
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SimpliGuard: Robust Mesh Simplification In the Wild
Anonymous Authors

Ref: 300k Ours: 4k(↓98.7%)

Figure 1: We propose a framework that enables extreme mesh simpli�cation for arbitrary complex meshes in-the-wild.

ABSTRACT
Polygonal meshes are widely used to represent complex geometries.
However, the increasing complexity of models often leads to large
meshes with millions of triangles, raising signi�cant challenges for
storage, transmission, and computation. Mesh simpli�cation, a pro-
cess of reducing the number of triangles in a mesh while preserving
its overall shape and important features, has emerged as an indis-
pensable technique to address these challenges. In this work, we
focus on the problem of obtaining a visually consistent ultra-low-
polygon mesh for complex meshes. Unlike previous methods, we
design a robust simpli�cation framework, SimpliGuard, to handle
any meshes in the wild. Firstly, a reconstruction module is used
to construct a low-polygon mesh with a similar shape but a mani-
fold topology. Then, a texture initialization module is employed to

Unpublished working draft. Not for distribution.Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ACM MM, 2024, Melbourne, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

quickly initialize the entire texture map. After that, a di�erentiable
rendering module is utilized to optimize the overall structure and
texture details, ensuring high-quality results. For meshes with skele-
tons, the correctness of motion can be preserved with our designed
motion post-processing module. Experimental results demonstrate
that SimpliGuard signi�cantly outperforms previous methods and
various featured software, including Blender and Simplygon.

CCS CONCEPTS
• Computing methodologies;

KEYWORDS
Mesh Simpli�cation,Level of detail,Di�erentiable Rendering

1 INTRODUCTION
Meshes have been widely employed in various domains, such as
virtual reality and game development. However, as the complexity
of meshes increases, the required computational and rendering re-
sources also increase, thereby limiting their performance on mobile
devices, VR, and other edge devices. To address this issue, mesh
simpli�cation techniques have been proposed.

Traditionalmethods, such as QEM (Quadric ErrorMetrics[Garland
and Heckbert 1997]), employ a greedy strategy to perform edge

https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

collapses and merges on the original mesh. To preserve texture cor-
rectness as much as possible, some variants [Garland and Heckbert
1998] incorporate the attributes as constraints into the optimization
process. However, these traditional methods essentially generate a
sub-mesh from the original mesh, regardless of whether the original
mesh’s structural design is friendly to decimation. This leads to the
following issues: 1) the lower bound of the reduced face count is
constrained by the structural design of the original mesh; 2) the
output quality varies for di�erent meshes, and severe structural
errors, such as holes, can occur for meshes in the wild; 3) the tex-
ture distortion and fragmentation after simpli�cation result in poor
visual perception. Consequently, traditional mesh simpli�cation
algorithms are di�cult to be directly used, and are often used as
auxiliary tools for designers.

Recently, some works based on di�erentiable rendering, like
Hasselgren et al. [2021], have emerged. They utilize di�erentiable
rendering to optimize the texture and topological structure simul-
taneously. However, these methods only rely on di�erentiable ren-
dering to optimize the structure and texture, which can lead to
the following issues: 1) careful parameter tuning is necessary for
di�erent meshes; otherwise, the results are unstable and of varying
quality; 2) the optimization process is extremely slow; for instance,
Nvdi� requires over half an hour to achieve satisfactory results,
which is impractical for real-world usage; 3) for meshes with skele-
tons, the animation of the simpli�ed mesh cannot be guaranteed.

In this work, a robust framework, SimpliGuard is proposed. With
SimpliGuard, a mesh of any complex structure can be reduced to
a target number of faces within a few minutes while maintain-
ing similar shape and texture. For meshes with skeletal animation,
SimpliGuard guarantees the correctness of the output mesh’s mo-
tion. The overall structure consists of four parts. The reconstruction
module can transform any complex mesh in the wild into a mani-
fold mesh with a similar shape. The texture initialization module
quickly generates coarse texture maps, which has two bene�ts:
1) it signi�cantly reduces the learning time of the di�erentiable
rendering module for textures, and 2) for scenes that do not require
close-up observation, these texture maps can be directly used. The
di�erentiable rendering module, following the texture initializa-
tion module, further optimizes the structure and texture details
to improve the overall quality of the generated mesh. Finally, the
motion post-processing module ensures that the animated mesh
does not su�er from structural problems even when reduced to a
small number of faces. The overall contributions are as follows:

1. We propose SimpliGuard, a framework that can generate high-
quality simpli�ed meshes for meshes in the wild. For rigged meshes,
SimpliGuard ensures correctmotion and eliminates structural issues
even after simpli�cation. The advantages are achieved through the
combined e�orts of various modules.

2. The framework can generate reliable results in a few min-
utes. This is achieved through our meticulous module design and
initialization acceleration.

3. We propose multiple loss functions that signi�cantly improve
the results of di�erentiable rendering, enhancing the usability of
the generated meshes.

4. Qualitative and quantitative experiments show that ourmethod
is superior to the previous academic approaches and featured soft-
ware in terms of metrics and visual quality.

