
Under review as a conference paper at ICLR 2024

HETEROSFL: SPLIT FEDERATED LEARNING WITH
HETEROGENEOUS CLIENTS AND NON-IID DATA

Anonymous authors
Paper under double-blind review

ABSTRACT

Split federated learning (SFL) is an emerging privacy-preserving decentralized
learning scheme, which splits a machine learning model so that most of the com-
putations are offloaded to the server. While SFL is edge-friendly, it has high
communication cost and so existing SFL schemes focus on reducing the com-
munication cost of homogeneous client-based systems. However a more realistic
scenario is when clients are heterogeneous, i.e. they have different system ca-
pabilities including computing power and communication data rates. We focus
on the heterogeneity due to different data rates since in SFL the computation in
the client-end is quite small. In this paper, we propose HeteroSFL, the first SFL
framework with heterogeneous clients that handles non-IID data with label distri-
bution skew across clients and across groups of clients. HeteroSFL compresses
data with different compression factors in low-end and high-end group using nar-
row and wide bottleneck layers (BL), respectively. It provides a mechanism to
address the challenge of aggregating different-sized BL models, and utilizes bi-
directional knowledge sharing (BDKS) to address the overfitting caused by the
different label distributions across high- and low-end groups. We show that Het-
eroSFL achieves significant training time reduction with minimum accuracy loss
compared to competing methods. Specifically, it can reduce the training time of
SFL by 16× to 256× with 1.24% to 5.59% accuracy loss for VGG11 on CIFAR10
for non-IID data.

1 INTRODUCTION

Data security has become a big concern in training of Deep Neural Network (DNN)s, where typically
raw data at edge is collected and processed by a central server. Federated learning (FL) McMahan
et al. (2017) is a popular scheme aimed at preserving privacy in decentralized learning without
sharing private data with the central server. The classical FL scheme trains the entire model on the
client side, which is not practical for edge clients with limited computation and memory resources.
Training an epoch of VGG11 model on an Nvidia Jetson board takes four hours, which is hundreds
of times slower than on a GPU server Zhou et al. (2021). To address this drawback, split federated
learning (SFL) Thapa et al. (2022) is proposed, where the model is split into a small front-end client-
side model and a big back-end server-side model, and the client only needs to process and update
the client-side model. The detailed training process is shown in Fig. 1(a). By splitting VGG11 after
the third convolution layer, the number of computations at the client side is reduced by 10×. Thus,
SFL facilitates resource-constrained clients to participate in training NN models.

One drawback of SFL is the high communication cost due to the back-and-forth transmission of
activations and gradients of every sample in every epoch. In a realistic scenario, the clients in
SFL have different system capabilities. For instance, a low-end client can have limited resources
and only support low communication rate protocols, such as BLE and Zigbee, while a high-end
client can support communication protocols with high data rates, such as WiFi and LTE. In this
paper, we cluster the clients that support similar data rates into a group. In SFL, the server cannot
start processing until it receives activations from all participating clients. Therefore, the server has
to wait for data from the low-end group, which increases the overall training time significantly.
Since the communication time of SFL is dominated by the low-end group, reducing the data size
transmitted/received by low-end group can help reduce the training time.

1

Under review as a conference paper at ICLR 2024

𝒇𝒌
𝟒 (𝒙)

𝑳𝒌𝑩𝑫𝑲𝑺

𝒇𝒌
𝟐 (𝒙)

High-end Group

Server

𝒆𝒌
(𝟒)

Low-end Group

𝒅(𝟐)

𝒅(𝟒)
𝒆𝒌
(𝟐)

Bottleneck layers

𝑳𝒌𝒄𝒂𝒍

𝒇𝒌
𝟐 (𝒙)

𝜶

𝒅(𝟐)

Loss

Client Server

grads

activations

Raw
Data

Forward Forward

Backward Backward

(a)

(b) (c)

Server

Global BL

Wide BLs
from high-
end group

Narrow BLs
from low-
end group

Aggregate

Aggregate

𝑳𝒌𝑵𝟐𝑾
𝑳𝒌𝒄𝒂𝒍

𝑳𝒌𝑾𝟐𝑵

Figure 1: (a) Training of Split Federated Learning. The model is split into a small client-side model
and a large server-side model. K clients compute in parallel and send their activations to the server.
The server computes the forward and backward process on the server-side model and sends the
gradients back to clients. At the end of every epoch, the client-side models are aggregated by the
server and sent back to the clients. (b) The parameters of the narrow BLs in low-end group of
clients are aggregated with the subnetwork of wide BLs in high-end group of clients in HetBL. (c)
Proposed HeteroSFL where the data of different clients are compressed by different ratios through
use of different-sized BLs. To mitigate the over-fitting due to non-IID data, the loss function is
replaced with logit calibration (Lcal

k) and bi-directional knowledge sharing (LBDKS
k).

The traditional data compression methods like quantization Wang et al. (2022) or Top-k sparsity Liu
et al. (2018) result in a significant accuracy drop. For example, Wang et al. (2022) reduces transmit-
ted/received data size by 2× at the cost of 5% accuracy loss. Recently, end-to-end trained bottleneck
layer (BL) method proposed in Eshratifar et al. (2019); Ayad et al. (2021) reduces the data size while
maintaining good accuracy performance. It achieves this by adding a convolution layer with fewer
output channels (encoder) at the client-side and the corresponding mirrored structure (decoder) at
the server side. Existing BL methods implement identical-sized BLs for all clients. This means that
the communication data of both high-end and low-end groups is compressed by the same amount,
resulting in the clients in the low-end group (with lower data rate) to take longer to complete and thus
increase the overall training time. To reduce the training time, we propose that the low-end groups
compress the data by a large ratio by using narrow BLs (designed using fewer channels in the con-
volution layer). In contrast, high-end groups can use wider BLs (designed using more channels) to
maintain accuracy performance.

