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Abstract

Attention mechanisms in deep learning establish relationships between different positions
within a sequence, enabling models like Transformers to generate effective outputs by fo-
cusing on relevant input segments and their relations. The performance of Transformers is
highly dependent on the chosen attention mechanism, with various approaches balancing
trade-offs between computational cost, memory efficiency, and generalization ability based
on the task. Quantum machine learning models possess the potential to outperform their
classical counterparts in specialized settings. This makes exploring the benefits of quantum
resources within classical machine learning models a promising research direction. The role
of entanglement in quantum machine learning, whether in fully quantum or as subroutines
in classical-quantum hybrid models, remains poorly understood. In this work, we investi-
gate the hypothesis of whether entanglement can be used to model nuanced correlations in
classical data, analogous to its role in many-body systems. We further test whether quan-
tum entanglement can be used as a resource to improve the performance of the attention
layer in Transformers. We introduce an entanglement entropy-based attention layer within a
classical Transformer architecture and numerically evaluate it across various datasets. Our
experiments on standard classification tasks in both vision and NLP domains reveal that
the entanglement-based attention layer outperforms existing quantum attention frameworks
and the widely used quantum kernel attention models, particularly in the presence of noise.
Our work contributes toward exploring the power of quantum resources as a subroutine in
the classical-quantum hybrid setting to further enhance classical models.

1 Introduction

Machine learning has significantly affected numerous domains by enabling systems to learn complex patterns
from large datasets. This progress is largely due to deep neural networks (DNNs), architectures inspired by
the human brain comprising interconnected layers of artificial neurons. Within this paradigm, convolutional
neural networks (CNNs) have excelled at processing grid-like data, such as images and time series, due to
their inherent capability to capture local patterns and hierarchical features. However, CNNs face limitations
when addressing sequential data tasks requiring modeling long-range dependencies and broader contextual
relationships.

To overcome these limitations, Transformers (Vaswani et al. |2017)) were developed, introducing an attention
mechanism to selectively focus on relevant input segments. Initially proposed for natural language processing
(NLP) tasks, Transformers have subsequently been adapted to domains such as computer vision (Dosovitskiy
et al., [2020; |Carion et al., 2020)), audio processing (Dong et al.l 2018), and numerous other domains. The
core strength of Transformers lies in their attention mechanism, which quantifies the importance of inputs
through attention weights, capturing intricate relationships within sequential data effectively.

In a seemingly unrelated world, physicists employ quantum mechanical wave functions to model complex
interactions within systems of particles to describe the system accurately. Such quantum systems inher-
ently exhibit entanglement, a quantum-specific correlation between particles, which classical models cannot
adequately represent. Quantum entanglement, quantified using measures such as entanglement entropy,
captures deep correlations within quantum systems, making it an indispensable tool in quantum mechanics.
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Intriguing parallels between quantum mechanical systems and deep neural networks have been explored by
(Levine et all 2017} [2019)), who demonstrated structural equivalence between them through representations
of the tensor network (TN). Specifically, they observed that the expressive power of neural networks and
quantum wave functions share commonalities in their ability to model intricate correlations within high-
dimensional inputs. These insights suggest that quantum-inspired measures, such as entanglement entropy,
might enhance the modeling capabilities of classical neural networks by introducing deeper correlation met-
rics.

Inspired by these parallels, we hypothesize that integrating quantum entanglement measures as attention
mechanisms into classical models could better capture nuanced correlations within sequential data. Previous
studies, such as Attention-based Quantum Tomography (AQT) (Cha et al. 2021) and Quantum-aware
Transformers (QAT) (Ma et al.l [2023)), successfully leveraged attention mechanisms to reconstruct quantum
states, further motivating our exploration of the reverse direction: incorporating quantum-inspired measures
of correlation—entanglement—as attention mechanism of Transformer model for classical data modeling tasks.

Despite theoretical advantages suggested by quantum machine learning (QML) studies (Servedio & Gortler,
2001; |Liu et all |2021; |Gyurik & Dunjko, [2023; |Jager & Krems| 2023; Molteni et al.l |2024), practical im-
plementations have shown mixed results, often failing to surpass classical baselines (Bowles et al., |2024)).
Thus, a gap remains concerning the utility and added value of quantum and quantum-inspired techniques
in real-world tasks.

To address this gap, we propose a novel Transformer encoder model that replaces the traditional dot-
product attention with attention coefficients derived from quantum entanglement entropy computed via
parameterized quantum circuits (PQC). Our methodology consists of three primary steps:

1. Quantum Embedding: Classical query and key vectors of Transformers are encoded into quantum
states using a Quantum Feature Map (QFM).

2. Entanglement of Quantum States: Applying a Parameterized Quantum Circuit (PQC) to en-
tangle these quantum states.

3. Measurement of Entanglement Entropy: Computing entanglement entropy between query and
key quantum states to estimate attention coefficients.

Our experiments demonstrate that the proposed entanglement-based attention mechanism performs com-
parably to classical scaled-dot product attention (Vaswani et al., 2017)) on most datasets and outperforms
quantum-inspired models based on the swap test, particularly under noisy conditions. Our results also sug-
gest that the entanglement-based attention mechanism performs better in the data-limited regime compared
to classical scaled-dot product attention, a feature highly desirable in a wide range of real-world applications
where available data is scarce.

In summary, our work contributes a novel integration of quantum-inspired methodologies into classical
Transformer models, providing new insights into modeling complex correlations within sequential data. We
provide a detailed description of the methodology, experiments, and results obtained in the subsequent
sections.

2 Related work

El Amine Cherrat et al.| (2022) introduced a Quantum Vision Transformer for classification tasks on MNIST
datasets. Their approach efficiently handled quantum matrix multiplications but did not demonstrate sig-
nificant advantages or superior performance compared to their classical counterparts.

Khatri et al.| (2024) recently proposed Quixer, a Transformer model leveraging the Linear Combination
of Unitaries (Childs & Wiebel [2012) and Quantum Singular Value Transform (Gilyén et al.l [2019) for
attention computations. Tested on the Penn Treebank dataset, Quixer showed competitive performance
against classical baselines. Similarly, the SASQuaTCh architecture (Evans et al., |2024)) implements self-
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attention through the Quantum Fourier Transform in a purely quantum setting, although the absence of
comparative analysis limits understanding of its practical advantages.

