
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

SimpliGuard: Robust Mesh Simplification In the Wild
Anonymous Authors

Ref: 300k Ours: 4k(↓98.7%)

Figure 1: We propose a framework that enables extreme mesh simpli�cation for arbitrary complex meshes in-the-wild.

ABSTRACT
Polygonal meshes are widely used to represent complex geometries.
However, the increasing complexity of models often leads to large
meshes with millions of triangles, raising signi�cant challenges for
storage, transmission, and computation. Mesh simpli�cation, a pro-
cess of reducing the number of triangles in a mesh while preserving
its overall shape and important features, has emerged as an indis-
pensable technique to address these challenges. In this work, we
focus on the problem of obtaining a visually consistent ultra-low-
polygon mesh for complex meshes. Unlike previous methods, we
design a robust simpli�cation framework, SimpliGuard, to handle
any meshes in the wild. Firstly, a reconstruction module is used
to construct a low-polygon mesh with a similar shape but a mani-
fold topology. Then, a texture initialization module is employed to
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quickly initialize the entire texture map. After that, a di�erentiable
rendering module is utilized to optimize the overall structure and
texture details, ensuring high-quality results. For meshes with skele-
tons, the correctness of motion can be preserved with our designed
motion post-processing module. Experimental results demonstrate
that SimpliGuard signi�cantly outperforms previous methods and
various featured software, including Blender and Simplygon.

CCS CONCEPTS
• Computing methodologies;

KEYWORDS
Mesh Simpli�cation,Level of detail,Di�erentiable Rendering

1 INTRODUCTION
Meshes have been widely employed in various domains, such as
virtual reality and game development. However, as the complexity
of meshes increases, the required computational and rendering re-
sources also increase, thereby limiting their performance on mobile
devices, VR, and other edge devices. To address this issue, mesh
simpli�cation techniques have been proposed.

Traditionalmethods, such as QEM (Quadric ErrorMetrics[Garland
and Heckbert 1997]), employ a greedy strategy to perform edge

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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collapses and merges on the original mesh. To preserve texture cor-
rectness as much as possible, some variants [Garland and Heckbert
1998] incorporate the attributes as constraints into the optimization
process. However, these traditional methods essentially generate a
sub-mesh from the original mesh, regardless of whether the original
mesh’s structural design is friendly to decimation. This leads to the
following issues: 1) the lower bound of the reduced face count is
constrained by the structural design of the original mesh; 2) the
output quality varies for di�erent meshes, and severe structural
errors, such as holes, can occur for meshes in the wild; 3) the tex-
ture distortion and fragmentation after simpli�cation result in poor
visual perception. Consequently, traditional mesh simpli�cation
algorithms are di�cult to be directly used, and are often used as
auxiliary tools for designers.

Recently, some works based on di�erentiable rendering, like
Hasselgren et al. [2021], have emerged. They utilize di�erentiable
rendering to optimize the texture and topological structure simul-
taneously. However, these methods only rely on di�erentiable ren-
dering to optimize the structure and texture, which can lead to
the following issues: 1) careful parameter tuning is necessary for
di�erent meshes; otherwise, the results are unstable and of varying
quality; 2) the optimization process is extremely slow; for instance,
Nvdi� requires over half an hour to achieve satisfactory results,
which is impractical for real-world usage; 3) for meshes with skele-
tons, the animation of the simpli�ed mesh cannot be guaranteed.

In this work, a robust framework, SimpliGuard is proposed. With
SimpliGuard, a mesh of any complex structure can be reduced to
a target number of faces within a few minutes while maintain-
ing similar shape and texture. For meshes with skeletal animation,
SimpliGuard guarantees the correctness of the output mesh’s mo-
tion. The overall structure consists of four parts. The reconstruction
module can transform any complex mesh in the wild into a mani-
fold mesh with a similar shape. The texture initialization module
quickly generates coarse texture maps, which has two bene�ts:
1) it signi�cantly reduces the learning time of the di�erentiable
rendering module for textures, and 2) for scenes that do not require
close-up observation, these texture maps can be directly used. The
di�erentiable rendering module, following the texture initializa-
tion module, further optimizes the structure and texture details
to improve the overall quality of the generated mesh. Finally, the
motion post-processing module ensures that the animated mesh
does not su�er from structural problems even when reduced to a
small number of faces. The overall contributions are as follows:

1. We propose SimpliGuard, a framework that can generate high-
quality simpli�ed meshes for meshes in the wild. For rigged meshes,
SimpliGuard ensures correctmotion and eliminates structural issues
even after simpli�cation. The advantages are achieved through the
combined e�orts of various modules.

