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Abstract

Few-shot named entity recognition (NER) tar-001
gets generalizing to unseen labels and/or do-002
mains with few labeled examples. Existing003
metric learning methods compute token-level004
similarities between query and support sets, but005
are not able to fully incorporate label seman-006
tics into modeling. To address this issue, we007
propose a simple method to largely improve008
metric learning for NER: 1) multiple prompt009
schemas are designed to enhance label seman-010
tics; 2) we propose a novel architecture to ef-011
fectively combine multiple prompt-based rep-012
resentations. Empirically, our method achieves013
new state-of-the-art (SOTA) results under 16 of014
the 18 considered settings, substantially outper-015
forming the previous SOTA by an average of016
9.12% and a maximum of 34.51% in relative017
gains of micro F1.018

1 Introduction019

Named entity recognition (NER) is a key natural020

language understanding task that extracts and clas-021

sifies named entities mentioned in unstructured022

texts into predefined categories. Few-shot NER023

targets generalizing to unseen categories by learn-024

ing from few labeled examples.025

Recent advances for few-shot NER use metric026

learning methods which compute the token-level027

similarities between the query and the given sup-028

port cases. Snell et al. (2017) proposed to use029

prototypical networks that learn prototypical repre-030

sentations for target classes. Later, this method was031

introduced to few-shot NER tasks (Fritzler et al.,032

2019; Hou et al., 2020). Yang and Katiyar (2020)033

proposed StructShot, which uses a pretrained lan-034

guage model as a feature extractor and performs035

viterbi decoding at inference. Das et al. (2022)036

proposed CONTaiNER based on contrastive learn-037

ing. This approach optimizes an objective that038

characterizes the distance of Gaussian distributed039

embeddings under the metric learning framework.040

Despite the recent efforts, there remain a few crit- 041

ical challenges for few-shot NER. First of all, as 042

mentioned above, metric learning computes token- 043

level similarities between the query and support 044

sets. However, the architectures used for comput- 045

ing similarities in previous work are agnostic to the 046

labels in the support set. This prevents the model 047

from fully leveraging the label semantics of the 048

support set to make correct predictions. Second, 049

while prompts have been demonstrated to be able 050

to reduce overfitting in few-shot learning (Schick 051

and Schütze, 2020), due to a more complex se- 052

quence labeling nature of NER, the optimal design 053

of prompts remains unclear for few-shot NER. 054

In light of the above challenges, we explore a bet- 055

ter architecture that allows using prompts to fully 056

leverage the label semantics. We propose a simple 057

method of Prompt-based Metric Learning (ProML) 058

for few-shot NER, as shown in Figure 1. Specif- 059

ically, we introduce a special class of prompts, 060

which is called the mask-reducible prompts. By 061

performing a masked weighted average over the 062

representations obtained from multiple prompts, 063

our method accepts multiple choices of prompts as 064

long as they are mask-reducible. These prompts 065

improve label efficiency by inserting semantic an- 066

notations into the text inputs. As instantiations of 067

this framework, we design an option prefix prompt 068

to provide the model with the candidate label op- 069

tions, and a label-aware prompt to associate each 070

entity with its entity type in the input. As shown in 071

Figure 2, a single prompt provides useful informa- 072

tion but has some shortcoming. However, with a 073

weighted average, multiple prompts are combined, 074

which fully leverages label information. 075

In our experiments, we find that using multiple 076

prompts with the masked weighted average is ef- 077

fective for few-shot NER. Empirically, our method 078

achieves new state-of-the-art (SOTA) results under 079

16 of the 18 considered settings, substantially out- 080

performing the previous SOTA by an average of 081
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9.12% and a maximum of 34.51% in relative gains082

