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Abstract

Understanding probabilistic dependencies among variables is central to analyzing complex
systems. Traditional structure learning methods often require extensive observational data
or are limited by manual, error-prone incorporation of expert knowledge. Recent studies
have explored using large language models (LLMs) for structure learning, but most treat
LLMs as auxiliary tools for pre-processing or post-processing, leaving the core learning
process data-driven. In this work, we introduce a unified framework for Bayesian network
structure discovery that places LLMs at the center, supporting both data-free and data-
aware settings. In the data-free regime, we introduce PromptBN, which leverages LLM
reasoning over variable metadata to generate a complete directed acyclic graph (DAG)
in a single call. PromptBN effectively enforces global consistency and acyclicity through
dual validation, achieving constant O(1) query complexity. When observational data are
available, we introduce ReActBN to further refine the initial graph. ReActBN combines
statistical evidence with LLM by integrating a novel ReAct-style reasoning with configurable
structure scores (e.g., BIC). Experiments demonstrate that our method outperforms prior
data-only, LLM-only, and hybrid baselines, particularly in low- or no-data regimes and on
out-of-distribution datasets.

1 Introduction

Structure discovery of probabilistic graphical models (PGMs) is key to understanding complex systems, as it
reveals the underlying dependency structure among variables. Traditional approaches, including constraint-
based algorithms (Spirtes et al., [2001) and score-based methods (Chickering} 2002b)), typically require large
amounts of observational data and intensive computation, limiting their practical use. Incorporating domain
knowledge is another option, but it is typically done manually, which is labor-intensive and error-prone. This
motivates the development of new methods to infer probabilistic structures more effectively and efficiently.

Recently, large language models (LLMs) trained on large-scale text corpora have demonstrated remarkable
performance across many NLP benchmarks (Brown) 2020). Their strong ability to capture a broad range of
dependencies, including implicit causal and statistical structures, makes LLMs a promising tool for structure
learning. Several approaches attempt to use LLMs as sources of prior knowledge (Ban et al.,|2025; |[Vashishtha,
et al [2023; Long et al., [2023al) or as post-hoc verifiers (Khatibi et al., 2024)). In both cases, the core
structure learning process is constrained to be tightly coupled with data-driven optimization techniques.
Directly eliciting full probabilistic graphs from LLMs remains challenging, mainly due to two factors: (1) the
combinatorial complexity of graph construction, making it difficult for LLMs to generate globally coherent
structures, and (2) the lack of effective mechanisms to enforce structural constraints (e.g., acyclicity) and to
incorporate observational data within prompt-based interactions.

In this paper, we address these challenges by introducing a unified two-phase LLM-centered framework
for Bayesian network (BN) structure learning. The first phase, PromptBN, directly elicits a coherent and
acyclic directed acyclic graph (DAG) through a meta-prompting strategy with dual validation that operates
entirely without observational data. When data are available, the second phase, ReActBN, performs iterative
refinement in a Reason-and-Act (ReAct) workflow (Yao et al.,2023), where offline-computed structure scores
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(e.g., BIC) evaluate candidate neighbors and guide the model’s decisions. Unlike prior LLM-based methods
that delegate structural correction to external algorithms, our method maintains the LLM in the decision
loop across both phases, enabling a more integrated and interpretable approach to BN discovery. Our key
contributions are as follows:

o We present a two-phase framework that maintains the LLM in the decision loop throughout, enabling
flexible structure discovery with or without observational data.

e We introduce PromptBN, which formulates structure learning as meta-prompting and elicits a full
DAG in one step using dual representations and dual validation to enforce structural consistency
and acyclicity, achieving constant O(1) query complexity.

o We introduce ReActBN, which exploits an agentic search by integrating Reason-and-Act (ReAct)
for LLM internal knowledge reasoning with structure scores like BIC, thereby refining the structure
initially generated by PromptBN.

o We conduct extensive experiments across classic and newer datasets, demonstrating advantages
over state-of-the-art LLM-only, data-only, and hybrid baselines in robustness and generalization.
We provide systematic complexity analyses showing our method’s scalability. We include valuable
contamination tests and ablation analyses to illustrate performance gains from genuine reasoning
rather than memorization and robustness across sample sizes and LLM choices.

2 Related Work

Data-driven structure learning Conventional structure learning methods infer Directed Acyclic Graphs
(DAGs) primarily from observational data, broadly categorized into constraint-based and score-based ap-
proaches (Glymour et all [2019; [Scutari et all |2019)). Constraint-based methods, such as the Peter-Clark
algorithm (Spirtes et al.l |2001)) and its variants, identify probabilistic structures by assessing conditional
independencies. Score-based methods, including Hill Climbing (Tsamardinos et al.}|2006) and Greedy Equiv-
alence Search (Chickering), [2002a)), optimize predefined scoring functions (e.g., Bayesian Information Crite-
rion). Although these methods are effective with sufficient data, their performance deteriorates significantly
with limited samples (Cui et al.,|2022a). Researchers incorporate prior expert knowledge, such as structural
constraints or topological ordering, into learning frameworks (Borboudakis & Tsamardinos|, |2012; |Constanti-
nou et al., [2023; |Chen et al.l 2016 when data is insufficient. Eliciting expert knowledge, however, remains
challenging and labor-intensive.

LLM-guided structure discovery with data Recent methods explore LLMs in structure discovery,
primarily as a complement to conventional approaches. Several researchers use pairwise prompting to guide
LLMs in uncovering causal relationships between pairs of nodes (Choi et al. [2022; Kiciman et al., 2023} |Long
et al., [2023b)). On top of that, \Jiralerspong et al.| (2024) propose a Breadth-First Search (BFS) prompting
approach, in which the LLM is prompted to find all connected nodes given the current node. Pearson
correlation coefficients are also included in the prompts as hints.

In addition, LLMs have been used to provide structural priors, establish topological orderings, or refine
learned probabilistic graphs post hoc (Vashishtha et al., [2023} [Long et al.||2023a; Khatibi et al.,|2024). Some
methods also use LLM-generated statements to iteratively guide data-driven approaches (Ban et al., |2023;
Chen et al.,[2023) or to incorporate observational data into prompts under both pairwise and BFS paradigms
for further improvement (Susanti & Férber} 2025)). Beyond pairwise- and BFS-based prompting, Ban et al.
(2025) introduced LLM-CD, a hybrid approach that treats the LLM as a structured knowledge retriever to
elicit graph-level priors and structural constraints. Once these LLM-derived priors are established, a classical
data-driven structure learning algorithm can be applied to conduct the subsequent search.

