete signal and INR application, often necessitating an exhaustive grid
search (Saragadam et al., 2023). This dependence on pre-selected activation function parameters
limits the flexibility of INRs, as these parameters must be known in advance for efficient explicit-
to-implicit conversion. Moreover, to the best of our knowledge, prior research has focused only on
using a single activation function to improve INR capabilities. This leads to the following questions:
Could using multiple activation functions adaptively enhance both the expressiveness and gener-
alization of INRs?, 2). How can we eliminate the prolonged and time-consuming exhaustive grid
search process faced by the INR community to determine activation parameters even before training
any INR?

To address these existing issues within INRs, we present ”Adaptive Learning of Activations for Im-
plicit Neural Representations” (AINR), a novel approach that enables INRs to dynamically adjust
the activation function for each layer, optimizing it for the given signal. For the adaptive learning
process, we propose a dictionary of activation atoms, paired with a matching pursuit-based mech-
anism (Mallat & Zhang, 1993), which selects the activation atom that is most matched for each
layer of the INR. The dictionary includes four new activation ”atoms”—Raised Cosines (Alagha &
Kabal, 1999), Root Raised Cosines (Joost, 2010), Prolate Spheroidal Wave Functions (Slepian &
Pollak, 1961; Landau & Pollak, 1961; 1962; Slepian, 1964; 1978), and Sinc functions (Shannon,
1948)—chosen for their strong space-frequency localization, a feature commonly leveraged in sig-
nal and image processing. In addition, we incorporate three widely used activations from the INR
literature: Sinusoids (Sitzmann et al., 2020), Gabor Wavelets (Fathony et al., 2020; Saragadam et al.,
2023), and Gaussians (Ramasinghe & Lucey, 2022).

To demonstrate the performance of the proposed AINR, we present several applications, includ-
ing image representation, image inpainting, super-resolution, occupancy field representation, novel
view synthesis, edge detection, and high-frequency encoding capabilities. Our thorough evaluation
of AINR shows that it surpasses state-of-the-art INR solutions by a clear margin. Furthermore, our
comprehensive ablations reveal that AINR eliminates the need for specific activation function pa-
rameter determination, previously deemed necessary prior to training any INR. In summary, AINR
emerges as the new benchmark in the INR field.

2 RELATED WORKS

Activation Functions. Neural network activation functions, also referred to as transfer functions
(Apicella et al., 2021), determine the output of each neuron based on the weighted sum of the
inputs they receive from the previous layer. These functions are typically non-linear and aid
neural networks in capturing non-trivial functional relationships with a reduced number of nodes
(Szandała, 2021). Unlike network’s weights and biases, which are updated based on training data,
activation functions are typically chosen beforehand and remain unchanged throughout the training
process (Lederer, 2021). However, data-dependent activations, i.e., trainable activations, were
recently proposed using the classical sigmoid function (Apicella et al., 2021). Since then several
other trainable activations have been proposed (Yuen et al., 2021; Dubey et al., 2022). Several
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studies have also explored the connections between deep neural networks and activation functions
from a frequency perspective (Xu et al., 2019; Benbarka et al., 2022), providing additional insight
to understand their behavior and impact on neural network dynamics.

Compactly Supported and Band-limited Signals have the property of having non-zero values
only within a bounded set of the considered space or in a transformed domain like Fourier. This
property is typically desirable in signal processing, communications, and other fields as it comes
with efficient approximation, transmission, and recovery properties (Proakis, 2008). Since it is
mathematically impossible to have both compact support and band-limitedness at the same time, the
next best property is to have some form of space-frequency concentration, that is, compact support
with rapid frequency decay or band-limited with rapid space decay or rapid decay in both domains.
With the advances in INRs, it has been demonstrated that when an activation function has good space
and frequency concentration, it not only significantly enhances INR performance but also eliminates
the need for specific INR weight initialization (Ramasinghe & Lucey, 2022; Saragadam et al., 2023).