2 RELATEDWORK
Mesh Simpli�cation. Traditional mesh simpli�cation algorithms

[Luebke 2003] can be roughly divided into two categories: local
strategies and global strategies. One representative algorithm of
global strategies is Vertex Clustering [Low and Tan 1997; Rossignac
and Borrel 1993; Valette and Chassery 2004; Valette et al. 2005].
This kind of algorithm sorts each vertex based on a de�ned cost
function to ensure that less important vertices are more likely to
be merged. However, these methods can completely change the
topology of the input mesh in an unpredictable way, and the re-
sulting structure is not visually similar to the original structure,
which is unacceptable. In the local feature-driven approaches, ver-
tex decimation [Schroeder et al. 1992; Soucy and Laurendeau 1996]
iteratively selects a vertex, deletes it along with the surrounding
faces, and re-tessellates the resulting hole. However these methods
are e�ective for manifold surfaces and not suitable for in-the-wild
scenarios. As another kind of local strategy, edge contraction, pro-
posed by [Hoppe et al. 1993], has been the most commonly used
simpli�cation operation. Its core idea is to merge individual edges
into a single vertex. The selection of edges and the optimal merged
vertex depend on the de�ned cost function. Consequently, several
related algorithms have been proposed. Ronfard and Rossignac
[1996] measures the distance between points and planes using a
quadric matrix. Inspired by Ronfard and Rossignac [1996], Garland
and Heckbert [1997] introduced a new error matrix to approxi-
mate geometric deviation, known as QEM. Subsequently, many
QEM-based variants have been proposed, including Garland and
Heckbert [1998], Hoppe [1999] ,Wu et al. [2004], Li and Zhu [2008],
Thiery et al. [2013] and Liu et al. [2017]. Recently, there have been
some methods based on neural networks. Potamias et al. [2022]
uses a graph neural network to simplify a given mesh in one pass.
Hasselgren et al. [2021] utilizes di�erentiable rendering to simul-
taneously �t the shape and texture of the target mesh. However,
these methods essentially results in a subset of the original mesh,
and thus are limited by the original mesh structure and are di�cult
to handle for complex meshes in the wild.

Surface Remeshing. Surface remeshing is a widely researched
�eld [Khan et al. 2020]. A typical method is constructing a Cen-
troidal Voronoi tessellation on the surface of the mesh [Du et al.
1999]. Due to slow convergence, it requires a good initial sampling.
Alliez et al. [2003] introduces an error di�usion-based algorithm
that e�ectively �nds better initial sampling. But this method oper-
ates in the global parameter domain, which may not �nd suitable
parametrization. To address this, Surazhsky et al. [2003] performs
local modi�cations while referencing the geometry of the origi-
nal mesh. Although it is more e�cient and accurate, the sampling
quality is not guaranteed. Thus, some new algorithms have been
proposed, including Schreiner et al. [2006] based on advancing-
front paradigm, Fu and Zhou [2008] based on 2D fast Poisson disk
sampling algorithm, and Fuhrmann et al. [2010] based on novel re-
sampling strategies. However, these methods are di�cult to directly
apply to our task. On one hand, they mainly focus on improving the
accuracy of the �tted mesh, which often leads to an unacceptable
number of faces. On the other hand, many algorithms only con-
sider the mesh structure and neglect the mesh’s texture properties,
making it challenging to apply to assets in real-world scenarios.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

SimpliGuard: Robust Mesh Simplification In the Wild ACM MM, 2024, Melbourne, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Surface
Reconstruction

Traditional
MeshSimplification

InvisiableFace
Removal

Auto
UVUnwrapping

The Reconstruction Module

DiffRender

The Differentiable Rendering Module The TFI ModuleThe Motion Post-processing Module

45k

2k

Figure 2: Overview of SimpliGuard. The framework consists of four modules. Given a high-poly mesh Mtar, we �rst apply
the reconstruction module to obtain a low-polygon mesh with similar shape and manifold topology. Then, the texture fast
initialization module is employed to quickly initialize the entire texture map within few seconds. After that, the di�erentiable
rendering module is utilized to optimize the overall structure and texture details with ours proposed losses. For meshes with
skeletons and weights, the correctness of motion can be preserved with the designed motion post-processing module.

3 METHOD
3.1 Overview
Given a meshMtar = (Vt, Ft,Text, BWt [opt]), our goal is to obtain a
new mesh Msrc = (Vs, Fs,Texs, BWs [opt]) with a reduced number
of faces, where V, F, Tex, and BW respectively represent the vertices,
faces, texture maps, and skeletal bone weights. Msrc is required to
be visually similar to Mtar as much as possible. Additionally, if
there are animated skeletons, Msrc needs to keep the structural
correctness under large deformation. To achieve this objective, we
propose a uni�ed framework, SimpliGuard, as shown in Fig. 2.