2. The framework can generate reliable results in a few min-
utes. This is achieved through our meticulous module design and
initialization acceleration.

3. We propose multiple loss functions that signi�cantly improve
the results of di�erentiable rendering, enhancing the usability of
the generated meshes.

4. Qualitative and quantitative experiments show that ourmethod
is superior to the previous academic approaches and featured soft-
ware in terms of metrics and visual quality.

2 RELATEDWORK
Mesh Simpli�cation. Traditional mesh simpli�cation algorithms

[Luebke 2003] can be roughly divided into two categories: local
strategies and global strategies. One representative algorithm of
global strategies is Vertex Clustering [Low and Tan 1997; Rossignac
and Borrel 1993; Valette and Chassery 2004; Valette et al. 2005].
This kind of algorithm sorts each vertex based on a de�ned cost
function to ensure that less important vertices are more likely to
be merged. However, these methods can completely change the
topology of the input mesh in an unpredictable way, and the re-
sulting structure is not visually similar to the original structure,
which is unacceptable. In the local feature-driven approaches, ver-
tex decimation [Schroeder et al. 1992; Soucy and Laurendeau 1996]
iteratively selects a vertex, deletes it along with the surrounding
faces, and re-tessellates the resulting hole. However these methods
are e�ective for manifold surfaces and not suitable for in-the-wild
scenarios. As another kind of local strategy, edge contraction, pro-
posed by [Hoppe et al. 1993], has been the most commonly used
simpli�cation operation. Its core idea is to merge individual edges
into a single vertex. The selection of edges and the optimal merged
vertex depend on the de�ned cost function. Consequently, several
related algorithms have been proposed. Ronfard and Rossignac
[1996] measures the distance between points and planes using a
quadric matrix. Inspired by Ronfard and Rossignac [1996], Garland
and Heckbert [1997] introduced a new error matrix to approxi-
mate geometric deviation, known as QEM. Subsequently, many
QEM-based variants have been proposed, including Garland and
Heckbert [1998], Hoppe [1999] ,Wu et al. [2004], Li and Zhu [2008],
Thiery et al. [2013] and Liu et al. [2017]. Recently, there have been
some methods based on neural networks. Potamias et al. [2022]
uses a graph neural network to simplify a given mesh in one pass.
Hasselgren et al. [2021] utilizes di�erentiable rendering to simul-
taneously �t the shape and texture of the target mesh. However,
these methods essentially results in a subset of the original mesh,
and thus are limited by the original mesh structure and are di�cult
to handle for complex meshes in the wild.

Surface Remeshing. Surface remeshing is a widely researched
�eld [Khan et al. 2020]. A typical method is constructing a Cen-
troidal Voronoi tessellation on the surface of the mesh [Du et al.
1999]. Due to slow convergence, it requires a good initial sampling.
Alliez et al. [2003] introduces an error di�usion-based algorithm
that e�ectively �nds better initial sampling. But this method oper-
ates in the global parameter domain, which may not �nd suitable
parametrization. To address this, Surazhsky et al. [2003] performs
local modi�cations while referencing the geometry of the origi-
nal mesh. Although it is more e�cient and accurate, the sampling
quality is not guaranteed. Thus, some new algorithms have been
proposed, including Schreiner et al. [2006] based on advancing-
front paradigm, Fu and Zhou [2008] based on 2D fast Poisson disk
sampling algorithm, and Fuhrmann et al. [2010] based on novel re-
sampling strategies. However, these methods are di�cult to directly
apply to our task. On one hand, they mainly focus on improving the
accuracy of the �tted mesh, which often leads to an unacceptable
number of faces. On the other hand, many algorithms only con-
sider the mesh structure and neglect the mesh’s texture properties,
making it challenging to apply to assets in real-world scenarios.
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Figure 2: Overview of SimpliGuard. The framework consists of four modules. Given a high-poly mesh Mtar, we �rst apply
the reconstruction module to obtain a low-polygon mesh with similar shape and manifold topology. Then, the texture fast
initialization module is employed to quickly initialize the entire texture map within few seconds. After that, the di�erentiable
rendering module is utilized to optimize the overall structure and texture details with ours proposed losses. For meshes with
skeletons and weights, the correctness of motion can be preserved with the designed motion post-processing module.