Implicit Neural Representations (INRs) have recently garnered attention from the computer vi-
sion research community, mainly due to their simplistic network architecture and the performance
improvements observed in various vision tasks compared to traditional parameter-heavy vision mod-
els (Saragadam et al., 2023; Sitzmann et al., 2020; Cervantes et al., 2022). The emergence of INRs
has begun mainly after the introduction of neural radiation fields with ReLU activations(Mildenhall
et al., 2021), which has led to multiple follow-up studies(Gao et al., 2022; Molaei et al., 2023), and
the use of sinusoidal activation as an alternative to conventional ReLU activations (Sitzmann et al.,
2020). Thereafter, Ramasinghe & Lucey (2022) has shown the existence of a broader class of activa-
tions that are suitable for INRs. The more recent work, Saragadam et al. (2023) has proposed Gabor
Wavelets, which are not only compactly supported but also benefit from exponential damping, as a
non-linearity for INRs, and showed improved INR performance compared to previous INRs models.

3 METHODOLOGY

3.1 FORMULATION OF AN INR

Consider an INR denoted as Fθ, where θ represents the neural network parameters. Fθ takes coor-
dinates from a K-dimensional space, denoted as RK , and maps them to a M -dimensional signal,
denoted as RM . Therefore, this mapping can be expressed as:

Fθ : RK → RM .

If W (i) and b(i) are the weight and bias matrices of the ith layer, the input to the (i + 1)th layer is
given by σ(i)(W (i)x(i) + b(i)), where σ(i) represents the activation function of the ith layer, and
x(i) is the input to the ith layer. The representation capacity or the learning dynamics of an INR
is governed by the activation function σ (Sitzmann et al., 2020; Ramasinghe & Lucey, 2022; Sara-
gadam et al., 2023; Tancik et al., 2020). Most studies have used a single activation type for the entire
network, i.e., σ(i) = σ for all i. Through extensive experiments, we show that this approach often
leads to suboptimal learning outcomes for INRs since constraining the INR to a single activation
function throughout the network limits the expressive power of the learned model. Consequently,
the model struggles when attempting to generalize to unseen or untrained coordinates, undermining
the intended purpose and functionality of INRs. Therefore, this limits the INR’s adaptability and
effectiveness, whereas robustness and generalization are essential aspects when moving from one
representation to another.

3.2 DICTIONARY OF ACTIVATIONS FOR AINR

We adopt a dictionary comprising of seven activation functions. This includes two functions with
rapid decay in both the spatial and Fourier domains (Complex Gabor Wavelets and Gaussian) and
five band-limited functions (Sinc, Raised Cosine, Root Raised Cosine, Sinusoid, and PSWF).

1. Sinc Function: The sinc function is the Fourier transform of a rectangular pulse in the
Fourier domain (in digital communication literature, this is also referred to as the Nyquist
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Figure 1: Illustration of AINR. Existing INRs have been limited to a single activation function
type, and this could limit the expressive power and generalizability of INR models. In this study, we
introduce a dictionary of activation functions, along with a mechanism to select the most suitable
activation from the dictionary for each layer. As each activation sequence is tailored to the given
signal, AINR emerges as a most effective and generalizable INR.

pulse (Shannon, 1948)). It is defined as, sinc(αx) = sin(αx)
αx , and it decays as 1

αx , where α
is a parameter.

2. Raised Cosine (RC): It is another band-limited function whose decay in the space domain
is of order x−2, hence faster than the Sinc. Defined by the parameters α, β, and γ, the
raised cosine activation atom takes its form as:

sinc(αx) cos(βx)
1− |γ|x2

.

3. Root Raised Cosine (RRC): This is a modified version of the raised cosine obtained by
taking the square root of the frequency response of the raised cosine pulse. This modi-
fication improves the decay of the signal. With α, β, γ, a, and b as the parameters, the
root-raised cosine activation atom is defined as,

a sin(αx) + b cos(βx)

1− |γ|x2
.

