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Abstract

The mechanistic interpretability of large lan-001
guage models (LLMs) has facilitated advance-002
ments in controllable generation, knowledge003
editing, model stitching, and other foundational004
techniques. However, the behavior of LLMs005
in multimodal multilingual contexts remains006
largely unexplored, despite their increasing007
complexity. This paper investigates how large008
audio language models (LALMs) process and009
represent language, modality, and speaker de-010
mography. Through a series of experiments,011
we analyze the latent representations extracted012
from diverse input cases using two state-of-013
the-art open-weight LALMs: Ultravox 0.5 and014
Qwen2 Audio. Our study examines patterns in015
these representations to uncover the processing016
mechanisms of LALMs across seven languages017
and two modalities (text and speech). Addition-018
ally, we explore paralinguistic speech features019
such as gender, age, and accents, as well as020
acoustic features arising from variations in the021
recording setup. By bridging the gap in inter-022
pretability LALMs, this work provides insights023
into their behavior and lays the groundwork for024
future research in this critical area.025

1 Introduction026

Investigating the internal mechanisms of large lan-027

guage models (LLMs) has deepened our inter-028

pretability of how they learn and process inputs029

(Zhang et al., 2025b; Wilie et al., 2025; Zhao030

et al., 2024; Gurnee and Tegmark, 2024). Pre-031

vious studies have employed techniques, such as032

probing (Gurnee and Tegmark, 2024; Azaria and033

Mitchell, 2023), sparse autoencoders (Kang et al.,034

2025; Ghilardi et al., 2024), and agnostic-specific035

neurons (Mondal et al., 2025; Tang et al., 2024;036

Bhattacharya and Bojar, 2023) to uncover LLM037

behavior across different input scenarios. These038

investigations have revealed insights into the range039

of mechanistic behaviors, from LLM ability to040

represent specific downstream tasks (Gurnee and041
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Figure 1: Our findings suggest that language clusters are
present within each modality’s representational space.
These clusters emerge in the early and late layers in text
space, and persist throughout all layers in speech space.

Tegmark, 2024; Azaria and Mitchell, 2023) to 042

broader phenomena like representation alignment 043

across controlled parameters (Zhou et al., 2025). 044

Furthermore, recent studies have also leveraged 045

these insights into novel advancements in LLM 046

capabilities. Mechanistic insights have enabled 047

methods such as controllable text generation (Liu 048

et al., 2024a,b), knowledge editing (Meng et al., 049

2023), and model stitching (Moschella et al., 2023) 050

to get more precise control, adaptation, and mod- 051

ularity in LLMs. These marks a significant step 052

toward more interpretable and adaptable LLM. 053

As LLMs increase in complexity, their growing 054

processing steps present challenges in interpreting 055

their mechanistic processes, stemming not only 056

from architectural advancements but also from the 057

complexity of inputs, which now extend beyond 058

text-based reasoning to task-specific contexts (Li 059

et al., 2025) and multimodal settings e.g. audio lan- 060

guage models (ALMs) (Chu et al., 2024) and visual 061
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language models (VLMs) (Bai et al., 2025). While062