LLM-only structure discovery without data LLM-only structure learning has been explored in two
main directions. |Cohrs et al.| (2024)) propose an LLM-driven conditional independence (CI) testing procedure
embedded within the PC framework. Although conceptually appealing, the repeated CI queries make the
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Figure 1: Overview of the proposed unified prompting framework for Bayesian network structure discovery
using LLMs. The framework supports both data-free and data-driven settings through a two-phase process:
Phase 1 induces the structure without observational data, while Phase 2 refines the estimated structure by
incorporating data when available.

method computationally expensive and limit its applicability to small networks. In parallel, Babakov et al.
(2024) investigates a multi-expert strategy in which a facilitator LLM generates multiple personas and ag-
gregates their proposed causal relations. Although this design excels with O(1) query complexity effectively,
it still admits the worst-case O(N?) query complexity when resolving conflicting directed pairs.

These limitations leave open the need for a more efficient and integrative approach. Our method addresses
this gap by directly eliciting a full causal graph through a single structured prompt—achieving O(1) query
complexity—and by offering a unified framework that naturally extends to data-aware refinement when
observational data are available.

3 Problem Definition

A Bayesian network (BN) G is a directed acyclic graph (DAG) consisting of nodes V and edges &, i.e.,
G = (V,€). The task of structure learning for BNs typically refers to learning the structure of a DAG from
the data D. For example, score-based structure learning can be formulated as a constrained optimization
problem:
G* = argmax Score(G, D)
GeG

(1)
s.t. G € DAG

where G* is the optimal network structure; G is the search space of all possible DAGs; Score(G, D) is a
scoring function that evaluates how well the structure G fits the data D.

4 Proposed Approach

We have developed a two-phase framework for LLM-centered discovery of BN structures.
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e Phase-1 PromptBN: A single-step prompting approach that elicits Bayesian network structures
directly from variable metadata, relying exclusively on the LLM’s internal knowledge base.

o Phase-2 ReActBIN: A ReAct-inspired agent system that integrates score-based evaluation with LLM
reasoning, where the LLM supervises and selects optimal actions from top-k candidates identified
through scoring mechanisms.

The framework overview can be found at Figure [T} and pseudocode is available at Appendix [A]

4.1 PromptBN: Bayesian Network Estimation via Prompting

In Phase 1, we formulate structure learning as a single-query inference task:
G = LLM-Query(metadata(V); knowledge(M)),

where LLM-Query(-) denotes a single query to the selected model M, leveraging its implicit internal knowl-
edge. Here, V represents the set of variables, and the metadata of each variable include its name, description
of the variable, and distribution of the variable. An example input is illustrated in Figure

Our approach employs meta-prompting (Zhang et al.; |2023), where the prompt defines not only the task
objective but also the reasoning protocol, response structure, and output constraints. Specifically, PromptBN
requires the model to produce a valid Directed Acyclic Graph (DAG) while articulating its reasoning process.

To ensure robustness, we require the model to output the graph structure in two complementary represen-
tations: a node-centric format that specifies parent nodes for each variable, and an edge-centric format that
enumerates all directed edges as “from-to” pairs.

Following generation, we apply dual validation procedures. First, Structural Consistency Validation confirms
that parent—child relationships are identical across both representations. Second, DAG Constraint Validation
verifies acyclicity. If the output fails either criterion, we prompt the LLM to regenerate the structure until
validation succeeds or the maximum retry threshold is reached.

4.2 ReActBN: ReAct-based Score-Aware Search

Phase 2 refines the initial BN generated by incorporating observational data. Inspired by the ReAct paradigm
(Reason + Act), ReActBN implements an iterative search framework in which the LLM actively supervises
the structure-learning process using structural scores as feedback, through alternating cycles of reasoning
and action selection.

Unlike traditional score-based algorithms such as Hill Climbing or Greedy Equivalence Search, which greedily
select the single highest-scoring move, ReActBN presents the LLM with the top-k candidate structures at each
reasoning iteration. These candidates are derived through exhaustive enumeration of all valid neighboring
structures, each annotated with its structure score and score differential. The scoring function itself is fully
configurable to accommodate different statistical criteria.

At each iteration, the LLM receives comprehensive contextual information: variable metadata, the current
graph structure, the current score, and the set of candidate actions with their respective scores. The LLM
then outputs a recommended action (or termination decision), along with explicit reasoning and a confidence
estimate. To encourage exploration and prevent cycling, we incorporate a tabu search mechanism that
prohibits revisiting previously explored structures.

We maintain strict enforcement of acyclicity constraints throughout the search process, ensuring all proposed
modifications preserve the DAG property. ReActBN is designed to be scalable to arbitrary dataset sizes
and model-agnostic. By synergistically combining statistical evidence with domain-informed reasoning, this
approach provides a flexible and interpretable framework for data-driven structural refinement, particularly
valuable when working with limited or noisy observational data.
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5 Experiments

In this section, we validate the effectiveness of our approach. We first describe the datasets, evaluation
metrics, and experimental setup (Section . We then compare our method against existing approaches
in both data-free and data-aware settings on classical (Section and newer (Section benchmarks,
followed by a valuable study of potential contamination in LLMs (Section .