However, the different BL structures used in different groups cause two challenges. First, the pa-
rameters of the different-sized BL models cannot be directly aggregated using averaging due to the
differences in the BL structures. The second challenge is the label distribution skew across clients
and across groups of clients. Inter-client label distribution skew, where the number of samples per
class differs from client to client Kairouz et al. (2021), has been well studied in FL Karimireddy
et al. (2020); Tang et al. (2022); Zhang et al. (2022), and can be extended to alleviate the inter-
client label skew in SFL to some extent. A recent study in FL recommendation system Maeng
et al. (2022) highlighted the label skew across groups with different system capabilities, referred to
as system-induced data heterogeneity. When groups with different system capabilities train mod-
els with different structures, the inter-group label skew makes the model over-fit to the data within
their respective groups, leading to low accuracy. However, prior works on heterogeneous FL sys-
tems Diao et al. (2021); Horvath et al. (2021); Ilhan et al. (2023) neglect the inter-group label skew
phenomenon when discussing inter-client label skew.

In this paper, we propose HeteroSFL, the first SFL framework for heterogeneous clients that can
tackle inter-client and inter-group label distribution skew with significant training time reduction
and minimum accuracy loss. The training time reduction is achieved by compressing the transmit-
ted data in high- and low-end groups differently through use of different-sized BLs, as shown in
Fig.1(c). To address the aggregation problem of different-sized BLs, we design HetBL where nar-
row BLs are the subnetworks of wide BLs. And to address the inter-group label skew problem, we
propose bi-directional knowledge sharing (BDKS), where the wide BL model learns knowledge on

2

Under review as a conference paper at ICLR 2024

underrepresented classes from the narrow BL model which is trained by the entire data set, and the
narrow BL model learns from the wide BL model to avoid gradient interference between wide and
narrow BL models. We also utilize logit calibration Zhang et al. (2022) to mitigate the inter-client
label skew. Our extensive experiments show that HeteroSFL can reduce training time of SFL by 16×
to 256× with only 1.24% to 5.59% accuracy loss for VGG11 on CIFAR10 for non-IID data. For the
same training time reduction, HeteroSFL achieves accuracy improvement over other schemes; the
improvement is 30.07% over SampleReduce and 7.16% over Top-k sparsity Liu et al. (2018).

2 RELATED WORK

Split Federated Learning SFL Thapa et al. (2022) is a parallel version of Split Learning that was
first proposed in Gupta & Raskar (2018). It splits the neural network model into a small client-side
model and a big server-side model, and thereby offloads most of the computations to the server, as
shown in Fig. 1(a). Similar to FL, SFL consists of two steps: local training and aggregation. In local
training, the client-side model of client k is trained by its local data Dk as follows:

min
fs,fc

k

∑
{x,y}∈Dk

Lk(f
s(f c

k(x)), y) (1)

where L(·, ·) is the loss function and fs(·) and f c
k(·) represents the server-side model and client-side

model. For convenience, we use fk(·) to represent fs(f c
k(·)) in the rest of the paper. At the end of

every epoch of local training, the client-side models from all clients are aggregated on the server
side by averaging and the global client-side model is broadcast back to the clients to initialize the
client-side model for the next epoch.

Data Compression Method in SFL In SFL, the transmission of activations and gradients for ev-
ery sample in every epoch results in a high communication overhead. Recent developments in SFL
include reducing the communication overhead by totally eliminating the gradient transmission He
et al. (2020); Han et al. (2021), and reducing the number of training epochs Chen et al. (2021);
Ayad et al. (2021), which cause significant accuracy loss. Existing works to compress the activa-
tions/gradients of DNN using JPEG Eshratifar et al. (2019), quantization Chen et al. (2021); Wang
et al. (2022) and sparsity Liu et al. (2018) all suffer from high accuracy loss. End-to-end trainable
BL, proposed in Eshratifar et al. (2019); Ayad et al. (2021) to compress the data size using train-
able convolution layers, achieve good accuracy with large data compression. We build upon this
promising technique to reduce the transmitted/received data size.

FL with heterogeneous clients In FL, computation overhead is a major concern and the low-end
group usually take longer, increasing the overall training time. Some works reduce the computation
time of low-end group in FL through asynchronous training Recht et al. (2011), reducing the number
of local training epochs Li et al. (2020) and reducing the number of processed samples Nishio &
Yonetani (2019); Shin et al. (2022). The sample reduction method can be extended to SFL to reduce
communication time but suffers from accuracy loss, as shown in Section 5. In Diao et al. (2021);
Horvath et al. (2021); Zhu et al. (2022); Makhija et al. (2022); Lin et al. (2020), the low-end group
only train a smaller network compared to the high-end group to reduce the computation time in FL.
Since the client-side computation in SFL is quite small, we do not consider it. Instead, we focus on
reducing the communication cost by compressing the transmitted/received data using BL.