The Quantum Self-Attention Neural Network (QSANN) by [Li et al| (2022) employs a Gaussian-projected
quantum self-attention mechanism and demonstrated superior performance in text classification tasks com-
pared to existing Quantum Natural Language Processing (QNLP) models (Lorenz et al., 2023). In this work,
we include QSANN as a baseline for comparison.

Zhao et al. (2023)) introduced the Quantum Kernel Self-Attention Network (QKSAN) using the Deferred
Measurement Principle (DMP) and conditional measurement techniques. Their experiments, conducted on
binary classification tasks for subsets of MNIST and Fashion MNIST datasets, indicated limited success,
achieving around 10% accuracy for multi-class scenarios. In contrast, our work evaluates entanglement-
based attention on multi-class datasets, including complete MNIST, FMNIST, and MNIST-1D, aiming to
provide a more comprehensive evaluation.

Several quantum Transformer models proposed in recent literature are predominantly theoretical with limited
empirical analyses. For example, the Grover-inspired Quantum Hard Attention Network (GQHAN) (Zhao
et all |2024) and Quantum Algorithm for Attention Computation (Gao et al.,2023)) integrate Grover’s algo-
rithm into attention mechanisms, but lack rigorous practical evaluations. Similarly, [Liao & Ferrie| (2024) and
Guo et al.| (2024) designed quantum circuits implementing adapted Transformer components and generative
pretraining, yet practical comparisons with classical counterparts are limited.

Shi et al.| (2023)) proposed quantum dot-product computation methods mapping query and key vectors to
quantum states, evaluating on the MC and RP datasets. |Shi et al.| (2022)) developed the Quantum Self-
Attention Network (QSAN), employing Quantum Logic Similarity (QLS) and Quantum Bit Self-Attention
Score Matrices (QBSASM), with evaluations limited to binary classification on simplified MNIST tasks.
Di Sipio et al.| (2022]) explored replacing linear layers to generate query, key, and value vectors with Param-
eterized Quantum Circuits (PQCs), yet they provided no empirical validation.

In contrast to previous studies, we introduce a novel attention mechanism based on quantum entanglement
measures. Specifically, our approach integrates the entanglement entropy computed via PQCs directly into
the attention mechanism. To our knowledge, this study is the first to leverage entanglement entropy within
classical machine learning, demonstrating its potential to enhance correlation modeling beyond conventional
quantum-inspired and classical techniques.

3 Attention mechanism in transformers

Transformers typically employ an encoder-decoder structure consisting of stacked attention and fully con-
nected layers, combined with layer normalization and residual connections (Vaswani et all [2017). The
attention layer specifically enables the model to relate different parts of an input sequence, effectively com-
puting representations by assigning varying importance to individual segments. A single-head self-attention
mechanism can be described as follows. Given an input matrix Z € RV*?, representing N tokens each of
dimensionality d, we first generate query, key, and value vectors using learnable parameters:

Q=W,Z" K=W,Z",V=W,Z" ¢ RV, (1)
A=QK"T e RNV (2)
Attention(Z) = softmax(A/+\/d,)V ' € RVN*4, (3)

where Wy, Wy, and W, € R%*? are the learnable query, key, and value weight matrices, respectively. Note
that we do not apply output projection W, as we only consider single attention head. Here, the attention
coeflicient matrix A represents pairwise dot-product similarities between query and key vectors. This dot
product similarity metric quantifies relationships between input tokens. In this work, we aim to replace the
classical dot product computation with a quantum-inspired metric based on entanglement entropy.
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Figure 1: Schematic of classical-quantum network architecture proposed in this work. It is based
on the Transformer encoder architecture, consisting of two sequential attention layers and a feed-forward
layer. The input is embedded with a class (CLS) token denoted as xzcrs, which is used to classify each
sample. After the second attention layer, all tokens except the CLS token are discarded, and only the CLS
token (ycrg) is passed to the feed-forward layer. For classical attention (used as a baseline), the dot product
between the query and key vector serves as the attention coefficient. For entanglement-based attention, the
query and key vector are encoded as a quantum state using a Quantum Feature Map (QFM) (see Section
and then entangled using a Parameterized Quantum Circuit (PQC) (see Section 4.2). The QFM employs
RX, RY, RZ and RZZ gates, while the PQC utilizes controlled-RX gates. The entanglement entropy between
the query and key states is subsequently used as the attention coefficient (see Section . In contrast, for
swap test-based attention (see Section , the query and key vectors are encoded as quantum states using a
Quantum Feature Map (QFM). The quantum state similarity is then computed via a swap test circuit, with
the resulting similarity score serving as the attention coefficient.

4 Entanglement-based attention

We propose an entanglement-based attention mechanism, aiming to leverage quantum entanglement to cap-
ture complex relationships within datasets, analogous to its role in modeling quantum particle interactions.
Our approach integrates quantum entanglement directly into the attention mechanism of a Transformer
model. Similarly to classical attention, we initially compute key, query, and value vectors using feedforward
layers. The subsequent quantum integration proceeds as follows:

4.1 Quantum embedding

Quantum computers inherently encode data into quantum states within a complex, high-dimensional Hilbert
space. To take advantage of this representation, Quantum Feature Maps (QFMs) encode classical data
into quantum states. QFMs associate classical feature values with parameters that control quantum gates,
preparing the corresponding quantum states. We investigate three distinct quantum embedding techniques
in our experiments:

1. Super-dense angle encoding: Each qubit encodes four classical features using a gate sequence of
RX-RY-RX-RY, requiring one qubit per four classical features.
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2. Dense angle encoding: Each qubit encodes two classical features using a gate sequence of RX-RY,
effectively requiring one qubit per two classical features.

3. Instantaneous quantum polynomial-time (IQP) encoding: Introduced by Havlicek et al.
(2018), it uses diagonal gates (RZ, RZZ) following Hadamard transformations, with one qubit per clas-
sical feature. IQP encoding provides efficient data representation and potential quantum speedups.

The circuit schematics of the techniques discussed above are depicted in the Appendix [A]

4.2 Entangling quantum states

After embedding query and key vectors as quantum states, we apply a Parameterized Quantum Circuit
(PQC) to entangle these states. PQCs have tunable parameters optimized for specific tasks, and their ability
to generate entanglement is crucial for capturing correlations. The ability of a parameterized quantum
circuit (PQC) to produce entanglement, often quantified using the Meyer—Wallach entanglement metric
(Meyer & Wallachl [2002), is referred to as its entangling capability. This property has been widely examined
across different PQC architectures (Sim et al.,|2019; Hubregtsen et al., 2021]). We use controlled-RX gates
exclusively in our PQC to entangle query-key state pairs, emphasizing entanglement generation. Single-qubit
gates are excluded, as they do not contribute to entanglement. Inspired by data reuploading (Pérez-Salinas
et al.| 2020)), we iteratively apply QFM and PQC multiple times, enhancing the circuit expressivity to capture
higher-order correlations.