5.1 Evaluation Datasets and Metrics

Datasets We evaluate on ten datasets for Bayesian network structure learning. Specifically, seven datasets,
including Asia, Cancer, Earthquake, Child, Insurance, Alarm, and Hailfinder, are widely used benchmarks
in structure learning, from Bnlearn (Scutari, 2010). The remaining three datasets, blockchain, consequence-
Covid (referred to covid hereafter), and disputed3, are recent datasets from BnRep . We
retrieve all the metadata, including variable names, descriptions, and distributional properties, from the
released packages, except for Insurance, whose description is taken from [Long et al.|(2023a)). For the Earth-
quake dataset, since no quantitative results are available for comparison, we report qualitative evaluation
results by visualizing the learned structure. We provide a summary of all dataset statistics in Appendix [B-1]

Evaluation metrics We evaluate both the effectiveness and efficiency of structure learning algorithms.
For effectiveness, we use two well-established metrics: Structural Hamming Distance (SHD) and Nor-
malized Hamming Distance (NHD). To compute SHD, both the predicted graph and the ground-truth
DAG are first converted into their corresponding completed partially directed acyclic graphs (CPDAGs).
SHD is then defined as the number of edge modifications, including insertions, deletions, or reversion, re-
quired to make the predicted CPDAG identical to the ground-truth CPDAG. NHD is a variant of SHD that
offers a scale-invariant measure of structural dlfference Following [Khatibi et a1| (2024), for a graph with
N nodes, NHD is calculated as ZZ 1 Z] 1 N2 C1(Ey # E”) where E;; and E” denote the presence or
absence of an edge from node i to node j in the ground truth and predicted graphs, respectively. 1(-) is the
indicator function, which returns 1 if F;; # E’ij and 0 otherwise.

Experimental setup LLM models Unless otherwise specified, we use the OpenAl model 03-2025-04-16
(referred to as 03 hereafter) for PromptBN and gpt-4.1-2025-04-14 for ReActBN, accessed via the Ope-
nAI APT (Achiam et all 2023). We select 03 for PromptBN due to its strength in structured multi-step
reasoning for single-shot DAG generation, and gpt-4.1 for ReActBN due to its reliable stepwise instruction
following for iterative refinement. Baselines We compare approaches across three categories: LLM, Data,
and Hybrid. The LLM category contains methods that rely on large language models without using any
observational data, including PairwisePrompt (Kiciman et al.,[2023), BESPrompt (Jiralerspong et al.,[2024),
Scalability (Babakov et all[2024), and ChatPC (Cohrs et al. [2024). The Data category consists of classical
structural-learning algorithms that operate purely on observational samples through statistical estimation,
including Hill Climbing (HC), Peter—Clark algorithm (PC-stable), Greedy Equivalence Search (GES), and
three algorithms designed for low data observations (Cui et al., [2022b)), i.e., RAI-BF, 718 and rBF_j.
The Hybrid category encompasses approaches that combine LLM reasoning with observational data, includ-
ing LLM-CD (HC) (Ban et al| [2025)) and PairwisePrompt/BFSPrompt+Data (Susanti & Férber] [2025)).
When reproducing results, we use the default parameters in the Python pgmpy package (Ankan & Textor]
for HC, PC-stable, and GES. We use the same sample size for all LLM-based methods except ChatPC
and Scalability, for which reproduction is not feasible. Sample size For the data-aware setting, we use
100 samples following |Cui et al.| (2022a)), unless otherwise specified. Hyperparameters For ReActBN, the
hyperparameters are listed in Table |8} Repeated experiments and valid runs To address the intrinsic
stochasticity of large language models, we report results over five valid runs, where a valid run is defined
as one that successfully completes and produces a graph passing our dual-validation checks. We continue
running experiments for each configuration until either: (1) five valid runs have been collected, or (2) five
consecutive invalid runs occur, at which point we terminate that configuration
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Table 1: Evaluation on classical (Asia, Cancer, Child, Insurance, Alarm, Hailfinder) and newer (blockchain,
covid, disputed3) Bayesian network datasets

. Asia Cancer Child Insurance Alarm
Category # Sample Algorithm

SHDJ| NHD| SHD| NHDJ SHD| NHD| SHD| NHD| SHD| NHD|
LLM 0 PairwisePrompt 5.6 0.072 0.0 0.000 19.6 0.042 37.6 0.044 60.0 0.044
LLM 0 BFSPrompt 0.0 0.000 0.0 0.000 20.4 0.047 48.4 0.058 36.2 0.026
LLM 0 Scalability (GPT-4)M! - - - - - - 520 - 60.0 —
LLM 0 PromptBN (Ours) 0.0 0.000 0.6 0.024 21.6 0.045 35.6 0.044 41.8 0.031
Data 100 PC-Stable 9.0 0.156 4.0 0.160 20.0 0.065 51.0 0.073 46.0 0.037
Data 100 HC 8.0 0.125 4.0 0.160 20.0 0.065 54.0 0.067 50.0 0.040
Data 100 GES 8.0 0.125 4.0 0.160 40.0 0.110 72.0 0.099 50.0 0.042
Data 100  RAI-BFP 5.7 - 41 - 304 - 549 ~ 484 -
Data 100  rIeB 3 13.3 - 47 - 216 - 489 ~ 445 -
Data 100 rBF @ 7.7 - 41 ~ 242 - 50.1 — 427 -
Hybrid 100 LLM-CD(HC) 0.0 0.000 0.0 0.000 40.0 0.093 65.0 0.089 22.0 0.219
Hybrid 100 PairwisePrompt+Data 0.8 0.013 0.0 0.000 20.6 0.048 44.4 0.055 69.4 0.051
Hybrid 100 BFSPrompt+Data 0.4 0.006 0.2 0.008 24.4 0.054 50.4 0.061 42.0 0.030
Hybrid 100 PromptBN+HC 8.0 0.094 0.0 0.000 18.2 0.030 46.6 0.055 43.6 0.028
Hybrid 100 PromptBN+RandomChoice 5.6 0.084 1.2 0.056 23.4 0.053 43.4 0.056 43.0 0.031
Hybrid 100 ReActBN (Ours) 6.4 0.075 0.0 0.000 18.0 0.028 40.2 0.049 35.4 0.024

Hailfinder blockchain covid disputed3
SHD| NHD| SHD| NHD| SHD| NHDJ SHD] NHD]