Label distribution skew The data processed by different clients usually suffers from inter-client
label distribution skew, where the number of samples per class differs from client to client Kairouz
et al. (2021), hampering convergence as presented in Karimireddy et al. (2020); Li et al. (2022c);
Tang et al. (2022). In SFL and FL, the inter-client label skew causes the client-side model to overfit
the local data. In SFL, this is addressed by increasing the frequency of synchronization at the cost
of more communication overhead Li et al. (2022a) and training the client-side model using a more
evenly distributed subset of the original dataset Cai & Wei (2022). In FL, some approaches address
the label skew problem by restricting local updates to the global model Li et al. (2021; 2020);
Karimireddy et al. (2020); Gao et al. (2022); others attempt to rectify the data distribution among
clients using out-of-distribution datasets Tang et al. (2022); Xu et al. (2022) or using synthesized
data generators Zhu et al. (2021); Chen et al. (2022). However, all these methods incur significant
computation and communication overhead on the resource-limited clients and are unacceptable for
SFL. In contrast, Zhang et al. (2022) adjusts logit values of minority classes to address the non-IID

3

Under review as a conference paper at ICLR 2024

issue without additional overhead. Thus we extend the use of logit calibration Zhang et al. (2022)
to SFL to mitigate the effect of inter-client label skew in HeteroSFL. Note that none of the methods
consider the problem of inter-group label skew.

3 BACKGROUND AND PROBLEM DESCRIPTION

In this paper, we focus on training-time reduction with minimum accuracy loss in SFL with hetero-
geneous clients processing data with inter-client and inter-group label skew. We assume the average
data rate of every client is known beforehand and does not change during training. The overall
training time of SFL could be calculated by:

T = max
k∈K

((commk + compk))× n batches× n epochs (2)

commk =
2× |f c

k(xk)| × batch size

rk
(3)

commk and compk are the communication and computation time of client k to process a batch of
samples. commk is a function of the data size transmitted/received per sample and rk, the data
rate of client k. The data per sample, includes the client-to-server activations and server-to-client
gradients, and its size given by 2× |f c

k(xk)|. We refer to this data as communication data.

Training time In SFL, the computation time is negligible compared to the communication time. For
example, in an SFL system training VGG11 using CIFAR10, when the client-side model includes
the first 3 convolution layers, the communication data for a batch with 50 samples is around 52Mb,
which takes around 1min to transmit using BLE while the computation time is 2 sec using the Jetson
board. The training time is determined by the maximum time to process one batch of samples
across clients since the server cannot start forwarding before receiving activations from all clients.
Therefore, the overall training time is determined by the communication time of the low-end group in
heterogeneous SFL. Due to the long communication time of low-end group, the data communicated
by the low-end group should be compressed by larger ratio by using narrow BLs. On the other hand,
the data communicated by the high-end group can be compressed by smaller ratio by using wide
BLs to maintain the accuracy.

Bottleneck layers. Compressing |f c
k(xk)| of low-end group reduces the communication time hence

reducing the overall training time (See Eq.3). The bottleneck layer technique Eshratifar et al. (2019);
Ayad et al. (2021) introduces two convolution layers, one at the end of client-side model to compress
the channel size of activations from p̄ to p, and the other one at the beginning of server-side model
to decompress the activation from p back to p̄. Note that the number of channels of gradients is
also compressed since it has the same size as that of activations. The BL is trained together with
the whole network in an end-to-end manner and the extended network is used during inference.
We denote the BL generating activations of p channels as p-channel BL. Larger p represents smaller
compression ratio and thus higher accuracy performance since more information is sent to the server.

Inter-group label distribution skew. The local data in every client has different number of samples
from different classes. While the existing works can mitigate the overfitting of client-side models
caused by the inter-client label skew, they cannot address the inter-group label distribution skew.
Fig.2(a) shows an example of the inter-group label skew with 10 classes, where the label distribution
across high-, mid- and low-end groups is quite different due to system-induced data heterogeneity.
As a result, models trained by different groups of clients tend to overfit to the label distribution of
its own group, as shown in Section 4.2.

4 HETEROSFL

In this section, we propose Heterogeneous Split Federated Learning (HeteroSFL) where clients are
grouped based on their data rates. The proposed HeteroSFL method shown in Fig.1(c) has two
components: HetBL to address the different compression ratios of different groups through use of
different-sized BL (Section 4.1), and bi-directional knowledge sharing (Section 4.2) to alleviate the
overfitting caused by inter-group label skew. Note that while HeteroSFL can support multiple groups
of clients, we describe HeteroSFL with only high-end and low-end groups for ease of understanding.
We include results for multiple groups in Section 5.2.

4

Under review as a conference paper at ICLR 2024

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y
(%

)

0 1 2 3 4 5 6 7 8 9
0

1000

2000

3000

4000

5000

Class

 #Sample IdBL+LC HetBL+LC

 #
 o

f S
am

pl
es

0 20 40 60 80

non-
IID

IID

DiffBL
+5.09%

IdBL+LC
+LC

HetBL

Accuracy (%)

DiffBL +39.53%

+LC
HetBL

+37.45%

IdBL+LC

(a) (b) (c)
0 1 2 3 4 5 6 7 8 9

0

1000

2000

3000

4000

5000

Class

 Low Mid High

 #
 o

f S
am

pl
es

Figure 2: (a) An example of inter-group label skew caused by system-induced data heterogeneity.
There are three groups of clients and the number of classes is 10.
(b) Accuracy performance of identical-size BL (IdBL) and variants of different-sized BLs with
40% high-end group. For different-sized BLs, the high-end group uses 16-channel BL and the
low-end group uses 1-channel BL, while both groups use 1-channel BL in IdBL. The accuracy
of HetBL is worse than IdBL even with mitigated inter-client label skew using logit calibration
method (LC) Zhang et al. (2022) due to the inter-group label skew. (c) Class-wise number of sam-
ples in high-end group and class-wise accuracy of IdBL and HetBL for non-IID data. The accuracy
of HetBL for underrepresented classes in high-end group is significantly lower than that of IdBL
due to the inter-group label skew.

