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Abstract

The mechanistic interpretability of large lan-
guage models (LLMs) has facilitated advance-
ments in controllable generation, knowledge
editing, model stitching, and other foundational
techniques. However, the behavior of LLMs
in multimodal multilingual contexts remains
largely unexplored, despite their increasing
complexity. This paper investigates how large
audio language models (LALMs) process and
represent language, modality, and speaker de-
mography. Through a series of experiments,
we analyze the latent representations extracted
from diverse input cases using two state-of-
the-art open-weight LALMs: Ultravox 0.5 and
Qwen2 Audio. Our study examines patterns in
these representations to uncover the processing
mechanisms of LALMs across seven languages
and two modalities (text and speech). Addition-
ally, we explore paralinguistic speech features
such as gender, age, and accents, as well as
acoustic features arising from variations in the
recording setup. By bridging the gap in inter-
pretability LALMs, this work provides insights
into their behavior and lays the groundwork for
future research in this critical area.

1 Introduction

Investigating the internal mechanisms of large lan-
guage models (LLMs) has deepened our inter-
pretability of how they learn and process inputs
(Zhang et al., 2025b; Wilie et al., 2025; Zhao
et al., 2024; Gurnee and Tegmark, 2024). Pre-
vious studies have employed techniques, such as
probing (Gurnee and Tegmark, 2024; Azaria and
Mitchell, 2023), sparse autoencoders (Kang et al.,
2025; Ghilardi et al., 2024), and agnostic-specific
neurons (Mondal et al., 2025; Tang et al., 2024;
Bhattacharya and Bojar, 2023) to uncover LLM
behavior across different input scenarios. These
investigations have revealed insights into the range
of mechanistic behaviors, from LLM ability to
represent specific downstream tasks (Gurnee and
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Figure 1: Our findings suggest that language clusters are
present within each modality’s representational space.
These clusters emerge in the early and late layers in text
space, and persist throughout all layers in speech space.

Tegmark, 2024; Azaria and Mitchell, 2023) to
broader phenomena like representation alignment
across controlled parameters (Zhou et al., 2025).
Furthermore, recent studies have also leveraged
these insights into novel advancements in LLM
capabilities. Mechanistic insights have enabled
methods such as controllable text generation (Liu
et al., 2024a,b), knowledge editing (Meng et al.,
2023), and model stitching (Moschella et al., 2023)
to get more precise control, adaptation, and mod-
ularity in LLMs. These marks a significant step
toward more interpretable and adaptable LLM.

As LLMs increase in complexity, their growing
processing steps present challenges in interpreting
their mechanistic processes, stemming not only
from architectural advancements but also from the
complexity of inputs, which now extend beyond
text-based reasoning to task-specific contexts (Li
et al., 2025) and multimodal settings e.g. audio lan-
guage models (ALMs) (Chu et al., 2024) and visual



language models (VLMs) (Bai et al., 2025). While
existing research has identified patterns such as at-
tention mechanisms (Yan et al., 2025), knowledge
storage (Cao et al., 2024), and token representa-
tions (Wu et al., 2025), achieving a sufficient level
of interpretability remains a significant hurdle. Sub-
stantial progresses have been made in understand-
ing how LLMs process textual information (Ryan
et al., 2024; Wilie et al., 2025), the same level of
interpretability, however, does not fully translate to
multimodal LLMs , which must integrate informa-
tion from various modalities such as image, audio,
and video, adding layers of complexity (Yin et al.,
2024).

To bridge the gap in interpretability of the inter-
nal mechanisms of multimodal LLMs, our study
explores the mechanistic behavior of large audio
language models (LALMs), focusing on how rep-
resentation alignment occurs across different input
cases. In this study, we investigate representation
alignment across three key aspects in LALMs, i.e.,
modality, language, and speaker demography. By
analyzing activation values in response to specific
inputs and comparing them across a series of exper-
iments, we aim to investigate how these features
are represented in LALMs across layers. Our work
contributes to a deeper interpretability of the mech-
anistic behavior of LALMs, paving the way for
further research into the interpretability of LALMs.

Our study provides key insights into the repre-
sentation alignment of multilingual LALMs:

* The capability of LALMs to process inputs is

reflected in their representation patterns.

* We show that the textual semantic alignment —
both within and across languages — is retained
after adding the speech modality support to
language models.

* Within the speech modality, we conclude that
the representation is clustered semantically
rather than based on the speaker demography
indicating that LALMs tend to be robust to
variation in paralinguistic features.