existing research has identified patterns such as at-063

tention mechanisms (Yan et al., 2025), knowledge064

storage (Cao et al., 2024), and token representa-065

tions (Wu et al., 2025), achieving a sufficient level066

of interpretability remains a significant hurdle. Sub-067

stantial progresses have been made in understand-068

ing how LLMs process textual information (Ryan069

et al., 2024; Wilie et al., 2025), the same level of070

interpretability, however, does not fully translate to071

multimodal LLMs , which must integrate informa-072

tion from various modalities such as image, audio,073

and video, adding layers of complexity (Yin et al.,074

2024).075

To bridge the gap in interpretability of the inter-076

nal mechanisms of multimodal LLMs, our study077

explores the mechanistic behavior of large audio078

language models (LALMs), focusing on how rep-079

resentation alignment occurs across different input080

cases. In this study, we investigate representation081

alignment across three key aspects in LALMs, i.e.,082

modality, language, and speaker demography. By083

analyzing activation values in response to specific084

inputs and comparing them across a series of exper-085

iments, we aim to investigate how these features086

are represented in LALMs across layers. Our work087

contributes to a deeper interpretability of the mech-088

anistic behavior of LALMs, paving the way for089

further research into the interpretability of LALMs.090

Our study provides key insights into the repre-091

sentation alignment of multilingual LALMs:092

• The capability of LALMs to process inputs is093

reflected in their representation patterns.094

• We show that the textual semantic alignment –095

both within and across languages – is retained096

after adding the speech modality support to097

language models.098

• Within the speech modality, we conclude that099

the representation is clustered semantically100

rather than based on the speaker demography101

indicating that LALMs tend to be robust to102

variation in paralinguistic features.103

• We scrutinize the alignment across modalities104

and find that there is no semantic alignment105

emerged between parallel speech and textual106

representations.107

• Our findings reveal different behaviors in mul-108

tilingual processing between text and speech:109

while cross-language semantic alignment is110

emerged in text space, it is not present in111

speech space.112

2 Related Works 113

Latent Representations Across Languages, 114

Modalities, and Speakers. LLMs exhibit struc- 115

tured latent activation patterns that vary across lan- 116

guages and modalities. In the multilingual setting, 117

some neurons are shared across languages while 118

others are language-specific, though this neuron 119

sharing does not necessarily align with linguistic 120

similarity (Wang et al., 2024b). LLMs contain both 121

language-specific and language-agnostic regions, 122

with the former predominantly located in the early 123

and late layers of the model (Zhao et al., 2024; Tang 124

et al., 2024). As training progresses and model 125

capacity increases, semantically equivalent inputs 126

across different languages tend to converge within 127

a shared latent space (Chang et al., 2022; Wilie 128

et al., 2025; Zeng et al., 2025). Initially, knowledge 129

is grounded in a dominant language, but the model 130

gradually constructs language-specific knowledge 131

systems as exposure to new languages increases 132

(Zhao et al., 2024; Chen et al., 2025). 133

Beyond language, latent representations for dif- 134

ferent input modalities, such as audio and image, 135

also require specialized encoders to interface with 136

the language model. Multimodal LLMs (MLLMs) 137

use modality-specific adapters like Whisper for 138

speech (Radford et al., 2022) and ViT for im- 139

ages (Dosovitskiy et al., 2021), as common sense 140

and multimodal data reside in distinct embedding 141

spaces (Wang et al., 2024a). While speaker em- 142

beddings in speech processing have shown strong 143

clustering behavior by speaker identity (Horiguchi 144

et al., 2025; Ashihara et al., 2024), their integration 145

into LALMs remains an open question. Existing 146

works in speech representation often rely on super- 147

vised models to extract speaker-specific features 148

(Zhang et al., 2025a), but analogous mechanisms 149

in LALMs are yet to be systematically explored. 150

Language Model Mechanistic. Transformer- 151

based language models have been shown to encode 152

knowledge by projecting activations linearly across 153

various output settings, including binary (Olah 154

et al., 2020), continuous (Gurnee and Tegmark, 155

2024), and task-specific outputs (Nanda et al., 156

2023). These models also contain knowledge neu- 157

rons, units whose activations are positively corre- 158

lated with specific factual expressions, enabling tar- 159

geted knowledge editing (Dai et al., 2022). While 160

internal state analysis has contributed significantly 161

to our mechanistic intepretability of LLMs, most 162
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Figure 2: The process of extracting LALM represen-
tations by recording activation values from each layer
of the LALM in response to the last token of an input
(shown in red .).