4. Prolate Spheroidal Wave Function (PSWF): These are the solutions to the Helmholtz
equation in prolate spheroidal coordinates. The Helmholtz equation in prolate spheroidal
coordinates can be transformed to the following ordinary differential equation, where m,
n, and c are parameters, and Rmn(c, x) are the PSWFs:

(x2 − 1)
d2Rmn(c, x)

dx2
+ 2x

dRmn(c, x)

dx
−

[
λmn(c)− c2x2 +

m2

x2 − 1

]
Rmn(c, x) = 0

This differential equation arises in the context of bandlimited signals when the signal that
has the highest possible energy concentration within a given interval (Gonzalez, 2018). Al-
though finding a closed-form solution is difficult, a discretized approximation for PSWFs is
taken in this study. To define it as an activation atom, the natural cubic spline approximation
has been used.

5. Complex Gabor Wavelet: Gabor Wavelets involve a Gaussian-modulated cosine or sine
wave. They offer rapid decay in both spatial and frequency domains, and have already been
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employed for INRs showing better performance compared to sinusoidal activations. With
α, γ as the parameters, the Gabor wavelet activation atom is defined as ejαx−|γ|x2

6. Gaussian: Similar to Complex Gabor Wavelet, Gaussian functions also offer rapid decay in
both spatial and frequency domains, and have been already utilized in INRs. The Gaussian
activation atom is defined as, e−|γ|x2

where γ is a parameter.

7. Sinusoid: Sinusoidal functions are band-limited, and have been used in INRs. The sinu-
soidal activation atom is defined as sin(αx+ β), where α, β are parameters.

When implementing AINR, the real part of the complex Gabor Wavelet has been taken. The distinct
spatial characteristics of each activation function can be observed from figure 11 in Appendix, where
the variation of the activation function value with spatial distance is depicted.

3.3 PREMISE OF AINR

AINR begins by constructing a dictionary of predefined activation functions, as described in section
3.2, each equipped with trainable parameters. These activation atoms have their parameters ran-
domly initialized, drawn either from a uniform or normal distribution. AINR is then initialized as a
single-layer MLP, with input and output dimensions customized to match the explicit signal repre-
sentation. The algorithm iterates through each activation function in the dictionary, applying it as the
non-linearity for the hidden layer over a specified number of training epochs. During this process,
the algorithm tracks the performance of each activation function by calculating the mean square
loss between two representations, saving the parameters of the activation that achieves the lowest
loss. After all activation atoms have been evaluated, the algorithm selects the activation function
that produces the minimum loss for the first layer.

Once the most suitable activation function for the first-hidden layer is identified based on the mini-
mum loss criterion, it is fixed as the non-linearity for the first-hidden layer, along with its associated
parameters. AINR then proceeds to add a second-hidden layer. It again starts the MLP training
process afresh, with one key difference: the first-hidden layer’s activation function and its optimized
parameters, which minimized the loss when using a single hidden layer, are retained. The algorithm
then tests each activation function from the dictionary as the non-linearity for the second-hidden
layer, again over a predetermined number of epochs. Similarly, the performance of each activation
is recorded. At the end of this sweep, based on the performance, the activation that gives the min-
imum loss is selected, and fixed as the second layer’s non-linearity. This process continues for all
the hidden layers. Figure 1 illustrates the process of selecting an optimal activation sequence for
image representation tasks by AINR through the activation function dictionary. For a better under-
standing of the AINR’s training process, please refer the pseudo-code provided (See section A.4.1 in
Appendix) along with section 3.3.