4.1 HETBL

Since the amount of data to be compressed by the high-end and low-end groups of clients is different,
we propose to use different-sized BLs for different groups. Specifically, we use wide BL for high-
end group and narrow BL for low-end group. Once the network is trained, the wide BL model is
used for inference by all clients to achieve higher accuracy. Since the data size transmitted during
inference is much smaller than in training, this is an acceptable compromise.

We define epk ∈ Rp̄×p×w×w as the encoder convolution layer of p-channel BL and dp ∈ Rp×p̄×w×w

as the decoder convolution layer of the server. The wide BLs are trained only by the high-end group,
and narrow BLs are trained only by low-end group. Due to the different structures, the parameters
of wide and narrow BLs cannot be easily aggregated. In order to be able to aggregate parameters of
wide and narrow BLs, we derive the narrow pN -channel BL as a subnetwork of wide pW -channel
BL. Fig.1(b) shows the aggregation of HetBL where the first pN channels of wide BLs in high-end
group are aggregated with the narrow BLs in low-end group, and the remaining (pW −pN) channels
of wide BLs are aggregated among the high-end group. Thus,

epW [:, : pN , :, :] = epN =
∑

k∈Klow

γk · epN

k +
∑

k∈Khigh

γk · epW

k [:, : pN , :, :] (4)

epW [:, pN : pW , :, :] =
∑

k∈Khigh

γk · epW

k [:, pN : pW , :, :] (5)

where epN and epW are the global pN -channel and pW -channel BL after aggregation, respectively.
Klow and Khigh correspond to low-end and high-end group, and γk is a factor proportional to the
number of samples in clients.

Fig.2(b) shows the accuracy improvement of HetBL over DiffBL, a naive different-sized BL method
that does not aggregate the narrow and wide BL models. HetBL increases the accuracy by 39.53%
and 37.45% for IID and non-IID cases, respectively, highlighting the importance of aggregating
narrow and wide BL models.

4.2 BI-DIRECTIONAL KNOWLEDGE SHARING

Inter-group label skew cannot be addressed by inter-client label skew methods. When the low-
end and high-end group use different-sized BLs as in HetBL, we expect its accuracy to be better
compared to identical-sized BL (IdBL), since the high-end group does not compress the data as
much. Fig.2(b) shows the accuracy performance of IdBL and HetBL with 40% of clients in high-
end group. HetBL outperforms IdBL for IID data. For non-IID data with inter-client label skew,

5

Under review as a conference paper at ICLR 2024

we add logit calibration (LC) Zhang et al. (2022) on top of HetBL. While HetBL+LC improves the
accuracy of non-IID case by 5.09%, it is still worse than IdBL+LC. To better understand the cause
for poor performance, Fig.2(c) shows the class-wise accuracy comparison of the two methods as well
as the number of samples per class processed by the high-end group. We see that while the accuracy
of classes 0 to 3 using HetBL is higher than IdBL, the accuracy drops in the underrepresented classes
with insufficient number of samples. Therefore, the wide BL model over-fits the underrepresented
classes 4 to 9 during SFL training.

To better understand the cause for over-fitting, consider Eq.4 and Eq.5 where only the first several
channels of wide BL are trained by both groups, and the remaining channels of wide BL are only
trained by high-end group. With inter-group label skew, the number of samples of some classes is
insufficient as shown in Fig.2(a). Training wide BL model with data that includes underrepresented
classes results in lower accuracy, as shown in Fig.2(c).

We define R to be the set of underrepresented classes processed by high-end group where the number
of samples per class is less than θ% of its share in the global dataset, and J the remaining set of
classes (with sufficient number of samples). Thus R is a subset of minority classes in high-end
group. To avoid over-fitting caused by underrepresented classes, the wide BL should learn about R
classes from other models that have been trained using sufficient number of samples. The narrow BL
model is a subnetwork of the wide BL, and thus is able to be trained by the data both from low-end
and high-end groups. Therefore, we use the narrow BL model to teach the wide BL model.

Narrow-to-Wide (N2W) Knowledge Sharing The wide BL model learns from the narrow BL
model using logits of R classes generated by narrow BL model, as shown below:

LN2W
k (fpW

k (x), fpN

k (x)) = −
∑
i∈R

(PpN (x) · logPpW (x))− (
∑
i∈J

PpN

i (x)) · log(
∑
i∈J

PpW

i (x)) (6)

where Pp
i (x) is the softmax probability of class i using p-channel BLs. The first term helps the wide

BL model to learn about underrepresented R classes from the narrow BL model and the second term
ensures that the wide BL model does not learn about J classes from the narrow BL model.

Wide-to-Narrow (W2N) Knowledge Sharing We observe that the gradients of wide and narrow
BL models interfere with each other when training with one-hot label, leading to an accuracy drop,
a phenomenon that is also reported in Horvath et al. (2021); Mohtashami et al. (2022); Baek et al.
(2022). To eliminate the interference, we train the narrow BL models in high-end group by distilling
knowledge from wide BL model. The loss function of training narrow BL model in high-end group
is as follows:

LW2N
k (fpN

k (x), fpW

k (x)) = CE(fpN

k (x), fpW

k (x)) (7)
where CE(·, ·) is the softmax cross-entropy, and fpN

k (x) and fpW

k (x) are the logits generated by
narrow BL and wide BL, respectively. Since the narrow BL is a subnetwork of wide BL, training
narrow BL individually does not introduce additional communication and computation overhead on
the client side, but doubles the computation overhead at the server end.

