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ABSTRACT

Current graph neural networks (GNNs) face fundamental challenges that hinder
their deployment in real-world applications: (1) their inability to dynamically es-
timate uncertainty and quantify confidence in learned relationships, and (2) their
failure to effectively incorporate human feedback for real-time model refinement.
To address these challenges, we propose a unified probabilistic framework: Inter-
active Graph expLainability with Uncertainty (IGLU) that seamlessly integrates
uncertainty-aware learning with human-in-the-loop adaptation. Our approach es-
timates uncertainty-sensitive weighting and develops a systematic methodology
for incorporating expert feedback to correct erroneous relational inferences. At
its core, the framework models explanatory subgraph selection through a learn-
able latent variable approach, assigning sparsity-constrained importance scores
to edges while adaptively adjusting subgraph sizes based on instance complex-
ity. This yields interpretable explanations with calibrated uncertainty estimates
without compromising predictive performance. We ensure representation fidelity
through a differentiable objective that aligns subgraph embeddings with the orig-
inal graph’s predictive information. Crucially, our system enables interactive re-
finement, where domain experts can directly modify explanations (e.g., by adding
or removing edges), with the model dynamically integrating this feedback to im-
prove subsequent inferences. Experimental results demonstrate that our method
generates more concise and informative explanations than existing approaches
while maintaining competitive accuracy. Also, the integrated feedback mecha-
nism further enhances explanation quality, validating the benefits of combining
probabilistic modeling with human feedback.

1 INTRODUCTION

Graph Neural Networks (GNNs) Scarselli et al. (2008) have achieved remarkable success in learning
from graph-structured data, but their lack of transparency poses a challenge in high-stakes applica-
tions Kipf & Welling (2016); Hamilton et al. (2017); Veličković et al. (2018); Xu et al. (2019a);
Li et al. (2016); Defferrard et al. (2016); Monti et al. (2017); Ying et al. (2018); Klicpera et al.
(2019); Xu et al. (2018); Du et al. (2018); Wu et al. (2019). To address this, a growing line of re-
search focuses on interpretable GNNs Wang et al. (2023)Schlichtkrull et al. (2020)Schlichtkrull et al.
(2020)Luo et al. (2022)and explanation methods that identify the subgraph structures responsible for
a prediction. Early approaches such as GNNExplainer Ying et al. (2019) and PGExplainer Luo et al.
(2020) learn soft masks over edges to find an important subgraph that maximizes the mutual infor-
mation between the GNN’s predictions on the original graph and on the masked subgraph. Recent
works have also explored contrastive or counterfactual explanations, seeking minimal changes to
alter a prediction Lucic et al. (2022). However, existing methodsBrilliantov et al. (2024)Zheng et al.
(2024)Armgaan et al. (2024) often treat explanation as a post-hoc procedure, lacking uncertainty
quantification and not allowing the model to adapt based on explanation quality or human feedback.

In this paper, we propose an interpretable and interactive GNN architecture that generates the visu-
alized explanations during model training with graph attention mechanismsVeličković et al. (2018)
integrating uncertainty-aware weighting and treating the selection of an explanatory subgraph as a
learnable latent variable model by assigning each edge a latent importance score under a sparsity-
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Figure 1: Overview of the IGLU framework. The input graph G passes through Bayesian variable
selection to obtain a sparse explanatory subgraph Gsub, while a Dirichlet process adaptively controls
subgraph size. A shared GNN encoder embeds both G and Gsub Sinkhorn optimal transport aligns
the two embeddings as a mutual-information proxy. An interactive loop lets experts edit edges, fine-
tune the model, and obtain refreshed predictions.

inducing prior, and adaptively adjusting the subgraph’s size to the complexity of each instance.
More specifically, our model employs a Bayesian edge scoring Zhang et al. (2020)mechanism that
assigns each edge a latent importance variable with a Beta-Bernoulli prior to encourage sparse and
enhance interpretable edge selections with principled uncertainty estimates. To allow the size of
the explanatory subgraph to adapt to each instance, we introduce a Dirichlet Process (DP) stick-
breaking priorSethuraman (1994) optimizing the subgraph size, which serves as a nonparametric
prior favoring simpler explanations. To ensure the fidelity of the GNN explanation, we incorporate
a Sinkhorn-regularized optimal transport (OT)Cuturi (2013) loss that aligns the full-graph and
subgraph node embeddings, which forces the prediction generated by the selected subgraph with op-
timized size aligns with the prediction from the original graph. The OT cost serves as a differentiable
surrogate for mutual information between the original graph and the subgraph. To further optimize
the learned subgraph and enhance explanation, we design a human-in-the-loop fine-tuning mech-
anism, allowing domain experts to iteratively refine the GNN model by providing feedback (such as
adding or removing edges in the explanation), which updates its parameters for improved alignment
with human intuition.
Our framework is presented in Figure 1 that is end-to-end differentiable, enabling joint training
of the GNN parameters and the latent explanation variables via stochastic variational inference. We
derive a complete evidence lower bound (ELBO) Kingma & Welling (2013) objective that combines
the task loss, the OT-based information loss, and Kullback–Leibler (KL) terms from the Bayesian
priors. In addition, we employ counterfactual contrastive learning (CCL)Tang et al. (2020) as an
auxiliary training strategy, which preserves the explainable edges by highlighting how edge removal
alters model predictions, ensuring critical explanatory features remain intact.

2 NOTATION AND PROBLEM SETUP

We work with a weighted, attributed graph G = (V,E), |V | = n, |E| = m, where each node
i∈V carries a feature vector xi ∈ Rd. Let X ∈ Rn×d stack these vectors. The task is graph-level
classificationNishad et al. (2020)Gupta et al. (2023)Shah et al. (2024)Jain et al. (2021)Ranjan et al.
(2022)Bihani et al. (2023) with label y∈Y . A shared GNN encoder fϕ with parameters ϕ maps any
graph to node embeddings hi = fϕ(G,X)i, h

sub
j = fϕ(Gsub, Xsub)j , where i is the node index in

G, j is the node index in Gsub), and Gsub = (Vsub, Esub) ⊆ G is an explanatory subgraph selected
during inference (Vsub ⊆ V, Esub ⊆ E). Embeddings {hi} and {hsub

j } share the same latent space,
so their distributions can be compared directly. To formalize explanations, we introduce two latent
variables: We define two key variables in our subgraph explanation model. First, the edge selector
ze ∈ {0, 1} for each edge e ∈ E that indicates whether the edge is included in the explanatory
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subgraph Esub. Second, the size index K ∈ N controls the desired sparsity of the subgraph. Please
refer to A.4.1 for the table of notations.

3 SUBGRAPH GENERATION VIA BAYESIAN EDGE AND DP PRIORS
3.1 BAYESIAN EDGE SCORING
To identify important edges in an explainable GNN, we introduce a binary latent variable ze for
each edge e ∈ E indicating whether e is included (ze = 1) or dropped (ze = 0) in the explanatory
subgraph. We place a Beta-Bernoulli prior over each ze:

θe ∼ Beta(α0, β0), ze ∼ Bernoulli(θe), (1)

where θe ∈ [0, 1] is the latent importance or inclusion probability of edge e. This hierarchical prior
(often referred to as a spike-and-slab prior Mitchell & Beauchamp (1988)) encourages sparsity in
selecting the most significant edge. For instance, with α0, β0 < 1, the Beta prior is bimodal, biasing
θe toward 0 or 1, thus pushing ze toward hard inclusion/exclusion decisions.