of micro F1.083

2 Related Work084

Few-Shot NER. Few-shot NER targets gener-085

alizing to unseen categories by learning from086

few labeled examples. Noisy supervised meth-087

ods (Huang et al., 2020) perform supervised pre-088

training over large-scale noisy web data such as089

WiNER (Ghaddar and Langlais, 2017). Self train-090

ing methods (Wang et al., 2021) perform semi-091

supervised training over a large amount of unla-092

belled data. Alternative to these data-enhancement093

approaches, metric learning based methods have094

been widely used for few-shot NER (Fritzler et al.,095

2019; Yang and Katiyar, 2020; Das et al., 2022).096

Recently, prompt-based methods (Ma et al., 2021;097

Cui et al., 2021; Lee et al., 2022) are proposed for098

few-shot NER as well. To introduce more fine-099

grained entity types in few-shot NER, a large-scale100

human-annotated dataset Few-NERD (Ding et al.,101

2021) was proposed. Ma et al. (2022b); Wang et al.102

(2022) formulate NER task as a span matching103

problem and decompose it to several procedures.104

Ma et al. (2022b) decomposed the NER task into105

span detection and entity typing, and they sepa-106

rately train two models and finetune them on the107

test support set, achieving SOTA results on Few-108

NERD (Ding et al., 2021). Different from the above109

related works, our approach is a general framework110

of using prompts for token-level metric learning111

problems.112

Meta Learning. The idea of meta learning was113

first introduced in few-shot classification tasks for114

computer vision, attempting to learn from a few ex-115

amples of unseen classes. Since then metric-based116

methods have been proposed, such as matching117

networks (Vinyals et al., 2016) and Prototypical118

networks (Snell et al., 2017), which basically com-119

pute similarities according to the given support120

set, learn prototypical representations for target121

classes, respectively. It has been shown that these122

methods also enable few-shot learning for NLP123

tasks such as text classification (Bao et al., 2019;124

Geng et al., 2019), relation classification (Han et al.,125

2018), named entity recognition (Fritzler et al.,126

2019; Yang and Katiyar, 2020; Das et al., 2022),127

and machine translation (Gu et al., 2018). Our ap-128

proach also falls into the category of metric-based129

meta learning and outperforms previous work on130

NER with an improved architecture.131

Label Semantics for NER. There have been 132

some approaches that make use of label seman- 133

tics (Ma et al., 2022a; Hou et al., 2020). Hou 134

et al. (2020) propose a CRF framework with label- 135

enhanced representations based on the architecture 136

of Yoon et al. (2019). However, they mainly focus 137

on slot tagging tasks while their performance on 138

NER tasks is poor. Ma et al. (2022a) introduce 139

label semantics by aligning token representations 140

with label representations. Both of them only use 141

label semantics for learning better label representa- 142

tions. In contrast, our approach incorporates label 143

semantics into the inputs so that the model is able to 144

jointly model the label information and the original 145

text samples. This makes the similarity scores de- 146

pendent on the support set labels and is particularly 147

crucial for metric learning. Our experiments also 148

verify the advantages of our approach compared to 149

previous work using labels semantics. 150

Prompt-Based Approaches for NER. With the 151

emergence of prompt-based methods in NLP re- 152

search, very recently, some prompt-based ap- 153

proaches for few-shot NER have been pro- 154

posed (Cui et al., 2021; Lee et al., 2022; Ma et al., 155

2021). However, they use prompts to help with the 156

label predictions based on classification heads in- 157

stead of metric learning. Moreover, some of these 158

methods require searching for templates (Cui et al., 159

2021), good examples (Lee et al., 2022), or label- 160

aware pivot words (Ma et al., 2021), which makes 161

the results highly dependent on the search quality. 162

Different from these methods, our approach does 163

not rely on a search process. More importantly, an- 164

other key difference is that we employ prompting 165

in the setting of metric learning. 166

3 Task Definition 167

3.1 Few-shot NER 168

Named entity recognition (NER) is a sequence 169

labeling task1. Formally, for a sentence x con- 170

sisting of n tokens x = [x1, x2, · · · , xn], there 171

is a corresponding ground-truth label sequence 172

y = [y1, y2, · · · , yn] where each yi is an encoding 173

of some label indicating the entity type for token 174

xi. Then a collection of these (x,y) pairs form a 175

dataset D. After training on the training dataset DS , 176

the model is required to predict labels for sentences 177

from the test dataset DT . 178

1There also exist other formulations such as span predic-
tion or question answering.
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Transformer Backbone Transformer Backbone

h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13 h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 h13

Masked 
Weighted Average

[ℎ!, ℎ", ⋯ , ℎ#] ∈ 𝑅$%&×#

𝒩(𝜇!, Σ!),𝒩(𝜇", Σ"),⋯ ,𝒩(𝜇#, Σ#)

Linear Projection

Inputs with Option Prefix Prompt Inputs with Label-Aware Prompt

Shared Parameters

(Only for support cases)

Support Case

Query Case

Figure 1: An overview of the architecture of our proposed ProML . The prompts associated with the input sequence are
passed through a transformer backbone to obtain intermediate representations. A masked weighted average is then applied to
produce token-level representations. Following Das et al. (2022), Gaussian embeddings for each token are produced using linear
projections. The similarity scores between query tokens and support tokens are then computed according to the distance metric.

education, location, other: The University of Chicago 
is a private research university in Chicago, Illinois.

[The University of Chicago|education] is a private 
research university in [Chicago, Illinois|location].

The University of Chicago is a private 
research university in Chicago, Illinois.

Prompt pattern

Plain
Option 
prefix

Label-
aware

Plain Plain

Option 
prefix

Plain

Option 
prefix

Label-
aware

Option 
prefix

Option 
prefix

Label-
aware

Prompts for support set Prompts for query set

The University of Washington is a public research university in Seattle , Washington.

The University of Washington is a public research university in Seattle, Washington.

The University of Washington is a public research university in Seattle, Washington.

The University of Washington is a public research university in Seattle, Washington.

Tagging results for query set

education education

education

education education

education

location

location location

location

location

(Only for support)

Lack of label information.

Reduce label space, but no direct demonstration.

Provide full label information to support.

Fully leverages label information.

Figure 2: A manually constructed example to illustrate different prompts. Prompted inputs for the support set are listed at the
top and the tagging results of the query set for 4 prompt combinations are shown at the bottom.

Different from the standard NER task, the few-179

shot NER setting consists of a meta training phase180

and a test phase. At the meta training phase, the181

model trains on a training dataset DS . At the test182

phase, for various test datasets {DT
(j)}, with only183

few labeled samples, the model is required to per-184

form quick adaptions. In this paper, we mainly185

focus on two evaluation protocols and two task186

formulations which will be explained as follows.187

3.2 Evaluation protocols188

Following Ding et al. (2021); Ma et al. (2022a), we189

summarize two evaluation protocols as follows.190

Episode Evaluation An episode, or a task, is de-191

fined as a pair of one support set and one query set192

(S,Q) each consisting of sentences downsampled193

from the test set. For an N -way K-shot downsam-194

pling scheme, there are N labels among the support195

set S where each label is associated with K exam-196

ples. The query set Q shares the same label set197

with the support set. Based on the support set, the198

model is required to predict labels for the query set.199

To perform an episode evaluation, a collection of200

T episodes {(St,Qt)}Tt=1 are prepared. The evalu-201

ation results are computed within each episode and 202

are averaged over all T episodes. 203

Low-resource Evaluation Different from the 204

few-shot episode evaluation, low-resource evalu- 205

ation aims to directly evaluate the model on the 206

whole test set. For a test dataset DT with a label 207

set CT , a support set S associated with the labels 208

from CT is constructed by K-shot downsampling 209

such that each label has K examples in S. Based 210

on the support set S, the model is required to pre- 211

dict labels for the query set which is the rest of the 212

test set DT . To perform a low-resource evaluation, 213

T different runs of support set sampling are run 214

and averaged. 215

3.3 Task formulation 216

Following Yang and Katiyar (2020), we formulate 217

few-shot NER tasks in the following two ways. 218

Tag-Set Extension To mimic the scenario that 219

new classes of entities emerge in some domain, 220

Yang and Katiyar (2020) propose the tag-set exten- 221

sion formulation. Starting with a standard NER 222

dataset (Dtrain,Dtest) with label set C, they split 223

C into d parts, namely C1, C2, · · · , Cd. Then for 224
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each label split Ci, a train set D(i)
train is constructed225