Category # Sample Algorithm

LLM 0 PairwisePrompt 551.0 0.176 37.4 0.260 82.6 0.433 41.2 0.057
LLM 0 BFSPrompt 243.0 0.077 29.0 0.204 74.6 0.401 21.6 0.027
LLM 0 Scalability (GPT-4)M! 68.0 - - - - - - -
LLM 0 PromptBN (Ours) 76.8 0.025 15.2 0.100 45.0 0.225 15.6 0.018
Data 100  PC-Stable 76.0 0.024 13.0 0.104 36.0 0.160 35.0 0.069
Data 100 HC 72.0 0.024 13.2 0.094 32.6 0.156 30.8 0.051
Data 100  GES 155.0 0.050 13.0 0.083 29.0 0.142 33.0 0.053
Data, 100 RAI-BFH - — 157 — 622 ~ 36.3 -
Data 100  rI<B A 88.07 - 146 — 472 — 347 -
Data 100  rBFE.0 @ 98.3" - 136 - 336 ~ 334 -
Hybrid 100  LLM-CD(HC) 150.0 0.045 12.0 0.090 34.0 0.169 16.0 0.026
Hybrid 100  PairwisePrompt+Data 356.0 0.114 27.2 0.188 69.4 0.362 35.6 0.047
Hybrid 100  BFSPrompt+Data 140.0 0.441 18.6 0.124 65.6 0.337 24.6 0.032
Hybrid 100  PromptBN+HC 63.8 0.018 12.2 0.085 33.2 0.156 15.4 0.019
Hybrid 100 PromptBN+RandomChoice 79.2 0.026 - - - - - -
Hybrid 100 ReActBN (Ours) 75.0 0.023 11.0 0.074 32.8 0.164 12.2 0.015

(1] Reported in [Babakov et al.| (2024).
[2] Reported in |Cui et al.| (2022b)).
T: the sample size is 500 instead of 100 for Hailfinder.

5.2 Evaluation on Classical Benchmarks

We evaluate the performance of our proposed methods, PromptBN and ReActBN, and compare them
with existing methods across the three categories of baselines: LLM, Data, and Hybrid approaches. We
present the SHD and NHD evaluations on six widely used classical Bayesian network structure learning
benchmarks (Asia, Cancer, Child, Insurance, Alarm, Hailfinder) in Table

Comparison to LLM-only methods (LLM) Among LLM-only methods for Bayesian network structure
discovery (PairwisePrompt, BESPrompt, and Scalability with GPT-4), our proposed PromptBN demon-
strates the most robust and consistent performance. PromptBN achieves exact recovery on Asia (SHD =
0), high fidelity on Cancer (SHD = 0.6), and the top result on Insurance (SHD = 35.6). Even on larger
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Figure 2: Qualitative comparison between our method (PromptBN) and chatPC across three benchmark
datasets. Each group shows chatPC (top) and PromptBN/Ground Truth DAG (bottom): (a) Asia, (b)
Earthquake, and (c¢) Cancer.

networks such as Alarm and Hailfinder, PromptBN consistently attains either the best or second-best SHD
and NHD. Furthermore, the performance of PromptBN+HC indicates that PromptBN provides substan-
tially stronger initialization than an empty graph, improving downstream hill-climbing optimization across
multiple datasets. For instance, on Hailfinder, PromptBN+HC reduces the SHD from 72 (HC alone) to 63.8.

As ChatPC (Cohrs et al.||2024)) only reports qualitative evaluations without quantitative metrics, we visualize
the structures produced by their method and ours in Figure [2] for comparison. On benchmarks such as Asia
and Cancer, PromptBN yields noticeably cleaner and more faithful graph structures that exactly match the
ground truth, underscoring the reliability of its global structure-generation mechanism.

Comparison to Data-only Baselines (Data) and Hybrid Methods (Hybrid) As illustrated in
Table [1} classical data-only algorithms, including PC-Stable, HC, and GES, typically achieve near-optimal
accuracy on small networks but show rapid performance degradation on medium- and large-scale benchmarks
such as Insurance and Hailfinder. Low data—oriented variants, such as RAI-BF, 71¢8, and rBF,,;2 (Cui et al.,
2022b)), may provide improvements on selected datasets but suffer from inconsistent performance overall. By
contrast, hybrid methods achieves the enhanced performance when combining LLM outputs with data.
Across all data-available settings, our proposed ReActBIN achieves the strongest performance on nearly
all classical benchmarks. ReActBN exactly recovers the Cancer network (SHD = 0) and attains the best
results on 7 out of 9 datasets. On Insurance, ReActBN outperforms all baselines with an SHD of 40.2. On
Hailfinder, it surpasses multiple specialized low-data algorithms, including rI? and rBF,:, demonstrating
its robustness in challenging high-dimensional scenarios.

5.3 Evaluation on Newer Datasets

We evaluate on three recently introduced Bayesian networks, including blockchain, covid, and disputed3
to assess the generalization capability of our method. These datasets differ substantially from the widely
used classical benchmarks and are far less likely to appear in model pre-training corpora. They therefore
provide a meaningful proxy for out-of-distribution (OOD) evaluation. As no prior work reports results on
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these networks, we reproduce all baselines and summarize the results in Table [I} For fair comparison, the
data-driven and hybrid baselines use 100 observational samples.

Across all three networks, both PromptBN and ReActBN demonstrate strong generalization performance.
Under the data-free setting, PromptBN consistently achieves the best results, exhibiting a substantial per-
formance improvements over existing LLM-only methods. For example, on covid, PromptBN attains an
SHD of 45.0, outperforming PairwisePrompt (82.6) and BFSPrompt (74.6) by a wide margin. This high-
lights PromptBN’s ability to leverage metadata effectively without relying on any observational data, even
in OOD scenarios. Moreover, under the data-aware setting, ReActBN achieves the strongest overall perfor-
mance, obtaining the best results on two of the three networks (blockchain and disputed3), surpassing all
LLM-only, data-only, and hybrid baselines. Even on covid, ReActBN remains competitive over LLM-based
methods, showing its robustness under distribution shift and its advantage in balancing statistical evidence
with LLM-driven structural reasoning. These findings demonstrate that PromptBN excels in zero-shot gen-
eralization, while ReActBN provides state-of-the-art performance when even modest data is available. Both
methods serve as strong and complementary solutions for structure learning in out-of-distribution regimes.