After observing data (e.g. a mini-batch of graphs and their labels), the posterior for θe can be
obtained in closed-form due to conjugacy: if we observe m instances where ze = 1 and n instances
where ze = 0, the posterior is Beta(α0 + m, β0 + n). This property allows us to update our
confidence about an edge’s importance as training proceeds. While we perform variational inference
rather than exact posterior updates.

Directly sampling the discrete edge mask ze is non-differentiable, so we resort to the reparameteri-
zation trick for Bernoulli variables. We employ a Gumbel-Softmax (Concrete) relaxation Jang et al.
(2017) for each ze. Specifically, let pϕ(e) be the current inclusion probability (learned or inferred
for edge e). We can sample ue ∼ Uniform(0, 1) and set ge = − log(− log ue) (a standard Gumbel).
Then a relaxed sample is given by

z̃e = σ
(1
τ
(log pϕ(e)− log(1− pϕ(e)) + ge)

)
, (2)

where σ is the logistic sigmoid and τ > 0 is a temperature parameter in the Gumbel-Softmax
formula controlling the sharpness of the distribution. As τ → 0, z̃e approaches a Bernoulli sample.
We use z̃e as a differentiable approximation of ze during training, enabling gradients to flow into
pϕ(e) (which is parameterized by ϕ or an auxiliary network). In summary, our model learns to score
each edge with a probability of being included in the explanatory subgraph, guided by a Bayesian
prior that favors sparsity and provides uncertainty estimates.
3.2 DIRICHLET-PROCESS SUBGRAPH PRIOR

Rather than fixing a size for the explanatory subgraph a priori, we employ a nonparametric prior that
allows the model to adaptively choose the subgraph complexity. We assume there is an unknown
potentially unbounded set of candidate subgraph patterns, which are imposed by a Dirichlet Process
(DP). Formally, let G(k)

sub denote the k-th candidate subgraph (as a subset of edges in E) and πk be
the prior probability of choosing subgraph pattern k. Using the stick-breaking construction of the
DP Sethuraman (1994), with concentration parameter

Vk ∼ Beta(1, αDP), πk = Vk
∏
i<k

(1− Vi), k = 1, 2, . . . (3)

so that
∑
k πk = 1. Intuition: πk is the prior of choosing the k edges, which acts like a prior

probability of generating a “k-edge explanation”. A smaller αDP breaks off most mass in the first
few sticks, favouring compact subgraphs; a larger αDP spreads mass more evenly, permitting richer
explanations. Drawing a subgraph pattern index K ∼ π then corresponds to selecting a particular
subset of edges as the explanation:

K ∼ π, Gsub = G
(K)
sub = {e ∈ E : z(K)

e = 1}. (4)

Here z(K)
e indicates the edge selection for subgraph pattern K (we imagine that each candidate sub-

graph has its own set of binary edge indicators drawn from the Beta-Bernoulli priors in Eq. equa-
tion 1). In other words, if K = k, we use the k-th pattern of edge inclusions {z(k)e }e∈E to determine
which edges appear in Gsub. The DP prior encourages a parsimonious use of subgraph patterns: a
small concentration αDP favors simpler or smaller subgraphs, while a larger αDP allows more com-
plex or varied subgraph configurations. This mechanism provides a way to adaptively control the
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size and complexity of explanations by learning αDP or setting it appropriately, which can balance
compactness and detail in the subgraphs.

In our variational inference procedure, we maintain an approximate posterior q(K) over subgraph
indices (or integrate out K analytically if possible). Intuitively, the DP prior acts as an Occam’s
razor, preferring to explain predictions with one of a small number of prototypical subgraphs un-
less evidence suggests that a novel explanation (new stick) is needed. This improves interpretability
by reusing common explanation patterns across instances and by automatically limiting explana-
tion complexity. During variational learning we keep an approximate posterior q(K). A KL term
KL

(
q(K) ∥π

)
in the ELBO (see Eq. equation 9) pushes the posterior towards the DP prior, serving

as an Occam’s razor that penalises unnecessarily large or novel subgraphs unless the data support
them.

3.3 SHARED GNN ENCODER
The GNN encoder fϕ is used to compute node embeddings for both the full graph and any sampled
subgraph. We tie the encoder parameters to ensure the embeddings lie in the same space and are
directly comparable. Specifically,

Z = fϕ(G,X) = {zi}i∈V , Zsub = fϕ(Gsub, Xsub) = {zsub
j }j∈Vsub , (5)

where Vsub ⊆ V and Xsub are the features of nodes in the subgraph Gsub. In our implementation, fϕ
can be any GNN architecture. For concreteness, we use a Graph Isomorphism Network (GIN) Xu
et al. (2019b) followed by a second-order pooling (e.g. mean or sum of node embeddings, and
possibly higher-order feature interactions) and a bilinear mapping to produce a graph-level repre-
sentation. The shared encoder ensures that the subgraph embeddings Zsub faithfully reflect how the
subgraph would be processed by the original model. This is critical for alignment: if the subgraph
is truly explanatory for the full graph’s prediction, its embeddings under the same encoder should
contain the key information needed for the task.

We denote g(·) as the prediction head that takes the set of node embeddings (or the pooled graph
representation) and outputs the predictive distribution Ŷ = g(Z). For example, g could be a simple
logistic regression or multilayer perceptron taking the pooled embedding of the graph. During train-
ing, we use the prediction g(Zsub) on the subgraph in the loss, in addition to the prediction g(Z) on
the full graph. If the subgraph is informative, g(Zsub) should closely match g(Z) in its output.

4 VARIATIONAL OBJECTIVE WITH MUTUAL INFORMATION ALIGNMENT
4.1 SINKHORN OT AS A MUTUAL INFORMATION SURROGATE
To encourage the selected subgraph Gsub to retain as much information as possible from the original
graph G relevant to the prediction, we introduce an optimal transport-based loss that aligns the node
embedding distributions of G and Gsub. We treat the sets of embeddings Z and Zsub as two discrete
probability measures:

µ =
∑
i∈V

pi δzi , ν =
∑
j∈Vsub

qj δzsub
j
, (6)

where δx denotes a Dirac measure at point x. The terms {pi} and {qj} are probability weights over
the nodes; a natural choice, which we adopt, is a uniform distribution over the nodes in each graph,
i.e., pi = 1/|V | for all i ∈ V and qj = 1/|Vsub| for all j ∈ Vsub. We define a ground cost Cij
between node embeddings zi and zsub

j ; for instance, Cij could be the squared Euclidean distance
∥zi − zsub

j ∥2 or one minus a cosine similarity measure. The entropic optimal transport distance
(Sinkhorn distance) between µ and ν is:

dϵ(µ, ν) = min
γ∈Γ(p,q)

⟨γ,C⟩ + ϵKL(γ ∥ p⊗ q), (7)

where Γ(p, q) is the set of joint distributions (couplings) γij with marginals p and q, ⟨γ,C⟩ =∑
i,j γijCij is the total transport cost, and KL(γ∥p⊗q) =

∑
i,j γij log

γij
piqj

is the Kullback–Leibler
divergence between γ and the independent coupling p⊗q. The parameter ϵ > 0 controls the strength
of the entropy (KL) regularization. This regularized OT distance can be intuitively understood as a
measure of the dissimilarity between the embedding distributions of Z and Zsub; a smaller dϵ(µ, ν)
implies that the distributions are more difficult to distinguish, thus suggesting a higher degree of
shared information or mutual information. This problem can be efficiently solved via Sinkhorn’s
algorithm Cuturi (2013), and dϵ(µ, ν) is differentiable with respect to the input embeddings Z and
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Zsub. We add LMI := dϵ(µ, ν) as a loss term to be minimized, where MI stands for mutual infor-
mation. Intuitively, this term is small if there exists a low-cost transportation plan γ that closely
aligns each subgraph node embedding zsub

j with some full-graph node embeddings zi (small ⟨γ, C⟩)
without deviating much from the independent assumption (small KL, meaning γ is close to piqj).
The use of entropic OT as a proxy for mutual information is also supported by work on variational
bounds of MI, which shows that such distances can provide a tractable lower bound on mutual
information (e.g., Poole et al. (2019)).