existing studies have focused on narrow, task-163

specific scenarios (Olah et al., 2020; Nanda et al.,164

2023; Gurnee and Tegmark, 2024; Ji et al., 2024).165

A limited number of works have investigated rep-166

resentation alignment across different input cases,167

and these are confined to text-based LLMs (Tang168

et al., 2024; Zhou et al., 2025; Wilie et al., 2025).169

In this work, we extend internal state analysis and170

representation alignment to the multimodal text-171

speech domain to gain insight into the mechanistic172

behavior and representation alignment in LALMs.173

3 Methods174

3.1 Activation Values Extraction175

Large Audio Language Models. Multimodal176

LLMs generally consist of three main components:177

a multimodal input encoder, a feature-fusion lan-178

guage model, and a multimodal output decoder179

(Wang et al., 2024a). As shown in Figure 2, we180

focus exclusively on the language model compo-181

nent since our aim is to analyze the representation182

alignment in LALMs. To understand the mecha-183

nisms by which LALMs process inputs, we utilize184

the activation values from each layer to observe185

patterns in input processing. We extract the acti-186

vation values produced by the LALMs for each187

input and use these latents as the primary objects188

of observation in our experiments. This extraction189

process is performed for every input case used in190

the subsequent experiments.191

Extracting Representation. Since inputs have192

varying lengths, they are translated into a varying193

number of tokens, leading to varying sizes of la-194

tents produced by LALMs. This variation becomes195

Task Scope
Modality Text, Speech Audio
Gender Male, Female
Language English, French, German, Chinese,

Japanese, Indonesian, Vietnamese
Accent (English) British, American, Scottish, North-

ern Irish, Irish, Indian, Welsh, Cana-
dian, South African, Australian, New
Zealand

Table 1: Feature set used in our experiments.

even more significant with the presence of multi- 196

modal properties, such as text and speech, because 197

the tokenization processes differ: text is tokenized 198

using textual units (Kudo and Richardson, 2018; 199

Bostrom and Durrett, 2020), while speech uses 200

audio frames (Radford et al., 2022). To address 201

this, we standardize the latent size by taking only 202

the activation values produced by the last token 203

inputted into the LALMs for each input because 204

all the LALMs we use are based on transformer 205

decoder models (Vaswani et al., 2017). By using 206

this approach, differences in language latent sizes 207

caused by varying numbers of tokens are elimi- 208

nated. To minimize variation of latent size further, 209

we use the output produced by the last sublayer 210

of the i-th layer for a given input to represent acti- 211

vation values at layer i. Using this approach, the 212

latent size varies only with the number of neurons 213

in the last sublayer of the i-th layer. Each input will 214

then produce n Layer Latents, where n is the num- 215

ber of layers in the language model component. 216

3.2 Utilizing the Activation Values 217

Given a layer latent ( zi ∈ Rn ), where n repre- 218

sents the number of neurons in the last sublayer of 219

layer i, our objective is to visualize and analyze 220

the internal representations of a LALM. Due to 221

the high dimensionality of zi, direct visualization 222

is infeasible. To address this, we employ dimen- 223

sionality reduction techniques to map zi onto a 224

2D Cartesian plane. Specifically, we utilize t-SNE 225

for dimensionality reduction, which preserves the 226

similarity between points and maintains local struc- 227

tures. Let z̃i ∈ R2 denote the 2D embedding of 228

the high-dimensional latent vector zi, where the 229

t-SNE algorithm maps each zi to a 2D vector z̃i. 230

The set of embedded vectors z̃i can be visualized 231

to gain insights into the internal representational 232

structure learned by the LALM, with clustering 233

or separation in the 2D space potentially reflect- 234

ing semantic, syntactic, or task-relevant groupings 235

encoded by the model. To complement this qualita- 236
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Figure 3: Representation of texts in 7 languages and 7 sample semantics (context) from Ultravox 0.5 LLaMA 3.1
8B across layers. Points are colored by (a) language and (b) semantics, revealing language-specific clusters in the
final layers, semantic clusters in middle layers, and a blend of both language and semantics in early layers.