3.2 The Reconstruction Module
Most of the previous QEM-based method achieve decimation by
performing edge contraction, essentially resulting in a subset of the
original mesh. Take QEM as an example. Without loss of generality,
let’s assume that during the merging process, E1 is selected as the
merged point for E1 and E2. Then, the faces with an edge connecting
E1 and E2 will be removed, and E1 will replace E2 in all the faces and
edges with E2 as a vertex of them. As a result, the remaining faces
are a subset of the original faces with some vertex positions changed.
Therefore, for such algorithms to achieve good results on meshes in
the wild, the assumption must hold true that a subset of the mesh’s
faces can well represent the original structure. In reality, however,
most meshes do not adhere to this assumption. To address the
structural problem, we propose the reconstruction module, which
includes Surface Reconstruction, Traditional MeshSimpli�cation,
InvisibleFaceRemoval and Auto UVUnwrapping.

Surface Reconstruction. Our objective is to obtain a mesh that is
similar to the original mesh and has a high-quality structure (water-
tight and manifold). These properties ensures that the mesh will not

su�er from structural issues such as discontinuous triangle faces
during optimization. To achieve this goal, we introduce surface re-
construction, which is a well-explored �eld of research [Alliez et al.
2008; Chen et al. 2023; Khan et al. 2020; Khatamian and Arabnia
2016; Peng et al. 2005]. A typical approach involves transforming
the mesh into a signed distance �eld and then extracting the sur-
face using isosurface extraction techniques, which are subsequently
converted into a watertight and manifold triangular mesh [Huang
et al. 2018]. This kind of technique generally satis�es our structural
requirements. However, considering the requirement for e�cient
execution, we need to modify these algorithms to minimize memory
usage and ensure fast performance. Speci�cally, when applying the
marching cube based methods [Lorensen and Cline 1998], we only
retain the relative relationships between the cubes and the mesh.
Then, we employ a �ner grid representation for the surface regions,
while for non-surface regions, a coarser grid representation is used
to conserve memory. Additionally, an octree data structure is em-
ployed to expedite the computation process by storing information
between nodes. As indicated in Figure 7, for a mesh with 30,000+
faces, the reconstruction can be completed within 4.4 seconds.

Traditional MeshSimpli�cation. After surface reconstruction, we
have obtained a high-quality mesh that is manifold. In this section,
our objective is to quickly minimize the face count to achieve the
target face count, without strictly pursuing the quality of the re-
duced mesh. Therefore, we employ the classical QEM algorithm.
It should be noted that, since we are reducing the face count of a
watertight and manifold mesh obtained through surface reconstruc-
tion, various structural issues that may be present in the original
mesh are resolved. However, there might be the problem of self-
intersection. To address this problem, we additionally propose a
curvature constraint. Given vi and the faces f1, . . . , fM it belongs to,

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

we compute the normal vectors N1, N2, . . . , NM. Then, the curva-
ture of vi is calculated as follows: ci = 1/Õ"

j=1 angle
�
ni,Nj

�
, where

ni is the normal vector of vi and angle
�
ni,Nj

�
is the angle between

ni and Nj. Since the original quadric of each vi can be written as
& (vi) =

ÕM
j=1 area(fj) ·& (vi, fj), where& (vi, fj) = vTi Avi+2b

Tvi+3 ,
we can represent & (vi, fj) using a simple representation [Hoppe
1999]: & (vi, fj) = (A, b, 2). Now we need to incorporate curvature
into & (vi, fj). Here we directly give the expression, and the proof
can be found in the supplementary material.

Q2 (vi, fi) =

©≠≠≠≠≠≠≠≠≠
´

©≠≠≠≠≠≠≠≠≠
´

gg)
. . . 0

. . . �g
. . . 0

. . .

. . . 0
. . .

. . . 0
. . . 0

. . . 0
. . .

�g) · · · 0 · · · 1 · · · 0 · · ·
. . . 0

. . .
. . . 0

. . . 0
. . . 0

. . .

™ÆÆÆÆÆÆÆÆÆ
¨

,
©≠≠≠
´

@g
0
�@
0

™ÆÆÆ
¨
,@2

™ÆÆÆÆÆÆÆÆÆ
¨

where g and @ can be computed by:

©≠≠≠
´

vT1 1
vT2 1
vT3 1
NT 0

™ÆÆÆ
¨

©≠≠≠
´

g

@

™ÆÆÆ
¨
=
©≠≠≠
´

c1
c2
c3
0

™ÆÆÆ
¨

The �nal &total (vi, fi) = & (vi, fi) + U&2 (vi, fi), where U is a hyper-
parameter used to balance QEM and the curvature constraint.

InvisibleFaceRemoval. After traditionalmesh simpli�cation, there
may exist completely invisible faces in the idle state. These faces
have no visual impact but increase computational complexity. Fur-
thermore, during animation, these invisible faces can potentially
cause self-intersection between the inner and outer surfaces, lead-
ing to structural issues. Thus they are necessary to be removed.
Here we adopt a straightforward approach to identify the invisible
faces. We generate multiple rays from vi and check for each ray
if it intersects with the mesh. If there is no intersection, we incre-
ment a counter by 1; otherwise, the counter remains unchanged.
Finally, we determine the visibility of the current point by evaluat-
ing whether the counter is greater than zero. This process can be
expressed as Hi =

Ø
⌦ I (w) dw. ⌦ represents the set of all rays in

the hemisphere. I (w) = 1 when the ray F doesn’t intersect with
the mesh, and I (w) = 0 otherwise. In practice, we approximate the
process by randomly sampling rays from the hemisphere.