from Dtrain by masking the labels in Ci to O (rep-226

resenting non-entities), and the corresponding test227

set D(i)
test is constructed from Dtest by masking the228

labels in C \ Ci to O.229

Domain Transfer Another task formulation is230

the domain transfer setting. Let DS be a training231

set of a standard NER task, and let {DT
(i)} be the232

test sets of standard NER tasks but from a different233

domain. The training set DS is referred to as a234

source domain, and the test sets {DT
(i)} constitute235

various target domains. In this setting, there may236

exist some overlapping entity classes between the237

source and target domains, but due to the domain238

gaps, it is still considered a few-shot setting.239

Note that the task formulation is independent of240

the evaluation protocol, and different combinations241

will be considered in our experiments.242

4 Method243

4.1 Prompt Schemas244

Motivated by existing prompt-based methods (Liu245

et al., 2021; Paolini et al., 2021) and the metric246

learning framework, our ProML provides label se-247

mantics by introducing prompts to metric learn-248

ing models. We proposed a simple yet effective249

prompt class called the “mask-reducible prompts”.250

Through this class of prompts, we can provide flex-251

ible prompts to the model which is consistent with252

metric learning methods that use token-level sim-253

ilarities as the metric. Starting with this schema,254

we will introduce two prompts that are used in255

ProML , the option-prefix prompt and the label-256

aware prompt.257

4.2 Mask-Reducible Prompts258

Suppose the raw input sequence is x =259

[x1, x2, · · · , xl]. Let fprompt be a prompt func-260

tion mapping x to the prompted result x′. We261

call this fprompt is a mask-reducible prompt func-262

tion if for all x and its prompted result x′ =263

fprompt(x), there exists a mask m ∈ [0, 1]|x
′| such264

that x′[m == 1] = x. Intuitively, this means there265

is only some insertions in the prompt construction266

so that we can revert x′ back to x through a simple267

masking operation. The corresponding prompt of268

fprompt is called a mask-reducible prompt.269

Given a length preserving sequence-to-sequence270

encoder Enc(x; θ), a sequence of input tokens x,271

and a mask-reducible prompt function fprompt, we272

first construct the prompted result x′ = fprompt(x), 273

then pass the sequence x′ through the encoder to 274

get representations h′ = Enc(x′; θ). 275

Since Enc(·; θ) is length preserving, the length 276

of h′ is the same as x′, and we can compute h = 277

h′[m == 1] to get the representation for input 278

tokens, where m is the desired mask that could 279

reduce x′ to x (i.e. x′[m == 1] = x). 280

Through this process, the encoder receives the 281

full prompts as its input while only the representa- 282

tions of raw input tokens are extracted. 283

Prompt A: Option Prefix Prompts An option 284

prefix prompt takes the concatenation of all an- 285

notations as an option prefix to incorporate label 286

semantics into modeling. Formally, for a given 287

set of label options S = {s1, s2, · · · , s|S|}, we 288

construct a mask-reducible prompting function 289

fA(x,S) associated with S using the template 290

“s1, s2, · · · , s|S| : x”. An example is given in Fig- 291

ure 2, where option prefix prompts reduce the label 292

space to avoid incorrectly classify non-entities. The 293

option prefix prompts inform the main model of 294

which labels to predict, which can be used to learn 295

label-dependent representations for computing the 296

similarities. 297

Prompt B: Label-Aware Prompts A label- 298

aware prompt appends the entity type to each entity 299

occurrence in the input so that the model is aware of 300

such information. While the aforementioned option 301

prefix prompts incorporate global label informa- 302

tion, the label-aware prompts introduce local infor- 303

mation about each entity. Specifically, let fB(x,y) 304

be the prompt function. Given a sequence of in- 305

put tokens x and its ground-truth label sequence 306

y, for each entity e that occurs in x, we obtain its 307

corresponding label E from the sequence y, and 308

replace e with an label-appended version “[e|E]” 309

to construct the prompted result x′ = fB(x,y). 310

Both the entity e and its label E are sequences of 311

tokens. Because the label-aware prompt can be 312

applied when the ground-truth label is available, in 313

our few-shot learning setting, we do not apply this 314

prompt to the query set. An example is given in 315

Figure 2, where label-aware prompts provide full 316

label information in prompted inputs. More details 317

will be explained in the following descriptions of 318

our model architecture. 319

Note that it is possible to design other mask- 320

reducible prompts for NER, which will be naturally 321

handled by our framework. In our study, we find 322
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these two prompts work well practically and use323