tive analysis, we perform quantitative evaluations237

of the clustering and separation patterns observed238

in the 2D embedding space. First, we compute the239

Euclidean similarity by measuring the Euclidean240

distance between any pair of embedded vectors zi241

and zj , serving as a proxy for assessing similarity242

in the original high-dimensional space. Next, we243

evaluate the silhouette score of the local clusters244

formed in the 2D projection, which quantifies how245

well each point fits within its cluster compared to246

others, thereby reflecting cluster compactness and247

separability. As an additional analysis, we may248

also compute the Euclidean distances between cen-249

troids of well-formed clusters to help quantify the250

degree of separation between distinct internal rep-251

resentation groups.252

4 Experiment Details253

Language Model. We use three state-of-the-art254

LALMs publicly available on HuggingFace: Ultra-255

vox 0.5 LLaMA 3.2 1B1, Ultravox 0.5 LLaMA 3.1256

8B1 (Grattafiori et al., 2024), and Qwen2 Audio257

7B (Chu et al., 2024).258

No Modification. We conduct analysis on the259

latent across 3 features: language, modality, and260

speaker demography for input of speech utterance261

(Table 1). All audio used in each experiment is262

speech audio, which means that each audio file263

has a transcript. We do not modify any model264

processes, alter model structures, or manipulate265

activation values. The only variable we change266

is the input cases, which lead to different internal267

states. We feed different input cases into the mod-268

els, extract the corresponding activation values, and269

analyze them as they are.270

Dataset. Since our experiments involve multiple271

input features, we use several datasets to simulate272

diverse input scenarios while controlling certain273

1https://www.ultravox.ai/

First Layer
A1 A2 B1 B2

A1 0.00 0.75 1.38 1.41
A2 0.75 0.00 1.45 1.49
B1 1.38 1.45 0.00 0.37
B2 1.41 1.49 0.37 0.00

Last Layer
A1 A2 B1 B2

A1 0.00 7.46 19.13 18.81
A2 7.46 0.00 19.90 18.82
B1 19.13 19.90 0.00 7.08
B2 18.81 18.82 7.08

Table 2: Distance between two samples of context (de-
noted by letters) in two linguistic structures (denoted
by numbers) from Ultravox 0.5 LLaMA 3.2 1B. Texts
with the same semantic meaning are closer to each other
even when presented in different structures. Cells with
same context are colored blue , while cells with differ-
ent context are colored green .

parameters. The datasets used in this study include 274

Common Voice 4 (Ardila et al., 2020), CoVoST 275

2 (Wang et al., 2021), CVSS 2 (Jia et al., 2022), 276

M-Vicuna (Tang et al., 2024), VCTK (Yamagishi 277

et al., 2019), and PAWS (Zhang et al., 2019). 278

5 Results 279

5.1 Semantic Alignment in Text Modality 280

Monolingual Semantic Alignment. Before be- 281

ing processed by LLMs, all inputs are decomposed 282

into tokens through a tokenization and embedding 283

lookup process that transforms text into a vector for- 284

mat. This process not only converts the input into a 285

form that the model can understand but also maps 286

semantically similar words to nearby positions in 287

the embedding space (Peng et al., 2024). The effect 288

of this semantic alignment is especially noticeable 289

in the early layers. Texts with the same meaning, 290

even if they have different sentence structures, tend 291

to have significantly closer vector representations 292

compared to inputs from different contexts (Table 293

2). As the model moves through deeper layers, the 294

4
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(a) Ultravox 0.5 LLaMA 3.2 1B (b) Ultravox 0.5 LLaMA 3.1 8B (c) Qwen2 Audio 7B

Figure 4: Silhouette scores (y-axis) for language (red) and semantic clusters (blue) across layers (x-axis) based on
representations extracted from 3 different models. The results show that language clusters emerge in the early and
late layers, while semantic clusters are prominent in the middle layers.

(a) (b) (c) (d) (e) (f)

Figure 5: Representations in the first layer extracted from Ultravox 0.5 LLaMA 3.1 8B for multilingual text pairs:
(a) English-German, (b) English-French, (c) English-Japanese, and (d) English-Chinese; and from Qwen2 Audio 7B
for (e) English-Japanese and (f) English-Chinese.