Auto UVUnwrapping. Until now, the mesh we have obtained
lacks UV coordinates, making it unsuitable for texture generation.
Therefore, we employ a classic method for automatic UV generation
known as Least Squares Conformal Maps [Lévy et al. 2002]. It
partitions the surface of the mesh into multiple local patches and
minimizes distortion within each patch.

3.3 The Texture Fast Initialization Module
We have obtained a simpli�ed mesh with a rough structure that
lacks textures. To obtain the texture, an intuitive approach would
be to directly optimize the texture using di�erentiable rendering.
However, iterative optimization with di�erentiable rendering is a
time-consuming operation. Considering that Msrc and Mtar have
similar shapes, we propose a texture fast initialization module based
on rendering. In the rendering pipeline, after triangles are raster-
ized, they are �lled with color values sampled from the texture

GT TFI: Single-Point TFI: Cycle-Point

Figure 3: The E�ciency of TFI: Using the single-point strat-
egy allows for a rough approximation of textures, but often
results in numerous "spots". By employing the cycle-point
strategy, the occurrence of spots is signi�cantly reduced, lead-
ing to an improvement in the quality of the initial texture.

map based on their UV coordinates. Therefore, each pixel in the
rendered image corresponds to a coordinate on the texture map.
By simultaneously rendering Msrc and Mtar from multiple view-
points, we can utilize the rendered images of Mtar to �ll the tex-
ture map of Msrc. Let r

p
t 2 Rh⇥w⇥3 and rps 2 Rh⇥w⇥3 be the ren-

dered image ofMtar andMsrc under viewpoint p. By tracking the
relationship between UV coordinates and pixels during the ren-
dering process, we can obtain the pixel-to-uv map upt 2 Rh⇥w⇥2

and ups 2 Rh⇥w⇥2. Then the coarse texture ofMsrc can be quickly
obtained by: Texs [upt [:, :, 0], u

p
s [:, :, 1]] = Text [ups [:, :, 0], u

p
t [:, :, 1],

However, although the obtained coarse texture map can roughly
capture the color information of the original mesh, due to the lim-
ited rendering viewpoints and resolution, the texture map becomes
discontinuous, resulting in numerous "spots" (as shown in Figure
3). To generate a more continuous texture map with the same com-
putational resources, we propose a smoothing algorithm. For each
pixel, we select a circular region with a radius of r and centered at
the corresponding UV point on Text and Texs. Then, we assign all
the pixels within the circular region on Text to Texs:

Texs [Cycle(ups [:, :, 0], u
p
s [:, :, 1], r)]

=Text [Cycle(upt [:, :, 0], u
p
t [:, :, 1], r)], 81 p

As depicted in Figure 3 and Figure 9, this algorithm signi�cantly
improves the quality of the initial texture.

3.4 The Di�erentiable Rendering Module
To further improve the quality of the mesh, we introduce di�eren-
tiable rendering, which contains three types of loss functions: Ltex,
Limg and Lstruct. The overall optimization objective is de�ned as:

argmin
TexB ,VB

E
⇥
ULtex + VLimg + XLstruct

⇤

Loss of Texture. To generate a high-quality texture, two require-
ments should be ensured: 1) The rendered texture colors of Msrc
should closely match that of Mtar. 2) The transitions in the ren-
dered texture should be smooth when observing the mesh closely.
Previous research focuses more on optimizing texture color but
overlooks the texture smoothness. To address this, we propose
Ltex. The loss randomly selects pixel coordinates, called PB , on the
texture map during each iteration and applies small random per-
turbations to these coordinates, resulting in new coordinate points.
The objective is to constrain the color of the new coordinate points
to be as similar as possible to that of the original points:

Ltex = | |TexB (PB) � TexB (PB + n) | |2, where n ⇠ N(0,f2).

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

SimpliGuard: Robust Mesh Simplification In the Wild ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

GT(434k tris) QEM(1k tris) QEM++(30k tris) Nvdi�(1k tris) Ours(1k tris)

GT(68k tris) QEM(2k tris) QEM++(7k tris) Nvdi�(2k tris) Ours(2k tris)

Figure 4: Comparison with academic approaches. QEM and QEM++ su�ers from poor quality of the structure and texture.
Besides, QEM++ fails to achieve the desired target face number. Nvdi� produces blurry textures and dissimilar structure. In
contrast, SimpliGuard achieves best in both structure and texture.

Loss of Image. Optimizing texture using MSE loss on rendered
images is a common practice in di�erentiable rendering. However,
this approach often struggles to capture �ne details in the texture.
The reason is that MSE loss does not impose constraints between
pixels, which can lead to issues such as unclear edges in the images.
To address this problem, we introduce a new loss. This loss calcu-
lates the gradients of the rendered image rs and compares them
with the gradients of the target image rt. When the rendered image
exhibits blurriness in the edge regions or roughness in smooth
regions, it results in larger gradients in those areas. This allows the
gradient descent algorithm to e�ectively optimize the texture in
those speci�c areas. The �nal loss is de�ned as follows:

Limg = | |Grad(rt) � Grad(rs) | |2 + ||rt � rs) | |2 .