* We scrutinize the alignment across modalities
and find that there is no semantic alignment
emerged between parallel speech and textual
representations.

* Our findings reveal different behaviors in mul-
tilingual processing between text and speech:
while cross-language semantic alignment is
emerged in text space, it is not present in
speech space.

2 Related Works

Latent Representations Across Languages,
Modalities, and Speakers. LLMs exhibit struc-
tured latent activation patterns that vary across lan-
guages and modalities. In the multilingual setting,
some neurons are shared across languages while
others are language-specific, though this neuron
sharing does not necessarily align with linguistic
similarity (Wang et al., 2024b). LLMs contain both
language-specific and language-agnostic regions,
with the former predominantly located in the early
and late layers of the model (Zhao et al., 2024; Tang
et al., 2024). As training progresses and model
capacity increases, semantically equivalent inputs
across different languages tend to converge within
a shared latent space (Chang et al., 2022; Wilie
et al., 2025; Zeng et al., 2025). Initially, knowledge
is grounded in a dominant language, but the model
gradually constructs language-specific knowledge
systems as exposure to new languages increases
(Zhao et al., 2024; Chen et al., 2025).

Beyond language, latent representations for dif-
ferent input modalities, such as audio and image,
also require specialized encoders to interface with
the language model. Multimodal LLMs (MLLMs)
use modality-specific adapters like Whisper for
speech (Radford et al., 2022) and ViT for im-
ages (Dosovitskiy et al., 2021), as common sense
and multimodal data reside in distinct embedding
spaces (Wang et al., 2024a). While speaker em-
beddings in speech processing have shown strong
clustering behavior by speaker identity (Horiguchi
et al., 2025; Ashihara et al., 2024), their integration
into LALMs remains an open question. Existing
works in speech representation often rely on super-
vised models to extract speaker-specific features
(Zhang et al., 2025a), but analogous mechanisms
in LALMs are yet to be systematically explored.

Language Model Mechanistic. Transformer-
based language models have been shown to encode
knowledge by projecting activations linearly across
various output settings, including binary (Olah
et al., 2020), continuous (Gurnee and Tegmark,
2024), and task-specific outputs (Nanda et al.,
2023). These models also contain knowledge neu-
rons, units whose activations are positively corre-
lated with specific factual expressions, enabling tar-
geted knowledge editing (Dai et al., 2022). While
internal state analysis has contributed significantly
to our mechanistic intepretability of LLMs, most
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Figure 2: The process of extracting LALM represen-
tations by recording activation values from each layer
of the LALM in response to the last token of an input
(shown in red .).

existing studies have focused on narrow, task-
specific scenarios (Olah et al., 2020; Nanda et al.,
2023; Gurnee and Tegmark, 2024; Ji et al., 2024).
A limited number of works have investigated rep-
resentation alignment across different input cases,
and these are confined to text-based LLMs (Tang
et al., 2024; Zhou et al., 2025; Wilie et al., 2025).
In this work, we extend internal state analysis and
representation alignment to the multimodal text-
speech domain to gain insight into the mechanistic
behavior and representation alignment in LALM:s.

3 Methods

3.1 Activation Values Extraction

Large Audio Language Models. Multimodal
LLMs generally consist of three main components:
a multimodal input encoder, a feature-fusion lan-
guage model, and a multimodal output decoder
(Wang et al., 2024a). As shown in Figure 2, we
focus exclusively on the language model compo-
nent since our aim is to analyze the representation
alignment in LALMs. To understand the mecha-
nisms by which LALMs process inputs, we utilize
the activation values from each layer to observe
patterns in input processing. We extract the acti-
vation values produced by the LALMs for each
input and use these latents as the primary objects
of observation in our experiments. This extraction
process is performed for every input case used in
the subsequent experiments.