Bi-directional Knowledge Sharing We propose the BDKS loss function which combines the W2N
and N2W knowledge for the high-end group. It consists of three elements: logit calibration and
N2W knowledge sharing to train wide BL, and W2N knowledge sharing to train narrow BL.

LBDKS
k = Lcal

k (fpW

k (x), y) + α · LN2W
k (fpW

k (x), fpN

k (x))︸ ︷︷ ︸
training wide BL

+LW2N
k (fpN

k (x), fpW

k (x))︸ ︷︷ ︸
training narrow BL

(8)

where α > 0 is the hyper-parameter to control the strength of N2W knowledge distillation, which
depends on the model and the dataset. To mitigate the inter-client label skew, we use the loss function
of logit calibration Lcal

k here instead of cross-entropy. BDKS can also be extended to multiple
groups, as shown in Appendix B.7. The overhead is at the server end which now needs to train i
sub-networks for clients in the ith group. There is no additional communication and computation
overhead on the client end.

5 EXPERIMENTAL RESULTS

In this section, we first demonstrate that the proposed HeteroSFL achieves significant training-time
reduction with minimum accuracy loss for non-IID data. We then study the effectiveness of BDKS
in improving the performance of HeteroSFL.

6

Under review as a conference paper at ICLR 2024

Time Redn. 256× 128× 64×
High-end 30% 60% 30% 60% 30% 60%
SR 17.66 29.18 35.63 40.45 42.84 55.02
Top-k 53.97 57.43 56.60 62.65 61.01 66.60
IdBL 60.07 60.07 66.20 66.20 68.82 68.82
HetBL 53.28 60.95 56.99 61.87 60.34 63.50
IdBL+dropout 36.85 56.98 39.11 59.19 38.98 58.88
HeteroSFL 61.13 65.10 67.80 69.19 68.52 69.45

Table 1: Accuracy as a function of training time reduction and different proportion of high-end
group for λ = 0.05 data. The data rate ratio between high-end and low-end group is 16 : 1. Baseline
SFL has an accuracy of 70.69% with no reduction in training time.

5.1 EXPERIMENTAL SETUP

Datasets and Models. We present results for VGG11 on CIFAR-10 in the main paper and ResNet20
on CIFAR-100 in Appendix B.3 due to space limit. For VGG11, the model is split such that the
client-side model has 3 convolution layers and for ResNet20 the client-side model has 5 residual
blocks. This split is shown to keep the privacy of clients Li et al. (2022b). We provide results for
two other layer splitting settings in Appendix B.6. To emulate different degrees of inter-client label
skew, the datasets are partitioned with a commonly used Latent Dirichlet Sampling Hsu et al. (2019)
with parameter λ, where lower λ represents data with a higher non-IID degree. All experiments
are run for 200 epochs. We set the minority class threshold θ = 10% (in Section 4.2). The hyper-
parameter α for N2W knowledge sharing in Eq.8 changes with models and datasets. The detailed
hyper-parameter settings and client-level data distribution are included in Appendix A.

Heterogeneous clients with different sized BLs. In this paper, we consider an SFL system with
10 clients and extend it to 50 clients. The clients are separated into two groups – high-end and
low-end by default for ease of analysis. We also extend our method to three and four groups. Unless
mentioned specifically, we map the clients to groups randomly, which is the setting used in prior
works Zhang et al. (2023); Ilhan et al. (2023). The data rate difference between different groups of
clients ranges from 4 : 1 to 16 : 1, which is reasonable given the study in SpeedTest (2023). The
number of channels in the activations generated by the client-side model is 256 for VGG11 and 32
for ResNet20. We sweep the BL size from 1 − 256 channels for VGG11 and 1 − 32 for ResNet20
to study the performance of HeteroSFL for different communication time reduction.

Competing methods We compare the performance of HeteroSFL with baseline SFL Thapa et al.
(2022) and several other competing methods. SampleReduce (SR) reduces the training time by
reducing the number of samples processed by clients per epoch. Top-k sparsity Liu et al. (2018)
reduces the training time by sending the activations with top-k magnitude to server. IdBL Ayad et al.
(2021) uses identical-sized BLs in both high- and low-end groups. We also compare HeteroSFL with
a variant of IdBL method, IdBL+channel-wise Dropout (IdBL+dropout) Hou & Wang (2019),
where the high-end and low-end clients use identical-sized BL, and the client pickss up p channels
based on the magnitude of activations of different channels and zeroes out the other channels in the
BL in every epoch. We implement Logit Calibration Zhang et al. (2022) for all competing methods,
except baseline SFL.

5.2 TRAINING-TIME AND ACCURACY PERFORMANCE OF HETEROSFL

HeteroSFL achieves the best accuracy compared with competing methods. Table 1 compares
the accuracy of HeteroSFL with all other competing methods as a function of training time reduction
and proportion of clients in high-end group for λ = 0.05 data. The ratio of data rates between high-
end and low-end group of clients is 16 : 1. Thus to reduce time by 256×, the communication data
of low-end group is reduced by 256×, and high-end group by 16×. Given the same training time
reduction and proportion of clients in high-end group, SampleReduce and Top-k sparsity achieves
30.07% and 7.16% lower accuracy than HeteroSFL on average, respectively. The better perfor-
mance of HeteroSFL indicates that BL can compress the communication data by preserving more
useful information. For IdBL, both high-end and low-end group are compressed by the same ratios,
therefore the proportion of high-end group does not impact its performance. When the training time

7

Under review as a conference paper at ICLR 2024

Table 2: Accuracy of HeteroSFL with three and four groups for λ = 0.05 data. The training time
reduction is 256×. The data rate ratio for different groups are 1 : 8 : 16 for three groups and
1 : 4 : 8 : 16 for four groups.