Loss of Structure. Optimizing the mesh structure only based on
rendering images is unfeasible, as it may lead to issues such as mesh
interpenetration, spikes, and surface irregularities. To alleviate this
challenge, we impose Laplacian smoothing:

Llaplacian =
1

|Vs |

|Vs |’
8=1

������
1
|Si |

’
vj2Si

vj � vi

������
2

Here, |Vs | is the number of vertices inMsrc, and Si is the neighbour-
hood of vi. Furthermore, to ensure smoothness in Msrc, we apply a
smoothness constraint on the normal vectors:

Lnormal =
1
|Fs |

’
(v1,v2)2Es

(1 � cos(n1, n2))

Fs represents the set of faces inMsrc, and Es represents the set of
all connected edges in Msrc. n1 and n2 are the normal vectors of
vertices v1 and v2, respectively. Lstruct can be represented as:

Lstruct = wnormalLnormal +wlapLlaplacian

3.5 The Motion Post-processing Module
In real-world applications, many objects are animatable. If these
objects cannot be properly animated, they still cannot be used
even if the triangles are reduced. Some related research utilizes

a neural network to obtain the bone weights [Mosella-Montoro
and Ruiz-Hidalgo 2022; Xu et al. 2020]). However, these methods
only optimize bone weights or vertex coordinates. It is reasonable
for high-poly meshes. But in the case of low-poly meshes, simply
moving the coordinates of vertices and optimizing bone weights
cannot guarantee the absence of motion artifacts. In this section,
we introduce a simple post-processing module. Firstly, given Vt, Ft,
and BWt, we compute BWs for Vs through the K-nearest neighbor
algorithm:

BWs (i) =
Õ
j2Neighborr (i) (1 �

dist(Vs (i)�Vr (j))Õ
k2Neighborr (i) dist(Vs (i)�Vr (k))) ⇤ BWr (j)

Then, we identify the planes where the joints lie and split the faces
on the mesh that intersects with these planes. Speci�cally, we �nd
all points in Vs where the di�erence in the �rst two dimensions of
BWs is smaller than X . Then, based on the physical properties of
BWs, these points can be clustered into J groups, and the average
of each group’s points will serve as the center point for each of the
J joints. Based on the orientation of the joints, the normal vectors
of the planes can be calculated. With the points and the normal
vectors, we can determine J joint planes, which can be used to
calculate the intersection points between the planes and the mesh.
Finally, these points are used as new vertices to split the faces.

4 EXPERIMENTS
4.1 Experimental Setup

Dataset. To fully validate the e�ectiveness of the algorithm, we
collect 884 assets from Sketchfab and convert them into .obj �le
format. Details can be seen in the supplementary material.

Metrics. We measure the visual quality of the low-poly mesh
based on PSNR and SSIM. To better measure perceptual similarity,
we design a metric called NLPIPS (Normalized LPIPS), which is
based on LPIPS: NLPIPS = 1 � LPIPS(Isrc, Itar)/LPIPS(Noise, Itar),
where Noise is the noise image. All these metrics are computed
with the images rendered by 80 camera views.To measure structural
similarity, we use the 3D IoU metric [Ravi et al. 2020].

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM, 2024, Melbourne, Australia Anonymous Authors

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

GT(188k tris) Blender(1k tris) Simplygon(1k tris) Ours(1k tris)

GT(997k tris) Blender(1k tris) Simplygon(1k tris) Ours(1k tris)

Figure 5: Comparison with featured software. Blender fails to handle complex meshes, resulting in fragmented structures in
the generated output. Simplygon often leads to texture distortion. In contrast, SimpliGuard consistently produces excellent
results even when dealing with complex high-poly meshes.

4.2 Evaluation of the Simpli�ed Meshes
We conduct a comparative analysis with �ve algorithms, and set
three target levels: 1,000 faces, 2,000 faces, and 4,000 faces, which
are the typical number of faces that can be rendered in VR scenes
for a large number of assets. Since the face count for each asset
in the dataset is greater than 30,000, the reduction ratio is at least
approximately 86.7%. All results from SimpliGuard are obtained
using the same parameters (details in the supplementary material).

Comparisons with academic approaches. We select two traditional
methods, QEM [Garland and Heckbert 1997] and QEM++ [Garland
and Heckbert 1998], and one di�erentiable rendering-based method,
Nvdi�, as comparison benchmarks. Since QEM++ often struggles to
achieve the target face count, we calculate the metrics for QEM++
with the meshes that it can simplify to below 5000 faces, which
counts for 773 in total. As shown in Table 1, SimpliGuard signi�-
cantly outperforms other approaches in all metrics. Additionally,
it is worth noting that even for other methods evaluated at 2,000
faces, their results do not surpass our method at 1,000 faces.

Comparisons with industry software. We select two widely used
industrial software, including Blender and Simplygon, as compari-
son benchmarks. As can be seen in Table 1, our method still achieves
the best performance across all metrics.

