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Abstract

Inertial confinement fusion (ICF) offers a pathway
to sustainable energy production, but achieving
controlled fusion requires precise modeling of
complex structured and image data. Recent break-
throughs underscore the need for scalable meth-
ods to analyze multi-modal diagnostic data and
simulations, which include scalar inputs, scalar
outputs, and image outputs. In this work, we
present a diffusion-based generative framework
designed to model the joint and conditional dis-
tributions of these structured and image data. By
leveraging simulation data for pretraining, our
approach addresses the challenge of experimen-
tal data scarcity and enables robust conditional
modeling tasks. This work represents a proto-
type towards an ICF foundation model, and its
architecture is transferable to diverse multi-modal
scientific problems.

1. Introduction
Inertial confinement fusion (ICF) has emerged as a poten-
tially viable path towards sustainable energy production via
the nuclear fusion of hydrogen atoms into helium (Moses,
2008). However, achieving controlled fusion requires ex-
tremely high temperatures and pressures, along with precise
control over energy inputs and symmetry. A fusion gain
(ratio of output to input energy) > 1 was first achieved
at the National Ignition Facility (NIF) in 2022, marking
the first instance of “ignition” in a laboratory setting (Abu-
Shawareb et al., 2024). Since then, NIF has broken its own
record multiple times, but much higher yields must be re-
liably produced to power next-generation energy facilities
(of Sciences Engineering & Medicine, 2021).

Experiments at NIF require extensive preparation and re-
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Figure 1. Structured capsule inputs (blue table) drive experimental
and simulated capsule implosions that produce multimodal out-
puts – scalars (red table) and diagnostic images. A multi-model
foundation model approach seeks to predict distribution of scalar
outputs, images, or inputs conditioned on any other combination
of information.

sources, and are limited to tens of high-yield tests per
year; therefore, researchers rely heavily on radiation-
hydrodynamics codes such as HYDRA (Marinak et al.,
2001) to explore various design options (Figure 1). However,
these capsule simulations can take thousands of CPU hours
and are parameterized from high-dimensional structured in-
puts (i) that cannot be exhaustively explored. Experimental
diagnostics produce sets of structured scalar (s) and image
data (x) for each NIF experiment, and analogous outputs are
computed from simulations. Capsule inputs are challeng-
ing to measure experimentally, and are often inferred from
simulated inputs that correspond to similar outputs (Gaffney
et al., 2019). In both experiment and simulation, there are
numerous sources of uncertainty that must be mitigated in
order to obtain robust results, and it is critical to understand
the joint and conditional distributions of i, s, and x.

In this work, we prototype a foundation model for structured
and image data in ICF, learning a joint distribution p(i, s, x)
of capsule inputs, scalar outputs, and X-ray images. Depart-
ing from previous models that rely on contrastive learning
for multi-modal embeddings (Radford et al., 2021), we
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propose a unified diffusion-based framework with multi-
modal prediction heads and random masking for robust
training across diverse scenarios. We demonstrate forward
p(s, x|i), inverse p(i|s, x), and other bespoke conditional
modeling tasks, providing a scalable and transferable gener-
ative framework for multi-modal data. Prior surrogate mod-
els predicted scalars and images deterministically (Anirudh
et al., 2020), while MCMC methods predicted inputs from
outputs without incorporating images (Gaffney et al., 2019).
Although no direct comparison exists in prior ICF work,
our framework unifies and generalizes these objectives. We
also propose a fine-tuning method that iteratively refines
input predictions under experimental uncertainties, enabling
adaptation to limited data. Our key contributions are:

1. We train a single generative model to learn the joint
probability of structured and image data.

2. We introduce the first multi-modal model for ICF input
prediction, transferable to other scientific tasks.

3. We demonstrate iterative fine-tuning on experimental
data without access to ground-truth inputs.

2. Methods
2.1. Training and testing data

Simulation inputs i ∈ R9 were sampled by latin-hypercube
sampling; ∼90 thousand outputs s ∈ R10 and images x ∈
R48×48 were generated by HYDRA simulation code (Mari-
nak et al., 2001) as previously reported (Nora et al., 2017).
A random 80/10/10 train/validation/test split was performed.
All inputs and scalar outputs were normalized [0, 1] fol-
lowed by an inverse sigmoid transform y = log(x)/(1− x)
and images were normalized [−1, 1]. Experimental ICF
data consists of 10 Deuterium-Tritium shots performed at
NIF during the BigFoot campaign (Casey et al., 2018). Fine-
tuning was performed and tested using a 7/3 split as speci-
fied by (Kustowski et al., 2022).