them as instantiations to demonstrate the effective-324

ness of our framework.325

4.3 Model and Training326

The overall architecture of ProML is shown in Fig-327

ure 1. Our architecture uses a transformer back-328

bone to encode different prompted inputs sepa-329

rately and employs a masked weighted average330

to obtain token representations, which will be elab-331

orated as follows.332

At the meta training phase, we sample mini-333

batches from the training set Dtrain, where334

each mini-batch contains a few-shot episode335

(Strain,Qtrain). We obtain the label set associ-336

ated with the support set Strain and use a look-337

up dictionary to translate each label id to its nat-338

ural language annotation. This leads to a set339

of label annotations S. Then for an input se-340

quence x = [x1, x2, · · · , xl] and its label sequence341

y = [y1, y2, · · · , yl] from the support set Strain,342

we collect the prompted results pA = fA(x,S),343

pB = fB(x,y) and the corresponding masks344

mA, mB. These prompted results are then passed345

through a pretrained language model PLM. The346

average of outputs from the last four hidden layers347

are computed as the intermediate representations348

hA = PLM(pA),hB = PLM(pB).349

We perform a masked weighted average to obtain350

token representations351

h = ρhA[mA == 1] + (1− ρ)hB[mB == 1],352

where ρ ∈ (0, 1) is a hyperparameter.353

The token representations for the query set are354

computed similarly. However, during both training355

and testing, we only use the option-prefix prompt356

for the query set since the ground-truth label se-357

quence will not be available at test time. As a358

result, we do not perform a weighted average for359

the query set. After obtaining the token representa-360

tions, two projection layers fµ, fΣ are employed to361

produce two Gaussian embeddings, i.e., the mean362

and precision parameters of a d-dimensional Gaus-363

sian distribution N(µ,Σ) for each token in the query364

and support sets (Das et al., 2022).365

Given the Gaussian embeddings for samples in366

both the support and query sets, we compute the367

distance metrics. Similar to CONTaiNER (Das368

et al., 2022), for a token xi from the support set369

Strain and a token x′j from the query set Qtrain,370

the distance between two tokens xi, x′j is defined 371

as the Jenson-Shannon divergence (Fuglede and 372

Topsøe, 2004) of their Gaussian embeddings, i.e., 373

dist(xi, x
′
j) = DJS(Ni,N ′

j) 374

=
1

2
(DKL(N(µi,Σi)||N(µ′

j ,Σ
′
j)
) 375

+DKL(N(µ′
j ,Σ

′
j)
||N(µi,Σi))), 376

where DKL refers to the Kullback–Leibler diver- 377

gence. 378

The similarity between xi and x′j is then de- 379

fined as s(xi, x
′
j) = exp(−dist(xi, x

′
j)). Let 380

Strain,Qtrain be collections of all tokens from sen- 381

tences in Strain,Qtrain. For each q ∈ Qtrain, the 382

associated loss function is computed as 383

ℓ(q) = − log

∑
p∈Xq

s(q, p)/|Xq|∑
p∈Strain

s(q, p)
, 384

where Xq is defined by Xq = {p ∈ 385

Strain|p, q have the same labels}. The overall loss 386

function within a mini-batch is the summation of 387

token-level losses, L = 1
|Qtrain|

∑
q∈Qtrain

ℓ(q). 388

4.4 Nearest Neighbor Inference 389

At test time, we compute the intermediate repre- 390

sentations for tokens from the support and query 391

sets just as we did during the meta training phase. 392

Following CONTaiNER (Das et al., 2022), we no 393

longer use the projection layers fµ, fΣ at test time 394

but directly perform nearest neighbor inference us- 395

ing the token representations h. For each query 396

token, according to the Euclidean distance in the 397

representation space, we compute the distance to 398

each entity type by the distance to the nearest to- 399

kens from the support set associated with that entity 400

type and assign the nearest entity type to the query 401

token. For the k shot setting where k > 1, we also 402

use the average distance of the nearest k neighbors 403

associated with each entity type as the distance to 404

the entity types. 405

5 Experiments 406

5.1 Setup 407

Datasets We conduct experiments on multiple 408

datasets across two few-shot NER formulations, 409

tag-set extension and domain transfer. Follow- 410

ing Das et al. (2022); Yang and Katiyar (2020), 411

we split OntoNotes 5.0 (Weischedel et al., 2013) 412

into Onto-A, Onto-B, and Onto-C for the tag-set 413
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Table 1: Evaluation results of ProML and 8 baseline methods in low-resource evaluation protocol for both tag-set extension and
domain transfer tasks. Results with ⋆ are reported by the original paper, and those with † are reproduced in our experiments. We
report the averaged micro-F1 score together with standard deviation. “Onto-A” denotes group-A set of OntoNotes dataset.

Method Tag-Set Extension Domain Transfer Avg.Onto-A Onto-B Onto-C CoNLL WNUT I2B2 GUM

1-shot

ProtoBERT(⋆) 19.3±3.9 22.7±8.9 18.9±7.9 49.9±8.6 17.4±4.9 13.4±3.0 17.8±3.5 22.77
NNShot(⋆) 28.5±9.2 27.3±12.3 21.4±9.7 61.2±10.4 22.7±7.4 15.3±1.6 10.5±2.9 26.7
StructShot(⋆) 30.5±12.3 28.8±11.2 20.8±9.9 62.4±10.5 24.2±8.0 21.4±3.8 7.8±2.1 27.99
CONTaiNER(⋆) 32.2±5.3 30.9±11.6 32.9±12.7 57.8±5.5 24.2±7.24 16.4±3.19 17.9±2.28 30.33