Proportion of clients SR Top-k
Sparsity IdBL HetBL HeteroSFL

Three
Groups

60%, 20%, 20% 20.31 53.69 60.07 49.09 60.75
20%, 40%, 40% 22.90 58.72 60.07 61.66 64.08
20%, 20%, 60% 30.19 60.50 60.07 63.47 66.79

Four
Groups

30%, 30%, 20%, 20% 29.14 57.26 60.07 55.12 59.24
20%, 20%, 20%, 40% 24.98 60.16 60.07 60.08 61.52
10%, 10%, 20%, 60% 32.99 61.26 60.07 62.55 64.59

reduction is 256×, HeteroSFL outperforms IdBL by 5.03% and 1.08% when the number of clients
in high-end group is 60% and 30%, respectively. HeteroSFL has better performance due to more
information sent by the high-end group of clients.

Higher training time reduction results in higher accuracy loss. Baseline SFL has 70.69% accu-
racy with no training time reduction. Compared to SFL, all competing methods achieve significant
training time reduction with accuracy loss, with HeteroSFL achieving the lowest accuracy loss for
the same training time reduction. HeteroSFL reduces training time by 64 × −256× at the cost of
2.17% − 9.56% accuracy loss when 30% of clients are in high-end group. When the number of
clients in high-end group increases to 60%, the accuracy loss reduces to 1.24%−5.59%, since more
information is sent to the server by the high-end group.

Different degrees of inter-client label skew. Table 4 and Table 5 in Appendix B.1 show the perfor-
mance of HeteroSFL for λ = 0.3 and IID data. Compared with baseline SFL, HeteroSFL reduces
training time by 16× to 128× with 0.28% to 3.54% accuracy loss for λ = 0.3 non-IID data and
1.46% to 4.14% accuracy loss for IID data. Given the same training time reduction, HeteroSFL out-
performs SampleReduce, Top-k sparsity, and IdBL by up to 35.59%, 14.35% and 6.98% for λ = 0.3
data, and 25.63%, 5.93% and 9.90% for IID data.

Different data rates. Table 6 in Appendix B.2 shows the performance of HeteroSFL when the data
rates between high-end and low-end group change from 4 : 1 to 16 : 1 for λ = 0.05 data. Given
256× training time reduction, HeteroSFL outperforms SampleReduce, Top-k sparsity, and identical
BL by up to 49.47%, 12.46% and 4.07%, for 4 : 1 data rate ratio, and 34.98%, 4.70% and 5.03%
for 16 : 1 data rate ratio. The improvement of HeteroSFL over IdBL becomes higher when the data
rate difference is larger since the additional information sent by high-end group increases.

Increasing number groups Table 2 shows the performance of HeteroSFL when there are three and
four groups of clients for λ = 0.05 data. With 256× training time reduction, HeteroSFL achieves up
to 41.48%, 7.06% and 6.72% higher accuracy compared with SampleReduce, Top-k Sparsity, and
IdBL.

Performance for ResNet20 on CIFAR100 We also compare the performance of HeteroSFL with
other competing methods for ResNet20 on CIFAR100 for different data distributions. The results are
shown in Appendix B.3 due to space limitations. Given the same training time reduction, HeteroSFL
outperforms SampleReduce, Top-k sparsity, and IdBL by up to 10.48%, 5.69% and 7.48% for λ =
0.05 data, and 9.53%, 7.71% and 7.58% for λ = 0.3 data.

5.3 EFFECTIVENESS OF BDKS IN ADDRESSING INTER-GROUP LABEL SKEW

Table 3 shows the performance of HeteroSFL and HetBL for 50 clients when the data label distribu-
tion and client heterogeneity are correlated as in Maeng et al. (2022) and when they are uncorrelated.
For the case when there is no correlation between the two types of heterogeneity, we map the clients
to groups randomly. Even in this case there is a low level of inter-group label skew due to the severe
inter-client label skew and BDKS helps improve accuracy by 3.77% over HetBL when the high-end
group has 30% clients. To generate data where the data label distribution and client heterogeneity
are correlated , we keep the inter-client label skew as λ = 0.05, and map the clients with similar

8

Under review as a conference paper at ICLR 2024

Table 3: Accuracy of HetBL and HeteroSFL with 50 clients. When the training time reduction is
256× and the data rate ratio between high-end and low-end group is 16 : 1.

of clients High-end group HetBL HeteroSFL

50-clients 30% 57.15 60.92 (+3.77)
60% 61.43 63.34 (+1.91)

50-clients
(Correlated)

30% 53.22 59.16 (+5.94)
60% 61.38 64.35 (+2.98)

label distribution to the same group. Such a case results in a higher level of inter-group label skew,
and BDKS improves accuracy even more by 5.94%, as shown in Table.3.

0
2 0
4 0
6 0
8 0
1 0 0

Te
st

Ac
cu

rac
y (

%)

0 1 2 3 4 5 6 7 8 90
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0

 # S a m p l e H e t B L H e t e r o S F L

 #
of

Sa
mp

les

C l a s s
Figure 3: Class-wise accuracy of
HetBL and HeteroSFL with 40%
high-end group for 10 clients.