3.4 ACTIVATION FUNCTION PARAMETER INITIALIZATION

The performance of an INR with parametric activation functions is significantly dependent on the
initialization of the activation parameters. Inappropriate initialization often leads to poor perfor-
mance in almost all tasks that involve existing INRs. Previous studies have used extensive grid
searches to determine the activation parameters (Saragadam et al., 2023) for each application, but
the effectiveness of this method is highly dependent on the diversity of the signal and may perform
poorly with signals that differ from those used during parameter determination. In contrast, AINR
randomly initializes the activation function parameters, allowing the network to learn the optimal
parameters for each application and signal during optimization. This adaptability enables AINR to
optimize based on the specific characteristics of the signal. Experimental results demonstrate that
AINR outperforms existing INRs, including WIRE (Saragadam et al., 2023), SIREN (Sitzmann et al.,
2020), GAUSS (Ramasinghe & Lucey, 2022), and MFN (Fathony et al., 2020), in both performance
and generalization in various tasks.
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4 EXPERIMENTAL RESULTS

4.1 IMAGE REPRESENTATION

As mentioned earlier, a direct application of AINR is learning an implicit representation of an image,
commonly referred to as image representation. In this framework, the network is provided with
normalized coordinates of a signal without any positional embedding, and theAINR is trained to
predict the corresponding RGB values. First, to clearly illustrate how AINR functions, we chose an
image that exhibits high spatial variation and has a broad frequency range. This image is shown
in the figure on the left of the top row of figure 2. Second, for a more comprehensive evaluation,
the representation capacity of AINR is evaluated across the Kodak (Kodak) data set. The resulting
PSNR for each image, along with the baseline results, is shown in figure 3. For the average PSNR
and the decoded representations of each method, refer to section A.5.1 in the Appendix.

As shown in the top row of figure 2, AINR achieves the highest PSNR and SSIM values, indicating
the lowest distortion and best preservation of structural information, texture, and contrast compared
to existing INRs. For this experiment, we used all the activations defined in section 3.2. As detailed
in section 3.3, AINR begins with a single hidden layer and searches the dictionary to determine
which activation produces the highest PSNR (or lowest loss). This process is carried out for 100
epochs for each activation atom in the dictionary. Upon identifying the activation that is mostly
matched to the image according to the loss criterion, Sinc in this case, it locks this activation for
the first hidden layer (bottom left, figure 2). Subsequently, AINR adds the second hidden layer and
resumes training the entire network afresh while keeping the first layer’s activation and parameters
frozen, adjusting only the activation of the second-hidden layer at every 100 epochs. At the end
of this phase, it determines the activation that provides the highest PSNR (or lowest loss) for the
second hidden layer, which in this instance is Gaussian (bottom middle, figure 2). Following this,
AINR introduces the third hidden layer and begins training the network afresh now while keeping
both first and second layers’ activations and their parameters kept frozen, this time modifying the
activation of the third layer at every 200 epochs. Upon completion of training, AINR identifies the
activation for the third hidden layer that results in the highest PSNR (or minimum loss), which,
for this stage, is the Gabor Wavelet (Bottom right, figure 2). Therefore, the matched sequence of
activation atoms for the Parrot image, as identified by AINR, is Sinc, Gaussian, and Gabor wavelet.
Note that although AINR determines the most suitable activation for each layer based on loss, PSNR
plots are used for illustrative purposes.

Considering the bottom row of figure 2, we can conclude that, once the network has the matched
sequence of activation functions determined by AINR, INRs start showcasing a faster convergence.
In the case of AINR, when the first two layers’ activation functions are determined, it only needs at
most 200 epochs to obtain a minimum loss between implicit and explicit representations. Therefore,
showing a much faster convergence rate compared to the current state-of-the-art INRs. As can be
evidenced from both figure 2 and figure 3 , an INR achieves the highest accuracy metrics when its
activation functions are customized for a specific signal, rather than using a pre-optimized, uniform
activation sequence like in WIRE or SIREN throughout the INR. This thorough evaluation confirms
our hypothesis that tailoring the activation function sequence to the signal significantly enhances the
INR’s performance, even when the activation parameters are randomly initialized.