ProtoBERT(†) 8.39±2.16 17.12±4.04 8.4±1.94 53.09±9.89 21.17±4.71 15.85±4.89 11.91±3.01 19.42
NNShot(†) 21.97±7.11 33.89±7.1 21.73±6.78 59.76±8.63 26.53±4.54 15.0±3.63 10.33±3.08 27.03
StructShot(†) 24.02±6.24 36.42±8.22 22.70±6.65 60.84±7.62 29.16±4.88 18.34±2.70 11.17±2.18 28.95
CONTaiNER(†) 31.63±11.74 51.33±8.97 39.97±3.81 57.89±16.79 26.67±8.65 18.96±3.97 12.07±1.53 34.07
TransferBERT(†) 7.44±5.97 8.97±4.94 7.34±3.42 47.09±11.02 11.83±5.07 35.25±4.21 8.97±2.56 18.13
DualEncoder(†) 0.83±0.62 2.86±1.70 2.55±1.37 54.63±3.43 36.03±2.02 14.63±3.10 11.87±0.76 17.63
EntLM(†) 5.79±4.22 10.11±4.13 8.49±5.0 50.47±6.74 27.7±7.66 7.85±2.81 8.85±1.17 17.04
DemonstrateNER(†) 0.98±0.83 2.02±2.1 4.02±3.23 16.12±7.33 20.38±8.02 13.29±4.73 3.24±1.34 8.58
ProML 37.94±6.08 53.74±3.6 46.27±10.72 69.16±4.47 43.89±2.17 24.98±3.44 15.29±1.89 41.61

5-shot

ProtoBERT(⋆) 30.5±3.5 38.7±5.6 41.1±3.3 61.3±9.1 22.8±4.5 17.9±1.8 19.5±3.4 33.11
NNShot(⋆) 44.0±2.1 51.6±5.9 47.6±2.8 74.1±2.3 27.3±5.4 22.0±1.5 15.9±1.8 40.36
StructShot(⋆) 47.5±4.0 53.0±7.9 48.7±2.7 74.8±2.4 30.4±6.5 30.3±2.1 13.3±1.3 42.57
CONTaiNER(⋆) 51.2±5.9 55.9±6.2 61.5±2.7 72.8±2.0 27.7±2.2 24.1±1.9 24.4±2.2 45.37

ProtoBERT(†) 25.81±3.0 31.49±4.6 32.08±2.12 65.76±5.34 32.81±8.78 35.05±12.25 25.02±2.66 35.43
NNShot(†) 39.49±5.96 50.18±4.99 45.98±4.61 70.79±3.44 33.68±5.21 29.50±2.89 19.04±2.38 41.24
StructShot(†) 35.68±6.17 51.30±4.61 47.85±4.74 71.23±3.62 35.36±2.99 27.08±3.17 19.67±2.45 41.17
CONTaiNER(†) 45.62±6.58 67.70±2.80 59.84±2.62 75.48±2.80 35.83±5.51 30.14±3.35 16.19±0.68 47.26
TransferBERT(†) 21.48±5.73 41.97±5.65 45.24±4.33 69.93±3.98 35.64±3.55 47.89±7.02 27.50±1.27 41.38
DualEncoder(†) 7.61±2.50 16.41±1.22 26.37±7.25 67.05±3.69 36.82±1.09 23.27±2.26 24.55±1.12 28.87
EntLM(†) 21.29±5.77 35.7±6.2 28.8±6.62 60.58±9.39 30.26±3.99 13.51±2.4 13.35±1.9 29.07
DemonstrateNER(†) 49.25±10.34 63.02±4.64 61.07±8.08 73.13±4.01 43.85±2.56 36.36±4.58 18.01±2.81 49.24
ProML 52.46±5.71 69.69±2.19 67.58±3.25 79.16±4.49 53.41±2.39 58.21±3.58 36.99±1.49 59.64

extension formulation. For the domain transfer for-414

mulation, we use OntoNotes 5.0 (Weischedel et al.,415

2013) as the source domain, CoNLL’03 (Sang416

and Meulder, 2003), WNUT’17 (Derczynski et al.,417

2017), I2B2’14 (Stubbs and Uzuner, 2015), and418

GUM (Zeldes, 2017) as target domains. We also419

take Few-NERD (Ding et al., 2021) as one of420

the tag-set extension tasks, which is a large-scale421

human-annotated dataset speciallly designed for422

few-shot NER. We adopt the IO tagging scheme,423

where a label “O” is assigned to non-entity tokens424

and an entity type label is assigned to entity tokens.425

We also transform the abbreviated label annotations426

into plain texts; e.g., [LOC] to [location].427

Baselines Our baselines include metric learn-428

ing based methods such as the prototypical net-429

works ProtoBERT (Snell et al., 2017; Fritzler et al.,430

2019; Hou et al., 2020), a nearest neighbor based431

network NNShot and its viterbi decoding vari-432

ant StructShot (Yang and Katiyar, 2020), and433

a contrastive learning method CONTaiNER (Das 434

et al., 2022). We also include a classification head 435

based method TransferBERT (Hou et al., 2020) 436

based on a pretrained BERT (Devlin et al., 2019). 437

Existing method that make use of label seman- 438

tics, DualEncoder (Ma et al., 2022a) is also re- 439

produced for comparison. Recent prompt-based 440

methods EntLM (Ma et al., 2021) and Demon- 441

strateNER (Lee et al., 2022) are also employed 442

as the baselines as well. We also compare our 443

model with the recently-introduced based meth- 444

ods DecomposeMetaNER (Ma et al., 2022b) and 445

ESD (Wang et al., 2022). 2 446

2The dataset we used is Few-NERD Arxiv V6 Version,
while Ma et al. (2022b); Wang et al. (2022) reported
their performances in the papers based on an earlier ver-
sion (i.e. Arxiv V5 Version). We find the performances on
the latest Few-NERD dataset on their official github repo
at https://github.com/microsoft/vert-papers/tree/
master/papers/DecomposedMetaNER.
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Table 2: Evaluation results of ProML and 7 baseline methods in episode evaluation protocol for FewNERD dataset. Results
with ⋆ are reported by the original paper, and those with † are reproduced in our experiments. We report the averaged micro-F1
score together with standard deviation.