The inter-group label skew caused by severe inter-client label
skew is even more significant with small number of clients.
Simply using HetBL in 10-client SFL system results in lower
accuracy than IdBL (see Table 1) due to the presence of inter-
group label skew. For 256× training time reduction, BDKS
improves the accuracy over HetBL by 4.15% − 7.85% and
helps HeteroSFL beat IdBL. IdBL+dropout achieves 18.39%
lower accuracy on average compared with HeteroSFL and
still performs worse than IdBL, indicating that training dif-
ferent channels alternately fails to address the inter-group la-
bel skew. Fig.3 shows the class-wise accuracy of HeteroSFL
with and without BDKS for 40% of high-end group in 10-
client SFL system. The accuracy of underrepresented classes
(i.e. classes 5 to 9) increases significantly, indicating BDKS
alleviates the overfitting of the wide BL model.We also evaluate the performance of BDKS for
ResNet20 in a 10-client system and the detailed results are shown in Table 9 Appendix B.4. We see
that BDKS helps improve accuracy by up to 6.30%.

Wide-to-Narrow Knowledge Sharing We replace W2N knowledge sharing in BDKS (Eq.8) with
logit calibration loss, referred to as HeteroSFL w/o N2W; the corresponding results are shown in
Table 10 in Appendix B.5. For ResNet20, the accuracy of HeteroSFL w/o N2W is significantly
worse than HeteroSFL, especially with 80% clients in high-end group. This illustrates that W2N
knowledge sharing is necessary to train the narrow BLs in high-end group for higher accuracy.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose HeteroSFL, the first SFL framework with heterogeneous clients that
process non-IID data characterized by inter-client and inter-group label skew. HeteroSFL utilizes
HetBL to address the different compression ratios of different groups through different-sized BL,
logit calibration Zhang et al. (2022) to mitigate the inter-client label skew, and BDKS to address the
inter-group label skew. For a 10-client SFL system, HeteroSFL can reduce the training time of SFL
by 16× to 256× with 1.24% to 5.07% accuracy loss, on average, for VGG11 on CIFAR10 data with
significant label distribution skew. While this work tackled handling non-IID data with significant
label distribution skew in the heterogeneous client setting, in future we plan to address other types
of inter-group data distribution differences such as those with domain shift. We also plan to study
fairness issues in such heterogeneous SFL settings.

REFERENCES

Ahmad Ayad, Melvin Renner, and Anke Schmeink. Improving the communication and computation
efficiency of split learning for iot applications. In 2021 IEEE Global Communications Conference
(GLOBECOM), pp. 01–06. IEEE, 2021.

Hankyul Baek, Won Joon Yun, Yunseok Kwak, Soyi Jung, Mingyue Ji, Mehdi Bennis, Jihong
Park, and Joongheon Kim. Joint superposition coding and training for federated learning

9

Under review as a conference paper at ICLR 2024

over multi-width neural networks. In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications, pp. 1729–1738. IEEE, 2022.

Yuanqin Cai and Tongquan Wei. Efficient split learning with non-iid data. In 2022 23rd IEEE
International Conference on Mobile Data Management (MDM), pp. 128–136. IEEE, 2022.

Haokun Chen, Ahmed Frikha, Denis Krompass, and Volker Tresp. Fraug: Tackling federated learn-
ing with non-iid features via representation augmentation. arXiv preprint arXiv:2205.14900,
2022.

Xing Chen, Jingtao Li, and Chaitali Chakrabarti. Communication and computation reduction for
split learning using asynchronous training. In 2021 IEEE Workshop on Signal Processing Systems
(SiPS), pp. 76–81. IEEE, 2021.

Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL: Computation and communication effi-
cient federated learning for heterogeneous clients. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=TNkPBBYFkXg.

Amir Erfan Eshratifar, Amirhossein Esmaili, and Massoud Pedram. Bottlenet: A deep learning
architecture for intelligent mobile cloud computing services. In 2019 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6. IEEE, 2019.

Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc: Feder-
ated learning with non-iid data via local drift decoupling and correction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10112–10121, 2022.

Otkrist Gupta and Ramesh Raskar. Distributed learning of deep neural network over multiple agents.
Journal of Network and Computer Applications, 116:1–8, 2018.

Dong-Jun Han, Hasnain Irshad Bhatti, Jungmoon Lee, and Jaekyun Moon. Accelerating federated
learning with split learning on locally generated losses. In ICML 2021 Workshop on Federated
Learning for User Privacy and Data Confidentiality. ICML Board, 2021.

Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge transfer: Federated
learning of large cnns at the edge. Advances in Neural Information Processing Systems, 33:
14068–14080, 2020.

Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leontiadis, Stylianos Venieris, and
Nicholas Lane. Fjord: Fair and accurate federated learning under heterogeneous targets with
ordered dropout. Advances in Neural Information Processing Systems, 34:12876–12889, 2021.

Saihui Hou and Zilei Wang. Weighted channel dropout for regularization of deep convolutional
neural network. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pp. 8425–8432, 2019.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Fatih Ilhan, Gong Su, and Ling Liu. Scalefl: Resource-adaptive federated learning with hetero-
geneous clients. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 24532–24541, 2023.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International Conference on Machine Learning, pp. 5132–5143. PMLR, 2020.

Jingtao Li, Lingjuan Lyu, Daisuke Iso, Chaitali Chakrabarti, and Michael Spranger. Mocosfl: en-
abling cross-client collaborative self-supervised learning. In Workshop on Federated Learning:
Recent Advances and New Challenges (in Conjunction with NeurIPS 2022), 2022a.

10

https://openreview.net/forum?id=TNkPBBYFkXg

Under review as a conference paper at ICLR 2024

Jingtao Li, Adnan Siraj Rakin, Xing Chen, Zhezhi He, Deliang Fan, and Chaitali Chakrabarti. Ressfl:
A resistance transfer framework for defending model inversion attack in split federated learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10194–10202, 2022b.