distance between these representations increases,295

reflecting a divergence in how the inputs are pro-296

cessed. This phenomenon occurs across all text297

inputs, as cross-context texts also show increasing298

separation. However, semantically similar texts,299

although they become more distant, still remain300

closer to each other than to representations from301

different contexts.302

Multilingual Semantic Alignment. During text303

processing in LALM, we observed several inter-304

esting patterns when controlling the language of305

the inputs. Late layers tend to distinctly cluster306

text inputs from the same language together (Fig-307

ure 3a), while early layers form clusters based on a308

combination of semantics and language (Figure 3).309

In contrast, the middle layers focus on language-310

agnostic processing i.e. semantic processing, as311

semantic clusters form during this stage before be-312

ing separated again in the later layers (Figure 3b).313

These clusters present in all LALMs we use in this314

experiment (Figure 4). This pattern aligns with315

recent research identifying language-processing ar-316

eas in LLMs (Tang et al., 2024; Zhao et al., 2024;317

Wilie et al., 2025), which suggests that the early318

and late layers play a key role in handling language-319

specific information.320

Several first layers show low silhouette scores,321

before increasing significantly afterward. We tested322

several multilingual texts and found the reason why323

this happens. It is because there are differences 324

in the text embeddings inputted into the models. 325

Inputs from languages that share similar linguis- 326

tic structures often come in a similar space (Fig- 327

ure 5a, 5b). In contrast, inputs from totally differ- 328

ent languages are represented as distinct clusters, 329

showing that processing those languages needs sep- 330

arate processing spaces (Figure 5c, 5d). However, 331

it seems to depend on the data the model is trained 332

on, as shown in Figure 5e and 5f: the represen- 333

tation of English-Chinese and English-Japanese 334

seems relatively closer, although still separated. 335

The higher percentage of Chinese and Japanese 336

data on QwenLM (compared to LLaMA) makes 337

representations in the first layers tend to be closer 338

to each other. 339

� Text Alignment Key Insight

Mechanistics of text processing in language
model are preserved even when speech modal-
ity support is added to the model. The linguis-
tic and semantic phenomena we observed in
LALMs align with those found in text-only
LLMs.

340

5.2 Semantic Alignment in Speech Modality 341

Audio Robustness. We found that LALMs 342

demonstrate semantic clustering behavior when 343

given speech input. As the process moves to deeper 344
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(a)

Early Layers Middle Layers Late Layers

(b)

Figure 6: Representation across layers Ultravox 0.5 LLaMA 3.1 8B of speech inputs from 2 controlled recording
devices with 5 sample English transcripts, colored by (a) semantic (each color denotes each speech transcript) and
(b) recording devices (each color denotes each recording device). This image suggests LALM clusters inputs by
their transcripts, and differences in recording setup do not affect the representation much as they are distributed
evenly.

(a) (b)

Figure 7: Clustering performance (y-axis) is plotted
across model layers (x-axis). Red denotes raw speech
input, while blue denotes normalized speech. Normal-
ization affects models differently: Ultravox 0.5 LLaMA
3.1 8B (a) shows weaker clustering overall, whereas
Qwen2 Audio 7B (b) demonstrates better representation
clusters.

c1mic1p1 c1mic2p1 c1mic1p2 c2mic1p1
c1mic1p1 6.61 19.05 31.93
c1mic2p1 6.61 20.86 31.21
c1mic1p2 19.05 20.86 31.69
c2mic1p1 31.93 31.21 31.69

Table 3: The distance between representations Ultravox
0.5 LLaMA 3.2 1B in a sample layer under the con-
trolled context (denoted as cx) in a controlled recording
setup (denoted as micx) spoken by a controlled speaker
(denoted as px) shows that the differences between mi-
crophones result in the least representation divergence
(cell colored green).