Method 1-shot 5-shot Avg.INTRA INTER INTRA INTER

ProtoBERT(⋆) 20.76 38.83 42.54 58.79 40.23
NNShot(⋆) 25.78 47.24 36.18 55.64 41.21
StructShot(⋆) 30.21 51.88 38.00 57.32 44.35
CONTaiNER(⋆) 40.43 53.70 55.95 61.83 52.98
ESD(⋆) 36.08±1.60 59.29±1.25 52.14±1.50 69.06±0.80 54.14
DecomposedMetaNER(⋆) 49.48±0.85 64.75±0.35 62.92±0.57 71.49±0.47 62.16

ProtoBERT(†) 25.8±0.35 47.59±0.84 50.19±0.65 65.05±0.39 47.16
NNShot(†) 33.32±0.69 52.29±0.88 45.61±0.52 59.63±0.48 47.71
StructShot(†) 34.51±0.68 53.1±0.92 46.88±0.48 60.45±0.51 48.74
CONTaiNER(†) 37.12±1.01 55.19±0.43 49.22±0.34 62.64±0.33 51.04
TransferBERT(†) 22.43±1.49 38.26±2.36 48.95±1.23 62.2±1.36 42.96
ProML 58.08±0.75 68.76±0.4 68.95±0.36 75.11±0.52 67.73

Evaluation Protocols Following Das et al.447

(2022); Yang and Katiyar (2020), we use the low-448

resource evaluation protocol for domain transfer449

tasks and for the tag-set extension tasks Onto-450

A, Onto-B, and Onto-C. Since Few-NERD (Ding451

et al., 2021) is specifically designed for episode452

evaluation, all of our experiments on Few-NERD453

dataset are evaluated under episode evaluation pro-454

tocol. We follow the N -way K-shot downsampling455

setting proposed by Ding et al. (2021). For episode456

evaluation, we conduct 5 different runs of experi-457

ments, each of them contains 5000 test episodes.458

For low-resource evaluation, 10 different runs of459

support set sampling is performed.460

5.2 Main Results461

The main results of low-resource evaluation and462

episode evaluation are shown in Tables 1 and 2463

respectively. Training details are provided in Ap-464

pendix A.1. Our method achieves new state-of-465

the-art (SOTA) results under 16 out of the 18 con-466

sidered settings. To compare with previous SOTA467

across different settings, we collect the relative im-468

provement fractions from all settings and then com-469

pute an average and a maximum over these frac-470

tions. The result shows that ProML substantially471

outperforming the previous SOTA by an average472

of 9.12% and a maximum of 34.51% (from 28% to473

37% on GUM 5-shot) in relative gains of micro F1.474

These outstanding results show that our method is475

effective for few-shot NER tasks. Compared with476

the other baselines, the performances of prompt-477

based baselines decrease by a larger margin in the478

1-shot settings since they heavily rely on finetuning479

on support sets.480

5.3 Ablation Study and Analysis 481

The ablation study results for prompts choices and 482

averaging weights on all tag-set extension tasks 483

are shown in Table 3, 4. We adopt the episode 484

evaluation protocol due to its low variance. More 485

ablations and the training curve, case study are 486

placed in Appendix A.3, A.2, A.4, respectively. 487

Option Prefix Prompts & Label-Aware Prompts 488

According to Table 3, overall, by comparing the 489

best variant of prompting methods to “plain”, using 490

prompting consistently outperforms the methods 491

without prompting. The improvements are con- 492

sistent with our motivation in the earlier sections. 493

With the help of label semantic annotations, the 494

model is able to leverage this information to bet- 495

ter learn the representation of each token. In ad- 496

dition, the model does not need to spend much 497

capacity memorizing and inferring the underlying 498

entity types for input tokens, which is crucial in the 499

few-shot setting where labels are scarce. 500

The performance of variant “B, plain” is not 501

good since only the support set leverages label- 502

aware prompts so that there is a gap between the 503

amounts of additional information from support to 504

query. Thus there is a potential risk that the model 505

only emphasizes these labels in support inputs 506

while neglecting the semantics for tokens them- 507

selves, causing an overfitting problem. However, 508

after introducing a weighted average, as shown 509

in “plain+B, plain”, the performance significantly 510

improves. This observation suggests that the label- 511

aware prompt is useful and the weighted average 512

mitigates the overfitting by reducing the gaps be- 513

tween support and query. 514
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Table 3: Ablation Study for ProML . The tuple indicates which prompts are used in the support set and query set. The variant A,
A refers to using the option prefix prompt only in both the support set and query set. plain+A (ρ = 0.5), plain refers to that the
original inputs and option prefix prompts are used for the support set with an averaging weight ρ = 0.5, while the query set only
use origin inputs. A+B, A is our ProML method.

Setting Model Onto-A Onto-B Onto-C INTRA INTER

5-shot

plain, plain 42.1±1.03 62.87±0.52 50.58±0.98 53.08±0.85 65.66±0.08
A, A 47.04±1.01 65.42±0.62 55.77±1.19 66.19±0.72 73.9±0.34
B, plain 39.58±2.26 51.17±1.01 40.28±3.55 49.9±1.68 65.31±1.36
plain+A (ρ = 0.3), plain 40.43±1.64 62.41±1.3 49.51±2.78 56.4±1.02 68.15±0.42
plain+A (ρ = 0.5), plain 42.35±1.32 64.37±0.48 51.94±1.06 56.69±0.93 68.73±0.25
plain+A (ρ = 0.7), plain 42.75±2.18 64.52±0.57 53.07±1.79 55.33±1.34 68.37±0.26
plain+B (ρ = 0.3), plain 46.85±1.32 58.0±1.68 50.54±1.71 54.18±1.25 67.03±0.7
plain+B (ρ = 0.5), plain 52.34±0.31 62.07±2.15 55.9±0.5 57.75±0.32 68.22±0.25
plain+B (ρ = 0.7), plain 52.37±0.57 66.39±1.22 57.7±0.71 57.52±0.81 69.04±0.2
A+B (ρ = 0.3), A 52.76±0.82 59.34±1.49 55.52±0.89 66.95±0.82 73.51±0.3
A+B (ρ = 0.5), A 55.29±0.98 62.49±1.2 59.99±0.99 68.41±0.27 74.52±0.44
A+B (ρ = 0.7), A 55.76±1.06 67.09±0.49 62.57±0.47 68.95±0.36 75.11±0.52