Extracting Representation. Since inputs have
varying lengths, they are translated into a varying
number of tokens, leading to varying sizes of la-
tents produced by LALMs. This variation becomes

Task Scope

Modality Text, Speech Audio

Gender Male, Female

Language English, French, German, Chinese,

Japanese, Indonesian, Vietnamese
British, American, Scottish, North-
ern Irish, Irish, Indian, Welsh, Cana-
dian, South African, Australian, New
Zealand

Accent (English)

Table 1: Feature set used in our experiments.

even more significant with the presence of multi-
modal properties, such as text and speech, because
the tokenization processes differ: text is tokenized
using textual units (Kudo and Richardson, 2018;
Bostrom and Durrett, 2020), while speech uses
audio frames (Radford et al., 2022). To address
this, we standardize the latent size by taking only
the activation values produced by the last token
inputted into the LALMs for each input because
all the LALMs we use are based on transformer
decoder models (Vaswani et al., 2017). By using
this approach, differences in language latent sizes
caused by varying numbers of tokens are elimi-
nated. To minimize variation of latent size further,
we use the output produced by the last sublayer
of the i-th layer for a given input to represent acti-
vation values at layer ¢. Using this approach, the
latent size varies only with the number of neurons
in the last sublayer of the ¢-th layer. Each input will
then produce n Layer Latents, where n is the num-
ber of layers in the language model component.

3.2 Utilizing the Activation Values

Given a layer latent ( z; € R" ), where n repre-
sents the number of neurons in the last sublayer of
layer ¢, our objective is to visualize and analyze
the internal representations of a LALM. Due to
the high dimensionality of z;, direct visualization
is infeasible. To address this, we employ dimen-
sionality reduction techniques to map z; onto a
2D Cartesian plane. Specifically, we utilize t-SNE
for dimensionality reduction, which preserves the
similarity between points and maintains local struc-
tures. Let Z; € R? denote the 2D embedding of
the high-dimensional latent vector z;, where the
t-SNE algorithm maps each z; to a 2D vector z;.
The set of embedded vectors z; can be visualized
to gain insights into the internal representational
structure learned by the LALM, with clustering
or separation in the 2D space potentially reflect-
ing semantic, syntactic, or task-relevant groupings
encoded by the model. To complement this qualita-
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Figure 3: Representation of texts in 7 languages and 7 sample semantics (context) from Ultravox 0.5 LLaMA 3.1
8B across layers. Points are colored by (a) language and (b) semantics, revealing language-specific clusters in the
final layers, semantic clusters in middle layers, and a blend of both language and semantics in early layers.

tive analysis, we perform quantitative evaluations
of the clustering and separation patterns observed
in the 2D embedding space. First, we compute the
Euclidean similarity by measuring the Euclidean
distance between any pair of embedded vectors z;
and z;, serving as a proxy for assessing similarity
in the original high-dimensional space. Next, we
evaluate the silhouette score of the local clusters
formed in the 2D projection, which quantifies how
well each point fits within its cluster compared to
others, thereby reflecting cluster compactness and
separability. As an additional analysis, we may
also compute the Euclidean distances between cen-
troids of well-formed clusters to help quantify the
degree of separation between distinct internal rep-
resentation groups.

4 Experiment Details

Language Model. We use three state-of-the-art
LALM:s publicly available on HuggingFace: Ultra-
vox 0.5 LLaMA 3.2 1B!, Ultravox 0.5 LLaMA 3.1
8B! (Grattafiori et al., 2024), and Qwen2 Audio
7B (Chu et al., 2024).

No Modification. We conduct analysis on the
latent across 3 features: language, modality, and
speaker demography for input of speech utterance
(Table 1). All audio used in each experiment is
speech audio, which means that each audio file
has a transcript. We do not modify any model
processes, alter model structures, or manipulate
activation values. The only variable we change
is the input cases, which lead to different internal
states. We feed different input cases into the mod-
els, extract the corresponding activation values, and
analyze them as they are.

Dataset. Since our experiments involve multiple
input features, we use several datasets to simulate
diverse input scenarios while controlling certain

1h'ctps://www. ultravox.ai/

First Layer
A2 B1 B2

0.75 1.38 1.41
1.45

B1
B2

Last Layer
A2 B1 B2

746 | 19.13 | 18.81
19.90

B1
B2

Table 2: Distance between two samples of context (de-
noted by letters) in two linguistic structures (denoted
by numbers) from Ultravox 0.5 LLaMA 3.2 1B. Texts
with the same semantic meaning are closer to each other
even when presented in different structures. Cells with
same context are colored blue , while cells with differ-
ent context are colored green .

parameters. The datasets used in this study include
Common Voice 4 (Ardila et al., 2020), CoVoST
2 (Wang et al., 2021), CVSS 2 (Jia et al., 2022),
M-Vicuna (Tang et al., 2024), VCTK (Yamagishi
et al., 2019), and PAWS (Zhang et al., 2019).

