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Abstract

In this paper we explore the use of several
popular clustering and graph partitioning al-
gorithms as a method of generating clusters
of related scientific documents and suggest a
simple graph augmentation technique for tak-
ing advantage of external information. We
show that by hallucinating nodes for scien-
tific documents that are cited but not present
in the original dataset, we can improve per-
formance of clustering algorithms.

1. Introduction

Clustering is an important unsupervised task for con-
ducting data analysis, dimensionality reduction and
pattern extraction among others with many practical
applications (Jain et al., 1999; Zamir & Etzioni, 1998;
Zeng et al., 2004). One particular form of cluster-
ing focuses on citation graphs extracted from scientific
corpora or link structures from web corpora (New-
man & Girvan, 2004; Fortunato, 2010). In a practi-
cal setting, these citations are extracted from a text
corpus (either structured or unstructured) to create
a directed or undirected graph where documents con-
stitute nodes. Unfortunately, such corpora often con-
tain outgoing links or citations to documents that are
not contained in the corpus. As such, graph cluster-
ing algorithms naively working with such corpora are
based on incomplete data and may arrive at faulty
or deficient conclusions (Hopcroft et al., 2004) as we
empirically demonstrate in this paper. Furthermore,

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

because the degree distributions in such corpora have
power law distributions (Newman & Girvan, 2004), it
becomes even more difficult for such algorithms.

Using the open access subset of PubMed 1 and sim-
ulated data, we propose a set of graph augmentation
techniques to take advantage of this information and
thoroughly examine three well-studied clustering algo-
rithms and their performance on naive and augmented
graphs. Because gold label data is hard to come by
in clustering problems, we use pseudo-labels such as
the PubMed MeSH labels and measures of textual co-
hesion to evaluate performance for PubMed. We use
the generated cluster labels for simulated experiments.
While results are mixed for PubMed data, we show
that these simple graph modifications can provide a
significant boost to community detection performance
across all algorithms on simulated graphs.

2. Models

Let G = (V,E,W ) be a graph where V is the set of
nodes, E the set of edges and W the weights over the
edges. n = |V | is the number of nodes in the graph,
and W ∈ Rn×n is defined as a weighted adjacency
matrix. We also define an expanded (or hallucinated)
graph Gh = (Vh, Eh,Wh) such that V ⊂ Vh, E ⊂ Eh.
Then given m = |Vh|, Wh ∈ Rm×m is the weight ma-
trix for the hallucinated graph.

When extracting the graph from a corpus with link
structure, V is the set of documents in the corpus, the
set of nodes Vf = Vh\V is defined to be the halluci-
nated frontier, i.e. the set of documents which don’t
exist in this corpus but are cited by documents/nodes
in V . The input graphs derived from text corpora with

1ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/

ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/
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link structure are augmented in two different ways,
which are examined separately. The methods are:

• node hallucination: A document j that is cited
by i ∈ V but is not in V is added to Vf . A cor-
responding edge (i, j) is added to Eh and weight
matrix Wh.

• edge hallucination: If two documents in V cite
a common document in Vf , an artificial edge with
one half weight is added between the two docu-
ments. In matrix notation, we apply clustering
algorithms to the matrix WT

h Wh.

Below, we briefly describe the models which form the
basis of our experiments: spectral clustering (Ng et al.,
2001), Louvain method (Blondel et al., 2008) and
Metis (Abou-Rjeili & Karypis, 2006). These popular
algorithms vary widely in technique, and the results
shown here provide hints as to how other untested
algorithms may perform (Schaeffer, 2007; Jain, 2010;
Fortunato, 2010).

2.1. Spectral Clustering

Spectral Clustering, which has been show to be effec-
tive and reasonably fast, finds an eigendecomposition
of a modified version of the graph’s original adjacency
matrix, and then uses its largest eigenvectors as re-
duced dimension inputs for k-means clustering (Ng
et al., 2001). The graph partitioning found approx-
imates the minimization of the normalized cut score
of the graph. In theory it should find partitions with
small edge cuts, and similar cluster sizes.