4.3 Entanglement measure as attention coefficients

Entanglement generated by the PQC is quantified using a measure of entanglement (ME) to compute the
attention coeflicient matrix. Specifically, for each query-key pair:

A=ME (UPQC(|¢>query ® |¢>key)) ’ (4)

where Upqc denotes the unitary operation applied by the PQC. The matrix A represents entanglement
between each query-key pair, serving as quantum-inspired attention coefficients. Two entanglement measures
are considered in this work:

1. Von Neumann entanglement entropy: The Von Neumann entanglement entropy for the sub-
system query is defined as: Squery = — Tr[pquery 10g8(Pquery)] Where pquery = Triey(|¥) (¥]) is
the reduced density matrix obtained by tracing out the key subsystem from the overall state
|¥) = Upqc(|9)query ® |#)1ey)- Calculating the Von Neumann entropy using classical shadows
(Huang & Kueng| 2019 Vermersch et all 2024) requires a number of measurements that scales
quadratically with the desired precision, but notably, this measurement count is independent of
system size.

2. Rényi’s second-order entanglement entropy: The Rényi second-order entanglement entropy
for the subsystem query is defined as: Squery = %Tr[log(pquery)] with pquery = Triey(|¥) (¥|) being
the reduced density matrix obtained similarly by tracing out the key subsystem from the state |¥).
The Rényi entropy can also be efficiently calculated using classical shadows. It is typically simpler to
compute both analytically and numerically compared to Von Neumann entropy (Wang et al. |2025)).

A comparison of these entanglement measures was performed to choose the best measure. The experimental
results are discussed in Section

5 Swap test-based attention

Quantum kernel methods, which embed classical data into quantum states and compute their inner prod-
ucts (i.e., kernels), or directly evaluate overlaps between quantum input states, have emerged as promising
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quantum machine learning (QML) techniques for quantum advantage (Liu et al., [2021} |Jager & Krems,
2023)). Inspired by this approach, we introduce a swap test-based attention mechanism to serve as an addi-
tional baseline comparison. While similar to the entanglement-based attention model, the swap test-based
approach replaces the Parameterized Quantum Circuit (PQC) and entanglement measurement with a swap-
test circuit which computes the overlap between query and key quantum states. The architecture of this
attention model is illustrated in Figure [I] and the swap test circuit is illustrated in Figure [

The SWAP test is a well-established quantum technique for evaluating the similarity between two pure
n-qubit states [¢) .., and |@),. . The initial system state is prepared as:

|\11> = |¢>qucry ® |¢>kcy ® |O>C : (5)

A Hadamard gate is then applied to the control qubit C, followed by a controlled-SWAP gate that exchanges
query and key quantum states based on the state of the qubit C. The probability of measuring the control

qubit in state [1) provides a direct measure of the overlap or similarity between [¢) ,c,, and @),

6 Experiments

To assess the effectiveness of the proposed method, we employed various libraries to implement the hybrid
approach. The simulation of quantum circuits was carried out using the TensorCircuit library (Zhang
et al., [2023), while the Equinox library (Kidger & Garcia) 2021)) was utilized to construct the Transformer
architecture. Figure [l displays the quantum-classical Transformer architecture, which builds upon the basic
Transformer architecture featuring a single attention head. We apply attention layers in sequence. The
combined query, key, and value vectors contribute to a total of 3 X (embed_dim X embed_dim) trainable
parameters. The number of trainable parameters within the PQC in the quantum attention corresponds to
half the number of qubits utilized. The final linear layer contains embed_dim X n_classes parameters.

Quantum elements were incorporated into the attention layer, as detailed in the previous section. The query,
key, and value vectors were computed from the input using a feed-forward network (without the bias term).
These vectors were then mapped to quantum states using a quantum feature map and entangled using a
Parameterized Quantum Circuit (PQC). The entanglement entropy between the states was assigned as the
attention coefficient. We use only the CLS token output for classification to ensure that the performance of
the model primarily depends on the attention layer.

Evaluation metrics We report three performance metrics for the models: i) train accuracy, ii) test
accuracy, and iii) test Nearest Exemplar Accuracy (NEA). We have added the NEA baseline, in order to
test the effectiveness of the attention layer in extracting the relevant information for the target classification
problem in isolation of the linear classification layer effect and capacity. For that we train the model while
omitting the bias term from the classification layer, allowing us to treat the linear classification layer weights
as prototypes of the corresponding classes. In the learned embedding space of the CLS token, we can compute
another metric of classification accuracy based on the nearest class mean. We compute the mean feature
vector of the training samples from each class and then assign to the test sample the label of the closest
mean (exemplar) in terms of cosine similarity. We refer to this as Nearest Exemplar Accuracy (NEA). The
NEA metric allows us to assess the quality of the extracted CLS token and the learned features in isolation
of the optimized classification head.

We report only the interquartile mean (IQM) of the best accuracies across ten runs (with different seeds).
This was used as an alternative to median and mean, as it corresponds to the mean score of the middle 50%
of the runs combined across all tasks. This makes it more robust to outliers than the mean and a better
indicator of overall performance than the median (Agarwal et al., [2021)).

Datasets We evaluate quantum attention model on the MC and RP datasets, previously used by |Li et al.
(2022) for evaluating QNLP models. MC contains 17 words and 100 sentences (70 train + 30 test) with 3 or
4 words each; RP has 115 words and 105 sentences (74 train + 31 test) with four words in each one. Each
word is represented as a token and encoded as vectors using a word2vec model.
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We also test the model performance on MNIST, FMNIST, and MNIST-1D datasets. MNIST-1D (Greydanus
& Kobak| 2024) is a low-dimensional variant of MNIST that emphasizes learning non-linear representations
for successful classification. Its small size and complexity make it a suitable dataset for testing quantum
models on classical computers. It is reshaped and represented as four tokens. The MNIST and FMNIST
dataset are resized to 12x12 using bilinear interpolation and are represented as 12 tokens.

Furthermore, all tokens are encoded into a vector of length 12.