5.4 Contamination Tests and Analysis

Table 2: Contamination test with different forms of metadata input to LLMs

. Asia Cancer Child Insurance Alarm Hailfinder

Category # Sample Algorithm
SHDJ| NHDJ SHD| NHD| SHD| NHD| SHD| NHD| SHD| NHD| SHD| NHD|
LLM 0 VarName 0.0 0.000 0.7 0.030 27.3 0.050 41.3 0.050 43.8 0.030 118.7 0.040
LLM 0 VarDescription 0.0 0.000 0.3 0.010 31.3 0.070 44.3 0.060 43.8 0.030 119.8 0.040
LLM 0 ScrambleOrder 0.0 0.000 0.6 0.024 24.8 0.051 374 0.044 484 0.964 97.8 0.032
LLM 0 PromptBN (Ours) 0.0 0.000 0.6 0.024 21.6 0.045 35.6 0.044 41.8 0.031 76.8 0.025

VarName: only variable names are provided
VarDescription: only variable descriptions are provided
ScrambleOrder: full metadata is given but in a randomly permuted order

Since the training corpora of modern LLMs are undisclosed, potential contamination cannot be fully ruled
out. To better understand whether an LLM might recover underlying structures through memorization
rather than genuine reasoning, we conduct three controlled contamination tests in which the LLM receives
a deliberately restricted or perturbed form of metadata and is asked to generate a Bayesian network using
the same PromptBN instruction template. We present the experimental results in Table [2]

The contamination tests demonstrate that PromptBN’s effectiveness is not attributable to memorization
of dataset-specific patterns. When variable names (VarName) or descriptions (VarDescription) are used
in isolation, structural recovery degrades sharply across all non-trivial networks—for example, Child (SHD
27.3-31.3), Insurance (41.3-44.3), Alarm (43.8), and Hailfinder (118.7-119.8). Such high errors indicate that
the LLM cannot reconstruct the underlying causal structures from limited or incomplete metadata. These
results provide strong evidence that PromptBN is not retrieving memorized graph templates, but is instead
relying on genuine relational reasoning using the full set of metadata. Moreover, after permuting all variables
and removing any positional or formatting cues (ScrambleOrder), the LLM can recover structures with SHD
values that remain close to those of PromptBN—for instance, Child (24.8 vs. 21.6) and Insurance (37.4 vs.
35.6). Such stability under order perturbation confirms that PromptBN does not depend on memorizing
any specific ordering of metadata for its predictions. Instead, it interprets the relational content itself,
demonstrating robustness to ordering variations and reinforcing the idea that our method is performing
global reasoning rather than exploiting data-specific patterns.

6 Complexity Analysis

In this section, we present a comprehensive computational complexity analysis. We first introduce the
notation used throughout this section. We examine standard time complexity in classical methods and the
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offline CPU-side computational complexity in hybrid methods independent of any LLM calls (Section .
We then provide a valuable study specific to LLMs for BN structure discovery, including query complexity
(Section and scalability (Section . We present an overview of complexities for our method and
compare them to existing methods in Table [3]

Notation Let the BN structure learning problem be defined over d random variables. We denote N as
the number of nodes (variables) in the Bayesian network, E as the number of directed edges in the true
or learned DAG, i as the number of iterations (considered as a constant in the computational complexity
analysis), and k as the largest number of neighbors any variable has at any point during the PC adjacency
removal process (i.e., the maximum adjacency size).

Table 3: Computational complexity analysis

Algorithm Category Time Complexity Query Complexity
Scalability LLM - O(1)* to O(N?)
PairwisePrompt LLM - O(N?)
BFSPrompt LLM - O(N)

ChatPC LLM - O(N2 . 2F)
PromptBN (Ours) LLM - o)

PC-Stable Data O(N? . 2F) -

HC Data O(N?) -

GES Data O(N?)* to O(N?) -

LLM-CD(HC) Hybrid O(N?) O(1)* to O(N?)
ReActBN (Ours)  Hybrid O(N?) 0(1)

*: the value represents the best case depending on an internal LLM’s generation step.

6.1 Time Complexity of Offline Computation

Both data-only algorithms and hybrid methods can incur substantial CPU overhead as the number of vari-
ables grows. We therefore compare classical data-only methods with the CPU components of hybrid ap-
proaches with full derivations, with complete complexity derivations in Appendix [C]

PromptBN does not involve observational data and thus has no data-processing time complexity. ReActBN
performs LLM-guided refinement with a classical search-and-score procedure, enumerating and evaluat-
ing local graph modifications at each iteration. Since each refinement step constructs the same O(N?)
neighborhood as HC, the dominant computation per iteration is O(N?). With a bounded number of refine-
ment iterations, the overall runtime of ReActBN scales as O(N?). Compared to classical score-based and
constraint-based algorithms (Data in Table , ReActBN introduces no additional computational overhead
and exhibits similar complexity to SOTA hybrid methods such as LLM-CD when instantiated with the same
score-based search component (i.e., HC). Nonetheless, ReActBN shows significantly lower query complexity
than LLM-CD (HC), as discussed below.

6.2 LLM Query Complexity

LLM calls dominate both computational latency and monetary cost. We therefore study LLM query com-
plexity, defined as the number of prompt-response interactions, to demonstrate our advantages in these two
dimensions. We adopt the notion of query complexity—analogous to Big-O notation used in traditional
time and space complexity analyses—to quantify the number of LLM API calls required by each algorithm.
This metric applies specifically to LLM-based structural learning methods (LLM and Hybrid in Table |3).
The complete query complexity derivations are in Appendix

PromptBN achieves constant query complexity of O(1) by generating the entire candidate DAG in a single
LLM invocation, representing the optimal bound for any single-pass generative approach. In contrast, prior
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LLM-only methods require repeated pairwise or conditional-independence queries, leading to high query
complexity. For example, ChatPC, which replaces the conditional independence (CI) tests in PC-Stable
with LLM-based CI judgments, issues one query for each ordered pair of variables and for each conditioning
set considered during adjacency removal. There are O(N?) ordered variable pairs, and for each pair the
algorithm enumerates up to 2% conditioning subsets when the adjacency set has size at most k. The worst-case
query complexity of ChatPC is O(N?2*). By avoiding this bottleneck, PromptBN maintains competitive
structural discovery accuracy while offering substantially lower query costs that would otherwise become
prohibitive.

While further integrating LLM reasoning with classical score evaluations, ReActBN maintains query effi-
ciency. Since the number of LLM queries equals the number of refinement iterations, which is fixed across
datasets following standard Hill Climbing practice, ReActBN achieves query complexity of O(1) per iteration.
This makes it substantially more query-efficient than existing hybrid methods, which require validation of all
candidate edges and thus scale with network size. For example, LLM-CD introduces a three-stage prompting
strategy. Its metadata derivation stage calls one query per variable, giving a cost of O(N). Then, the causal
extraction stage invokes the LLM once to extract potential causal relationships. The final causal validation
stage checks each extracted directed pair individually. In the worst case, the extraction stage can propose
all N(N — 1) ordered pairs, resulting in O(NN?) validation queries, resulting in the overall worst-case query
complexity O(N?). The advantages of our approach in query complexity over existing LLM-only and hybrid
methods further demonstrate its effectiveness.