4.2 IMAGE INPAINTING

Unlike explicit discretized signal representations, an INR learns a continuous implicit representation
of a given signal through the MLP training process. Therefore, once the corresponding explicit
representation is encoded into the weights and biases of an INR, one should be able to query the
model as desired. The inpainting task serves as a good measure of INRs to assess whether the model
is overfitted, as the primary purpose of adopting a new representation is to generalize it through
learned continuous mapping. To demonstrate the functionality of AINR for inpainting, we selected
an image with intricate details, shown in the top left of figure 5. The adjacent image on the right
shows the same image with a text mask applied. Additionally, we evaluated AINR’s inpainting
performance on the Kodak dataset to provide a more comprehensive assessment. The PSNR results
for each image, along with baseline comparisons, are shown in figure 4. For the inpainted images,
and average performance metrics on image inpainting on the Kodak dataset please refer section A.5.2
in Appendix. For this experiment, the newly introduced activations i.e., RC, RRC, Sinc, PSWF, and
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Figure 2: Image representation capacity of AINR: The top row depicts the image reconstruction
using various types of INRs. AINR stands out as the INR that achieves the highest PSNR and SSIM
metrics, indicating minimal distortion and maximum preservation of structural information. The
bottom row illustrates how AINR achieves these results through sequential training. By tailoring
activations to the specific image, the corresponding sequence is Sinc, Gaussian, and Gabor Wavelet
under randomly initialized activation parameters.

Figure 3: Image representation capa-
bilities of AINR on the Kodak dataset

Figure 4: Image inpainting capabili-
ties of AINR on the Kodak dataset

Gabor Wavelet have been used to showcase the effectiveness of these activations. The bottom row of
figure 5 showcases the PSNR performance observed in each layer when following the procedure in
section 3.3. It should be noted that in the case of image inpainting, the loss calculation for deciding
the activation is based on the partial image data. The results clearly demonstrate that AINR delivers
the cleanest and most visually coherent image inpainting outcomes compared to all existing INRs.
Beyond producing the most visually coherent images, AINR also achieves the highest PSNR and
SSIM values for the inpainting tasks.

4.3 OCCUPANCY FIELDS REPRESENTATION

As INRs offer a continuous functional mapping from low-dimensional coordinate space to signal
space, they can be used to effectively represent three-dimensional signed distance fields. In this
scenario, the mapping extends from the three-dimensional space to a one-dimensional space, where
the signal space is represented by binary values: either 1 or 0. Here, 1 denotes that the signal lies
within the specified region, while 0 indicates its absence in the given region. For this experiment,
two datasets, Thai Statue and Stanford Lucy, were obtained from Stanford 3D datasets (Stanford
University Computer Graphics Laboratory). The sampling procedure followed the method described

7
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Figure 5: Image inpainting capabilities of AINR. The top row displays the recovered images using
various types of INRs. AINR stands out as the INR that not only achieves the highest PSNR and
SSIM metrics but also yields the most visually coherent inpainting outcome. The higher metrics
indicate that AINR has restored the image with minimal distortion and maximum preservation of
structural information. The bottom row illustrates how AINR achieves this result through sequential
training. By tailoring activations to the specific image, the corresponding sequence consists of Sinc,
Gabor Wavelet, and Gabor Wavelet under randomly initialized activation parameters.

in Saragadam et al. (2023), using a 512× 512× 512 grid. Voxels inside the volume were assigned
a value of 1, while those outside the volume were assigned a value of 0. The sampled volumes
for Stanford Lucy and the Thai Statue are displayed in the first column of the 1st and 2nd rows,
respectively, in figure 17.