2.2. Model architecture and training

We employ a U-net (Ronneberger et al., 2015) architec-
ture to jointly predict noise over inputs (i), output im-
ages (x), and output scalars (s) (Figure 2). Image noise
is predicted via a series of encoding and decoding convo-
lution layers, and structured noise is predicted via fully
connected networks from the U-net bottleneck layer. For
each training batch XT = [iT , sT , xT ], a set of masks
M = [Mi,Ms,Mx] with matching dimensions are sampled
from a Bernoulli distribution. Diffusion times t ∼ U(0, T )
are sampled and Xt is computed from a linear schedule αt

with cumulative noise ᾱt =
∏t

i=1 αi (Ho et al., 2020). If
a given modality is masked, then its true (unnoised) value
XT is passed to the model; otherwise the noised version

Xt is passed. For each unmasked modality the correspond-
ing output head is regressed against the true noise, whereas
masked modalities are regressed against a zero vector. Fur-
ther details on diffusion and U-net hyperparameters are in
the Appendix.

Figure 2. a) Architecture of the multi-modal diffusion model.
Noised input and output scalars condition U-net encod-
ing/decoding layer. Each data modality is concatenated in the
bottleneck layer, from which additional heads predict input and
output noise. b) Table showing inference modes based condition-
ing (masked) modalities and predicted ones.

Algorithm 1 Training Loop
1: Input: Simulation data containing joint distribution

q(i, s, x) of all modalities, diffusion steps T , and un-
trained model fθ, cumulative noise schedule ᾱ

2: for batch= 1 to N do
3: XT ∼ q(i, s, x)
4: t ∼ U(0, T )
5: ϵ ∼ N (0, 1)
6: M ∼ Bernoulli(0.5)
7: Xt =

√
ᾱtXT +

√
1− ᾱtϵ

8: X[j] =

{
Xt[j] if M [j] = 0,

XT [j] if M [j] = 1.

9: ϵ̂ = fθ(X,M, t)
10: Lθ = ∥ϵ− ϵ̂∥
11: Take gradient step ∇θLθ

12: end for
13: return fθ

2.3. Inference

During the inference stage we specify a prediction mode
(forward, inverse, etc.) that determines which data modal-
ities are fixed and which are denoised from an initially
Gaussian distribution. As in a traditional diffusion model,
we make noise prediction for T steps and iteratively re-
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move noise from each unmasked modality. A conditional
distribution, for example p(s, x|i) for the forward mode,
is determined by generating N samples each with varied
initial noise profiles.

Algorithm 2 Inference Loop
1: Input: Conditioning modalities X = [i, s, x], masks

M = [Mi,Ms,Mx], diffusion timesteps T , and noise
schedule parameters α, ᾱ

2: X0[j] =

{
N (0, 1) if M [j] = 0,

X[j] if M [j] = 1.

3: for t = 1 to T do
4: ϵ ∼ N (0, 1)
5: ϵ̂ = fθ(X,M, t)

6: Xt =
1√
α

(
Xt−1 − 1−α√

1−ᾱ
ϵ̂
)
+
√
(1− α)ϵ

7: end for
8: return XT

2.4. Fine-tuning on NIF experiments

Unlike simulations, NIF experiments yield uncertainties
σs,exp associated with each output scalar mean µs,exp. We
leverage these uncertainties to augment fine-tuning data
by sampling 100 experimental scalars from each of our
7 train samples sexp ∼ N (µs,exp, σs,exp). Because there
are no ground-truth experimental inputs, we use our pre-
trained model to generate input predictions conditioned on
the experimental distribution îexp = fθ(sexp, xexp). Af-
ter one epoch of fine-tuning on these inputs and outputs
(̂iexp, sexp, xexp), we repeat the procedure until we see con-
vergence in the KL divergence in the experimental and
roundtrip output distributions.