As we will show in the next section, combining515

the two prompts always leads to the best perfor-516

mance because the model is able to dynamically517

adapt to the two representations.518

Effect of Masked Weighted Average As re-519

ported before, a weighted average could reduce520

the gaps between computing representations for521

the support set and the query set and make use of522

the information provided by label-aware prompts.523

By adjusting the averaging weight ρ, we are able524

to balance the weights of the two representations525

for different data distributions.526

We compared different averaging settings in 3.527

The option prefix only variant “A, A” performs bet-528

ter than “plain+A, plain” because the label option529

information is provided to both support and query.530

The performance of “plain+B, plain” and “A+B, A”531

improve as ρ increases, which is consistent with532

our motivation533

According to Table 3, with a properly selected534

averaging weight ρ, our ProML outperforms all535

baselines by a large margin among all tested536

datasets, which indicates that both prompts con-537

tribute to our final performance. Importantly,538

ρ = 0.7 tends to work well in most of the settings,539

which can be used as the default hyperparameter in540

our framework without tuning.541

Visualizing Embedding Space We visualize the542

token representations from support sets and query543

sets over several episodes from the test set of Few-544

NERD INTRA, as Figure 3 shows. We observe that545

the token representations produced by ProML are546

concentrated in different clusters. In addition, we547

shall observe a clear decision boundary between548

different clusters. On the contrary, CONTaiNER 549

seems to learn scattered, less separable features. 550

Figure 3: TSNE visualization of token representations un-
der the Few-NERD test set for CONTaiNER (on the left)
and ProML (on the right), where each color represents an
entity type (grey for non-entities). We only keep a fraction of
20% among the non-entities to make the TSNE visualization
clearer.

6 Conclusions 551

We propose a novel prompt-based metric learning 552

framework ProML for few-shot NER that leverages 553

multiple prompts to guide the model with label se- 554

mantics. ProML is a general framework consistent 555

with any token-level metric learning method and 556

can be easily plugged into previous methods. We 557

test ProML under 18 settings and find it substan- 558

tially outperforms previous SOTA results by an 559

average of 9.12% and a maximum of 34.51% in 560

relative gains of micro F1. We perform ablation 561

studies to show that multiple prompt schemas ben- 562

efit the generalization ability for our model. We 563

demonstrate the visualization results for embedding 564

space to unseen entities, showing that comparing 565

with previous SOTA, ProML learns better represen- 566

tations. We also present case studies and perform 567

some analysis. 568
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A Appendix 747

A.1 Training Details 748

We use AdamW (Loshchilov and Hutter, 2019) for 749

optimization and the learning rate is set to 3×10−5, 750

linearly warming up during first 10% of all 104 751

training iterations. The weight decay is set to 0.01 752

for all parameters of the model except the biases 753

and layer norm layers. The value of hyperparam- 754

eter ρ is chosen from {0.1, 0.3, 0.5, 0.7, 0.9} and 755

is set to 0.7 by default (which is good enough for 756

almost all cases). For fair comparison, we use the 757

same Gaussian embedding dimension d = 128 as 758

CONTaiNER (Das et al., 2022). A single experi- 759

ment run takes about 1 hour on a single RTX3090. 760

A.2 Training Curve 761

Our architecture of using multiple prompts also 762

mitigates overfitting. We conduct two experiments 763

on Few-NERD to prove this empirically. Fig- 764

ure 4 demonstrates the training curves for CON- 765

TaiNER (Das et al., 2022) and our model. From the 766

curves we can see that the trends of performances 767

over training set are similar while the performance 768

of CONTaiNER on dev set stops increasing much 769

earlier than ProML . Compared with CONTaiNER, 770

our model gets much better in the later epochs. This 771

shows that ProML suffers less from overfitting in 772

the few-shot setting. 773

A.3 Ablations 774

Ablation Table for both 1-shot and 5-shot Due 775

to page limit, we leave ablation for 1-shot to the 776

appendix. The full version is in Table 4. 777

Ablation for Replacing Labels with Noises & Re- 778

moving Separators We made an experiment to 779

replace labels with random strings (both in train 780

and test, same entity type shares same label) to 781

show the effect of label semantics. According to 782

Table 5, the results from “ProML noise-label” are 783
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Table 4: Ablation Study for ProML (1-shot and 5-shot). The tuple indicates which prompts are used in the support set and query
set. The variant A, A refers to using the option prefix prompt only in both the support set and query set. plain+A (ρ = 0.5),
plain refers to that the original inputs and option prefix prompts are used for the support set with an averaging weight ρ = 0.5,
while the query set only use origin inputs. A+B, A is our ProML method. All results in this table are produced by the episode
evaluation protocol.