3 METHOD
3.1 Overview
Given a meshMtar = (Vt, Ft,Text, BWt [opt]), our goal is to obtain a
new mesh Msrc = (Vs, Fs,Texs, BWs [opt]) with a reduced number
of faces, where V, F, Tex, and BW respectively represent the vertices,
faces, texture maps, and skeletal bone weights. Msrc is required to
be visually similar to Mtar as much as possible. Additionally, if
there are animated skeletons, Msrc needs to keep the structural
correctness under large deformation. To achieve this objective, we
propose a uni�ed framework, SimpliGuard, as shown in Fig. 2.

3.2 The Reconstruction Module
Most of the previous QEM-based method achieve decimation by
performing edge contraction, essentially resulting in a subset of the
original mesh. Take QEM as an example. Without loss of generality,
let’s assume that during the merging process, E1 is selected as the
merged point for E1 and E2. Then, the faces with an edge connecting
E1 and E2 will be removed, and E1 will replace E2 in all the faces and
edges with E2 as a vertex of them. As a result, the remaining faces
are a subset of the original faces with some vertex positions changed.
Therefore, for such algorithms to achieve good results on meshes in
the wild, the assumption must hold true that a subset of the mesh’s
faces can well represent the original structure. In reality, however,
most meshes do not adhere to this assumption. To address the
structural problem, we propose the reconstruction module, which
includes Surface Reconstruction, Traditional MeshSimpli�cation,
InvisibleFaceRemoval and Auto UVUnwrapping.

Surface Reconstruction. Our objective is to obtain a mesh that is
similar to the original mesh and has a high-quality structure (water-
tight and manifold). These properties ensures that the mesh will not

su�er from structural issues such as discontinuous triangle faces
during optimization. To achieve this goal, we introduce surface re-
construction, which is a well-explored �eld of research [Alliez et al.
2008; Chen et al. 2023; Khan et al. 2020; Khatamian and Arabnia
2016; Peng et al. 2005]. A typical approach involves transforming
the mesh into a signed distance �eld and then extracting the sur-
face using isosurface extraction techniques, which are subsequently
converted into a watertight and manifold triangular mesh [Huang
et al. 2018]. This kind of technique generally satis�es our structural
requirements. However, considering the requirement for e�cient
execution, we need to modify these algorithms to minimize memory
usage and ensure fast performance. Speci�cally, when applying the
marching cube based methods [Lorensen and Cline 1998], we only
retain the relative relationships between the cubes and the mesh.
Then, we employ a �ner grid representation for the surface regions,
while for non-surface regions, a coarser grid representation is used
to conserve memory. Additionally, an octree data structure is em-
ployed to expedite the computation process by storing information
between nodes. As indicated in Figure 7, for a mesh with 30,000+
faces, the reconstruction can be completed within 4.4 seconds.

Traditional MeshSimpli�cation. After surface reconstruction, we
have obtained a high-quality mesh that is manifold. In this section,
our objective is to quickly minimize the face count to achieve the
target face count, without strictly pursuing the quality of the re-
duced mesh. Therefore, we employ the classical QEM algorithm.
It should be noted that, since we are reducing the face count of a
watertight and manifold mesh obtained through surface reconstruc-
tion, various structural issues that may be present in the original
mesh are resolved. However, there might be the problem of self-
intersection. To address this problem, we additionally propose a
curvature constraint. Given vi and the faces f1, . . . , fM it belongs to,
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we compute the normal vectors N1, N2, . . . , NM. Then, the curva-
ture of vi is calculated as follows: ci = 1/Õ"

j=1 angle
�
ni,Nj

�
, where

ni is the normal vector of vi and angle
�
ni,Nj

�
is the angle between

ni and Nj. Since the original quadric of each vi can be written as
& (vi) =

ÕM
j=1 area(fj) ·& (vi, fj), where& (vi, fj) = vTi Avi+2b

Tvi+3 ,
we can represent & (vi, fj) using a simple representation [Hoppe
1999]: & (vi, fj) = (A, b, 2). Now we need to incorporate curvature
into & (vi, fj). Here we directly give the expression, and the proof
can be found in the supplementary material.