Hyperparameters and their tuning The primary goal of our experiments is to conduct a fair comparison
of classical and quantum attention models. Thus, we did not engage in extensive hyperparameter tuning.
We tried different batch sizes and learning rates and did not observe a significant qualitative difference. We
chose to report the experiments obtained for a standard batch size of 64 and 128 for small and large datasets,
respectively. We trained both quantum-, and classical models using Adam optimizer with learning rate of
0.01 and cosine decay schedule for 500 epochs. The train-test split for all datasets was 66.66/33.3. The
embedding dimension; i.e., the length of the query and key vectors which are mapped to quantum states is
12. We used 4 data reuploading layers in PQC, which controls the expressiveness of the quantum model.
We use 2 sequential attention layers for both quantum-, and classical Transformers.

Compared models We compare our method against a classical Transformer utilizing scaled dot-product
attention. All architectural components, except for the attention layer, are identical across both the classical
and quantum models. This design ensures a fair and controlled comparison between the different attention
mechanisms. The following approaches are included in the comparison:

1. Rényi Entropy-based quantum attention (RE): The proposed quantum attention mechanism
employs Rényi entropy to quantify entanglement and measure similarity between query and key
quantum states.

2. Von Neumann Entropy-based quantum attention (VN): A variant of the proposed quantum
attention model that utilizes Von Neumann entropy as the entanglement measure for computing
query-key similarity.

3. Swap test-based quantum attention (ST): A baseline quantum attention mechanism introduced
in this work that leverages the swap test to compute the dot product between quantum states. This
approach aligns with the intuition behind many existing quantum and classical attention mechanisms
that use dot-product-based similarity.

4. Quantum self-attention neural network (QSANN): The attention model proposed by |Li et al.
(2022), which uses Gaussian Projected Quantum Self-Attention (GPQSA). In this method, quantum
states are projected onto classical values via quantum measurements, followed by a Gaussian function
applied to the resulting one-dimensional classical values.

5. QSANN with CLS token: A modified version of the QSANN model to align more closely with
the classical Transformer architecture used in classification tasks. Instead of averaging the attention
outputs across all tokens, a learnable [CLS] token is introduced, and only its output is used for
classification.

6. Quantum self-attention mechanism (QSAMo, QSAMDb): A fully quantum implementation of
the classical self-attention mechanism, focusing on quantum data encoding and the design of PQCs

to compute attention vectors. QSAMo is an optimized model that removes repeated ending circuits
in the QSAMb model.

The experiments carried out are described in the following subsections. In Appendix [B]and Appendix [C] we
report further experiment details, as well as additional experiments.
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Table 1: Comparison of various entanglement measures on text classification datasets. The MC
and RP datasets were used to compare the performance of entanglement-based attention models: Rényi
entropy (RE) and Von Neumann entropy (VN). Additionally, we compare the swap test-based attention
model (ST), the QSANN method, and the QSAMb and QSAMo models proposed by (Shi et al.l [2023]).
While the swap test is not an entanglement measure, it is commonly used in the literature due to its ability
to compute similarity (dot product) in a higher-dimensional space. We also report QSANN (CLS token),
a modified version of QSANN that uses only the CLS token for classification. Performance is measured in
terms of interquartile mean (IQM) and standard deviation. The results show that entanglement entropy
outperforms all existing quantum approaches and classical attention but lags behind the swap test-based
attention model, which is also proposed as a baseline in this work. This highlights the ability of entanglement
to capture relationships between words, similar to dot-product-based attention models.

Model MC Train Acc. | MC Test Acc. | RP Train Acc. RP Test Acc.

Classical 100 100 99.73 + 1.22 75.22 + 4.99
QSANN (CLS token) 58.57 56.66 67.57 54.84

QSANN (original) 100.00 100.00 95.35 67.74 £ 0

QSAMb - 100.00 - 72.58
QSAMo - 100.00 - 74.19

RE (this work) 100 100 100 70.92 £+ 3.05

VN (this work) 100 100 100 74.82 + 3.68

ST (proposed baseline) 100 100 100 83.03 + 3.60

6.1 Performance of entanglement measures on text classification datasets

We evaluate the effectiveness of different entanglement measures on the MC and RP datasets. These two
datasets are selected due to their small size and their adoption in prior studies on QSANN and QSAM (Shi
et al., 2023). Table [l|summarizes the performance of various entanglement-based attention mechanisms and
the swap test on these datasets. Our results show that the swap test-based attention model (proposed as a
baseline in this work) outperforms all existing methods. The proposed entanglement entropy-based models
also surpass previously introduced methods, including QSANN, QSAMb, and QSAMo by |Shi et al.| (2023),
as well as the classical attention model.

Interestingly, the performance of QSANN drops considerably when only a CLS token is used for classification.
The results for this modified version, denoted as QSANN (CLS token), are also reported in Table

6.2 Performance of quantum attention model on text datasets under noisy conditions

In this section, we investigate the robustness of quantum attention mechanisms when subjected to real-
istic quantum noise—an inherent challenge in quantum computing. Quantum noise arises from a variety
of sources, including external thermal fluctuations, calibration imperfections, dephasing, and decoherence.
These phenomena compromise the fidelity of quantum operations and, if a model is highly sensitive to such
noise, limit its practical utility. Hence, evaluating model performance under noisy conditions is essential for
assessing the real-world viability of quantum attention mechanisms.

To this end, we evaluate the proposed quantum attention models on the MC and RP text classification
datasets under three types of noise: 1-qubit and 2-qubit depolarizing noise, and thermal relaxation noise. All
simulations are conducted using the TensorCircuit library, which provides native support for realistic noise
modeling. Depolarizing noise is simulated as the random application of Pauli gates (X, Y, Z), representing the
loss of coherence due to environmental interactions. Thermal relaxation noise accounts for energy dissipation
and loss of phase coherence, modeled via relaxation (7;) and dephasing (T5) processes.