5 Results

5.1 Semantic Alignment in Text Modality

Monolingual Semantic Alignment. Before be-
ing processed by LLMs, all inputs are decomposed
into tokens through a tokenization and embedding
lookup process that transforms text into a vector for-
mat. This process not only converts the input into a
form that the model can understand but also maps
semantically similar words to nearby positions in
the embedding space (Peng et al., 2024). The effect
of this semantic alignment is especially noticeable
in the early layers. Texts with the same meaning,
even if they have different sentence structures, tend
to have significantly closer vector representations
compared to inputs from different contexts (Table
2). As the model moves through deeper layers, the
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Figure 4: Silhouette scores (y-axis) for language (red) and semantic clusters (blue) across layers (x-axis) based on
representations extracted from 3 different models. The results show that language clusters emerge in the early and
late layers, while semantic clusters are prominent in the middle layers.
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Figure 5: Representations in the first layer extracted from Ultravox 0.5 LLaMA 3.1 8B for multilingual text pairs:
(a) English-German, (b) English-French, (c) English-Japanese, and (d) English-Chinese; and from Qwen2 Audio 7B

for (e) English-Japanese and (f) English-Chinese.

distance between these representations increases,
reflecting a divergence in how the inputs are pro-
cessed. This phenomenon occurs across all text
inputs, as cross-context texts also show increasing
separation. However, semantically similar texts,
although they become more distant, still remain
closer to each other than to representations from
different contexts.

Multilingual Semantic Alignment. During text
processing in LALM, we observed several inter-
esting patterns when controlling the language of
the inputs. Late layers tend to distinctly cluster
text inputs from the same language together (Fig-
ure 3a), while early layers form clusters based on a
combination of semantics and language (Figure 3).
In contrast, the middle layers focus on language-
agnostic processing i.e. semantic processing, as
semantic clusters form during this stage before be-
ing separated again in the later layers (Figure 3b).
These clusters present in all LALMSs we use in this
experiment (Figure 4). This pattern aligns with
recent research identifying language-processing ar-
eas in LLMs (Tang et al., 2024; Zhao et al., 2024;
Wilie et al., 2025), which suggests that the early
and late layers play a key role in handling language-
specific information.

Several first layers show low silhouette scores,
before increasing significantly afterward. We tested
several multilingual texts and found the reason why

this happens. It is because there are differences
in the text embeddings inputted into the models.
Inputs from languages that share similar linguis-
tic structures often come in a similar space (Fig-
ure S5a, 5b). In contrast, inputs from totally differ-
ent languages are represented as distinct clusters,
showing that processing those languages needs sep-
arate processing spaces (Figure 5c, 5d). However,
it seems to depend on the data the model is trained
on, as shown in Figure 5e and 5f: the represen-
tation of English-Chinese and English-Japanese
seems relatively closer, although still separated.
The higher percentage of Chinese and Japanese
data on QwenLLM (compared to LLaMA) makes
representations in the first layers tend to be closer
to each other.

@ Text Alignment Key Insight

Mechanistics of text processing in language
model are preserved even when speech modal-
ity support is added to the model. The linguis-
tic and semantic phenomena we observed in
LALMs align with those found in text-only
LLM:s.

5.2 Semantic Alignment in Speech Modality

Audio Robustness. We found that LALMs
demonstrate semantic clustering behavior when
given speech input. As the process moves to deeper
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Figure 6: Representation across layers Ultravox 0.5 LLaMA 3.1 8B of speech inputs from 2 controlled recording
devices with 5 sample English transcripts, colored by (a) semantic (each color denotes each speech transcript) and
(b) recording devices (each color denotes each recording device). This image suggests LALM clusters inputs by
their transcripts, and differences in recording setup do not affect the representation much as they are distributed

evenly.
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Figure 7: Clustering performance (y-axis) is plotted
across model layers (x-axis). Red denotes raw speech
input, while blue denotes normalized speech. Normal-
ization affects models differently: Ultravox 0.5 LLaMA
3.1 8B (a) shows weaker clustering overall, whereas
Qwen2 Audio 7B (b) demonstrates better representation
clusters.

cimicip; | cymicep; | cimicipy | Comicip;
ciymicyp; 6.61 19.05 31.93
cimicap; 6.61 20.86 31.21
C1Mmic{py 19.05
Comicip; 31.93

Table 3: The distance between representations Ultravox
0.5 LLaMA 3.2 1B in a sample layer under the con-
trolled context (denoted as c,,) in a controlled recording
setup (denoted as mic,) spoken by a controlled speaker
(denoted as p,,) shows that the differences between mi-
crophones result in the least representation divergence
(cell colored green).

layers, the model attempts to tightly cluster inputs
with the same transcript, and we can see semantic
clusters emerge in the late layers (Figure 6a). In
our experiment, where we controlled the recording
devices, we observed that variations in recording
devices introduced minimal amount of divergence.
The differences in the recording setup did not in-
troduce much divergence, as the representations
overlapped with each other in an evenly distributed
manner (Figure 6b).