layers, the model attempts to tightly cluster inputs345

with the same transcript, and we can see semantic346

clusters emerge in the late layers (Figure 6a). In347

our experiment, where we controlled the recording348

devices, we observed that variations in recording349

devices introduced minimal amount of divergence.350

The differences in the recording setup did not in-351

troduce much divergence, as the representations352

overlapped with each other in an evenly distributed353

manner (Figure 6b).354

We also found that differences in the recording355

setup resulted in the least amount of divergence in356

representation compared to inputs with different 357

contexts and speakers (Table 3). However, cross- 358

context and cross-speaker representations varied: 359

in some cases, cross-context inputs were more dis- 360

tant from each other, while in other cases, cross- 361

speaker inputs were. We also tested simple pre- 362

processing of the speech before feeding it into the 363

LALM, where we normalized the speech tensor 364

to the range [−1, 1] under varying recording de- 365

vice conditions. We found that this preprocessing 366

had differing effects on the models: the LLaMA- 367

based model produced poorer clusters, while the 368

Qwen model produced better clusters (Figure 7). 369

This highlights differences in capabilities for pro- 370

cessing acoustic features in speech. These clusters 371

emerge not only from real speech recordings, but 372

also computer-generated speeches. However, in the 373

case of unified computer-generated speech, cluster- 374

ing tends to be relatively better in the early layers. 375

In contrast, multi-speaker speech, whether real or 376

synthetic, often shows overlapping representations 377

in the early layers. This suggests that speaker em- 378

beddings in speech recordings may influence, or 379

even distort, the representations of the speech con- 380

tent. 381

Monolingual Semantic Alignment. As shown 382

in Figure 6 and Figure 9, LALMs clusters speeches 383

with similar semantic meaning together. Process- 384

ing of speech in LALMs prioritizes understanding 385

of the speech i.e. semantic meaning rather than par- 386

alinguistic features that come with the speech. As a 387

result, they tend to separate semantically different 388

speech from the same speaker more strongly than 389

semantically similar speech from different speakers. 390

This may be due to the fact that current LALMs 391

do not yet support the processing of paralinguistic 392

speech features. Nevertheless, their effectiveness 393
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(a)

Early Layers Middle Layers Late Layers

(b)

Figure 8: Representations across layers of multilingual speech extracted from (a) Qwen2 Audio 7B and (b) unified
Ultravox 0.5 LLaMA 3.1 8B show distinct speech clusters across all layers during multilingual speech processing,
indicating separate processing spaces for each language.

in clustering speech by semantic meaning suggests394

the existence of a well-defined semantic space, sim-395

ilar to that observed in text processing.396

Multilingual Semantic Alignment. We found397

that multilingual speech inputs are represented as398

tightly clustered based on their language. Unlike399

in multilingual text processing (Figure 3), seman-400

tically similar clusters across languages do not401

emerge in the middle layers for speech (Figure 8).402

Instead, language-based clusters are present from403

the beginning to the end of processing. Different404

types of clustering behavior emerge across models.405

LLaMA-based models tend to group similar lan-406

guage (Figure 8b), such as French, Spanish, and407

German, into overlapping clusters, while distinct408

languages like Chinese and Japanese form separate409

clusters. In contrast, Qwen-based models represent410

each language in distinct, non-overlapping clus-411

ters (Figure 8a). These language clusters remain412

stable throughout the processing layers. Due to413

data limitations, all tested speech samples were414

recorded using different devices and in varied en-415

vironments. However, since previous experiments416

suggest that such differences have minimal effect417

on the representations, we can reasonably conclude418

that language-based clustering also emerges in mul-419

tilingual speech processing, just as it does in multi-420

lingual text processing. This phenomenon further421

suggests that current speech processing in LALMs422

is primarily capable of capturing "what" is being423

said, stopping at understanding literal speech con-424

tent, without fully modeling the real semantics of425

the speech.426

Speaker Demography. Since none of the427

LALMs in our experiment natively support par-428

alinguistic features, this limitation is evident in the429

absence of meaningful clusters based on speaker de-430

mographics such as age, accent, and gender, even431

under controlled contexts and recording devices432

(a) (b) (c)

Figure 9: Representations of speech inputs with the
same transcript in a sample layer of Qwen2 Audio 7B,
colored by (a) accent, (b) gender, and (c) age, show no
meaningful clustering based on paralinguistic features.
Each color denotes a different category.

(Figure 9). We also conducted experiments under 433

more controlled settings, combining multiple par- 434

alinguistic features (e.g., gender within accent, age 435

within gender), and similarly observed no meaning- 436

ful clustering. This suggests that speech represen- 437

tations in LALMs are more strongly influenced by 438

"what" is said rather than "how" it is said. 439

� Speech Alignment Key Insight

Mechanistics of speech processing in LALMs
are primarily designed to capture the literal
content ("what" is being said), but they often
struggle to fully model the real semantic mean-
ing or capture paralinguistic audio features.