Setting Model Onto-A Onto-B Onto-C INTRA INTER

1-shot

plain, plain 27.4±0.93 49.91±1.22 32.51±0.98 37.17±0.98 54.11±0.72
A, A 30.99±0.91 52.57±0.82 37.44±1.3 51.0±0.74 65.86±0.56
B, plain 25.8±0.89 34.76±3.3 24.02±1.1 37.99±2.55 58.98±1.57
plain+A (ρ = 0.3), plain 29.79±1.79 50.43±1.04 33.51±1.86 43.35±1.0 59.95±0.35
plain+A (ρ = 0.5), plain 30.81±1.41 50.51±0.83 34.8±1.05 43.25±0.54 60.06±0.49
plain+A (ρ = 0.7), plain 28.32±1.37 50.79±0.87 34.27±0.92 41.42±0.55 59.1±0.5
plain+B (ρ = 0.3), plain 31.03±0.91 40.39±1.5 31.67±1.8 45.16±0.39 62.27±0.63
plain+B (ρ = 0.5), plain 33.58±0.44 45.11±0.85 36.25±0.93 45.1±0.41 62.67±0.78
plain+B (ρ = 0.7), plain 33.42±0.46 49.44±0.96 38.67±0.61 43.07±0.44 61.09±0.5
A+B (ρ = 0.3), A 33.43±1.42 42.07±1.49 35.26±1.1 57.16±1.52 68.04±0.82
A+B (ρ = 0.5), A 33.31±0.57 42.94±2.1 39.27±0.52 58.08±0.75 68.43±0.6
A+B (ρ = 0.7), A 35.58±0.4 50.53±1.03 42.12±0.84 57.19±0.91 68.76±0.4

5-shot

plain, plain 42.1±1.03 62.87±0.52 50.58±0.98 53.08±0.85 65.66±0.08
A, A 47.04±1.01 65.42±0.62 55.77±1.19 66.19±0.72 73.9±0.34
B, plain 39.58±2.26 51.17±1.01 40.28±3.55 49.9±1.68 65.31±1.36
plain+A (ρ = 0.3), plain 40.43±1.64 62.41±1.3 49.51±2.78 56.4±1.02 68.15±0.42
plain+A (ρ = 0.5), plain 42.35±1.32 64.37±0.48 51.94±1.06 56.69±0.93 68.73±0.25
plain+A (ρ = 0.7), plain 42.75±2.18 64.52±0.57 53.07±1.79 55.33±1.34 68.37±0.26
plain+B (ρ = 0.3), plain 46.85±1.32 58.0±1.68 50.54±1.71 54.18±1.25 67.03±0.7
plain+B (ρ = 0.5), plain 52.34±0.31 62.07±2.15 55.9±0.5 57.75±0.32 68.22±0.25
plain+B (ρ = 0.7), plain 52.37±0.57 66.39±1.22 57.7±0.71 57.52±0.81 69.04±0.2
A+B (ρ = 0.3), A 52.76±0.82 59.34±1.49 55.52±0.89 66.95±0.82 73.51±0.3
A+B (ρ = 0.5), A 55.29±0.98 62.49±1.2 59.99±0.99 68.41±0.27 74.52±0.44
A+B (ρ = 0.7), A 55.76±1.06 67.09±0.49 62.57±0.47 68.95±0.36 75.11±0.52

significantly worse than our ProML, but still com-784

parable with the previous SOTA on Few-NERD785

dataset. This shows that the semantics of the label786

really help and label-aware prompts can provide787

useful information even if the labels are noisy. We788

also made an abbreviation for the selection of sep-789

arator. In the experiment “ProML no-sep” from790

Table 5 where all separators were removed, the791

performances drops to some extent but there is no792

significant difference.793

A.4 Case Study794

We present several randomly-selected cases from795

ProML and CONTaiNER using the test-set results796

of WNUT 1-shot domain transfer task. The results797

are in Table 6. We can see that ProML gives better798

predictions than CONTaiNER (Das et al., 2022)799

for most cases. Specifically, CONTaiNER often800

misses entities or incorrectly classifies non-entities.801

A.5 Limitations802

Although we discussed different task formulations803

and evaluation protocols, the few-shot settings are804

simulated by downsampling according to existing805

works, which is slightly different from the real806

scenario. 807
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Table 5: Ablations for removing separators in prompts and replacing labels with random noises. All methods are evaluated in
episode evaluation protocol for Few-NERD dataset.

Method 1-shot 5-shot Avg.INTRA INTER INTRA INTER

ProML 58.08±0.75 68.76±0.4 68.95±0.36 75.11±0.52 67.73
ProML no-sep 55.66±0.75 68.03±0.27 67.82±0.17 74.82±0.32 66.58
ProML noise-label 51.99±0.84 65.8±0.69 62.09±0.44 72.5±0.43 63.10

Table 6: Case study: An illustration of some cases from the WNUT test set. There are 6 entities: person (PER), location (LOC),
product (PRO), creative work (CW), miscellaneous (MIS), group (GRO). Here blue color represents correct predictions, while
red color represents mistakes.

GroundTruth ProML CONTaiNER

wow emmaPER and kaitePER is so
very cute and so funny i wish im
ryanPER

wow emmaPER and kaitePER is so
very cute and so funny i wish im
ryanPER

wow emmaPER and kaitePER is so
very cute and so funny i wish imPER

ryanPER

these trap came from taiwanLOC . these trap came from taiwanLOC . these trap came from taiwanLOC .

great video ! good comparisons be-
tween the ipadPRO and the ipadPRO

proPRO !

great video ! good comparisons
between the ipadPRO and thePRO

ipadPRO proPRO !

great video ! good comparisons be-
tween the ipad and the ipad proPRO

!

thanks for colors superheroes kids
videos ! ) like learnCW colorsCW

andCW numbersCW ! )

thanks for colorsCW superheroesCW

kids videos ! ) like learnCW colorsCW

andCW numbersCW ! )

thanks for colorsCOR superheroes kids
videos ! ) like learn colors and numbers
! )

i pronounce it nye-on cat i pronounce it nye-on cat i pronounce it nye-onPRO catPRO
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Figure 4: Training curves for CONTaiNER (Das et al., 2022)
baseline (on the left) and our model (on the right). The exper-
iments are conducted under Few-NERD INTRA 1-shot and
INTER 1-shot setting.
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