Despite the availability of sparse eigendecomposition
algorithms like Arnoldi iteration, Spectral Clustering
is the slowest algorithm used here by an order of mag-
nitude.

2.2. Louvain Method

The Louvain Method is a greedy, agglomerative graph
clustering algorithm that locally and iteratively max-
imizes the modularity function: (Blondel et al., 2008)

Q =
1

2m

∑
ij

[Aij −
kikj
2m

]δ(ci, cj)

where A is the adjacency matrix representing the
graph, ki is the degree of node i, m is the sum of
all the edge weights in the graph, and ci is the cluster
assignment. δ(ci, cj) = 1 if ci = cj and 0 otherwise.
The range of Q is [−0.5, 1].

Intuitively, the modularity score of a graph is high
if in each found cluster, the ratio of edges between

nodes within the cluster to the total edges with at
least one endpoint in the cluster is greater than the
ratio expected if all edges were attached randomly.

2.3. Metis

The graph partition algorithm from the Metis soft-
ware collection attempts to find partitions with a min-
imum cut score and works in three stages: a coarsening
stage where nodes and edges are iteratively collapsed,
a partitioning stage on the coarsened, more tractable
graph, and an expansion and refinement stage where
the Kernighan-Lin algorithm is run at each step of the
expansion (Abou-Rjeili & Karypis, 2006).

This approach has been known to be both extremely
effective and fast. While it attempts to minimize cut
score, similar to Spectral Clustering, it does so via a
completely different method that produces very regu-
lar partitions (Abou-Rjeili & Karypis, 2006).

3. Data

To evaluate the effect of graph augmentation on clus-
tering algorithms, we use two types of data. One is
real world data from PubMed that lacks gold labels
and the other is simulated data with gold labels, de-
scribed below.

3.1. PubMed collection

The real-world data used in this paper comes from
the Open Access subset of the PubMed collection of
scientific documents.2 The collection consists of over
200,000 full text documents from various journals with
a bio-medical focus. As in other scientific corpora that
we have examined, the difficulty of this data is that
the collection is not complete: a vast majority of the
citations within the documents in the collection resolve
to documents outside of the collection.

We build the citation network from the collection and
take the largest connected component (composed of
nearly 80,000 documents and 200,000 citations) as our
naive graph, and then create the expansions described
above by generating the frontier of the network. Basic
information on these networks are presented in Ta-
ble 1, including the average clustering coefficient for
each. As can be expected from the edge counts rel-
ative to the number of nodes, the average clustering
coefficient is very low for the naive graph, a condition
that has the potential to make it difficult for graph
partitioning algorithms to find meaningful communi-
ties within the network. The expanded networks both

2ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/
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have higher coefficients: slightly higher for the graph
with hallucinated nodes, and significantly higher for
the graph with hallucinated edges.

Table 1. PubMed Graph Statistics

network nodes edges clustering coeff.
Naive 85465 211036 0.107
Hal. Nodes 554186 2097662 0.122
Hal. Edges 85465 15019995 0.352

3.2. Simulated data

Due to the difficulty of finding gold label clusters for
the citation data, we also run simulation experiments
in order to further explore the algorithms’ behavior
on the augmented graphs. To generate gold-label data
we create a simple problem. First, four directed sub-
graphs of 1000 nodes each are made using the For-
est Fire method of graph generation, which has been
shown to create graphs with properties similar to real
world citation networks (Leskovec et al., 2007). The
nodes in these disconnected subgraphs are the gold
label cluster data. Then, 100 directed edges are ran-
domly added to the graph with the constraint that the
endpoints must be from separate subgraphs. To simu-
late missing data, 20% of the nodes in the entire graph
are randomly selected and marked as missing—these
missing nodes become the frontier Vf—and the naive
and augmented graph types with hallucinated nodes
and edges are created from this incomplete simulated
graph.