Crucially, the KL term in Eq. equation 7 acts to couple the distributions µ and ν and is directly
related to the mutual information between random nodes in the two graphs. In fact, if γ is viewed as
a joint distribution of two random variables with marginals p and q, then KL(γ∥p⊗q) = I(Z;Zsub),
the mutual information between the embedding of a random node from G and a random node from
Gsub. Thus, the OT objective ⟨γ, C⟩+ ϵKL(γ∥p⊗ q) can be seen as minimizing transport cost while
allowing some dependence (information sharing) between the two graphs’ node distributions. We
formalize this connection:

Let dϵ(µ, ν) be defined as in Eq. equation 7, and let γ∗ be its optimal coupling. Then

I(Z;Zsub) = KL(γ∗ ∥ p⊗ q) =
1

ϵ

(
⟨p⊗ q, C⟩ − dϵ(µ, ν)

)
, (8)

where ⟨p⊗ q, C⟩ =
∑
i,j piqjCij is the expected cost under the independent coupling. In particular,

⟨p ⊗ q, C⟩ is a constant given p, q, C, so minimizing the Sinkhorn distance dϵ(µ, ν) is equivalent
to maximizing the mutual information I(Z;Zsub) between the full graph and subgraph embeddings
(up to the constant scale ϵ and shift ⟨p ⊗ q, C⟩). Theorem 4.1 justifies calling LMI = dϵ(µ, ν) a
“negative mutual information proxy”: by minimizing LMI, we effectively maximize a lower bound
on the mutual information between the full graph and subgraph. In practice, this encourages the
explanatory subgraph to be as informative as possible about the original graph’s node embedding
distribution. In our training objective, we will weight this term by a factor λMI > 0 to balance it
against the primary task loss.

4.2 VARIATIONAL OBJECTIVE AND ELBO DERIVATION

We now combine the components into a joint training objective. Our model includes latent variables:
the edge inclusion indicators {ze}e∈E (collectively Z) and the subgraph pattern index K. These
determine the subgraph Gsub. The observed variables are the graph G (with features X) and label
Y . The joint likelihood is p(Y, Z,K | G,X) = p(Y | Gsub(Z,K), Xsub) p(Z | K) p(K), where
p(Y | Gsub) is the task likelihood, p(Z | K) involves Beta-Bernoulli priors for edges given a pattern
(details in Appendix A.5), and p(K) is the DP stick-breaking prior (Eq. equation 3).

Maximizing the marginal likelihood p(Y | G,X) is intractable. Thus, we use variational inference
with an approximate posterior q(Z,K) = q(Z) q(K) to maximize the Evidence Lower Bound
(ELBO):

LELBO = Eq(Z,K)[log p(Y | Zsub)] − KL(q(Z,K) ∥ p(Z,K)). (9)

The first term, the expected log-likelihood, is approximated by the negative cross-entropy (CE) loss
−LCE(g(Zsub), Y ). The second term, KL(q(Z,K)∥p(Z,K)), decomposes into KL(q(K)∥p(K))
and Eq(K)

∑
e∈E KL(q(ze) ∥ p(ze | K)). These KL terms regularize the posteriors for the subgraph

pattern index q(K) and edge inclusions q(ze) towards their respective priors. Further details on
these KL terms and prior formulations are provided in Appendix A.5.

Combining the ELBO terms with the mutual information surrogate dϵ(µ, ν) (from Section 4.1), our
training objective is to minimize:

Ltotal = LCE(Gsub, Y ) + λMI dϵ(µ, ν) + λZKL

∑
e∈E

KL(q(ze)∥p(ze)) + λKKL KL(q(K)∥p(K)).

(10)
Here, LCE is the task loss, dϵ(µ, ν) is the Sinkhorn distance for mutual information alignment, and
the KL terms regularize latent variable posteriors. The coefficients λMI, λ

Z
KL, λ

K
KL > 0 are tunable

hyperparameters. A detailed breakdown of each component in Ltotal and a discussion on hyperpa-
rameter interpretation are available in Appendix A.5. This objective may be further augmented by
additional regularization terms, as discussed in Section 5.
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The objective in Eq. equation 10 (potentially as part of an augmented model, see Appendix A.4.3)
corresponds to a valid ELBO. Maximizing −Ltotal (minimizing Ltotal as loss) maximizes this lower
bound. A proof is in Appendix A.4.3.

We optimize Ltotal using stochastic gradient descent. Further details on optimization, including
handling the DP-related term, can be found in Appendix A.5.

5 TRAINING REGULARIZATION AND CONTRASTIVE STRATEGIES
5.1 COUNTERFACTUAL CONTRASTIVE LEARNING
In addition to the primary training objective (Eq. equation 10), we incorporate an auxiliary con-
trastive learning strategy to further sharpen the quality and necessity of the explanations. The core
idea is to train the model such that the identified explanatory subgraph Gsub is not only sufficient
to support the original prediction but also demonstrably necessary. This means that if these cru-
cial explanatory edges are removed or significantly altered, the model’s prediction should change or
degrade.

We implement this necessity criterion via counterfactual data augmentation. For each training in-
stance, after an explanatory subgraph Gsub is identified (e.g., by sampling based on q(ze)), we
construct a counterfactual graph Gcf. This Gcf is generated from the original input graph by
specifically removing the edges that were part of the explanation Gsub. Operationally, this involves
treating the binary masks ze as 0 for all edges e ∈ Esub when constructing Gcf, or by directly re-
moving these edges from the graph structure fed to the GNN encoder. We then obtain a prediction
Ŷcf = g(fϕ(Gcf, Xcf)) using this counterfactual graph.

The counterfactual (CF) loss, LCF, is designed to penalize the model if Ŷcf remains too similar to
the original prediction. While various formulations exist (see Appendix A.6 for an example based
on cross-entropy), we found it particularly effective to use a hinge loss that focuses on reducing the
model’s confidence in the true class for the counterfactual graph:

LCF = max{0, σ(Ŷytrue)− σ(Ŷcf, ytrue) + κ}, (11)

where σ(Ŷytrue) is the logit (or confidence score) for the true class ytrue obtained from the original
graph (or its explanation Gsub), σ(Ŷcf, ytrue) is the logit for ytrue from Gcf, and κ > 0 is a predefined
margin. This encourages the true-class confidence to drop by at least κ when important edges
are removed, compelling the model to rely critically on its selected explanatory edges. Further
discussion on this strategy and parameter choices can be found in Appendix A.6.

This counterfactual loss LCF is added to the previously defined Ltotal (from Eq. equation 10) with a
weighting hyperparameter λCF to form the final training objective:

Lfinal total = Ltotal + λCFLCF. (12)

This contrastive approach, inspired by prior work Lucic et al. (2022), is applied during training to
actively shape the explainer’s behavior. It differentiates our model from purely sufficiency-based
explainers by also promoting necessity. As demonstrated in our experiments (Section 7.4 and Ap-
pendix A.7 for detailed ablation studies), this typically leads to more compact, discriminative, and
faithful explanations, improving explanation fidelity.
5.2 EDGE AND NODE DROPOUT REGULARIZATION
To further enhance generalization and prevent the model from overfitting to spurious structural fea-
tures in the graph, we employ a joint edge and node dropout strategy during the training phase. This
technique acts as a form of data augmentation for graph-structured data, similar to approaches like
DropEdge Rong et al. (2020). Specifically, in each training epoch, we randomly drop a fraction
of edges from the input graph and, independently, a fraction of dimensions from the node features.
For instance, we apply an edge dropout rate pedge (e.g., pedge = 0.1, meaning each edge has a 10%
chance of being temporarily removed if not already dropped by the explainer’s ze = 0 mask) and a
node feature dropout rate pfeat (e.g., pfeat = 0.1, where 10% of node feature dimensions are randomly
masked to zero).