Q2 (vi, fi) =
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where g and @ can be computed by:
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The �nal &total (vi, fi) = & (vi, fi) + U&2 (vi, fi), where U is a hyper-
parameter used to balance QEM and the curvature constraint.

InvisibleFaceRemoval. After traditionalmesh simpli�cation, there
may exist completely invisible faces in the idle state. These faces
have no visual impact but increase computational complexity. Fur-
thermore, during animation, these invisible faces can potentially
cause self-intersection between the inner and outer surfaces, lead-
ing to structural issues. Thus they are necessary to be removed.
Here we adopt a straightforward approach to identify the invisible
faces. We generate multiple rays from vi and check for each ray
if it intersects with the mesh. If there is no intersection, we incre-
ment a counter by 1; otherwise, the counter remains unchanged.
Finally, we determine the visibility of the current point by evaluat-
ing whether the counter is greater than zero. This process can be
expressed as Hi =

Ø
⌦ I (w) dw. ⌦ represents the set of all rays in

the hemisphere. I (w) = 1 when the ray F doesn’t intersect with
the mesh, and I (w) = 0 otherwise. In practice, we approximate the
process by randomly sampling rays from the hemisphere.

Auto UVUnwrapping. Until now, the mesh we have obtained
lacks UV coordinates, making it unsuitable for texture generation.
Therefore, we employ a classic method for automatic UV generation
known as Least Squares Conformal Maps [Lévy et al. 2002]. It
partitions the surface of the mesh into multiple local patches and
minimizes distortion within each patch.

3.3 The Texture Fast Initialization Module
We have obtained a simpli�ed mesh with a rough structure that
lacks textures. To obtain the texture, an intuitive approach would
be to directly optimize the texture using di�erentiable rendering.
However, iterative optimization with di�erentiable rendering is a
time-consuming operation. Considering that Msrc and Mtar have
similar shapes, we propose a texture fast initialization module based
on rendering. In the rendering pipeline, after triangles are raster-
ized, they are �lled with color values sampled from the texture

GT TFI: Single-Point TFI: Cycle-Point

Figure 3: The E�ciency of TFI: Using the single-point strat-
egy allows for a rough approximation of textures, but often
results in numerous "spots". By employing the cycle-point
strategy, the occurrence of spots is signi�cantly reduced, lead-
ing to an improvement in the quality of the initial texture.

map based on their UV coordinates. Therefore, each pixel in the
rendered image corresponds to a coordinate on the texture map.
By simultaneously rendering Msrc and Mtar from multiple view-
points, we can utilize the rendered images of Mtar to �ll the tex-
ture map of Msrc. Let r

p
t 2 Rh⇥w⇥3 and rps 2 Rh⇥w⇥3 be the ren-

dered image ofMtar andMsrc under viewpoint p. By tracking the
relationship between UV coordinates and pixels during the ren-
dering process, we can obtain the pixel-to-uv map upt 2 Rh⇥w⇥2

and ups 2 Rh⇥w⇥2. Then the coarse texture ofMsrc can be quickly
obtained by: Texs [upt [:, :, 0], u

p
s [:, :, 1]] = Text [ups [:, :, 0], u

p
t [:, :, 1],

However, although the obtained coarse texture map can roughly
capture the color information of the original mesh, due to the lim-
ited rendering viewpoints and resolution, the texture map becomes
discontinuous, resulting in numerous "spots" (as shown in Figure
3). To generate a more continuous texture map with the same com-
putational resources, we propose a smoothing algorithm. For each
pixel, we select a circular region with a radius of r and centered at
the corresponding UV point on Text and Texs. Then, we assign all
the pixels within the circular region on Text to Texs:

Texs [Cycle(ups [:, :, 0], u
p
s [:, :, 1], r)]

=Text [Cycle(upt [:, :, 0], u
p
t [:, :, 1], r)], 81  p   

As depicted in Figure 3 and Figure 9, this algorithm signi�cantly
improves the quality of the initial texture.