For the naive graph, any nodes in the frontier and any
edges incident to those nodes are simply deleted. To
create the hallucinated nodes graph, edges with their
source in the frontier are removed; nodes in the fron-
tier as well as edges with a destination in the frontier
but a source node not within the frontier are retained.
The hallucinated edge graph is generated by collaps-
ing the frontier nodes into a set of edges between each
non-frontier node with a link to the frontier nodes. We
generate 1000 of these simulated graphs to get an aver-
age of the performance measures described in the next
section.

4. Evaluation

We use a set of general metrics as well as data specific
metrics on the PubMed data and the simulated data.
For both data sets, we use standard evaluation met-
rics such as precision/recall/f -scores and information
theoretic metrics. This is straightforward for the sim-
ulated data sets since gold labels are generated with

the data. Because no such labels exist for PubMed,
we use MeSH categories as pseudo-labels. In addition,
full text is available for the PubMed data and so we
evaluate the clusterings based on measures of textual
cohesion. These measures are applied to the naive as
well as the augmented graph inputs.

4.1. PubMed specific experiments and
evaluation

First, measures of textual cohesion are applied includ-
ing Davies-Bouldin (Davies & Bouldin, 1979) and nor-
malized sum of squared error (both calculated using
pruned tf-idf vectors generated from the paper ab-
stracts). We make the assumption that if a set of
papers make up a scientific community, they will be
more similar in text to themselves than papers from
other clusters.

Davies-Bouldin is a measure used to determine the
quality of a cluster using the inherent qualities of the
data, in this case text. It can be loosely described as
the ratio of similarity within each cluster to the sim-
ilarity between each cluster and its closest neighbor
cluster. Lower scores are better and represent clus-
terings that are similar when nodes are compared in-
ternally, and dissimilar when nodes are compared to
other clusters.

The normalized sum of squared error is a precision
based metric that measures the weighted distance of
each node to its cluster’s centroid. Lower values mean
that the clusters are composed internally of more sim-
ilar nodes.

Note that we do not use text in the clustering phase
because we are only attempting to measure the effects
of the augmented citation networks. It is often the
case that for an initial clustering or analysis, full text
similarity may be too slow or impractical; clustering
purely on the citation network or graph information of
a dataset is an alternative tool that can still generate
high quality results while requiring only a fraction of
the time necessary for full-text based methods.

Second, we take advantage of the Medical Subject
Headings (MeSH) labels (HJ & G, 1994; Ruiz & Srini-
vasan, 1999) for the documents in the network and
calculate normalized mutual information and purity
in addition to the standard precision, recall, and f -
score measures. For MeSH, each document is labeled
with multiple, often hierarchical labels, each represent-
ing a general subject discussed in the paper. Preci-
sion and recall based statistics are measured by assign-
ing weight of 1 for each MeSH label in the confusion
matrix, attributing to the exceptionally low seeming
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Table 3. Text Cohesion Measures (Davies-Bouldin and
Normalized Sum of Squared Error)

Algorithm, Graph DB (×101) NSqErr (×10−1)
SC, Naive 0.967 4.175
SC, Hal. Nodes 1.143 4.175
SC, Hal. Edges 1.054 4.152
Louvain, Naive 0.453 1.708
Louvain, Hal. Nodes 0.432 0.663
Louvain, Hal. Edges 0.837 4.704
Metis, Naive 1.557 4.133
Metis, Hal. Nodes 1.226 4.126
Metis, Hal. Edges 1.685 4.126

scores. As with the textual cohesion measures, here
we also make the assumption that the MeSH labels
are indicative of scientific community.

4.2. Simulation

We apply the clustering algorithms to the simulated
data as described in sec. 3.2. The algorithms are ap-
plied to the naive as well as the augmented graphs and
the output is evaluated using the gold labels in terms of
precision/recall/f -score, purity, and NMI metrics and
then averaged over the 1000 generated graphs. Spec-
tral Clustering and Metis are both explicitly set to find
four clusters.