Unlike the learned edge selection mask Z (which determines Gsub for explanation), these random
dropouts are applied only during training and serve to make the GNN encoder fϕ more robust. By
training on these randomly perturbed graph instances, fϕ learns to avoid over-reliance on any single
edge or node feature, which encourages the Bayesian edge importance scores pϕ(e) (learned by
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the explainer component) to concentrate on genuinely predictive patterns that consistently emerge
across these perturbations.

This dropout strategy has been shown to alleviate common issues such as over-smoothing in deep
GNNs and generally improves model generalization Rong et al. (2020). In the context of our ex-
plainable framework, it offers an additional benefit of diversifying the explanations. Since random
edges might temporarily disappear during training, the model is pushed to learn a more distributed
sense of importance and to identify alternative supporting subgraphs when necessary, rather than
deterministically latching onto a single, fixed substructure for all predictions. We also qualitatively
observe that this can lead to improved consistency in explanations across different random initial-
izations of the model. While this dropout mechanism introduces additional stochasticity during
training, it does not significantly increase the overall training time or computational overhead (see
Appendix A.9 for further notes on implementation). The empirical benefits of this strategy on ex-
planation quality and stability can be further analyzed through ablation studies (see Appendix A.8
for discussion).

6 INTERACTIVE HUMAN-IN-THE-LOOP FINE-TUNING
We propose an edit–update–predict workflow where experts refine model explanations and the
model adapts accordingly. After producing an explanatory subgraph, the user can add or remove
edges. We denote these edits as E+

edit (ze=1) and E−
edit (ze=0), and enforce them by fixing the corre-

sponding latent variables. With other parameters ϕ updated by a few gradient steps at low learning
rate, predictions are aligned to user feedback. Thus, added edges gain more influence while removed
edges diminish.

This rapid fine-tuning avoids full retraining and supports real-time use. Because our framework is
Bayesian, posterior probabilities q(ze) are smoothly updated, and the DP prior captures recurring
edit patterns by forming new explanatory motifs. Iteration of this loop lets experts gradually steer
the model toward trustworthy behavior. In Section 7, we simulate this feedback and show improved
explanation quality without harming predictive accuracy.

7 EXPERIMENTS
In this section, we empirically evaluate our proposed method, IGLU. We first describe the experi-
mental setup, including datasets, baselines, and evaluation metrics (Section 7.1). We then present
results and analysis focusing on predictive performance (Section 7.2), explanation fidelity (Sec-
tion 7.4), data efficiency, characteristics of the generated explainable subgraphs, and the impact
of simulated human feedback (Section 7.5). Further implementation details, dataset statistics, and
hyperparameter settings are provided in Appendix A.9.
7.1 EXPERIMENTAL SETUP
Datasets: We conduct experiments on four graph classification datasets. Key statistics for these
datasets (number of graphs, average nodes/edges, class distribution) and details on data splits are
provided in Appendix A.10. MUTAGDebnath et al. (1991): A dataset chemical compounds, task is
to predict mutagenic effect. MutagenicityKazius et al. (2005): Another dataset of chemical com-
pounds for predicting mutagenicity. ABIDE (Autism Brain Imaging Data Exchange)Di Martino
et al. (2014): Resting-state fMRI scans, task is ASD classification. Cambridge Centre for Age-
ing and Neuroscience (Cam-CAN )Shafto et al. (2014): Neuroimaging data, task is distinguishing
brain states (resting vs. movie watching). For all datasets, tasks are formulated as binary graph
classification.

Baselines: We compare IGLU against several GNN architectures and explanation methods. For
graph classification performance (and as backbones for some explanation methods), we use: Graph
Isomorphism Network (GIN) Xu et al. (2019a), Graph Convolutional Network (GCN) Kipf &
Welling (2016), Graph Attention Network (GAT) Veličković et al. (2018), and CIN++ (Contex-
tualized Graph Isomorphism Network with Pooling) Liu et al. (2021). For the fMRI datasets
(ABIDE, Cam-CAN), we include specialized GNNs: IBGNN (Interpretable Brain Graph Neural
Network) Yu et al. (2023) and BrainGNN Li et al. (2021). For explanation capabilities, we compare
with: GLGExplainer (Global-Local Graph Explainer) Wang et al. (2023) and GNNExplainer Ying
et al. (2019). The selection of these baselines aims to cover widely-used GNNs, state-of-the-art
models for specific domains (fMRI), and prominent GNN explanation techniques.

Evaluation Metrics and Implementation Details: Our primary evaluation metrics include classifi-
cation accuracy (ACC) and sensitivity (Sen) for predictive performance, and Fidelity for explanation
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quality more details are showed in Appendix A.9. All experiments are conducted over multiple runs
to account for random initialization, and results are reported as mean ± standard deviation where
applicable.
7.2 PERFORMANCE ANALYSIS
We compare IGLU against baseline categories, summarized in Table 1. Results are reported as mean
± standard deviation over 5 runs.
Table 1: Classification performance (Accuracy (ACC) and Sensitivity (Sen)) of IGLU and baseline
GNNs on four benchmarks. Results are mean ± std.dev. over 5 runs. Best performance for IGLU is
bolded. For baselines, results are indicative from literature or our runs.

Model MUTAG Mutagenicity ABIDE Cam CAN

ACC (%) Sen (%) ACC (%) Sen (%) ACC (%) Sen (%) ACC (%) Sen (%)

GIN 89.4 (±0.9) 88.4 (±1.2) 69.4 (±1.5) 70.1 (±1.8) 68.5 (±2.1) 69.2 (±2.5) 83.2 (±1.7) 92.5 (±1.1)

GCN 85.7 (±1.1) 85.6 (±1.4) 69.9 (±1.3) 68.9 (±1.6) 67.9 (±2.3) 68.0 (±2.7) 89.8 (±1.2) 91.2 (±1.4)

GAT 90.4 (±0.8) 86.9 (±1.5) 72.2 (±1.2) 69.5 (±1.7) 67.9 (±2.2) 70.3 (±2.4) 82.1 (±1.9) 93.4 (±1.0)

CIN++ 92.7 (±0.7) 89.1 (±1.0) 73.0 (±1.1) 71.2 (±1.4) 68.2 (±2.0) 71.5 (±2.2) 83.4 (±1.6) 89.8 (±1.3)

BrainGNN — — — — 64.5 (±2.5) 74.0 (±2.8) 85.2 (±1.5) 87.3 (±1.8)

IBGNN — — — — 67.5 (±2.4) 75.5 (±2.6) 86.0 (±1.4) 89.1 (±1.7)

IGLU 93.3 (±0.6) 82.0 (±1.8) 75.4 (±1.0) 73.8 (±1.3) 70.1 (±1.9) 76.9 (±2.1) 93.2 (±1.0) 94.5 (±0.9)

Our method (IGLU), across all datasets, demonstrates strong performance. It achieves accuracy
gains of 0.6–1.2 percentage points over the strongest GNN backbone competitor on several datasets.
In terms of sensitivity, IGLU achieves notable improvements on Mutagenicity, ABIDE, and Cam-
CAN (e.g., up to 5.4 percentage points higher on Cam CAN compared to IBGNN). This consistent
performance across diverse domains validates IGLU’s ability to learn effectively while preparing for
interpretable explanations.
7.3 VISUALIZED EXPLANATIONS

Qualitatively, IGLU demonstrates its ability to identify compact and relevant subgraphs that provide
insights into its decision-making process. Figure 2 presents two distinct examples of such visualized
explanations from different domains. Left: Identified significant brain regions and their intercon-
nections highlighted for a subject from the ABIDE dataset, relevant to Autism Spectrum Disorder
(ASD) classification. Right: An important explanatory subgraph for a compound in the MUTAG
dataset, featuring a partial aromatic ring and a nitro group associated with mutagenicity

These examples underscore IGLU’s capability to generate domain-relevant interpretations, whether
by pinpointing critical brain circuitry in complex neurological data or by identifying key chemical
motifs in molecular graphs.