440

5.3 Speech-Text Semantic Alignment 441

Monolingual Semantic Alignment. In LALMs, 442

text and speech inputs are processed in distinctly 443

separate representational spaces. This distinction 444

becomes particularly evident through a series of 445

controlled experiments involving various types 446

of speech: controlled recording setups, varying 447

recording conditions, multilingual pair text-speech, 448

and computer-generated speech (Figure 10). These 449

experiments consistently show that the representa- 450

tional space for each modality forms reliably and 451
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(a)

Early Layers Middle Layers Late Layers

(b)

Figure 10: Representations across layers extracted from Ultravox 0.5 LLaMA 3.2 1B for (a) text with computer-
generated speech and (b) text with real speech recording, showing separation in processing space from the beginning
to the end of processing.

independently across all layers, indicating robust452

and modality-specific semantic encoding. This sep-453

aration between modalities is not unexpected, as454

each input type undergoes different encoding be-455

fore being fed into the model. As a result, the456

semantic meaning of inputs tends to cluster within457

its own modality space across layers, despite the458

underlying semantic similarity.459

Multilingual Semantic Alignment. In multilin-460

gual contexts, both text and speech inputs form461

clusters during processing. Figure 11 illustrates the462

interaction between multilingual text–speech pairs463

in LALMs. We observe that language-specific clus-464

ters emerge in both the early and late layers. How-465

ever, their representations pose different dynamics.466

In text, these language clusters tend to dissolve in467

the middle layers, where semantically similar texts468

form shared clusters (in Figure 3b). In contrast,469

multilingual processing in the speech modality re-470

mains confined within language-specific clusters471

throughout the entire pipeline (in Figure 8).472

� Speech-Text Alignment Key Insight

Mechanistics text and speech inputs in LALMs
are present in separate representational spaces,
meaning there is currently no cross-modal se-
mantic alignment, which hinders their ability
to fully connect meaning across modalities.

473

6 Discussion474

We demonstrate that semantically identical audio475

samples could occupy distinct regions in the repre-476

sentational space (Figure 8). This variation arises477

from differences in audio features, specifically478

acoustic and paralinguistic elements, that accom-479

pany the speech signal (Table 3). Our findings480

indicate that current LALMs are not yet capable of481

fully accounting for these variations, as evidenced482

by the absence of consistent clustering within their483

Early Layers Middle Layers Late Layers

Figure 11: Representations of English text (orange),
English speech (blue), Japanese text (red), and Japanese
speech (green) extracted from Ultravox 0.5 LLaMA 3.1
8B across layers.

semantic spaces (Figure 6b, 9). These features 484

may influence, or even distort, the representation 485

of speech content. However, the extent to which 486

these representations can vary while still being con- 487

sidered semantically equivalent remains an open 488

question. Understanding this boundary is crucial 489

for improving alignment and robustness in speech 490

processing tasks. This is particularly relevant for 491

multilingual scenarios, where differences in record- 492

ing setups and language can introduce additional 493

variation in the representational space. 494

7 Conclusion 495

Our study provides foundational insights into the 496

representation of LALMs, demonstrating how par- 497

allel semantic clusters exist in different representa- 498

tional spaces and revealing the potential for cross- 499

space mapping (Figure 1). The results suggest 500

that LALMs can encode semantically equivalent 501

inputs in distinct representational spaces while still 502

maintaining the ability to organize their seman- 503

tics. For future work, we encourage researchers to 504

build upon these findings by exploring real-world 505

multilingual environments, expanding the scope to 506

include a broader range of linguistic phenomena 507

and use cases. The journey to better understand 508

and control semantic representations is still in its 509

early stages, and we hope our study inspires others 510

to contribute to this exciting field. 511
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Limitations512

Due to computing constraints, we were only able513

to analyze representations in three LALMs. Larger514

LALMs may have greater capacity to represent in-515

put features and could reveal additional patterns516

beyond those observed in the smaller models we517

used. To enable more understanding about multilin-518

gual speech processing, future work should employ519

a set of speakers delivering parallel multilingual520

transcripts in controlled recording setups. This521

would allow for more consistent cross-language522

comparisons.523

Ethical Consideration524

All language models and datasets used in our ex-525

periments are publicly available, primarily sourced526

from Hugging Face. We ensured compliance with527

the licenses and usage policies associated with each528

resource. No proprietary or private data was used,529

and all experiments were conducted with the inten-530

tion of promoting open and reproducible research.531

AI assistants such as ChatGPT were used as pro-532

ductivity tools to support ideation, code debugging,533

and refining explanations. Their use was limited to534

non-generative support and did not replace original535

research, critical analysis, or authorship. All final536

decisions, implementations, and evaluations were537

conducted by the authors.538
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