6.3 Scalability

In practice, datasets vary considerably in size, making scalability to larger networks a critical consideration.
We analyze how time and query complexity scale with dataset size and demonstrate both PromptBN and
ReActBN are the only methods that (i) prevent LLM query counts from scaling with N and (ii) maintain
consistently strong performance across datasets, making them the most scalable solutions among all LLM-
based methods considered.

Among LLM-only approaches (LLM), ChatPC is fundamentally unsuitable for moderate- or large-scale
graphs. Its reliance on PC-Stable yields the poorest scalability, with query complexity mirroring the
conditional-independence testing phase: O(N?-2¥) in the worst case, becoming exponential when the maxi-
mum adjacency size k grows with N. In contrast, PromptBN achieves optimal scalability by generating the
entire DAG in a single LLM call, resulting in constant query complexity of O(1) and completely avoiding
enumeration of conditioning sets or adjacency neighborhoods. PairwisePrompt and BFSPrompt fall be-
tween these extremes, with quadratic and linear query growth respectively, but they remain significantly less
scalable than PromptBN.

7 Factor Analysis

In this section, we study two fundamental factors when combining data with LLMs.
Table 4: Performance under different observational data sample sizes

Asia Cancer Child Insurance Alarm  Hailfinder blockchain  covid disputed3

Category # Sample Algorithm
SHD|NHD| SHD|/NHD| SHD|NHD| SHD|NHD| SHD| NHD|SHD| NHD|SHD|NHD| SHD|NHD| SHD|NHD|

Data 100 HC 8.0 0.125 4.0 0.160 20.0 0.068 54.0 0.067 50.0 0.040 72.0 0.024 13.2 0.094 32.6 0.156 30.8 0.051
Hybrid 100 PromptBN+HC 8.0 0.094 0.0 0.000 18.2 0.030 46.6 0.055 43.6 0.028 63.8 0.018 12.2 0.085 33.20.156 15.4 0.019
Hybrid 100 ReActBN (Ours) 6.4 0.075 0.00.000 18.00.028 40.2 0.049 35.4 0.024 75.0 0.023 11.0 0.074 32.8 0.164 12.2 0.015
Data 250 HC 3.0 0.094 4.0 0.160 17.0 0.048 49.0 0.063 38.0 0.037 76.0 0.025 13.0 0.090 30.0 0.133 44.0 0.078
Hybrid 250 PromptBN+HC 1.00.016 0.00.000 13.2 0.026 37.6 0.046 32.80.026 65.8 0.019 9.6 0.079 28.40.140 11.8 0.013

Hybrid 250 ReActBN (Ours) 1.00.016 0.00.000 12.6 0.028 32.4 0.039 32.20.025 69.6 0.022 10.20.075 30.8 0.157 9.8 0.012

Q1: How does the sample size of observational data affect performance? Following widely
adopted evaluation protocols (Cui et al. 2022a)), we investigate how access to different amounts of ob-
servational data influences the performance of our framework. we compare our approach under two data

10
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Table 5: Performance of PromptBN with different LLMs

Model Asia Cancer Child Insurance Alarm Hailfinder blockchain covid disputed3

SHD] NHD| SHD| NHDJ] SHD| NHD| SHD| NHD| SHD| NHD] SHD| NHDJ SHD| NHD| SHD| NHD| SHD| NHDJ
03-pro 0.0 0.000 1.0 0.040 22.2 0.045 37.6 0.041 44.8 0.033 79.6 0.026 12.8 0.085 44.2 0.226 9.8 0.010
03 0.0 0.000 0.6 0.024 21.6 0.044 356 0.043 41.8 0.030 76.8 0.057 15.2 0.045 45.0 0.224 15.6 0.018
o04-mini 0.0 0.000 0.0 0.000 22.8 0.050 43.2 0.053 46.8 0.035 81.8 0.055 13.2 0.042 42.8 0.234 19.6 0.024
gpt-4.1 0.0 0.000 0.0 0.000 18.2 0.023 39.6 0.045 37.6 0.027 71.2 0.048 16.0 0.046 46.8 0.241 20.0 0.024
gpt-4o 0.0 0.000 0.0 0.000 22.0 0.040 46.2 0.0564 32.0 0.021 64.0 0.020 14.4 0.094 44.0 0.229 26.4 0.034
Deepseek-rl 0.0 0.000 0.0 0.000 18.2 0.038 48.8 0.037 48.8 0.037 654 0.021 13.6 0.044 44.2 0.237 5.2 0.007
Deepseek-v3 0.0 0.000 0.0 0.000 21.2 0.046 UnP UnP UnP UnP 65.8 0.021 16.2 0.041 41.4 0.207 28.2 0.033
gemini-2.5-pro 0.0 0.000 0.0 0.000 184 0.031 33.0 0.038 14.2 0.011 71.8 0.023 9.6 0.067 41.8 0.228 9.4 0.009

gemini-2.0-flash 0.0 0.000 0.0 0.000 21.2 0.045 474 0.064 404 0.029 54.4 0.017 14.0 0.094 39.8 0.192 28.0 0.038

(1] «Unp” (Unparsable) denotes cases where the LLM fails to strictly follow the output formatting requirements specified in
the prompt, resulting in a response that cannot be parsed into a valid structure.

regimes: 100 and 250 samples. For each setting, we evaluate three variants: (1) HC as a data-only baseline,
(2) PromptBN+HC, which uses an LLM to initialize HC, and (3) ReActBN, which further leverages LLM
reasoning to guide the score-based selection. As shown in Table[d] our proposed ReActBN achieves the best
performance under sample sizes of both 100 and 250. For example, on Child, ReActBN achieves an SHD
of 12.6, compared to 13.2 for PromptBN+HC and 17 for HC. Moreover, we note that the performance of
conventional data-only methods improves as the amount of data increases, narrowing the gap with ReActBN.
This trend is expected, as the reliance on LLM priors naturally decreases when sufficient data is available
for reliable structure estimation.