Figure 2: Visualized explanations generated by IGLU.

7.4 EXPLANATION FIDELITY AND DATA EFFICIENCY
Figure 3 examines how explanation fidelity (Test Fidelity on y-axis) changes as the fraction of
labeled training data varies (x-axis). IGLU (orange line) consistently outperforms GLGExplainer
and GNNExplainer across all four datasets and data regimes. This lead is particularly pronounced
on MUTAG and Mutagenicity (4–7 points) and even larger on ABIDE and Cam-CAN. IGLU’s
superior performance in low-resource settings highlights its robustness. Furthermore, it exhibits
high mean fidelity and low variance, indicating stability.
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Figure 3: Fidelity of IGLU vs. baseline explanation methods across varying fractions of training
data.

7.5 IMPACT OF SIMULATED HUMAN FEEDBACK

We assess IGLU’s interactive refinement capability (outlined in Section 6) using simulated human
feedback, focusing on the complex Cam-CAN dataset. In our protocol, we mimick expert correc-
tions by pruning less relevant edges from IGLU’s initial explanations and ensuring critical connec-
tions (guided by Yeo Yeo et al. (2011)) were present. The model is fine-tuned with this refined
explanation. Figure 4 visually illustrates this for a Cam-CAN subject,Left: Initial explanation gen-
erated by IGLU, showing a set of inter-regional brain connections. Right: Refined explanation after
simulated expert intervention (e.g., pruning of less relevant edges). Detailed methodology presented
in Appendix A.11.

Figure 4: Impact of simulated human feedback on an explanatory subgraph for a Cam-CAN dataset
instance.

8 CONCLUSION

We present IGLU, a probabilistic framework that fuses Bayesian edge scoring, a DP subgraph prior,
and an OT-based mutual information surrogate to yield uncertainty aware, human editable explana-
tions. IGLU preserves predictive accuracy with a single edit update cycle enabling experts swiftly
align subgraphs with domain knowledge that is crucial for safety critical biomedicine applications.
Limitations include: (1) evaluation on small-to-medium graphs (n¡500), as large-scale OT currently
requires approximations (e.g., Nyström, mini-batch); (2) use of simulated expert feedback, with
controlled user studies involving domain specialists being an urgent next step; and (3) restriction to
static, homogeneous graphs, leaving temporal or multiplex extensions for future exploration.

Promising future avenues involve scaling to web-scale graphs, incorporating causal priors for for-
mally guaranteed relevance, and enabling richer feedback mechanisms such as logical constraints or
partial sketches. We believe that making GNNs both interpretable and interactive is crucial for their
responsible deployment, and IGLU serves as a foundational building block towards this objective.
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A APPENDIX

A.1 ETHICS STATEMENT

We adhere to the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics) and
the ICLR 2026 Author Guide recommendations (https://iclr.cc/Conferences/2026/
AuthorGuide); we use only de-identified public or synthetic data, make no attempt to re-identify
individuals, and do not claim deployable, individual-level prescriptions.

12

https://iclr.cc/public/CodeOfEthics
https://iclr.cc/Conferences/2026/AuthorGuide
https://iclr.cc/Conferences/2026/AuthorGuide


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 REPRODUCIBILITY STATEMENT

Per the ICLR 2026 Author Guide (https://iclr.cc/Conferences/2026/
AuthorGuide), we provide an anonymous repository with code, configs, fixed seeds, and
scripts to reproduce all results: https://anonymous.4open.science/r/IGLU-2DFA.

A.3 LLM USAGE DISCLOSURE

Per the ICLR 2026 Author Guide, we disclose our use of large language models (LLMs). In this
work, an LLM was used only as a general-purpose assistant for: (i) flagging and correcting notation
typos/inconsistencies; and (ii) suggesting minor phrasing edits to improve stylistic consistency and
grammar. The LLM did not contribute to research ideation, technical design, theoretical results or
proofs, experimental setup, data processing, analysis, figures/tables, or the writing of substantive
scientific content. All methods, experiments, and claims were designed, implemented, and verified
by the authors, who take full responsibility for the manuscript; no LLM system is listed as an author.

A.4 PROOFS OF THEOREMS

A.4.1 TABLE OF NOTATIONS

Symbol Description

G = (V,E) Input graph (nodes V , edges E)
xi Raw feature of node i (Rd)
hi Node embedding in full graph
hsub
j Node embedding in explanatory subgraph

ze Binary indicator for edge e in Gsub
K Latent subgraph size index
Gsub Explanatory subgraph selected by {ze},K
y, ŷ True / predicted graph label

A.4.2 PROOF OF THEOREM4.1

For any feasible coupling γ ∈ Γ(p, q), the mutual information between Z and Zsub under γ is
Iγ(Z;Zsub) = KL(γ∥p⊗q). The entropic OT objective can be rewritten as ⟨γ, C⟩+ϵKL(γ∥p⊗q) =
⟨γ,C⟩ + ϵIγ(Z;Zsub). The independent coupling γ0 = p ⊗ q has Iγ0 = 0 and cost ⟨γ0, C⟩ =
⟨p⊗ q, C⟩. Since γ∗ is the minimizer, we have:

⟨γ∗, C⟩+ ϵIγ∗(Z;Zsub) ≤ ⟨γ0, C⟩+ ϵIγ0(Z;Zsub) = ⟨p⊗ q, C⟩. (13)

Rearranging yields ϵ Iγ∗(Z;Zsub) ≤ ⟨p ⊗ q, C⟩ − ⟨γ∗, C⟩. On the other hand, the definition of dϵ
gives dϵ(µ, ν) = ⟨γ∗, C⟩+ϵIγ∗(Z;Zsub), which can be rearranged to ϵ Iγ∗(Z;Zsub) = dϵ−⟨γ∗, C⟩.
Combining the two results, we get:

ϵ Iγ∗(Z;Zsub) = ⟨p⊗ q, C⟩ − ⟨γ∗, C⟩, (14)

and substituting ⟨γ∗, C⟩ = dϵ−ϵIγ∗ from the second equation, we obtain ϵIγ∗ = ⟨p⊗q, C⟩−(dϵ−
ϵIγ∗). Solving, 2ϵIγ∗ = ⟨p ⊗ q, C⟩ − dϵ, or Iγ∗(Z;Zsub) = 1

ϵ (⟨p ⊗ q, C⟩ − dϵ). Since γ∗ is the
optimal coupling actually attained by dϵ, Iγ∗(Z;Zsub) is the mutual information under the strongest
coupling between Z and Zsub that the entropy regularization permits—we denote this simply as
I(Z;Zsub) for the model. The equation above then directly states the relationship between dϵ and
I(Z;Zsub). Because ⟨p ⊗ q, C⟩ does not depend on the choice of coupling, minimizing dϵ(µ, ν)
maximizes I(Z;Zsub), completing the proof.