To simulate realistic conditions, we adopt median calibration data from the IBM Kyiv quantum device (as of
November 19, 2024). Specifically, we use T7 = 277.04 us and To = 117.71 us. The single-qubit depolarizing
noise probabilities are set to pi, = p1y = p1. = p1 = 2.673 X 10~%, while the two-qubit depolarizing
probabilities are set to pa; = pay = p2; = pa = 1.224 x 1072, The classical query and key vectors are
encoded into quantum states using a dense encoding scheme.
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Table 2: Comparison of various entanglement measures on text classification datasets under
quantum noise. The MC and RP datasets were used to compare the performance of entanglement-based
attention models: Rényi entropy (RE) and Von Neumann entropy (VN). Additionally, we compare the swap
test-based attention model (ST) and the QSAMo model proposed by (Shi et al., [2023) under noise. The
noise settings in the experiments simulate realistic conditions, with bit flip and depolarizing noise set using
the median calibration data from the IBM Kyiv quantum device on November 19, 2024. Performance is
measured in terms of Interquartile Mean (IQM) and standard deviation. The results demonstrate that
entanglement entropy outperforms all existing quantum approaches, the swap test-based attention model,
and classical attention under noise. These findings suggest that entanglement-based attention models may
be well-suited for current noisy quantum devices.

Model MC Train Acc. | MC Test Acc. | RP Train Acc. | RP Test Acc.

Classical 100 100 99.73 75.22 + 4.99
QSAMo (bit-flip) - 100.00 - 74.19
QSAMo (Depolarizing) - 100.00 - 70.97
QSAMo (Amplitude damping) - 100.00 - 67.74

RE (this work) 100 100 97.28 82.35 + 3.23

VN (this work) 100 100 96.13 84.39 & 4.34

ST (proposed baseline) 100 100 96.51 83.50 £ 3.40

Previous work by [Shi et al.| (2023) evaluated the QSAMo model under various noise conditions—including
bit flip, depolarizing, and amplitude damping noise—and reported significant performance degradation.
However, in our experiments, we observe that the proposed entanglement-based quantum attention models
exhibit strong robustness under noise. In fact, they outperform all baseline models, including the swap-test-
based attention, even when the latter are evaluated in noise-free settings. This is particularly evident on the
RP dataset, where entanglement-based attention models demonstrate superior generalization performance
in the presence of noise.

These findings suggest that, in certain cases, quantum noise may act as a form of implicit regularization,
enhancing the generalization ability of quantum models. We leave a deeper investigation of this phenomenon
for future work. A detailed performance comparison of all models under noisy conditions is presented in
Table 2

6.3 Performance of attention models on image datasets

In this section, we extend our evaluation to image classification datasets to assess whether the effectiveness of
quantum attention models generalizes beyond text-based tasks. Specifically, we include MNIST-1D, MNIST,
and Fashion-MNIST (FMNIST) datasets. These datasets vary in complexity and size, providing a useful
benchmark for analyzing model behavior under different data regimes. The performance results across
different encoding schemes are presented in Tables [3] and [4]

We observe that entanglement-based attention mechanisms consistently outperform swap test-based models
across all image datasets. This finding suggests that entanglement measures are more effective than quantum
state similarity measures (as used in the swap test) for capturing structural relationships between image
patches. These results support our central hypothesis: Can entanglement model relationships between text
tokens—and, by extension, image patches—in a manner analogous to its ability to represent correlations in
many-body quantum systems?

To further investigate whether quantum models offer an advantage over classical attention on small datasets,
we systematically vary the dataset size by subsampling to 100, 1,000, and 10,000 samples. This enables
a direct performance comparison between classical and quantum attention models at different data scales.
As shown in Tables [3| and 4] quantum attention models—particularly those using entanglement-based mea-
sures—achieve higher test accuracy and lower Nearest Exemplar accuracy (NEA) than classical attention
models on smaller datasets.
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Table 3: Performance of super-dense quantum attention models on various image datasets.
This table compares the performance of entanglement-based attention models—Rényi entropy (RE) and
Von Neumann entropy (VN)—alongside the swap test-based attention model (ST) and classical dot-product-
based attention across three datasets: MNIST, FMNIST, and MNIST-1D. For quantum attention models,
super-dense encoding feature maps are utilized. Performance is measured in terms of Interquartile Mean
(IQM) and standard deviation. Quantum entanglement-based attention models exhibit superior performance
when fewer data points are available. This trend is evident in their improved results across all datasets when
considering 100 and 1000 samples, as well as their strong performance on the RP and MC datasets in Table
Furthermore, entanglement entropy-based methods surpass swap test-based attention models, with Rényi
entropy-based attention consistently outperforming Von Neumann entropy-based attention.