Q2: How does the choice of LLM affect structure learning performance? We examine how
different language models impact performance by evaluating PromptBN across a diverse set of LLMs, in-
cluding proprietary models from OpenAl and Google and open-source models from DeepSeek. The tested
models range from chat-oriented ones (e.g., DeepSeek-v3, GPT-40, GPT-4.1) to reasoning-focused mod-
els (e.g., DeepSeek-rl, OpenAl o-series), and general-purpose language models (e.g., Gemini-2.5-Pro and
Gemini-2.0-Flash). We present the results in Table Interestingly, more advanced models with stronger
general-purpose reasoning capabilities do not always achieve better performance in structure learning. For
instance, 03-pro, the strongest reasoning model from OpenAl, outperforms other models on most LLM
benchmarking datasets. However, 03-pro performs worse than GPT-4o, the oldest model evaluated (03-pro
has an SHD of 44.8, while GPT-4o achieves 32.0). Similarly, Google’s best model, Gemini-2.5-Pro, performs
worse than Gemini-2.0-Flash on Hailfinder (with SHD of 71.8 vs. 54.4).

8 Conclusion

In this work, we present a unified, LLM-centered framework for Bayesian network structure discovery that
operates effectively in both data-free and data-aware regimes. The first component, PromptBN, formulates
structure learning as a single LLM query problem and produces a globally consistent DAG with constant
query complexity O(1). The second component, ReActBN, integrates Reason-and-Act (ReAct)-based agentic
reasoning with offline structural scores, such as BIC, to refine the initial graph in an LLM-as-brain process
with also O(1) query complexity. Empirical evaluations across ten BN benchmarks demonstrate superior
robustness, generalization, and low-data performance compared to state-of-the-art LLM-only, data-only, and
hybrid baselines. Together, these results highlight the potential of LLMs as a central mechanism for scalable
and principled probabilistic structure discovery.
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A Pseudo Code and Examples

A.1 PromptBN

Pseudo-code of the PromptBN (Phase-1 in our framework) is in Algorithm

Algorithm 1 PromptBN: Bayesian Network Estimation via Prompting

1: Input: Variable metadata table Z = metadata(V), where V is the set of variables; LLM model M; retry
limit N
Output: Bayesian network G
Construct meta-prompt P including:
Task definition: instruct the LLM to infer a Bayesian network from 7
Variable schema: include each variable’s name, description, and distribution
Output format: specify both node-centric and edge-centric representations
Reasoning protocol: instruct the LLM to reason over variable metadata
Response constraints: require strict formatting, completeness, and acyclicity
retry count < 1

© PPN

10: repeat

11: Oraw + LLM-Query(Z, P; M)

12: Parse 0,4, to obtain both:

13: Gnode: node-centric representation

14: Gedge: edge-centric representation

15: retry_count < retry_ count +1

16: until (consistent(Gpode, Gedge) and DAG(Geqqe)) or retry count > N
17: if retry__count > N then

18: Raise error or halt: Valid output not achieved within N retries.
19: else

20: return Bayesian network G — Geqge

21: end if

A.2 Input and Output Examples
An example of variable metadata Z is shown in Table [6]

Table 6: Example input: Zag, = metadata(Vasia)

node var_name var__description var__distribution
1 asia visit to Asia a two-level factor with levels yes and no.
2 tub tuberculosis a two-level factor with levels yes and no.
3 smoke smoking a two-level factor with levels yes and no.
4 lung lung cancer a two-level factor with levels yes and no.
5 bronc bronchitis a two-level factor with levels yes and no.
6 either tuberculosis versus lung cancer/bronchitis a two-level factor with levels yes and no.
7 xray chest X-ray a two-level factor with levels yes and no.
8 dysp dyspnoea a two-level factor with levels yes and no.

The following is an example an LLM response for Asia dataset, illustrating the defined structure query.

"bn": {
"nodes": [
{
"node_id": 8,
"node_name": "dysp",

14



Under review as submission to TMLR

"parents": ["bronc", "either"],
"description": "dyspnoea",
"distribution": "a two-level factor with levels yes and no.",
"conditional_probability_table": "P(dysplbronc, either)"
}
1,
"edges": [
.
{
"from": "bronc",
"to: "dysp",
"justification": "Bronchitis can cause dyspnoea."
1},
{
"from": "either",
"to": "dysp",
"justification": "Either tuberculosis or lung cancer can cause dyspnoea."
}
1,
"network_summary": "The Bayesian Network models the relationships between visiting Asia, smoking, and respiratory

diseases such as tuberculosis, lung cancer, and bronchitis. It captures how these factors influence symptoms like
dyspnoea and diagnostic results like chest X-rays."

A.3 ReActBN

Pseudo-code of the ReActBN (Phase-2 in our framework) is in Algorithm

B Experiments

B.1 Dataset details

Table 7: Statistics of the datasets used for method validation. T covid is short for consequenceCovid.

Dataset Asia Cancer Earthquake Child Insurance Alarm Hailfinder blockchain covid! disputed3

#Nodes 8 5 5 20 27 37 56 12 15 27
#Edges 8 4 4 25 52 46 66 13 34 34

B.2 Hyperparameters

Table 8: Summary of key hyperparameters.

Hyperparameter Meaning Value
top-k the candidate action space size 10
max_ iter the maximum number of iterations 20
tabu_ length the size of the tabu list 100
scoring the type of structure score BIC

B.3 Variance Statistics
In all our experiments, we report the mean and standard deviation with 5 valid runs under the same settings.