5. Results

The three algorithms used in this paper operate very
differently, and consequently find very different par-
titions. The following analyses for each algorithm at-
tempts to give the reader a feel for the type and quality
of the partitions found by each algorithm on PubMed
and simulated data.

5.1. PubMed results

Table 3 shows the results of the textual cohesion met-
rics, and Table 2 shows the results of the MeSH evalu-
ation metrics. Note that for computational feasibility,
clusters with fewer than three nodes were not included
in the text evaluations.

5.1.1. Spectral Clustering

Spectral Clustering, which was run with parameters
set to find fifty eigenvalues and one hundred clusters,
creates unsatisfying partitions on the naive PubMed
graph: about half of the nodes are all put into a sin-
gle dominating cluster. Despite this partitioning’s low
cut score, it doesn’t seem to find distinct communi-

Figure 1. Cluster size distribution for spectral clustering
on the naive PubMed graph

Figure 2. Cluster size distribution for spectral clustering
on the PubMed graph with hallucinated nodes

ties. When run on the graphs with hallucinated nodes
and edges, the cluster sizes are slightly more equitable,
with the largest cluster having only one ninth of the
nodes in the total graph. The cluster size distribution
can be better seen in the Figures 1 and 2, which
show what fraction of the graph nodes are contained
in clusters of varying sizes.

For the text evaluation, Spectral Clustering performs
best on the naive graph for Davies-Bouldin and best
on the hallucinated edge graph for normalized sum of
squared error, although the differences aren’t signifi-
cant. For the MeSH evaluation, Spectral Clustering
performs best with the naive graph for precision and
recall, but is beaten on normalized mutual information
by the graph with hallucinated edges. Figure 3 shows
the text normalized squared error as the number of
clusters changes, while Davies-Bouldin performance is
less clean. We believe that better results will be found
if time is unrestrained and experiments using greater
numbers of eigenvalues are ran.
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Table 2. PubMed MeSH Evaluation Measures

Algorithm, Graph purity (×10−2) NMI (×10−1) precision (×10−3) recall (×10−3) f-score (×10−3)
SC, Naive 5.30 0.205 6.87 3.10 4.28
SC, Hal. Nodes 5.30 0.273 6.86 0.383 0.726
SC, Hal. Edges 5.30 0.245 6.86 0.556 1.03
Louvain, Naive 5.88 1.85 6.75 0.00346 0.00692
Louvain, Hal. Nodes 7.04 2.20 6.78 0.0367 0.0730
Louvain, Hal. Edges 5.32 0.350 6.94 0.319 0.610
Metis, Naive 6.56 2.46 6.44 0.152 0.297
Metis, Hal. Nodes 6.56 2.44 7.09 0.176 0.343
Metis, Hal. Edges 6.48 2.44 5.91 0.140 0.273

Figure 3. Normalized squared error of textual cohesion in
relation to number of clusters for spectral clustering

5.1.2. Louvain Method

The clusters found by the Louvain method on the naive
and hallucinated node graphs have the opposite flaw
as those found Spectral Clustering. Here, almost all of
the nodes are placed into tiny clusters with fewer than
ten and twenty nodes (for the naive and hallucinated
node graphs respectively), which we do not believe to
be representative of general communities. When run
on the PubMed graph augmented with hallucinated
edges, Louvain gives drastically improved results by
finding many large clusters with over one thousand
nodes each.

Louvain has very low (good) measures for Davies-
Bouldin and Normalized Sum of Squared Error when
the naive and hallucinated node graph is used, but this
is to be expected since these measures are more pre-
cision based, and thus the tiny clusters perform very
well. For MeSH, the graph with hallucinated edges
drastically outperforms the other alternatives due to
the larger, more general clusters and therefore signifi-
cantly improved recall score.

Figure 4. Davies-Bouldin measure of textual cohesion for
spectral clustering in relation to number of clusters for
Metis

5.1.3. Metis

Metis, which was set to find two hundred clusters, cre-
ated partitions with unusual regularity. When run on
the PubMed graph variations Metis finds a partition-
ing where all clusters are nearly the exact same size, all
varying only by only tens of nodes from the average.
While this challenges our presumed intuition about the
varying sizes of scientific communities, these partitions
prove to be very robust in nearly all evaluation mea-
sures.