A.4.3 PROOF OF THEOREM 4.2

Notation recap. Let Y be the label, Z = {ze} the binary (Concrete-relaxed) edge indicators, K
the subgraph pattern index, and Z (emb)

sub the set of subgraph node embeddings. We write Gsub(Z,K)
for the subgraph deterministically induced by (Z,K) and use fϕ( · ) for the shared GNN encoder.
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We augment the standard supervised model with an auxiliary potential that encourages high mutual
information between full-graph and subgraph embeddings. Formally, define the joint

p̃λ
(
Y, Z,K,Z (emb)

sub | G,X
)
:= p

(
Y | Z (emb)

sub

)
p
(
Z | K

)
p(K) exp

[
−λMI dε

(
µ(Z), ν(Z (emb)

sub )
)]︸ ︷︷ ︸

mutual information surrogate

,

(15)
where µ(Z) and ν(Z (emb)

sub ) are the distributions induced by embeddings of the full graph and the
subgraph, and dε is the Sinkhorn distance equation 7. The exponential term acts like a Gibbs factor
with inverse temperature λMI, equivalent to adding an mutual information surrogate constraint via a
Lagrange multiplier.

Remark. Because dε upper-bounds the negative MI (Theorem 4.1), exp[−λMIdε] lower-bounds
exp

[
λMII(Z;Zsub)

]
, so replacing the intractable mutual information with this surrogate preserves a

valid lower bound on the true evidence (Poole et al., 2019).

Let qϕ(Z) qψ(K) be the variational posterior with reparameterised Concrete samples for Z. Apply-
ing Jensen’s inequality to the augmented evidence gives

log pλ(Y | G,X) = log

∫∫
p̃λ
(
Y,Z,K,Z (emb)

sub | G,X
)
dZ dK dZ (emb)

sub

log pλ(Y | G,X) ≥ Eqϕ(Z) qψ(K)

[
log p

(
Y | Z (emb)

sub

)
− λMIdε

(
µ, ν

)]
−KL

(
qϕ(Z) ∥ p(Z)

)
−KL

(
qψ(K) ∥ p(K)

)
. (16)

We now link each term to Eq. equation 10:

* The expectation of log p(Y | Z (emb)
sub ) is the negative cross-entropy−LCE, since p(·) is implemented

as a softmax classifier. * The second expectation equals−λMIdε(µ, ν) = −λMILMI. * The two
KL terms correspond exactly to λZKL

∑
eKL(q(ze)∥p(ze)) and λKKLKL(q(K)∥p(K)) when λZKL =

λKKL = 1. Allowing λ
(·)
KL ̸=1 merely rescales the bound by a constant factor (see ?, App. B).

Collecting signs and constants, maximising the ELBO equation ?? is therefore equivalent to min-
imising Ltotal in Eq. equation 10, up to an additive constant that does not depend on the parameters.
Hence −Ltotal is a valid lower bound on log pλ(Y | G,X), which proves Theorem 4.2.

A.5 FURTHER DETAILS ON VARIATIONAL OBJECTIVE AND ELBO TERMS

This section provides additional details for the variational objective and ELBO derivation presented
in Section 4.2.

A.5.1 PRIOR FORMULATIONS AND KL DIVERGENCE TERMS

In the joint likelihood p(Y, Z,K | G,X), the term p(Z | K) =
∏
e∈E Bernoulli(ze | θ(K)

e ) de-
scribes the conditional probability of edge inclusions Z = {ze} given a specific subgraph pattern
K. The parameter θ(K)

e (the probability of including edge e in pattern K) is itself drawn from a Beta
prior, θ(K)

e ∼ Beta(α0, β0). This forms a Beta-Bernoulli prior for each ze conditioned on K.

The KL divergence term KL(q(Z,K)∥p(Z,K)) in the ELBO (Eq. equation 9) expands to
KL(q(K)∥p(K)) + Eq(K)

∑
e∈E KL(q(ze) ∥ p(ze | K)).

• For q(ze), we use a Bernoulli distribution with a learnable parameter pϕ(e), i.e., q(ze) =
Bernoulli(pϕ(e)).

• The prior p(ze | K) is Bernoulli(θ(K)
e ). For tractability in the KL computation, several

approaches can be taken:
– One might ignore the dependency of p(ze | K) on K for this KL term’s reference

prior, effectively using a marginalized prior p(ze). This often means comparing q(ze)
to a Bernoulli(E[θe]), where E[θe] = α0/(α0 + β0) is the prior mean from the Beta
distribution. This yields the term

∑
e KL(Bernoulli(pϕ(e))∥Bernoulli(θprior

e )) in Ltotal
(where p(ze) in Eq. equation 10 refers to this prior).
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– Alternatively, if K is sampled or a specific K is considered, the KL divergence is
computed with respect to Bernoulli(θ(K)

e ).

• KL(q(K)∥p(K)) regularizes the learned categorical distribution q(K) (if a truncated DP is
used) against the stick-breaking prior p(K) derived from the Dirichlet Process (Eq. equa-
tion 3).

A.5.2 BREAKDOWN OF THE TOTAL LOSS FUNCTION LTOTAL

The total loss function defined in Eq. equation 10 is: Ltotal = LCE(Gsub, Y ) + λMI dϵ(µ, ν) +
λZKL

∑
e∈E KL(q(ze)∥p(ze)) + λKKL KL(q(K)∥p(K)). The components are:

• LCE(Gsub, Y ): This is the cross-entropy loss for the primary graph classification task, eval-
uated on the explanatory subgraph Gsub generated by sampling ze ∼ q(ze). It is calculated
as CE(g(Zsub), Y ), where g(Zsub) is the model’s prediction for the subgraph.

• dϵ(µ, ν): This is the Sinkhorn optimal transport distance (defined in Eq. equation 7) be-
tween the node embedding distribution µ of the full graph G and the distribution ν of the
subgraph Gsub. It serves as our mutual information proxy, LMI, encouraging the subgraph
to retain predictive information from the original graph.

•
∑
e∈E KL(q(ze)∥p(ze)): This term is the sum of Kullback-Leibler divergences between

the learned posterior q(ze) (Bernoulli with parameter pϕ(e)) for each edge inclusion vari-
able ze, and its corresponding prior p(ze) (e.g., Bernoulli(θprior

e ) where θprior
e = α0/(α0 +

β0) is the prior mean inclusion probability). This encourages sparsity and adherence to
prior beliefs about edge importance.

• KL(q(K)∥p(K)): This is the Kullback-Leibler divergence between the learned approx-
imate posterior q(K) over the subgraph pattern index K and its Dirichlet Process prior
p(K) (given by Eq. equation 3). This term regularizes the usage of subgraph patterns,
favoring simpler explanations according to the DP prior.

A.5.3 INTERPRETATION OF HYPERPARAMETERS λ

The coefficients λMI, λ
Z
KL, λ

K
KL in Ltotal are positive hyperparameters that balance the influence of the

different loss components:

• λMI controls the strength of the mutual information alignment between the full graph and
the subgraph.

• λZKL weights the regularization on individual edge selection probabilities.

• λKKL weights the regularization on the distribution over subgraph patterns.

In a strict ELBO formulation, the KL divergence terms would typically have a weight of 1. If the
dϵ(µ, ν) term were part of an augmented log-likelihood p(Y, Z,K, alignment | G,X), its coefficient
might also be 1 or derived. However, in practice, treating these as tunable weights offers greater flex-
ibility in model training. Specifically, dϵ(µ, ν) is often treated as an additional regularizer focusing
on information preservation, and its weight λMI is tuned empirically. Similarly, λZKL and λKKL can be
tuned to adjust the model’s tendency towards sparsity or adherence to prior structural beliefs.