Dataset Model Train Acc. Test Acc. Test NEA
Classical 100.00 + 0.00 | 29.43 + 4.65 | 28.50 £ 4.31
RE (this work) 100.00 + 0.00 | 31.20 &+ 4.20 | 33.14 £ 3.49
MNIST-1D (100) VN (this work) 100.00 £ 0.00 | 32.67 + 3.12 | 36.00 + 2.86
ST (proposed baseline) | 100.00 £ 0.00 | 34.25 £ 4.77 | 32.40 + 4.74
Classical 68.83 £ 2.00 | 43.92 + 2.11 | 41.80 £ 0.98
RE (this work) 68.80 £+ 2.44 | 47.64 + 4.32 | 42.90 £ 1.63
MNIST-1D (1000) VN (this work) 64.95 £ 2.65 | 42.90 &+ 3.14 | 41.95 £ 1.31
ST (proposed baseline) | 56.82 &+ 3.28 | 43.80 £ 2.67 | 41.30 &+ 1.67
Classical 66.65 + 3.63 | 65.18 £ 3.67 | 59.90 + 3.05
RE (this work) 57.00 £ 4.18 | 55.09 £ 4.29 | 53.07 &= 4.21
MNIST-1D (10000) VN (this work) 48.95 £ 4.74 | 47.26 £ 4.48 | 44.68 £ 3.73
ST (proposed baseline) | 46.78 4+ 4.69 | 45.46 + 4.84 | 43.14 £+ 4.72
Classical 100.00 + 0.00 | 57.00 + 3.82 | 55.50 + 3.28
RE (this work) 100.00 £ 0.00 | 66.00 £+ 2.44 | 65.00 &= 3.25
MNIST (100) VN (this work) 100.00 + 0.00 | 66.40 + 4.33 | 63.60 £ 5.10
ST (proposed baseline) | 100.00 + 0.00 | 68.33 £+ 4.40 | 65.20 + 5.57
Classical 99.50 £ 0.35 | 85.30 £ 1.07 | 82.05 &= 1.85
RE (this work) 97.38 £ 0.85 | 81.80 £ 1.27 | 76.50 &= 1.82
MNIST (1000) VN (this work) 94.72 £1.47 | 81.48 = 0.90 | 73.76 £ 1.35
ST (proposed baseline) | 90.76 + 0.95 | 80.60 £ 1.12 | 73.96 + 1.77
Classical 93.26 £ 0.36 | 92.66 = 0.44 | 88.58 &= 1.36
MNIST RE (this work) 91.37 £ 046 | 90.67 £ 0.45 | 82.85 £ 1.26
VN (this work) 90.55 £ 0.31 | 90.06 + 0.38 | 85.35 &= 1.39
ST (proposed baseline) | 84.95 4+ 0.48 | 84.69 + 0.57 | 76.08 + 1.34
Classical 100.00 £ 0.00 | 67.33 £ 4.20 | 69.20 &= 4.49
RE (this work) 100.00 + 0.00 | 71.50 &+ 3.26 | 66.00 &= 3.49
FMNIST (100) VN (this work) 100.00 + 0.00 | 71.00 = 3.58 | 63.00 £ 4.00
ST (proposed baseline) | 100.00 + 0.00 | 71.67 4+ 2.65 | 66.00 £+ 3.90
Classical 97.15 £ 0.67 | 76.12 £ 1.03 | 75.25 &= 0.76
RE (this work) 94.43 £ 0.96 | 75.60 = 1.00 | 72.70 &= 0.98
FMNIST (1000) VN (this work) 91.34 + 1.32 | 74.85 £ 0.71 71.40 4+ 0.86
ST (proposed baseline) | 89.92 4+ 1.10 | 73.84 + 1.11 | 70.28 £+ 0.77
Classical 84.68 £ 0.30 | 83.85 + 0.27 | 81.20 X 0.58
FMNIST RE (this work) 83.18 £ 0.31 | 82.56 + 0.31 | 78.18 &= 0.87
VN (this work) 81.27 £ 0.41 | 80.57 £ 0.38 | 75.68 £+ 0.58
ST (proposed baseline) | 81.38 & 0.17 | 80.73 £ 0.18 | 76.21 £+ 0.77
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Table 4: Performance of dense quantum attention models on various image datasets. This
table compares the performance of entanglement-based attention models—Rényi entropy (RE) and Von
Neumann entropy (VN)—alongside the swap test-based attention model (ST) and classical dot-product-
based attention across three datasets: MNIST, FMNIST, and MNIST-1D. Performance is measured in terms
of interquartile mean (IQM) and standard deviation. For quantum attention models, dense encoding feature
maps are employed. The results align with observations from super-dense encoding, showing that quantum
entanglement-based attention models perform better when fewer data points are available. This trend is
particularly evident in their improved results across all datasets when considering 100 and 1000 samples,
as well as their superior performance on the RP and MC datasets in Table [I} Furthermore, entanglement
entropy-based methods outperform swap test-based attention models, with Rényi entropy-based attention
consistently achieving better results than Von Neumann entropy-based attention.

Dataset Model Train Acc. Test Acc. Test NEA
Classical 100.00 + 0.00 | 29.43 + 4.65 | 28.50 £ 4.31
RE (this work) 100.00 £ 0.00 | 33.00 £ 5.17 | 34.00 &= 3.98
MNIST-1D (100) VN (this work) 100.00 £ 0.00 | 31.20 & 4.72 | 29.33 + 4.40 3
ST (proposed baseline) | 100.00 £ 0.00 | 32.00 £ 4.40 | 29.50 £+ 4.56
Classical 68.83 £ 2.00 | 43.92 + 2.11 | 41.80 £ 0.98
RE (this work) 71.53 £ 2.09 | 44.00 £ 3.00 | 43.05 £ 0.93
MNIST-1D (1000) VN (this work) 65.10 £ 2.96 | 42.95 &+ 3.49 | 41.90 £ 1.38
ST (proposed baseline) | 54.80 4+ 2.20 | 43.70 + 2.01 | 41.64 + 1.71
Classical 66.65 £ 3.63 | 65.18 £ 3.67 | 59.90 & 3.05
RE (this work) 09.63 £ 4.25 | 57.15 £4.42 | 54.47 £ 3.75
MNIST-1D (10000) VN (this work) 60.00 £ 4.99 | 57.78 £ 5.06 | 54.60 X 4.22
ST (proposed baseline) | 47.70 4+ 2.89 | 46.03 + 3.02 | 43.19 + 3.45
Classical 100.00 £ 0.00 | 57.00 + 3.82 | 55.50 £ 3.28
RE (this work) 100.00 + 0.00 | 63.14 +4.04 | 61.00 £ 5.33
MNIST (100) VN (this work) 100.00 = 0.00 | 59.00 & 4.57 | 56.86 £ 4.63
ST (proposed baseline) | 100.00 £+ 0.00 | 67.50 + 4.75 | 64.50 + 5.93
Classical 99.50 £ 0.35 | 85.30 £ 1.07 | 82.05 &= 1.85
RE (this work) 99.00 £ 0.52 | 83.05 £ 1.11 | 78.05 &= 2.03
MNIST (1000) VN (this work) 97.22 + 0.71 | 80.10 £+ 1.44 74.96 4+ 1.58
ST (proposed baseline) | 91.15 4+ 0.68 | 80.80 + 1.00 | 73.20 + 1.25
Classical 93.26 £ 0.36 | 92.66 £ 0.44 | 88.58 &= 1.36
MNIST RE (this work) 91.14 £ 0.24 | 90.58 + 0.27 | 85.92 & 0.88
VN (this work) 90.60 + 0.18 | 90.17 £ 0.22 83.64 4+ 1.42
ST (proposed baseline) | 86.22 4+ 0.63 | 85.92 4+ 0.63 | 77.73 £ 1.43
Classical 100.00 £ 0.00 | 67.33 £ 4.20 | 69.20 X 4.49
RE (this work) 100.00 + 0.00 | 69.00 &+ 2.89 | 65.60 = 3.69
FMNIST (100) VN (this work) 100.00 4+ 0.00 | 70.44 £ 2.19 64.00 £+ 2.09
ST (proposed baseline) | 100.00 £+ 0.00 | 71.60 4+ 2.56 | 65.20 £+ 3.25
Classical 97.15 £ 0.67 | 76.12 + 1.03 | 75.25 & 0.76
RE (this work) 95.30 £ 1.05 | 75.65 &+ 1.04 | 73.20 &+ 1.37
FMNIST (1000) VN (this work) 9548 £ 0.79 | 75.20 £ 0.99 | 72.30 £ 0.89
ST (proposed baseline) | 88.97 + 0.88 | 73.80 + 1.08 | 70.45 £+ 0.81
Classical 84.68 £ 0.30 | 83.85 + 0.27 | 81.20 X 0.58
FMNIST RE (this work) 83.20 + 0.27 | 82.52 £ 0.30 | 78.52 & 0.61
VN (this work) 82.78 £ 1.06 | 82.00 &+ 1.00 | 77.72 £ 1.28
ST (proposed baseline) | 81.64 + 0.20 | 80.94 £ 0.19 | 76.23 £+ 0.88
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However, classical attention begins to outperform quantum models as the dataset size increases. Despite
this, entanglement-based attention remains competitive and consistently outperforms the swap test-based
baseline. For example, on the MNIST-1D dataset with 10,000 samples, both the classical and entanglement-
based models achieve similar test NEA values, indicating that entanglement-based models scale well. On
the full MNIST and FMNIST datasets, the test accuracy of entanglement-based models closely approaches
that of the classical Transformer, while swap test-based models lag behind in all scenarios.