Figure 6 shows the decoded representations for each INR along with the ground truth. As can be
clearly seen AINR achieves the highest Intersection over Union (IoU) metric, demonstrating the
greatest representation capacity among all existing INRs regardless of the occupancy field. A closer
examination of decoded statues reveal that AINR precisely encodes intricate high-frequency details.
In contrast, INRs like WIRE1 and SIREN tend to converge toward a low-pass representation, high-
lighting the challenge of encoding rapidly varying, detailed features in these models. These findings
clearly indicate that not only for images but for any signal, when the matched sequence of activations
is identified, an INR can accurately learn the implicit representation. In these experiments, AINR
determined the matched sequence of activations for Stanford Lucy as Sinc, RRC, and PSWFs for the
first, second, and third layers, respectively. For the Thai Statue, the activations were RC, RRC, and
Gabor Wavelet for the respective layers. The complete occupancy fields corresponding to figure 6 is
shown in section A.5.3 in the Appendix.

4.4 NEURAL RADIANCE FIELDS

INRs have gained popularity in the computer vision community, largely due to the impact of NeRFs
(Mildenhall et al., 2021). In which, a 3 dimensional scene is encoded in an INR by inputting the
viewer’s spatial coordinates (x, y, z) and viewing angles (θ, ϕ) into the network with the aid of
collection of images captured around the scene. The INR is tasked with predicting the color and
density at those locations. When the INR is trained, the INR can generate unseen perspectives
from new spatial positions and viewing angles which are not present in the training data. For this
experiment, we utilized a vanilla NeRF architecture with Chair, and Hotdog datasets. Each dataset
has 100 training, and 200 testing images. Once the network is trained, the testing PSNRs across the
testing views are averaged. The top and bottom rows of figure 7 show novel views generated from
the trained INR models on the Chair and Hotdog datasets, respectively. Additional novel views are
provided in section A.5.4 in the Appendix.

1* Reproduced result with 300 hidden neurons
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Figure 6: Occupancy fields representation capacity of AINR: The image illustrates the recon-
struction capabilities of various INRs for occupancy volumes. AINR stands out as the INR that not
only achieves the highest IoU metric but also the INR which preserves the highest amount of fine
details in its weights and biases. Unlike other INRs, AINR does not tend toward low-pass represen-
tations as it encodes signals by tailoring a sequence of activations for the given signal.

Figure 7: AINR’s novel view synthesis capabilities: AINR consistently achieves the highest per-
formance metrics and captures more intricate details than the baselines. For the chair dataset, AINR
accurately produced the fine textures, carvings, and lighting effects, closely matching the ground
truth. Similarly, for the hotdog dataset, AINR preserves the texture, shadows, and reflections with
greater fidelity, delivering sharper and more realistic results than WIRE, SIREN, and GAUSS, which
tend to over-smooth these details.

4.5 EFFECT OF ACTIVATION PARAMETER INITIALIZATION

As outlined in section 3.4, the performance of conventional INRs heavily depends on the initial-
ization of activation function parameters. In contrast, AINR identifies the most matched activation
sequence for a specific task without needing precise initialization. To substantiate this claim, we
have sourced activation function parameters from both uniform and normal distributions. The pri-
mary reason for selecting these distributions is to understand how INRs perform when parameters
are derived from distributions that are either spread evenly across a range or centered around a mean
value. A uniform distribution over [a, b] is denoted as U(a, b), and a normal distribution with mean
µ and standard deviation σ as N (µ, σ). The results in table 1 show the average PSNR (in dB) from
five trials on the Parrot image in figure 2, with variability expressed as the standard deviation next to
the ± symbol. The bold number indicates the highest PSNR, and the following number represents
the lowest standard deviation.
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Table 1: The PSNR variation of existing INRs when activation functions are drawn from different
probability distributions.

Distribution AINR WIRE SIREN GAUSS
U(0, 1) 39.63 ± 0.53 21.11 ± 1.01 17.48 ± 2.54 16.92 ± 3.16
U(−1, 1) 39.51 ± 0.67 20.74 ± 1.51 15.66 ± 2.61 18.58 ± 0.41

U(−10, 10) 40.07 ± 0.66 37.35 ± 1.02 23.96 ± 6.81 24.01 ± 8.45
U(−100, 100) 36.32 ± 1.83 24.05 ± 6.80 35.70 ± 2.84 22.45 ± 1.96
N (0, 1) 39.97 ± 0.78 22.41 ± 4.03 15.93 ± 2.58 17.06 ± 3.17
N (0, 10) 38.92 ± 1.26 32.86 ± 4.79 28.87 ± 4.14 27.46 ± 4.78