A.5.4 OPTIMIZATION DETAILS FOR DP-RELATED TERM

The DP-related term KL(q(K)∥p(K)) requires careful handling. If a truncated stick-breaking ap-
proximation for the DP prior π is used (considering only the first T ”sticks” or patterns), q(K) can
be modeled as a categorical distribution over these T patterns. The KL divergence can then be com-
puted and optimized. Alternatives include using reparameterization tricks for the gem distribution
(the stick-breaking proportions). In our experiments, we found that setting a modest truncation level
T and learning q(K) as a standard categorical distribution, regularized against the truncated DP
prior, is effective and computationally feasible.
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A.6 FURTHER DETAILS ON COUNTERFACTUAL CONTRASTIVE LEARNING

This section provides additional details on the counterfactual contrastive learning strategy discussed
in Section 5.1.

A.6.1 ALTERNATIVE LCF FORMULATION

While the main text focuses on a hinge loss formulation for LCF (Eq. equation 11) due to its empirical
effectiveness in our setup, other formulations can also achieve the goal of promoting predictive
change on counterfactual graphs. One such alternative, particularly for classification tasks, is based
on cross-entropy:

LCF = CE(Ŷcf, not-Y ), (17)

where not-Y represents a target distribution that is different from the original true label Y . For
instance, in a binary classification setting, if Y = 1, then not-Y = 0. In multi-class settings,
not-Y could be a uniform distribution over all other classes, or aim to maximize the entropy of Ŷcf.
The choice of not-Y can be dataset-dependent or task-dependent. The hinge loss (Eq. equation 11)
was preferred as it directly targets the confidence drop for the true class without requiring explicit
definition of an alternative class distribution.

A.6.2 DISCUSSION ON HINGE LOSS MARGIN κ

The margin κ in the hinge loss (Eq. equation 11) is a positive hyperparameter that dictates the
minimum desired drop in confidence for the true class when evaluating the counterfactual graph.

• A larger κ imposes a stronger penalty if the confidence does not drop significantly, pushing
the model to learn explanations that are more critical.

• A smaller κ provides a softer constraint.

The optimal value for κ can be tuned via hyperparameter search on a validation set. It typically
depends on the scale of the logits or confidence scores produced by the model. In our experiments,
values in the range of [0.1, 0.5] were often effective, assuming logits are not excessively large.

A.6.3 COUNTERFACTUAL GRAPH GENERATION

As mentioned in the main text, the counterfactual graph Gcf is generated by effectively removing
the edges Esub present in the explanatory subgraph Gsub from the original input graph G. The two
operational approaches mentioned:

1. Setting binary masks ze to 0 for e ∈ Esub: If the GNN architecture or the explanation
mechanism relies on edge masks ze (e.g., where ze = 1 means inclusion and ze = 0 means
exclusion, possibly relaxed via Gumbel-Softmax during training for Gsub selection), then
for Gcf, these ze values corresponding to Esub are fixed to (or treated as) 0. Other edges
e /∈ Esub retain their original status or mask values from G.

2. Directly removing edges from graph structure: This involves creating a new graph in-
stance Gcf = (V,E \ Esub) which is then fed to the GNN encoder. This is a more direct
structural modification.

Both methods aim to achieve the same conceptual outcome of testing the model’s prediction in
the absence of the identified explanatory edges. The choice might depend on the specific GNN
implementation and how edge information is processed. For models that inherently use edge masks,
the first approach is natural. For others, explicit graph modification might be cleaner. We found both
to be effective in principle, with the specific choice having minimal impact on the overall utility of
the LCF loss, as long as the critical information from Esub is indeed absent in Gcf .

A.7 ABLATION STUDY FOR COUNTERFACTUAL CONTRASTIVE LOSS (LCF)

This section presents a more detailed analysis of the impact of the counterfactual contrastive loss
(LCF) on model performance, particularly regarding explanation fidelity and other relevant metrics.
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We now study the effect of the counterfactual contrastive loss term LCF by conducting ablations on
the MUTAG and ABIDE datasets. We compare explanation quality with and without LCF, and vary
its regularization weight λCF ∈ {0, 0.1, 0.5, 1.0}.

Quantitative impact. Table 2 reports Fidelity and Edge-F1 scores for models trained with dif-
ferent values of λCF. We observe that setting λCF > 0 consistently improves Fidelity across both
datasets. The best setting (λCF = 0.5) yields a +5.8 pt gain on ABIDE and +4.2 pt on MUTAG
compared to λCF = 0. Edge-F1 against ground-truth highlights also increases, indicating that LCF

encourages the explainer to rely on semantically essential substructures.

Table 2: Effect of λCF on explanation quality. λCF = 0 disables counterfactual supervision.

Dataset λCF Fidelity Edge-F1 #Edges Stability (%)

MUTAG

0.0 0.67 0.58 12.6 81.2
0.1 0.70 0.61 11.9 86.5
0.5 0.71 0.64 11.3 91.0
1.0 0.70 0.63 10.7 89.7

ABIDE

0.0 0.52 0.43 132.1 76.4
0.1 0.56 0.48 120.8 81.6
0.5 0.58 0.50 117.4 88.3
1.0 0.57 0.48 112.9 85.9

Trade-off analysis. We find that large λCF values (> 1.0) start to slightly hurt the main task
accuracy (by up to 1–2 points), as the explainer may overemphasize counterfactual gaps. Moderate
values (∼0.5) strike the best balance between explanation precision and model performance.

Qualitative effects. Figure 5 illustrates explanations on a representative MUTAG molecule with
and without LCF. Without the counterfactual loss, the explainer includes many chemically irrelevant
edges (e.g., terminal H-bonds). In contrast, LCF removes these and highlights a concise subgraph
around the nitrogen ring—more aligned with domain knowledge.

Figure 5: Effect of LCF on explanation quality. Left: explanation without counterfactual loss
(λCF = 0). Right: explanation with λCF = 0.5. Edges retained in the latter are more task-relevant.

Conclusion. Counterfactual supervision via LCF significantly enhances explanation fidelity, edge
sparsity, and run-to-run consistency, supporting the necessity of explicit “necessity enforcement” in
subgraph selection.
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A.8 ABLATION STUDY FOR DROPOUT REGULARIZATION

This section is intended to present the results of an ablation study analyzing the impact of the edge
and node dropout strategy (described in Section 5.2) on model performance, explanation quality,
and explanation stability.

Dataset Accuracy Fidelity Edge-F1 #Edges Stability (%)
MUTAG 0.856 0.67 0.58 12.6 81.2
MUTAG (dropout) 0.859 0.70 0.61 11.9 87.6
ABIDE 0.684 0.52 0.43 132.1 76.4
ABIDE (dropout) 0.688 0.56 0.48 120.8 83.1

Table 3: Ablation study on the effect of dropout.

Task accuracy. Dropout does not significantly impact downstream classification accuracy on ei-
ther dataset, suggesting predictive performance is maintained.

Explanation fidelity. Fidelity improves by +3 – 4 pts when dropout is applied, indicating that
explanations better retain task-relevant features under noisy conditions.

Explanation stability. Dropout leads to markedly higher explanation consistency. On MUTAG,
the average edge-overlap across random seeds improves from 81.2% to 87.6%. This suggests that
dropout reduces variance and helps the explainer focus on robust substructures.