Visualization analysis. To visually compare di�erent methods,
we randomly show some results in Figure 4 and Figure 5. It can be ob-
served that QEM and QEM++ exhibit rough structures and distorted
textures. Nvdi�, Blender, and Simplygon also fail to achieve similar
3D structures or high-quality textures. In contrast, our method
achieves the best results in terms of both structural �delity and tex-
ture clarity. This observation aligns with the quantitative metrics.

4.3 Animation of the Simpli�ed Meshes
To validate the animation for rigged characters after simpli�cation,
we conduct a series of clips to drive the characters. As shown in
Figure 6, the low-poly meshes accurately preserve the integrity of

Table 1: Evaluation of the meshes by all comparing methods.

Method PSNR" SSIM " NLPIPS " IOU3d (%) "
Tris=1000

QEM 25.39 0.84 0.81 93.08
QEM++ 28.18 0.87 0.89 95.28
Nvdi� 29.04 0.89 0.87 95.25
Blender 27.03 0.86 0.89 94.80
Simplygon 29.67 0.90 0.93 96.02
OursOursOurs 32.3432.3432.34 0.930.930.93 0.950.950.95 97.3197.3197.31

Tris=2000
QEM 26.46 0.85 0.84 95.32
QEM++ 30.46 0.90 0.91 97.05
Nvdi� 29.55 0.89 0.89 96.26
Blender 28.31 0.86 0.91 96.61
Simplygon 31.74 0.92 0.94 97.19
OursOursOurs 33.1833.1833.18 0.940.940.94 0.960.960.96 98.1198.1198.11

Tris=4000
QEM 27.61 0.86 0.86 97.18
QEM++ 31.89 0.93 0.94 97.64
Nvdi� 30.13 0.89 0.90 97.10
Blender 29.77 0.90 0.92 97.45
Simplygon 33.01 0.94 0.95 98.22
OursOursOurs 33.9633.9633.96 0.950.950.95 0.960.960.96 98.6998.6998.69

Figure 6: Animation of the decimated mesh. With Simpli-
Guard, even for large movements, the mesh maintains the
correctness of the structure.
the overall shape and exhibit no structural issues even for large
deformation. This demonstrates the robustness of SimpliGuard in
preserving the essential geometric features for character animation.

4.4 Runtime
We run SimpliGuard on a V100 GPU, and the overall time is illus-
trated in Figure 7. To remesh a 30,000-face mesh to 1,000 faces,
SimpliGuard takes 84s totally. In particular, the reconstruction mod-
ule takes 4.38s, the texture fast initialization module takes 0.33s,

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

SimpliGuard: Robust Mesh Simplification In the Wild ACM MM, 2024, Melbourne, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 7: Runtime. Left: The time consumption of di�erent
modules in SimpliGuard (taking the example of reducing
from 30,000 faces to 1,000 faces). Right: The time-PSNR graph
of SimpliGuard and Nvdi�when reducing to 1,000 faces from
di�erent initial numbers of faces.

GT + QEM + Ours

Figure 8: The e�ectiveness of the reconstruction module.
We replace the module with QEM while keeping the other
modules unchanged. The mesh structure with the module is
signi�cantly superior to the one usingQEM,which highlights
the necessity of the reconstruction module.

the di�erentiable rendering module takes 77.99s, and the motion
post-processing module takes 1.60s. For comparison, we also plot
the time distribution of Nvdi� in Figure 7. Our method outperforms
Nvdi� in terms of both runtime and visual quality.

4.5 Ablation Studies
In this section, we validate the necessity and e�ectiveness of various
components in SimpliGuard.

The Reconstruction Module. To validate the impact of this module,
we replace it with QEM. It takes the reference mesh as input and
generates a mesh with the desired number of faces. This mesh then
goes through the subsequent modules to obtain the �nal result. The
results, shown in Figure 8, clearly demonstrate that using QEM
leads to dissimilarity to the reference mesh and structural issues.
In contrast, the structure obtained with the reconstruction module
is signi�cantly superior to the QEM-based version both in terms of
structure and visual appearance. This emphasizes the necessity of
the reconstruction module to achieve desirable results.

The Texture Fast Initialization Module. As shown in Figure 9,
with the inclusion of this module, SimpliGuard already produces
preliminary results at 2s, while without the module, the textures
remain signi�cantly blurry. Besides, to achieve the same PSNR,
the inclusion of this module takes approximately 1/10 of the time
compared to when it is not included. This strongly demonstrates
the e�ectiveness of the module in accelerating convergence.

The Di�erentiable Rendering Module. We conducted ablation ex-
periments on the proposed losses. From Figure 11, it is visually

Figure 9: The e�ectiveness of the texture fast initialization
module. The module signi�cantly improves the convergence
speed of themesh, with an acceleration of 10 times compared
to the results without the module.

w/o Ours + Ours w/o Ours + Ours

Figure 10: The e�ectiveness of the motion post-processing
module. Without the module, signi�cant bending can cause
structural issues. When this module is included, it can main-
tain a good structure.
apparent that the inclusion of the Gradient Loss enhances texture
details and reduces the blurriness of texture edges. From Figure 11,
with the inclusion of the texture loss, the overall texture transitions
become smooth, and no abnormal textures are present.