3.4 The Di�erentiable Rendering Module
To further improve the quality of the mesh, we introduce di�eren-
tiable rendering, which contains three types of loss functions: Ltex,
Limg and Lstruct. The overall optimization objective is de�ned as:

argmin
TexB ,VB

E
⇥
ULtex + VLimg + XLstruct

⇤

Loss of Texture. To generate a high-quality texture, two require-
ments should be ensured: 1) The rendered texture colors of Msrc
should closely match that of Mtar. 2) The transitions in the ren-
dered texture should be smooth when observing the mesh closely.
Previous research focuses more on optimizing texture color but
overlooks the texture smoothness. To address this, we propose
Ltex. The loss randomly selects pixel coordinates, called PB , on the
texture map during each iteration and applies small random per-
turbations to these coordinates, resulting in new coordinate points.
The objective is to constrain the color of the new coordinate points
to be as similar as possible to that of the original points:

Ltex = | |TexB (PB ) � TexB (PB + n) | |2, where n ⇠ N(0,f2).
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Figure 4: Comparison with academic approaches. QEM and QEM++ su�ers from poor quality of the structure and texture.
Besides, QEM++ fails to achieve the desired target face number. Nvdi� produces blurry textures and dissimilar structure. In
contrast, SimpliGuard achieves best in both structure and texture.

Loss of Image. Optimizing texture using MSE loss on rendered
images is a common practice in di�erentiable rendering. However,
this approach often struggles to capture �ne details in the texture.
The reason is that MSE loss does not impose constraints between
pixels, which can lead to issues such as unclear edges in the images.
To address this problem, we introduce a new loss. This loss calcu-
lates the gradients of the rendered image rs and compares them
with the gradients of the target image rt. When the rendered image
exhibits blurriness in the edge regions or roughness in smooth
regions, it results in larger gradients in those areas. This allows the
gradient descent algorithm to e�ectively optimize the texture in
those speci�c areas. The �nal loss is de�ned as follows:

Limg = | |Grad(rt) � Grad(rs) | |2 + ||rt � rs) | |2 .

Loss of Structure. Optimizing the mesh structure only based on
rendering images is unfeasible, as it may lead to issues such as mesh
interpenetration, spikes, and surface irregularities. To alleviate this
challenge, we impose Laplacian smoothing:

Llaplacian =
1

|Vs |

|Vs |’
8=1

������
1
|Si |

’
vj2Si

vj � vi

������
2

Here, |Vs | is the number of vertices inMsrc, and Si is the neighbour-
hood of vi. Furthermore, to ensure smoothness in Msrc, we apply a
smoothness constraint on the normal vectors:

Lnormal =
1
|Fs |

’
(v1,v2 )2Es

(1 � cos(n1, n2))

Fs represents the set of faces inMsrc, and Es represents the set of
all connected edges in Msrc. n1 and n2 are the normal vectors of
vertices v1 and v2, respectively. Lstruct can be represented as:

Lstruct = wnormalLnormal +wlapLlaplacian

3.5 The Motion Post-processing Module
In real-world applications, many objects are animatable. If these
objects cannot be properly animated, they still cannot be used
even if the triangles are reduced. Some related research utilizes

a neural network to obtain the bone weights [Mosella-Montoro
and Ruiz-Hidalgo 2022; Xu et al. 2020]). However, these methods
only optimize bone weights or vertex coordinates. It is reasonable
for high-poly meshes. But in the case of low-poly meshes, simply
moving the coordinates of vertices and optimizing bone weights
cannot guarantee the absence of motion artifacts. In this section,
we introduce a simple post-processing module. Firstly, given Vt, Ft,
and BWt, we compute BWs for Vs through the K-nearest neighbor
algorithm:

BWs (i) =
Õ
j2Neighborr (i) (1 �

dist(Vs (i)�Vr (j) )Õ
k2Neighborr (i) dist(Vs (i)�Vr (k) ) ) ⇤ BWr (j)

Then, we identify the planes where the joints lie and split the faces
on the mesh that intersects with these planes. Speci�cally, we �nd
all points in Vs where the di�erence in the �rst two dimensions of
BWs is smaller than X . Then, based on the physical properties of
BWs, these points can be clustered into J groups, and the average
of each group’s points will serve as the center point for each of the
J joints. Based on the orientation of the joints, the normal vectors
of the planes can be calculated. With the points and the normal
vectors, we can determine J joint planes, which can be used to
calculate the intersection points between the planes and the mesh.
Finally, these points are used as new vertices to split the faces.