Table 5: Performance of super-dense quantum attention models on various small image datasets
under quantum noise. This table compares the performance of entanglement-based attention mod-
els—Rényi entropy (RE) and Von Neumann entropy (VIN)—alongside the swap test-based attention model
(ST) and classical dot-product-based attention across three datasets: MNIST, FMNIST, and MNIST-1D.
Performance is measured in terms of interquartile mean (IQM) and standard deviation. To optimize qubit
usage, quantum attention models employ super-dense encoding feature maps. The results are consistent
with noisy simulations on RP datasets, showing a reduction in the train-test accuracy gap under noise.
However, noise negatively impacts overall model performance. Quantum attention models perform compa-
rably or better on smaller dataset sizes, particularly for MNIST and MNIST-1D. Additionally, entanglement

entropy-based attention consistently outperforms the swap test-based approach.

Dataset Model Train Acc. Test Acc. Test NEA

Classical 100.00 + 0.00 | 29.43 + 4.65 | 28.50 &+ 4.31

RE (this work) 74.00 £ 4.36 | 30.00 &+ 5.02 | 26.50 + 4.49

MNIST-1D (100) VN (this work) 74.75 &+ 3.58 | 31.00 £ 5.60 | 27.00 £ 4.31
ST (proposed baseline) | 74.00 + 5.02 | 30.00 £ 4.21 | 25.71 4+ 4.31
Classical 68.83 £ 2.00 | 43.92 + 2.11 | 41.80 £ 0.98
RE (this work) 54.53 £ 1.81 | 44.40 4+ 2.31 | 41.60 £ 1.78

MNIST-1D (1000) VN (this work) 54.55 £ 1.65 | 44.55 + 2.36 | 41.55 £ 1.86
ST (proposed baseline) | 54.40 + 1.65 | 43.95 + 1.61 | 40.95 + 1.56

Classical 100.00 & 0.00 | 57.00 & 3.82 | 55.50 £ 3.28

RE (this work) 100.00 = 0.00 | 63.50 + 4.24 | 62.80 &+ 4.85

MNIST (100) VN (this work) 100.00 4+ 0.00 | 66.40 £+ 4.33 | 63.60 £ 5.10
ST (proposed baseline) | 100.00 + 0.00 | 63.20 + 4.10 | 61.60 £ 4.90
Classical 99.50 £+ 0.35 | 85.30 + 1.07 | 82.05 £ 1.85

RE (this work) 90.60 + 0.54 | 80.37 £+ 1.03 73.20 + 1.56

MNIST (1000) VN (this work) 90.42 4+ 0.54 | 80.55 + 1.03 73.40 £+ 1.57
ST (proposed baseline) | 90.40 &+ 0.52 | 80.45 4+ 0.81 | 73.48 + 1.36
Classical 100.00 &+ 0.00 | 67.33 &= 4.20 | 69.20 £ 4.49

RE (this work) 100.00 4+ 0.00 | 68.00 £ 2.15 | 62.40 £ 3.25

FMNIST (100) VN (this work) 100.00 4+ 0.00 | 66.86 £ 2.27 | 62.40 £ 3.25
ST (proposed baseline) | 100.00 £ 0.00 | 67.20 4+ 2.50 | 62.86 + 2.94
Classical 97.15 £ 0.67 | 76.12 + 1.03 | 75.25 & 0.76

RE (this work) 75.72 £ 0.47 | 68.50 + 0.57 | 64.88 + 1.13

FMNIST (1000) VN (this work) 75.95 £ 0.41 | 68.40 + 0.62 | 64.88 £+ 1.04
ST (proposed baseline) | 75.12 & 0.70 | 68.26 + 0.46 | 63.85 £+ 0.95

6.4 Performance of attention models on image datasets under quantum noise

Given the high computational cost of simulating noise in large-scale quantum circuits, we restrict our noise
evaluation to smaller versions of the image datasets (100 and 1,000 samples) using the super-dense encoding
scheme. The goal is to understand the impact of realistic quantum noise on model performance. The results
are presented in Table

We observe that the presence of noise slightly degrades model performance on small datasets. However, it
also reduces the train-test accuracy gap, indicating improved generalization. This suggests that quantum
noise can act as a form of regularization in hybrid quantum-classical models. Under noisy conditions,
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classical attention models outperform quantum models. Nevertheless, entanglement-based and swap test-
based attention mechanisms perform comparably to each other.

6.5 Performance of quantum attention models with IQP encoding

We evaluate the performance of quantum attention mechanisms using Instantaneous Quantum Polynomial-
time (IQP) encoding to map classical vectors into quantum states. IQP encoding is often considered one
of the most inherently “quantum” data encoding techniques and is believed to have the potential for of-
fering quantum computational advantages. However, the circuit complexity associated with IQP encoding
introduces significant simulation overhead, especially for systems with a higher qubit count.

To address this limitation, we conduct our evaluation on the MNIST-1D dataset, where each token is encoded
as a vector of size three. This setup allows us to represent both the query and key vectors using a total of
six qubits, thereby keeping the simulation computationally tractable.

Under noiseless conditions, the test accuracies achieved by the classical attention model, the entanglement-
based quantum attention model, and the swap test-based quantum attention model are 45.55%, 42.43%,
and 42.40%, respectively. Notably, the results suggest that increased quantum circuit complexity—such as
that introduced by IQP encoding—does not necessarily translate to improved performance. This highlights
the challenge of identifying encoding techniques that effectively leverage the strengths of quantum models
in practical machine learning tasks.

Due to the substantial simulation time required for IQP circuits, we do not evaluate this encoding strategy
on larger datasets or with higher-dimensional token vectors.