The Motion Post-processing Module. For a low-poly mesh, as
shown in Figure 10, incorporating the module ensures the preser-
vation of a robust 3D structure even under animation. In con-
trast, without the module, some triangles are likely to span across
joints, leading to noticeable structural degradation during anima-
tion. Therefore, this module plays a crucial role in meshes with
skeletons.

5 CONCLUSIONS
We have presented our proposed framework, SimpliGuard for han-
dling arbitrary meshes. Compared to previous methods, our ap-
proach o�ers several advantages: 1) No assumption constraints are
imposed on the input mesh. 2) It can achieve extreme mesh simpli-
�cation in a few minutes, resulting in high-quality meshes in terms
of both texture and structure. 3) For rigged meshes, SimpliGuard
ensures the correctness of the structure during motion even after
extreme simpli�cation. These advantages are achieved through the
combined e�orts of various modules and the designed loss func-
tions. In the experiments, we showcase the signi�cant advantages
of our method compared to other approaches by conducting mesh
simpli�cation on complex meshes in the wild. This highlights the
enormous potential of our method for practical applications.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

GT w/o Gradient Loss + Gradient Loss GT w/o Texture Loss + Texture Loss

Figure 11: The e�ectiveness of the di�erentiable rendering module. Left: Gradient Loss. Lgrad signi�cantly enhances the quality
of the texture. Right: Texture Loss. Without Ltex, the textures appear rough and dirty. By introducing Ltex, the generated
texture is smoother and better for visual perception.

GT(999k tris) QEM(4k tris) QEM++(238k tris) Nvdi�(4k tris) Ours(4k tris)

GT(77k tris) QEM(1k tris) QEM++(2.9k tris) Nvdi�(1k tris) Ours(1k tris)

Figure 12: More results of comparison with academic approaches.

GT(106k tris) Blender(4k tris) simplygon(4k tris) Ours(4k tris)

GT(474k tris) Blender(4k tris) simplygon(4k tris) Ours(4k tris)

Figure 13: More results of comparison with featured software.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

SimpliGuard: Robust Mesh Simplification In the Wild ACM MM, 2024, Melbourne, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
Pierre Alliez, Eric Colin De Verdire, Olivier Devillers, and Martin Isenburg. 2003.

Isotropic surface remeshing. In 2003 Shape Modeling International. IEEE, 49–58.
Pierre Alliez, Giuliana Ucelli, Craig Gotsman, and Marco Attene. 2008. Recent advances

in remeshing of surfaces. Shape analysis and structuring (2008), 53–82.
Zhen Chen, Zherong Pan, Kui Wu, Etienne Vouga, and Xifeng Gao. 2023. Robust Low-

Poly Meshing for General 3D Models. ACM Trans. Graph. 42, 4 (2023), 119:1–119:20.
https://doi.org/10.1145/3592396

Qiang Du, Vance Faber, and Max Gunzburger. 1999. Centroidal Voronoi tessellations:
Applications and algorithms. SIAM review 41, 4 (1999), 637–676.

Yan Fu and Bingfeng Zhou. 2008. Direct sampling on surfaces for high quality remesh-
ing. In Proceedings of the 2008 ACM symposium on solid and physical modeling.
115–124.

Simon Fuhrmann, Jens Ackermann, Thomas Kalbe, and Michael Goesele. 2010. Direct
Resampling for Isotropic Surface Remeshing.. In VMV. 9–16.

Michael Garland and Paul S Heckbert. 1997. Surface simpli�cation using quadric error
metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. 209–216.

Michael Garland and Paul S Heckbert. 1998. Simplifying surfaces with color and texture
using quadric error metrics. In Proceedings Visualization’98 (Cat. No. 98CB36276).
IEEE, 263–269.

Jon Hasselgren, Jacob Munkberg, Jaakko Lehtinen, Miika Aittala, and Samuli Laine.
2021. Appearance-Driven Automatic 3DModel Simpli�cation.. In EGSR (DL). 85–97.

Hugues Hoppe. 1999. New quadric metric for simplifying meshes with appearance
attributes. In Proceedings Visualization’99 (Cat. No. 99CB37067). IEEE, 59–510.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.
1993. Mesh optimization. In Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. 19–26.

Jingwei Huang, Hao Su, and Leonidas Guibas. 2018. Robust watertight manifold surface
generation method for shapenet models. arXiv preprint arXiv:1802.01698 (2018).

Dawar Khan, Alexander Plopski, Yuichiro Fujimoto, Masayuki Kanbara, Gul Jabeen,
Yongjie Jessica Zhang, Xiaopeng Zhang, and Hirokazu Kato. 2020. Surface remesh-
ing: A systematic literature review of methods and research directions. IEEE
transactions on visualization and computer graphics 28, 3 (2020), 1680–1713.

Alireza Khatamian and Hamid R Arabnia. 2016. Survey on 3d surface reconstruction.
Journal of Information Processing Systems 12, 3 (2016).

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo
Aila. 2020. Modular Primitives for High-Performance Di�erentiable Rendering.
ACM Transactions on Graphics 39, 6 (2020).