Q. Li, Y. Diao, Q. Chen, and B. He. Federated learning on non-iid data silos: An experimental study.
In 2022 IEEE 38th International Conference on Data Engineering (ICDE), pp. 965–978. IEEE,
2022c.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and
systems, 2:429–450, 2020.

Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and robust federated
learning through personalization. In International Conference on Machine Learning, pp. 6357–
6368. PMLR, 2021.

Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. Ensemble distillation for robust model
fusion in federated learning. Advances in Neural Information Processing Systems, 33:2351–2363,
2020.

Liu Liu, Lei Deng, Xing Hu, Maohua Zhu, Guoqi Li, Yufei Ding, and Yuan Xie. Dynamic sparse
graph for efficient deep learning. arXiv preprint arXiv:1810.00859, 2018.

Kiwan Maeng, Haiyu Lu, Luca Melis, John Nguyen, Mike Rabbat, and Carole-Jean Wu. Towards
fair federated recommendation learning: Characterizing the inter-dependence of system and data
heterogeneity. In Proceedings of the 16th ACM Conference on Recommender Systems, pp. 156–
167, 2022.

Disha Makhija, Xing Han, Nhat Ho, and Joydeep Ghosh. Architecture agnostic federated learning
for neural networks. arXiv preprint arXiv:2202.07757, 2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pp. 1273–1282. PMLR, 2017.

Amirkeivan Mohtashami, Martin Jaggi, and Sebastian Stich. Masked training of neural networks
with partial gradients. In International Conference on Artificial Intelligence and Statistics, pp.
5876–5890. PMLR, 2022.

Takayuki Nishio and Ryo Yonetani. Client selection for federated learning with heterogeneous
resources in mobile edge. In ICC 2019-2019 IEEE international conference on communications
(ICC), pp. 1–7. IEEE, 2019.

Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A lock-free approach
to parallelizing stochastic gradient descent. Advances in neural information processing systems,
24, 2011.

Jaemin Shin, Yuanchun Li, Yunxin Liu, and Sung-Ju Lee. Fedbalancer: data and pace control
for efficient federated learning on heterogeneous clients. In Proceedings of the 20th Annual
International Conference on Mobile Systems, Applications and Services, pp. 436–449, 2022.

SpeedTest. https://www.speedtest.net/global-index., 2023. Global Median
Speeds August 2023.

Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xin He, Bo Han, and Xiaowen Chu. Virtual
homogeneity learning: Defending against data heterogeneity in federated learning. arXiv preprint
arXiv:2206.02465, 2022.

Chandra Thapa, Pathum Chamikara Mahawaga Arachchige, Seyit Camtepe, and Lichao Sun.
Splitfed: When federated learning meets split learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 8485–8493, 2022.

11

https://www.speedtest.net/ global- index.

Under review as a conference paper at ICLR 2024

Jianyu Wang, Hang Qi, Ankit Singh Rawat, Sashank Reddi, Sagar Waghmare, Felix X Yu, and Gauri
Joshi. Fedlite: A scalable approach for federated learning on resource-constrained clients. arXiv
preprint arXiv:2201.11865, 2022.

Chencheng Xu, Zhiwei Hong, Minlie Huang, and Tao Jiang. Acceleration of federated learning with
alleviated forgetting in local training. arXiv preprint arXiv:2203.02645, 2022.

Jie Zhang, Zhiqi Li, Bo Li, Jianghe Xu, Shuang Wu, Shouhong Ding, and Chao Wu. Federated learn-
ing with label distribution skew via logits calibration. In International Conference on Machine
Learning, pp. 26311–26329. PMLR, 2022.

Kai Zhang, Yutong Dai, Hongyi Wang, Eric Xing, Xun Chen, and Lichao Sun. Memory-adaptive
depth-wise heterogenous federated learning. arXiv preprint arXiv:2303.04887, 2023.

Qihua Zhou, Song Guo, Zhihao Qu, Jingcai Guo, Zhenda Xu, Jiewei Zhang, Tao Guo, Boyuan Luo,
and Jingren Zhou. Octo: Int8 training with loss-aware compensation and backward quantization
for tiny on-device learning. In USENIX Annual Technical Conference, pp. 177–191, 2021.

Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distillation for heterogeneous
federated learning. In International Conference on Machine Learning, pp. 12878–12889. PMLR,
2021.

Zhuangdi Zhu, Junyuan Hong, Steve Drew, and Jiayu Zhou. Resilient and communication effi-
cient learning for heterogeneous federated systems. In Proceedings of Thirty-ninth International
Conference on Machine Learning (ICML 2022), 2022.

12

	Introduction
	Related Work
	Background and Problem Description
	HeteroSFL
	HetBL
	Bi-directional Knowledge Sharing

	Experimental Results
	Experimental Setup
	Training-time and accuracy performance of HeteroSFL
	Effectiveness of BDKS in addressing inter-group label skew

	Conclusion and Future Work
	Details of Experimental Settings
	Hyper-parameters
	Data distribution in different clients

	Additional Results
	Training-time and accuracy performance of HeteroSFL for VGG11 on CIFAR10
	Accuracy performance of HeteroSFL with different data rates between high-end and low-end groups for VGG11 on CIFAR10
	Training-time and accuracy performance of HeteroSFL for ResNet20 on CIFAR100
	Effectiveness of BDKS for ResNet20 on CIFAR100
	Wide-to-Narrow (W2N) Knowledge sharing
	Training-time and accuracy performance using HeteroSFL of different client-side models
	Extending BDKS to multiple groups