7 Discussion

In this work, we proposed entanglement-based quantum attention models that utilized entanglement entropy
to evaluate the similarity between the query and the key vectors. Although our results on large-scale classical
datasets did not show a clear performance advantage over classical attention, the proposed quantum attention
models demonstrated notable benefits in specific settings.

In particular, quantum attention exhibited improved generalization in smaller datasets, as observed in the
MC and RP text classification tasks and in reduced versions of MNIST and MNIST-1D. These results suggest
that quantum attention may be particularly well-suited for applications with limited data availability, such
as those in the medical or scientific domains. However, determining the precise dataset size or data regime
in which classical attention begins to consistently outperform quantum models remains an open research
question. Addressing this could help identify the contexts in which quantum attention offers the greatest
practical benefit.

We also evaluated the robustness of the models under realistic noisy conditions by simulating noise using
parameters derived from IBM quantum hardware. The results showed that, while the noise slightly de-
graded overall performance, it reduced the generalization gap, indicating a potential regularization effect.
Interestingly, on the RP dataset, noisy quantum attention models outperformed their noiseless counter-
parts, suggesting that in certain cases, noise enhanced model generalization and prevented overfitting. This
phenomenon merits further investigation.

Our study explored three types of feature maps for encoding classical data into quantum states: (i) super-
dense encoding, (ii) dense encoding, and (iii) Instantaneous Quantum Polynomial-time (IQP) encoding.
Across experiments, quantum attention generally performed better on smaller datasets, regardless of the en-
coding scheme. However, we did not observe a consistent trend favoring one encoding method over another.
In particular, IQP encoding, despite its higher circuit complexity, did not yield superior performance, un-
derscoring the difficulty of identifying encoding strategies that could effectively exploit the potential benefits
arising from the quantum nature of the encoding.

Overall, our findings indicate that entanglement entropy provides a meaningful similarity measure for quan-
tum attention mechanisms, akin to how entanglement quantifies correlations in many-body quantum systems.
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To our knowledge, this was the first demonstration of using entanglement-based metrics within an attention
mechanism for classical machine learning tasks. Furthermore, we found that entanglement-based attention
consistently outperforms the swap test, a widely adopted technique in quantum machine learning, for this
purpose.

8 Limitations and future work

To fully harness the potential of quantum attention, future research should focus on evaluating the proposed
model on larger datasets. Understanding its behavior with varying qubit counts is essential for assessing
scalability and identifying datasets where the model exhibits an inductive bias, paving the way for practical
applications.

In this work, we employed Quantum Feature Maps (QFMs) to encode classical vectors into quantum states.
Future research could explore parameterized QFMs, which enhance expressivity and may lead to improved
performance. Furthermore, all experiments were conducted on a classical simulator, limiting both scalability
and dataset size. Evaluating the model on quantum hardware with a larger qubit count is a crucial next
step.

Moreover, we assumed static noise in our quantum circuits, which means that the noise characteristics
remained unchanged throughout the learning process. However, real quantum systems experience noise
drift, where noise varies over time. Accounting for this effect is beyond the scope of this study, but it
presents an interesting direction for future research.
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A Quantum circuits of quantum feature maps and swap test

The circuit schematics of different quantum encoding strategies employed in this work. Refer to Figure
(super-dense), Figure [2| (dense), Figure [4] (IQP) and Figure [5( (swap test).

B Attention heatmaps

We present the attention coefficients computed by the first layer of quantum and classical attention mecha-
nisms on the RP dataset. This provides insight into the features that the models prioritize. The attention
heatmaps are shown in Figure[6] The attention coefficients demonstrate that the quantum attention layers
can focus on significant features in the data, leveraging the entanglement entropy between the query and
key states.
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Figure 2: Super-dense angle encoding circuit. Encoding query and key vectors (of length 12) into the
parameters of RX and RY gates using 6 qubits. This is followed by a PQC made of controlled-RX gates.
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Figure 3: Dense angle encoding circuit. Encoding query and key vectors (of length 12) into the param-
eters of RX and RY gates using 12 qubits. This is followed by a PQC made of controlled-RX gates.

Additionally, it can be observed that these coefficients exhibit distinct patterns for each class. This charac-
teristic differentiates the attention layers from a simple multi-layer perceptron (MLP) layer, which assigns
uniform coefficients to all features.
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Figure 4: IQP encoding circuit. Encoding query and key vectors (of length 3) into the parameters of RZ
and RZZ gates using 6 qubits. This is followed by a PQC made of controlled-RX gates.
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Figure 5: Swap test circuit. A dot product similarity is computed in the quantum embedded space using
the swap test circuit.

C Comparison with MLP

We compare the performance of the quantum attention model with a Multi-Layer Perceptron (MLP) on the
RP and MC datasets. The MLP consists of three hidden layers and one output layer. Each hidden layer
employs weight matrices of size 48 x 48, and the output layer has a weight matrix of size 48 x 2, resulting in
approximately 7,000 trainable parameters—substantially more than the quantum attention-based models.
Note that, as the RP dataset contains 4 tokens, each of length 12, the dimensions of the weight matrices are
48 x 48 and 48 x 2.

For the MC dataset, the MLP achieves 100% accuracy on the test set with ease (see Figure . However,
for the RP dataset, the MLP struggles to generalize and exhibits significant overfitting (see Figure [7)). This
experiment highlights that the quantum attention models do not overfit and can generalize well compared
to an MLP. It also indicates that entanglement-based attention models are able to select important features
based on entanglement entropy and do not degenerate into an MLP.
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Figure 6: Quantum and classical attention heatmaps. The heatmaps of the attention coefficients
(using Renyi entropy) for the CLS token, calculated with respect to all other tokens in the RP dataset, are
shown here. The coefficients are derived after applying the softmax activation. These heatmaps highlight
the attention or importance given by the attention layers to each token while computing the output. Each

row corresponds to a sample from a particular class.

The plot on the left (right) displays the attention

coefficients for all samples belonging to class 0 (class 1) with respect to the CLS token. The samples are
grouped according to their predicted class. Both the quantum and classical attention models demonstrate
the ability to assign importance to specific tokens, capturing distinct attention patterns for each class. This
confirms that both models successfully learn the attention mechanism, varying the level of importance based
on class-specific features.
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Figure 7: Comparison of quantum attention with MLP on RP dataset.
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Figure 8: Comparison of quantum attention with MLP on MC dataset.
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