We also found that differences in the recording
setup resulted in the least amount of divergence in

representation compared to inputs with different
contexts and speakers (Table 3). However, cross-
context and cross-speaker representations varied:
in some cases, cross-context inputs were more dis-
tant from each other, while in other cases, cross-
speaker inputs were. We also tested simple pre-
processing of the speech before feeding it into the
LALM, where we normalized the speech tensor
to the range [—1, 1] under varying recording de-
vice conditions. We found that this preprocessing
had differing effects on the models: the LLaMA-
based model produced poorer clusters, while the
Qwen model produced better clusters (Figure 7).
This highlights differences in capabilities for pro-
cessing acoustic features in speech. These clusters
emerge not only from real speech recordings, but
also computer-generated speeches. However, in the
case of unified computer-generated speech, cluster-
ing tends to be relatively better in the early layers.
In contrast, multi-speaker speech, whether real or
synthetic, often shows overlapping representations
in the early layers. This suggests that speaker em-
beddings in speech recordings may influence, or
even distort, the representations of the speech con-
tent.

Monolingual Semantic Alignment. As shown
in Figure 6 and Figure 9, LALMs clusters speeches
with similar semantic meaning together. Process-
ing of speech in LALMs prioritizes understanding
of the speech i.e. semantic meaning rather than par-
alinguistic features that come with the speech. As a
result, they tend to separate semantically different
speech from the same speaker more strongly than
semantically similar speech from different speakers.
This may be due to the fact that current LALMs
do not yet support the processing of paralinguistic
speech features. Nevertheless, their effectiveness
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Figure 8: Representations across layers of multilingual speech extracted from (a) Qwen2 Audio 7B and (b) unified
Ultravox 0.5 LLaMA 3.1 8B show distinct speech clusters across all layers during multilingual speech processing,

indicating separate processing spaces for each language.

in clustering speech by semantic meaning suggests
the existence of a well-defined semantic space, sim-
ilar to that observed in text processing.

Multilingual Semantic Alignment. We found
that multilingual speech inputs are represented as
tightly clustered based on their language. Unlike
in multilingual text processing (Figure 3), seman-
tically similar clusters across languages do not
emerge in the middle layers for speech (Figure 8).
Instead, language-based clusters are present from
the beginning to the end of processing. Different
types of clustering behavior emerge across models.
LLaMA-based models tend to group similar lan-
guage (Figure 8b), such as French, Spanish, and
German, into overlapping clusters, while distinct
languages like Chinese and Japanese form separate
clusters. In contrast, Qwen-based models represent
each language in distinct, non-overlapping clus-
ters (Figure 8a). These language clusters remain
stable throughout the processing layers. Due to
data limitations, all tested speech samples were
recorded using different devices and in varied en-
vironments. However, since previous experiments
suggest that such differences have minimal effect
on the representations, we can reasonably conclude
that language-based clustering also emerges in mul-
tilingual speech processing, just as it does in multi-
lingual text processing. This phenomenon further
suggests that current speech processing in LALMs
is primarily capable of capturing "what" is being
said, stopping at understanding literal speech con-
tent, without fully modeling the real semantics of
the speech.

Speaker Demography. Since none of the
LALMs in our experiment natively support par-
alinguistic features, this limitation is evident in the
absence of meaningful clusters based on speaker de-
mographics such as age, accent, and gender, even
under controlled contexts and recording devices

(a) (b) ()

Figure 9: Representations of speech inputs with the
same transcript in a sample layer of Qwen2 Audio 7B,
colored by (a) accent, (b) gender, and (c) age, show no
meaningful clustering based on paralinguistic features.
Each color denotes a different category.

(Figure 9). We also conducted experiments under
more controlled settings, combining multiple par-
alinguistic features (e.g., gender within accent, age
within gender), and similarly observed no meaning-
ful clustering. This suggests that speech represen-
tations in LALMs are more strongly influenced by
"what" is said rather than "how" it is said.