3. Results
3.1. Reducing Error with Multi-modal Conditioning

To evaluate our model in the forward mode p(s, x|i), we
generate an ensemble of 10 outputs for each test sample.
We compare the mean of each distribution to true outputs
and plot the mean error in Figure 3a (blue). Since out-
puts are well constrained by inputs, the error is consistently
low. We then repeat the predictions using two alternative
conditioning scenarios: input with output image p(s|i, x)
and output image only p(s|x). The former (green) yields
slightly improved or similar predictions compared to input-
only conditioning, while the latter performs worse overall.
As expected, this indicates inputs constrain simulation out-
puts better than images do, except when predicting hot spot
radius, which depends more on image geometry.

A more challenging test is the inverse mode p(i|s, x). Very
different simulation inputs can produce similar outputs, of-
ten making this task unconstrained. We compare input pre-

Figure 3. a) Mean output prediction accuracy on test set given
conditioning on inputs and/or images b) Mean input prediction
accuracy on test set conditioned on output scalars and/or images.

dictions given scalars p(i|s) (blue) or images p(i|x) (red)
only, and find that error varies significantly depending on
the conditioning data. For example, asymmetry modes 1 and
2 are much better predicted from image data, while the pre-
heat and scale of the implosion are better determined from
scalars. Encouragingly, we find that combined condition-
ing (green) always outperforms single-modality predictions.
For some inputs – such as drive trough adjustment and
dopant fraction – there is significant improvement over sin-
gle modality conditioning, indicating synergetic constraints
from the scalars and images.

3.2. Inverse Modeling Constraints and Self-Consistency

Next, we select a random simulation test sample and gener-
ate a distribution of 500 inputs using the three conditioning
scenarios described above. In Figure 4a, we show these
distributions for five inputs, each normalized to [0, 1]. We
note that certain inputs, such as scale and dopant fraction,
are more tightly constrained by scalars alone (blue), while
asymmetry is again more constrained by image data (red).
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Figure 4. a) Input distributions predicted from a randomly sampled
test output scalar and/or image. True inputs shown by dashed gray
line b) Roundtrip output prediction given the input distributions
shown in(a). True output shown by dashed gray line. c) True image
and mean of sampled images from each roundtrip model in (b).

Interestingly, for both drive trough adjustment and power
adjustment, the means of p(i|s) and p(i|x) are shifted in
opposite directions relative to the ground truth, while the
p(i|s, x) mean (green) is much more accurate. This reveals
that missing data modalities can systematically shift the pre-
dicted input distribution. For each input, the entire p(i|s, x)
distribution is contained within both the p(i|s) and p(i|x)
distributions, indicating the model is successfully captur-
ing conditional dependencies. Additional test inputs and
outputs are included Appendix Figures 6-7.

To evaluate the quality of our input distributions and the
self-consistency of the model, we use the forward mode
p(s, x|i) to project our 500 predicted inputs back into out-
puts. As expected, the combined conditioning performs best
on this “round-trip” test, with distributions sharply peaked
near the ground truth outputs. The scalar-only inputs also
perform well but with increased uncertainty reflecting the
loss in image constraints. Round-trip distributions for p(i|x)
inputs show that images alone provide insufficient condi-
tioning, and only certain outputs, such as hot spot radius,
are correctly predicted by the forward model.

While we focus our analysis on structure data, we also per-
form round-trip image generation and find strong reconstruc-
tion when images were included as conditional information
for the inputs. Images generated from p(i|s) have similar
symmetries as the ground truth but are noticeably worse
reconstructions than image-conditioned inputs p(i|x) and
p(i|x, s). Image generation is generally robust and will be
the subject of future analysis.