4 EXPERIMENTS
4.1 Experimental Setup

Dataset. To fully validate the e�ectiveness of the algorithm, we
collect 884 assets from Sketchfab and convert them into .obj �le
format. Details can be seen in the supplementary material.

Metrics. We measure the visual quality of the low-poly mesh
based on PSNR and SSIM. To better measure perceptual similarity,
we design a metric called NLPIPS (Normalized LPIPS), which is
based on LPIPS: NLPIPS = 1 � LPIPS(Isrc, Itar)/LPIPS(Noise, Itar),
where Noise is the noise image. All these metrics are computed
with the images rendered by 80 camera views.To measure structural
similarity, we use the 3D IoU metric [Ravi et al. 2020].
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Figure 5: Comparison with featured software. Blender fails to handle complex meshes, resulting in fragmented structures in
the generated output. Simplygon often leads to texture distortion. In contrast, SimpliGuard consistently produces excellent
results even when dealing with complex high-poly meshes.

4.2 Evaluation of the Simpli�ed Meshes
We conduct a comparative analysis with �ve algorithms, and set
three target levels: 1,000 faces, 2,000 faces, and 4,000 faces, which
are the typical number of faces that can be rendered in VR scenes
for a large number of assets. Since the face count for each asset
in the dataset is greater than 30,000, the reduction ratio is at least
approximately 86.7%. All results from SimpliGuard are obtained
using the same parameters (details in the supplementary material).

Comparisons with academic approaches. We select two traditional
methods, QEM [Garland and Heckbert 1997] and QEM++ [Garland
and Heckbert 1998], and one di�erentiable rendering-based method,
Nvdi�, as comparison benchmarks. Since QEM++ often struggles to
achieve the target face count, we calculate the metrics for QEM++
with the meshes that it can simplify to below 5000 faces, which
counts for 773 in total. As shown in Table 1, SimpliGuard signi�-
cantly outperforms other approaches in all metrics. Additionally,
it is worth noting that even for other methods evaluated at 2,000
faces, their results do not surpass our method at 1,000 faces.

Comparisons with industry software. We select two widely used
industrial software, including Blender and Simplygon, as compari-
son benchmarks. As can be seen in Table 1, our method still achieves
the best performance across all metrics.

Visualization analysis. To visually compare di�erent methods,
we randomly show some results in Figure 4 and Figure 5. It can be ob-
served that QEM and QEM++ exhibit rough structures and distorted
textures. Nvdi�, Blender, and Simplygon also fail to achieve similar
3D structures or high-quality textures. In contrast, our method
achieves the best results in terms of both structural �delity and tex-
ture clarity. This observation aligns with the quantitative metrics.

4.3 Animation of the Simpli�ed Meshes
To validate the animation for rigged characters after simpli�cation,
we conduct a series of clips to drive the characters. As shown in
Figure 6, the low-poly meshes accurately preserve the integrity of

Table 1: Evaluation of the meshes by all comparing methods.

Method PSNR" SSIM " NLPIPS " IOU3d (%) "
Tris=1000

QEM 25.39 0.84 0.81 93.08
QEM++ 28.18 0.87 0.89 95.28
Nvdi� 29.04 0.89 0.87 95.25
Blender 27.03 0.86 0.89 94.80
Simplygon 29.67 0.90 0.93 96.02
OursOursOurs 32.3432.3432.34 0.930.930.93 0.950.950.95 97.3197.3197.31

Tris=2000
QEM 26.46 0.85 0.84 95.32
QEM++ 30.46 0.90 0.91 97.05
Nvdi� 29.55 0.89 0.89 96.26
Blender 28.31 0.86 0.91 96.61
Simplygon 31.74 0.92 0.94 97.19
OursOursOurs 33.1833.1833.18 0.940.940.94 0.960.960.96 98.1198.1198.11

Tris=4000
QEM 27.61 0.86 0.86 97.18
QEM++ 31.89 0.93 0.94 97.64
Nvdi� 30.13 0.89 0.90 97.10
Blender 29.77 0.90 0.92 97.45
Simplygon 33.01 0.94 0.95 98.22
OursOursOurs 33.9633.9633.96 0.950.950.95 0.960.960.96 98.6998.6998.69

Figure 6: Animation of the decimated mesh. With Simpli-
Guard, even for large movements, the mesh maintains the
correctness of the structure.
the overall shape and exhibit no structural issues even for large
deformation. This demonstrates the robustness of SimpliGuard in
preserving the essential geometric features for character animation.