@ Speech Alignment Key Insight

Mechanistics of speech processing in LALMs
are primarily designed to capture the literal
content ("what" is being said), but they often
struggle to fully model the real semantic mean-
ing or capture paralinguistic audio features.

5.3 Speech-Text Semantic Alignment

Monolingual Semantic Alignment. In LALMs,
text and speech inputs are processed in distinctly
separate representational spaces. This distinction
becomes particularly evident through a series of
controlled experiments involving various types
of speech: controlled recording setups, varying
recording conditions, multilingual pair text-speech,
and computer-generated speech (Figure 10). These
experiments consistently show that the representa-
tional space for each modality forms reliably and
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Figure 10: Representations across layers extracted from Ultravox 0.5 LLaMA 3.2 1B for (a) text with computer-
generated speech and (b) text with real speech recording, showing separation in processing space from the beginning

to the end of processing.

independently across all layers, indicating robust
and modality-specific semantic encoding. This sep-
aration between modalities is not unexpected, as
each input type undergoes different encoding be-
fore being fed into the model. As a result, the
semantic meaning of inputs tends to cluster within
its own modality space across layers, despite the
underlying semantic similarity.

Multilingual Semantic Alignment. In multilin-
gual contexts, both text and speech inputs form
clusters during processing. Figure 11 illustrates the
interaction between multilingual text—speech pairs
in LALMs. We observe that language-specific clus-
ters emerge in both the early and late layers. How-
ever, their representations pose different dynamics.
In text, these language clusters tend to dissolve in
the middle layers, where semantically similar texts
form shared clusters (in Figure 3b). In contrast,
multilingual processing in the speech modality re-
mains confined within language-specific clusters
throughout the entire pipeline (in Figure 8).

@ Speech-Text Alignment Key Insight

Mechanistics text and speech inputs in LALMs
are present in separate representational spaces,
meaning there is currently no cross-modal se-
mantic alignment, which hinders their ability
to fully connect meaning across modalities.

6 Discussion

We demonstrate that semantically identical audio
samples could occupy distinct regions in the repre-
sentational space (Figure 8). This variation arises
from differences in audio features, specifically
acoustic and paralinguistic elements, that accom-
pany the speech signal (Table 3). Our findings
indicate that current LALMs are not yet capable of
fully accounting for these variations, as evidenced
by the absence of consistent clustering within their

Early Layers Middle Layers Late Layers

Figure 11: Representations of English text (orange),
English speech (blue), Japanese text (red), and Japanese
speech (green) extracted from Ultravox 0.5 LLaMA 3.1
8B across layers.

semantic spaces (Figure 6b, 9). These features
may influence, or even distort, the representation
of speech content. However, the extent to which
these representations can vary while still being con-
sidered semantically equivalent remains an open
question. Understanding this boundary is crucial
for improving alignment and robustness in speech
processing tasks. This is particularly relevant for
multilingual scenarios, where differences in record-
ing setups and language can introduce additional
variation in the representational space.

7 Conclusion

Our study provides foundational insights into the
representation of LALMs, demonstrating how par-
allel semantic clusters exist in different representa-
tional spaces and revealing the potential for cross-
space mapping (Figure 1). The results suggest
that LALMs can encode semantically equivalent
inputs in distinct representational spaces while still
maintaining the ability to organize their seman-
tics. For future work, we encourage researchers to
build upon these findings by exploring real-world
multilingual environments, expanding the scope to
include a broader range of linguistic phenomena
and use cases. The journey to better understand
and control semantic representations is still in its
early stages, and we hope our study inspires others
to contribute to this exciting field.



Limitations

Due to computing constraints, we were only able
to analyze representations in three LALMs. Larger
LALMs may have greater capacity to represent in-
put features and could reveal additional patterns
beyond those observed in the smaller models we
used. To enable more understanding about multilin-
gual speech processing, future work should employ
a set of speakers delivering parallel multilingual
transcripts in controlled recording setups. This
would allow for more consistent cross-language
comparisons.

Ethical Consideration

All language models and datasets used in our ex-
periments are publicly available, primarily sourced
from Hugging Face. We ensured compliance with
the licenses and usage policies associated with each
resource. No proprietary or private data was used,
and all experiments were conducted with the inten-
tion of promoting open and reproducible research.
Al assistants such as ChatGPT were used as pro-
ductivity tools to support ideation, code debugging,
and refining explanations. Their use was limited to
non-generative support and did not replace original
research, critical analysis, or authorship. All final
decisions, implementations, and evaluations were
conducted by the authors.
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