Figure 5. a) Input distributions predicted from experimental out-
puts via pretrained and finetuned model b) Roundtrip output pre-
diction of pretrained and finetuned input distributions compared to
ground-truth experimental distributions (black)

3.3. Fine-tuning improvement experimental predictions

Lastly, we evaluate our fine-tuned model on our experimen-
tal test samples. In Figure 5a, we sample 500 sets of outputs
based on the mean and uncertainty a single experimental
shot (predictions for all three test shots shown in Appendix
Figures 9-10) and compute p(i|s, x) for the same five in-
puts shown in Figure 4a. These distributions are computed
using both our pre-trained model (blue) and the model fine-
tuned for 10 epochs on experimental data. We observe a
shift in the input distributions for each case, with minimal
overlap for certain inputs, such as scale and dopant fraction,
indicating that the joint distributions for these values varies
significantly between simulation and experiment.

Since there are no ground-truth inputs to compare against,
we evaluated these inputs by performing a roundtrip analy-
sis and comparing the resulting output distributions to the
experimental ground-truth distributions. For most outputs,
fine-tuning significantly improved agreement with experi-
mental data. For example, the KL divergence for X-ray burn
width decreased from 10.4 to 0.4 after fine-tuning. However,
certain outputs, such as neutron bang time, showed worse
agreement, with a slight increase in KL divergence from
1.1 to 2.4. These results suggest that while fine-tuning im-
proves self-consistency, seven experimental samples may be
insufficient to fully update the joint distribution and certain
trade-offs must be made to fit the data.

4. Conclusions
We present a generative foundation model for ICF that uni-
fies structured and image data and enables robust predictions
of capsule inputs, scalar outputs, and diagnostic images.
Our approach learns joint distributions across all modalities,
produces arbitrary conditional distributions, and supports
iterative fine-tuning on experimental data.
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A. Appendix
A.1. Diffusion Model

The diffusion architecture is adapted from (Dome272, 2023), which is based on the DDPM framework of (Ho et al., 2020).
The model employs 12 convolutional channels and consists of 3 encoding and 3 decoding layers. A total of 1000 diffusion
steps are used with a linear noise schedule ranging from β = [0.0001, 0.02].

Diffusion time is projected into a 48-dimensional space via positional encoding. Input and output scalars are embedded into
the same dimension and concatenated with the time embedding and three mask tokens to indicate noised modalities. The
combined embedding is reshaped to match the output dimensions of each encoding and decoding layer and added to the
layer outputs.

Noise predictions for input and output are handled by separate fully connected heads derived from the flattened bottleneck
layer. Each head includes a single hidden layer with 100 dimensions, followed by output layers of 9 dimensions for input
noise and 10 dimensions for output noise. Sigmoid Linear Units (SiLU) are used as activation functions throughout the
architecture.

A.2. Training Parameters

The model is trained using a learning rate of 0.0003 and a batch size of 64. An exponential moving average (EMA) is applied
to the model weights with a smoothing factor of 0.995. Training is conducted for 200 epochs, requiring approximately 12
hours on a single GPU. Prediction error for forward and inverse modeling tasks converged at the end of training.

Figure 6. a) All input distributions predicted from three randomly sampled test output scalar and/or image.
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Figure 7. b) Roundtrip output prediction given the three sets of input distributions shown above

Figure 8. Ground truth images (top row) and generated images (given input conditioning only) for eight samples in the simulation test set.
Agreement is consistently strong across varied image geometries and structured inputs.
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Figure 9. All input distributions predicted from experimental outputs via pretrained and finetuned model for all three test shots, where is
row is a different shot.

Figure 10. Roundtrip output prediction of pretrained (blue) and finetuned (red) input distributions shown above compared to ground-truth
experimental distributions (black).

8



Toward a Multi-Modal Foundation Model for Inertial Confinement Fusion

Figure 11. a) Mean KL divergence of roundtrip and ground-truth outputs for train and test sets during fine-tuning. b) Reference images
from NIF test set. c) Generated roundtrip samples from pre-trained model showing consistent symmetries d) Generated roundtrip samples
with finetuned model showing breaking of symmetries more consistent with experiment
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