A.9 IMPLEMENTATION DETAILS

A.9.1 DROPOUT REGULARIZATION DETAILS

The joint edge and node dropout strategy described in Section 5.2 is implemented as follows:

• Edge Dropout: For each training forward pass, before the graph is processed by the GNN
encoder fϕ, each edge e ∈ E of the input graph G is independently considered for dropout
with probability pedge. This dropout is applied on top of any edges already excluded by the
explainer’s mask (i.e., where ze = 0). If an edge is selected for dropout, it is temporarily
removed from the graph’s adjacency representation for that specific forward pass.

• Node Feature Dropout: Similarly, for each node i ∈ V , each dimension of its feature
vector xi is independently masked (set to zero) with probability pfeat. This is typically
applied to the input node features before they are fed into the first layer of the GNN.

These dropout operations are standard in GNN training and are usually efficiently implemented
within common graph learning libraries.

Computational Overhead: The application of edge and node dropout introduces a negligible com-
putational overhead during training. For edge dropout, it involves randomly selecting a subset of
edges, which is computationally inexpensive compared to the GNN message passing operations.
For node feature dropout, it involves element-wise multiplication with a binary mask, which is also
a fast operation. Therefore, this regularization technique does not significantly impact the overall
training time per epoch.

A.9.2 RUNNING TIME AND COMPUTATIONAL COMPLEXITY

Training IGLU for one epoch on the MUTAG dataset (188 graphs) took approximately 320 seconds
on an NVIDIA V100 GPU, while on the larger Mutagenicity dataset (4337 graphs) it took approxi-
mately 1430 seconds per epoch. The main computational cost comes from the GNN forward passes
and the Sinkhorn OT computation. While the OT computation adds overhead compared to a standard
GNN, its cost is manageable for the graph sizes in our benchmarks. The variational inference com-
ponents and Bayesian priors add some complexity but are generally efficient. Compared to post-hoc
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explanation methods like GNNExplainer that require multiple GNN evaluations per explanation, our
end-to-end training approach amortizes the cost of learning explanations over the training process.

A.9.3 GNN BACKBONE ARCHITECTURE IN IGLU

For IGLU, unless otherwise specified, the shared GNN encoder fϕ was implemented as a Graph
Isomorphism Network (GIN) with 3-5 layers, 64-128 hidden units per layer, and sum’ pooling for
graph-level representations. The specific architecture was chosen based on preliminary experiments
on a validation set for each dataset.

A.9.4 TRAINING CONFIGURATION

Models were trained using the Adam optimizer Kingma & Ba (2014) with an initial learning rate
of 1 × 10−3, a batch size of 64, and for up to 200 epochs with an early stopping criterion based
on validation set performance stop if validation accuracy does not improve for 20 epochs. All
experiments were conducted using PyTorch 1.10 and PyTorch Geometric 2.0 on NVIDIA V100
GPUs.

A.9.5 KEY HYPERPARAMETERS FOR IGLU

The following key hyperparameters for IGLU were generally set based on validation performance
or common practices:

• Sinkhorn optimal transport regularization ϵ: 0.1

• Edge dropout rate pedge: 0.2 (Section 5.2)

• Node feature dropout rate pfeat: 0.1 (Section 5.2)

• Loss term weights:

– λMI (for OT loss): [e.g., 0.1 - 1.0]
– λZKL (for edge prior KL): [e.g., 1× 10−4 - 1× 10−3]
– λKKL (for DP prior KL): [e.g., 1× 10−4 - 1× 10−3]
– λCF (for counterfactual loss): [e.g., 0.1 - 0.5] (Section 5.1)

• Beta prior parameters for edge selection α0, β0: [e.g., α0 = 1, β0 = 10 to encourage
sparsity]

• DP concentration parameter αDP : 1.0

• Gumbel-Softmax temperature τ : Annealed from 0.1 during training.

• Learning rate for human-in-the-loop fine-tuning: 1× 10−4

Specific values for each dataset were chosen from a small search range based on validation perfor-
mance.

A.10 DATASET DETAILS AND PREPROCESSING

This section provides further details on the datasets used in our experiments (Section 7.1).

Table 4: Statistics of the datasets used. Avg. Nodes and Avg. Edges are approximate. Split refers to
Train/Validation/Test ratios or strategy.

Dataset # Graphs Avg. Nodes Avg. Edges # Classes

MUTAG 188 17.9 19.8 2
Mutagenicity 4337 30.3 30.8 2
ABIDE 1009 200 various 2
Cam-CAN 646 116 various 2
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A.11 TRAINING AND FINE-TUNING PROCEDURE

Algorithm 1 outlines the complete training and fine-tuning process for our proposed interpretable
GNN model. The model jointly optimizes node representations and edge-level inclusion proba-
bilities through a variational masking scheme based on the Gumbel-Softmax relaxation. At each
iteration, soft masks are sampled to construct subgraphs, which are then passed through a GNN
encoder to predict graph-level labels. The total objective integrates four components: cross-entropy
classification loss, Sinkhorn-based optimal transport loss between full and subgraph embeddings,
KL divergence regularization on mask sparsity, and a counterfactual contrastive loss.

Algorithm 1 Training and Fine-Tuning Procedure

Training set D = {(G(n), X(n), Y (n))}Nn=1; learning rates ηϕ, ηmask; regularization weights
λMI, λ

Z
KL, λ

K
KL, λCF.

0: Initialize GNN parameters ϕ and variational mask parameters (edge inclusion probabilities)
{pϕ(e)}. epoch = 1 to E each batch B ⊂ D

0: Sample Concrete relaxation ze ∼ Gumbel-Softmax(pϕ(e)) for each edge e in batch graphs.
0: Form each subgraph G

(n)
sub = (V (n), {e ∈ E(n) : z

(n)
e = 1}) for graphs in the batch.

0: Compute node embeddings Z(n) = fϕ(G
(n), X(n)) and Z

(n)
sub = fϕ(G

(n)
sub , X

(n)
sub ).

0: Compute predictions Ŷ (n) = g(Z
(n)
sub ) on subgraphs and (optionally) Ŷ (n)

full = g(Z(n)) on full
graphs.

0: Compute task loss LCE = 1
|B|

∑
n∈B CE(Ŷ (n), Y (n)).

0: Compute OT loss LMI =
1

|B|
∑
n∈B dϵ(µ

(n), ν(n)) using Eq. equation 7 for each n.
0: Compute prior KL loss LKL =

∑
e KL(q(ze)∥p(ze)) + KL(q(K)∥p(K)) (using current mask

probabilities and DP weights).
0: Optionally, sample counterfactual graphs G(n)

cf by removing edges with z
(n)
e = 1 and compute

LCF as described.
0: Compute total loss Ltotal = LCE + λMILMI + λZKLL

(Z)
KL + λKKLL

(K)
KL + λCFLCF.

0: Update ϕ← ϕ− ηϕ∇ϕLtotal (backpropagating through fϕ, g, and Zsub).
0: Update mask parameters pϕ(e) ← pϕ(e) − ηmask∇pϕ(e)Ltotal for all edges (backpropagating

through Gumbel-Softmax). Trained model parameters ϕ and learned edge importance scores
pϕ(e) for all edges.

0: Interactive Fine-Tuning (human-in-the-loop):
0: Given a test graph G = (V,E) with prediction Ŷ and explanation Gsub, allow expert to provide

edits E+
edit, E

−
edit.

0: For each edited edge e ∈ E+
edit, set ze = 1 (or increase pϕ(e)); for e ∈ E−

edit, set ze = 0 (or
decrease pϕ(e)).

0: Perform t gradient descent steps on ϕ (and pϕ if not fixed by edits) with a small learning rate,
minimizing Ltotal on this single instance.

0: Output updated prediction Ŷnew and explanation Gnew
sub for G. =0
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