As illustrated in table 1, AINR emerges as the only INR which is capable of delivering consistent
PSNR across various distributions while exhibiting minimal variation around the mean. AINR not
only maintains PSNR consistency but also records the highest PSNR values. In contrast, WIRE
demonstrates commendable performance exclusively under the U(−10, 10) distribution, suggest-
ing its activation parameters require initialization within a narrow range (-10 to 10) for the tested
parrot image. Similarly, SIREN shows enhanced performance when its activation parameters are se-
lected from U(−100, 100) distribution. These observations underline the dependency of INRs like
WIRE, SIREN, and GAUSS on specific initial conditions for their activation parameters to guide the
network towards convergence.

4.6 ADDITIONAL EXPERIMENTS AND ABLATION STUDIES

Comprehensive experiments on image super-resolution, edge detection, and high-frequency encod-
ing are presented in the Appendix, along with details of the experimental setup and ablation studies
that evaluate AINR’s performance in relation to hidden neurons, layers, learning rates, weight initial-
ization, and positional encoding. Additionally, we provide explanations of training curves, variations
in activations within the spatial domain, and how AINR differs from baseline methods. Further re-
sults on image representation, inpainting, occupancy fields, and novel view synthesis from multiple
viewpoints are also included.

5 CONCLUSION

Existing INR methodologies are often constrained by the use of a single activation function through-
out the neural network, limiting their expressive power and generalizability. Furthermore, current
INRs require prior knowledge of activation function parameters, which are typically determined
through grid searches. However, these parameters can be suboptimal when the INRs encounter
signals with characteristics that differ from those used during parameter selection. In this work,
we introduce a dictionary of activation functions that encompasses seven nonlinearities, including
four that have not previously been utilized in INRs: Raised Cosine, Root Raised Cosine, Prolate
Spheroidal Wave Function, and Sinc function. The other three activations, i.e., Gabor Wavelet,
Gaussian, and Sinusoid, are well-known in the INR field. Along with the activation dictionary, we
proposed a non-exhaustive mechanism based on the matching-pursuit algorithm to automatically
identify the matched sequence of activations for any given INR task. Our extensive numerical ex-
periments demonstrate that the proposed method, AINR, achieves convergence even with random
initialization of activation function parameters, in contrast to existing INRs that typically require
prior knowledge or a search for optimal parameters. Additionally, AINR demonstrates superior
representation and generalization capabilities by adaptively selecting the activation sequence that
minimizes the loss between implicit and explicit representations. This adaptability allows AINR to
outperform current INRs, establishing it as a new state-of-the-art in the field.
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Gizem Yüce, Guillermo Ortiz-Jiménez, Beril Besbinar, and Pascal Frossard. A structured dictionary
perspective on implicit neural representations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 19228–19238, 2022.

Brosnan Yuen, Minh Tu Hoang, Xiaodai Dong, and Tao Lu. Universal activation function for ma-
chine learning. Scientific reports, 11(1):18757, 2021.

Djemel Ziou, Salvatore Tabbone, et al. Edge detection techniques-an overview. Pattern Recognition
and Image Analysis C/C of Raspoznavaniye Obrazov I Analiz Izobrazhenii, 8:537–559, 1998.

12

https://graphics.stanford.edu/data/3Dscanrep/
https://graphics.stanford.edu/data/3Dscanrep/

	Introduction
	Related works
	Methodology
	Formulation of an inr
	Dictionary of activations for AINR
	premise of AINR
	activation function parameter initialization

	Experimental results
	Image representation
	Image inpainting
	Occupancy fields representation
	Neural radiance fields
	Effect of activation parameter initialization
	Additional experiments and ablation Studies

	Conclusion