Bruno Lévy, Sylvain Petitjean, Nicolas Ray, and Jérôme Maillot. 2002. Least Squares
Conformal Maps for Automatic Texture Atlas Generation. ACM Transactions on
Graphics 21, 3 (2002), 10–p.

Yibo Li and Qiong Zhu. 2008. A new mesh simpli�cation algorithm based on quadric
error metrics. In 2008 International Conference on Advanced Computer Theory and
Engineering. IEEE, 528–532.

Songrun Liu, Zachary Ferguson, Alec Jacobson, and Yotam I Gingold. 2017. Seamless:
seam erasure and seam-aware decoupling of shape from mesh resolution. ACM
Trans. Graph. 36, 6 (2017), 216–1.

William E Lorensen and Harvey E Cline. 1998. Marching cubes: A high resolution 3D
surface construction algorithm. In Seminal graphics: pioneering e�orts that shaped
the �eld. 347–353.

Kok-Lim Low and Tiow-Seng Tan. 1997. Model simpli�cation using vertex-clustering.
In Proceedings of the 1997 symposium on Interactive 3D graphics. 75–�.

David Luebke. 2003. Level of detail for 3D graphics. Morgan Kaufmann.
AlbertMosella-Montoro and Javier Ruiz-Hidalgo. 2022. Skinningnet: Two-stream graph

convolutional neural network for skinning prediction of synthetic characters. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
18593–18602.

Jingliang Peng, Chang-Su Kim, and C-C Jay Kuo. 2005. Technologies for 3D mesh
compression: A survey. Journal of visual communication and image representation
16, 6 (2005), 688–733.

Rolandos Alexandros Potamias, Stylianos Ploumpis, and Stefanos Zafeiriou. 2022.
Neural Mesh Simpli�cation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022. IEEE, 18562–18571.
https://doi.org/10.1109/CVPR52688.2022.01803

Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin
Johnson, and Georgia Gkioxari. 2020. Accelerating 3D Deep Learning with Py-
Torch3D. arXiv:2007.08501 (2020).

Rémi Ronfard and Jarek Rossignac. 1996. Full-range approximation of triangulated
polyhedra.. In Computer graphics forum, Vol. 15. Wiley Online Library, 67–76.

Jarek Rossignac and Paul Borrel. 1993. Multi-resolution 3D approximations for render-
ing complex scenes. In Modeling in computer graphics: methods and applications.
Springer, 455–465.

John Schreiner, Carlos E Scheidegger, Shachar Fleishman, and Cláudio T Silva. 2006.
Direct (re) meshing for e�cient surface processing. In Computer graphics forum,
Vol. 25. Wiley Online Library, 527–536.

William J Schroeder, Jonathan A Zarge, and William E Lorensen. 1992. Decimation of
triangle meshes. In Proceedings of the 19th annual conference on Computer graphics
and interactive techniques. 65–70.

Marc Soucy and Denis Laurendeau. 1996. Multiresolution surface modeling based on
hierarchical triangulation. Computer vision and image understanding 63, 1 (1996),
1–14.

Vitaly Surazhsky, Pierre Alliez, and Craig Gotsman. 2003. Isotropic remeshing of surfaces:
a local parameterization approach. Ph. D. Dissertation. INRIA.

Jean-Marc Thiery, Émilie Guy, and Tamy Boubekeur. 2013. Sphere-meshes: Shape
approximation using spherical quadric error metrics. ACM Transactions on Graphics
(TOG) 32, 6 (2013), 1–12.

Sébastien Valette and Jean-Marc Chassery. 2004. Approximated centroidal voronoi
diagrams for uniform polygonal mesh coarsening. In Computer Graphics Forum,
Vol. 23. Wiley Online Library, 381–389.

Sébastien Valette, Ioannis Kompatsiaris, and Jean-Marc Chassery. 2005. Adaptive
polygonal mesh simpli�cation with discrete centroidal voronoi diagrams. In ICMI.

Yong Wu, Yuanjun He, and Hongming Cai. 2004. QEM-based mesh simpli�cation
with global geometry features preserved. In Proceedings of the 2nd international
conference on Computer graphics and interactive techniques in Australasia and South
East Asia. 50–57.

Zhan Xu, Yang Zhou, Evangelos Kalogerakis, Chris Landreth, and Karan Singh. 2020.
Rignet: Neural rigging for articulated characters. arXiv preprint arXiv:2005.00559
(2020).

https://doi.org/10.1145/3592396
https://doi.org/10.1109/CVPR52688.2022.01803

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Overview
	3.2 The Reconstruction Module
	3.3 The Texture Fast Initialization Module
	3.4 The Differentiable Rendering Module
	3.5 The Motion Post-processing Module

	4 Experiments
	4.1 Experimental Setup
	4.2 Evaluation of the Simplified Meshes
	4.3 Animation of the Simplified Meshes
	4.4 Runtime
	4.5 Ablation Studies

	5 Conclusions
	References
	6 The Proof of the Curvature Based QEM
	7 The distribution of the number of triangles in our dataset
	8 Experimental setup