While the normalized sum of squared error score re-
mains almost completely static, the Davies-Bouldin
score is best when the graph with hallucinated nodes
is used. Figure 4 show that this trend holds true as
the number of clusters found is varied. For MeSH,
Metis gives significantly better, precision, recall, and
f -scores when run on the graph with hallucinated
nodes.
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Table 4. Simulation Results

Algorithm, Graph purity NMI precision recall f-score
SC, Naive 0.272 (0.032) 0.00663 (0.013) 0.253 (0.010) 0.773 (0.190) 0.372 (0.036)
SC, Hal. Nodes 0.271 (0.035) 0.00906 (0.020) 0.254 (0.013) 0.847 (0.243) 0.378 (0.042)
SC, Hal. Edges 0.272 (0.041) 0.0109 (0.028) 0.256 (0.019) 0.867 (0.214) 0.384 (0.034)
Louvain, Naive 0.958 (0.004) 0.370 (0.011) 0.933 (0.013) 0.0712 (0.027) 0.131 (0.045)
Louvain, Hal. Nodes 0.960 (0.004) 0.382 (0.012) 0.941 (0.010) 0.0908 (0.027) 0.164 (0.045)
Louvain, Hal. Edges 0.964 (0.004) 0.427 (0.014) 0.943 (0.010) 0.176 (0.038) 0.295 (0.053)
Metis, Naive 0.862 (0.021) 0.615 (0.039) 0.752 (0.033) 0.752 (0.033) 0.752 (0.033)
Metis, Hal. Nodes 0.924 (0.015) 0.761 (0.036) 0.858 (0.027) 0.858 (0.027) 0.858 (0.027)
Metis, Hal. Edges 0.933 (0.020) 0.782 (0.044) 0.873 (0.034) 0.873 (0.034) 0.873 (0.034)

Average over 1000 randomly generated graphs. Standard deviation in parenthesis.

5.2. Simulation results

This section provides results on simulation. Table 4
shows the averaged results for 1000 simulated graphs
and evaluations. We go into more detail in the follow-
ing sections.

5.2.1. Spectral clustering

The simulated graphs, which should be theoretically
easy to separate provides trouble for Spectral Clus-
tering. Similar to the PubMed partitions, Spectral
Clustering tends to selects one very large and three
much smaller clusters on the simulated graphs. In all
of our experiments, Spectral Clustering selects heavily
unbalanced, trivial partitions despite it’s approximate
minimization of the normalized cut score.

5.2.2. Louvain method

Louvain behavior on the simulated graphs is consistent
with its behavior on the PubMed graphs. While it
selects over 400 clusters instead of the one cluster for
each of the gold labels, the clusters have very high
purity and precision scores. The algorithm chooses
larger more general clusters on the graphs augmented
with additional edges, and thus has the highest recall
and f -scores on the those graphs.

5.2.3. Metis

As can be seen from immediately from the simulated
results 4 Metis has very high performance on all three
graph variants. The augmented graphs both perform
significantly better compared to the naive graph, with
the hallucinated edges graph only slightly outperform-
ing the graph with hallucinated nodes.

6. Conclusion

We have shown that graph augmentation using out-of-
corpus information has the potential to enhance per-
formance of partitioning algorithms for use in commu-
nity detection when applied to citation networks. The
results are mixed for the real world data of PubMed,
where Louvain and Metis benefit from having aug-
mented graphs as input but Spectral Clustering does
not. On the other hand, it is clear that graph augmen-
tation can provide significant gains in performance to
standard clustering algorithms on simulated data de-
signed to mimic the scientific publication and citation
process. Furthermore, we have discovered severe gaps
in performance between clustering algorithms for this
particular type of simulated data. We hope to investi-
gate this phenomenon further in future work.
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