4.4 Runtime
We run SimpliGuard on a V100 GPU, and the overall time is illus-
trated in Figure 7. To remesh a 30,000-face mesh to 1,000 faces,
SimpliGuard takes 84s totally. In particular, the reconstruction mod-
ule takes 4.38s, the texture fast initialization module takes 0.33s,
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Figure 7: Runtime. Left: The time consumption of di�erent
modules in SimpliGuard (taking the example of reducing
from 30,000 faces to 1,000 faces). Right: The time-PSNR graph
of SimpliGuard and Nvdi�when reducing to 1,000 faces from
di�erent initial numbers of faces.

GT + QEM + Ours

Figure 8: The e�ectiveness of the reconstruction module.
We replace the module with QEM while keeping the other
modules unchanged. The mesh structure with the module is
signi�cantly superior to the one usingQEM,which highlights
the necessity of the reconstruction module.

the di�erentiable rendering module takes 77.99s, and the motion
post-processing module takes 1.60s. For comparison, we also plot
the time distribution of Nvdi� in Figure 7. Our method outperforms
Nvdi� in terms of both runtime and visual quality.

4.5 Ablation Studies
In this section, we validate the necessity and e�ectiveness of various
components in SimpliGuard.

The Reconstruction Module. To validate the impact of this module,
we replace it with QEM. It takes the reference mesh as input and
generates a mesh with the desired number of faces. This mesh then
goes through the subsequent modules to obtain the �nal result. The
results, shown in Figure 8, clearly demonstrate that using QEM
leads to dissimilarity to the reference mesh and structural issues.
In contrast, the structure obtained with the reconstruction module
is signi�cantly superior to the QEM-based version both in terms of
structure and visual appearance. This emphasizes the necessity of
the reconstruction module to achieve desirable results.

The Texture Fast Initialization Module. As shown in Figure 9,
with the inclusion of this module, SimpliGuard already produces
preliminary results at 2s, while without the module, the textures
remain signi�cantly blurry. Besides, to achieve the same PSNR,
the inclusion of this module takes approximately 1/10 of the time
compared to when it is not included. This strongly demonstrates
the e�ectiveness of the module in accelerating convergence.

The Di�erentiable Rendering Module. We conducted ablation ex-
periments on the proposed losses. From Figure 11, it is visually

Figure 9: The e�ectiveness of the texture fast initialization
module. The module signi�cantly improves the convergence
speed of themesh, with an acceleration of 10 times compared
to the results without the module.

w/o Ours + Ours w/o Ours + Ours

Figure 10: The e�ectiveness of the motion post-processing
module. Without the module, signi�cant bending can cause
structural issues. When this module is included, it can main-
tain a good structure.
apparent that the inclusion of the Gradient Loss enhances texture
details and reduces the blurriness of texture edges. From Figure 11,
with the inclusion of the texture loss, the overall texture transitions
become smooth, and no abnormal textures are present.

The Motion Post-processing Module. For a low-poly mesh, as
shown in Figure 10, incorporating the module ensures the preser-
vation of a robust 3D structure even under animation. In con-
trast, without the module, some triangles are likely to span across
joints, leading to noticeable structural degradation during anima-
tion. Therefore, this module plays a crucial role in meshes with
skeletons.

5 CONCLUSIONS
We have presented our proposed framework, SimpliGuard for han-
dling arbitrary meshes. Compared to previous methods, our ap-
proach o�ers several advantages: 1) No assumption constraints are
imposed on the input mesh. 2) It can achieve extreme mesh simpli-
�cation in a few minutes, resulting in high-quality meshes in terms
of both texture and structure. 3) For rigged meshes, SimpliGuard
ensures the correctness of the structure during motion even after
extreme simpli�cation. These advantages are achieved through the
combined e�orts of various modules and the designed loss func-
tions. In the experiments, we showcase the signi�cant advantages
of our method compared to other approaches by conducting mesh
simpli�cation on complex meshes in the wild. This highlights the
enormous potential of our method for practical applications.
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Figure 12: More results of comparison with academic approaches.
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Figure 13: More results of comparison with featured software.
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