To complement the results in the main article, we report the standard deviation in the following tables
to provide a clearer view of the stability and robustness of our method:
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Algorithm 2 ReActBN: ReAct-based Score-Aware Search

Require: Initial Bayesian network Gg; variable metadata Z; observational data D
Require: Hyperparameters: top-k k; scoring method &; LLM model M; tabu list length L; maximum
iterations T'

Ensure: Refined Bayesian network G*

1: G+ Go; s+ S(G); TL+ 0; ¢t + 1

2: while ¢t <T do

3: A0

4 for all ordered pairs of nodes (u,v) do

5 for all actions a € {ADD, REMOVE, FLIP} do

6: if a is applicable to (u,v) and applying a keeps the graph acyclic then
7: N G+ a(u,v)
8.
9

if N ¢ TL then
: A+— AU{a(u,v)}
10: Sa(u,v) {— S(N)

11: Aa(u,v) < Sa(uw) — S
12: end if

13: end if

14: end for

15: end for

16: Acand < top-k elements of A with the largest Ay 0)
17: Build prompt P using (Z, G, s, Acand)

18: idz < LLMQUERY(P; M) >idr € {—1,0,...,k—1}
19: if idx = —1 then

20: break

21: else

22: a* < Acanda [1dx]

23: gnew — g +a*

24: if not acyclic(Ghew) then

25: continue

26: end if

27: TL <+ TLU{Gnew}

28: if |TL| > L then

29: remove oldest element from TL
30: end if

31: g — gnew

32: s« S8(9)

33: end if

34: t+—t+1
35: end while
36: return G* < G

o Table [J reports the variance of LLM-only and hybrid experiment, complementing Table
o Table [I0] reports the results of Table ] in the main article.

e Table[11] reports the results of Table [ in the main article.

C Detailed Time Complexity Analysis

Classical data-driven structure learning algorithms—including score-based approaches such as Hill Climbing
(HC) and Greedy Equivalence Search (GES), as well as constraint-based approaches such as PC-Stable—
exhibit distinct computational characteristics.
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Table 9: LLM-only and Hybrid Evaluation on classical (Asia, Cancer, Child, Insurance, Alarm, Hailfinder)
and newer (blockchain, covid, disputed3) Bayesian network datasets with Variance

Catogory # Sample Algorithm Asia Cancer Child Insurance Alarm
SHD NHDJ SHDJ NHDJ SHDJ NHD} SHD NHDJ SHDJ NHDJ
LLM 0 PairwisePrompt 56405 0.072+0.018 0.0£0.0 0.000 £+ 0.000 19.6 +£3.1  0.042 £ 0.007 37.6+£3.3  0.044 £ 0.002 60.0£14.3  0.044 £0.012
LLM 0 BFSPrompt 0.0+£0.0  0.000 =% 0.000 0.0+0.0  0.000 + 0.000 204421 0.047 £ 0.004 48.44+13.3  0.058 £+ 0.015 36.2+2.8 0.026 +0.002
LLM 0 Scalability (GPT-4) - - - - — - 52.0 - 60.0 -
LLM 0 PromptBN (Ours) 0.0+ 0.0 0.000 + 0.000 0.6+0.6 0.024+0.022 21.6+5.7 0.044 +£0.012 35.6 3.8 0.044 £+ 0.004 41.8+£5.2  0.031 +0.004
Hybrid 100 LLM-CD(HC) 0.0 0.000 0.0 0.000 40.0 0.093 65.0 0.089 22.0 0.219
Hybrid 100 PairwisePrompt+Data 0.8 + 1.3 0.013 £ 0.020 0.0£0.0 0.000 £ 0.000 20.6 £4.3 0.048 £0.011 44.443.0 0.055 £ 0.004 69.4 £3.8 0.051£0.003
Hybrid 100 BFSPrompt+Data 0.4 £+ 0.9 0.006 £ 0.014 0.2+£04 0.008+0.018 244+£5.9 0.054 £0.014 50.4£8.9 0.061 + 0.008 42.0£7.6 0.030 £ 0.005
Hybrid 100 PromptBN+HC 8.0£0.0 0.094 £ 0.000 0.0£0.0 0.000 £ 0.000 182+ 1.1  0.030 % 0.003 46.6 £2.4  0.055 £ 0.006 436 £0.6  0.028 £ 0.001
Hybrid 100 PromptBN+RandomChoice 5.6 0.084 1.2 0.056 234 0.053 3.4 0.056 43.0 0.031
Hybrid 100 ReActBN (Ours) 6.4+ 2.2 0.075+0.026 0.0+0.0 0.000 = 0.000 18.0+1.6 0.028 +0.004 40.2+4.5 0.049 £+ 0.004 35.4+3.4 0.024+0.001
Catogory # Sample Algorithm Hailfinder blockchain covid disputed3
SHD, NHDJ SHDJ NHDJ SHDJ NHD} SHD, NHD}
LLM 0 PairwisePrompt 551.0£18.9 0.176+0.006  37.4+2.3 0260+0.016  826+25 0433+£0.024 412448 0.057 +0.007
LLM 0 BFSPrompt 243.0+£529 0.077+0.017  29.0+6.8 0204+0.052  T46+86 0402+£0.058  21.6+7.1 0.027+0.011
LLM 0 Scalability (GPT-4)! 68.0 - - - — - - -
LLM 0 PromptBN (Ours) 76.84 6.7 0.025+0.003 15.2 0.100 45.0 0.225 15.6 0.018
Hybrid 100 LLM-CD(HC) 150.0 0.045 12.0 0.090 34.0 0.169 16.0 0.026
Hybrid 100 PairwisePrompt+Data 356.0+ 7.5 0.114 £ 0.003 27.2+1.3 0.188+0.011 69.4+34 0.362+0.013 35.6£2.9 0.047 £ 0.004
Hybrid 100 BFSPrompt+Data 14004529  0.044+0.017  18.6+3.7 01240030  65.6+50 0.337+0.034  24.6+4.5 0.032%0.004
Hybrid 100 PromptBN+HC 63.8+0.5 0.018 £ 0.000 12.2 0.085 33.2 0.156 15.4 0.019
Hybrid 100 PromptBN+RandomChoice 79.2 0.026
Hybrid 100 ReActBN (Ours) 75.0+3.9 0.023+0.002 11.0 0.074 32.8 0.164 12.2 0.015

1] Reported in [Babakov et al. (|2024|).

2] Reported in [Cui et al.| (2022b)).

f: the sample size is 500 instead of 100 for Hailfinder.

(
[

Table 10: Performance under different observational data sample sizes with variance

Asi C: Child I Al
Category # Sample Algorithm sia ancer i nsurance arm
SHD| NHDJ] SHD] NHD| SHD] NHD|] SHD| NHD] SHD| NHDJ]
Data 100 HC 8.0 0.125 4.0 0.160 20.0 0.068 54.0 0.067 50.0 0.040
LLM+Data 100 PromptBN+HC 8.0£0.0  0.09440.000 0.0£0.0  0.000£0.000 18.2+£1.1  0.030£0.003  46.64£2.41  0.055£0.006 43.60.55  0.028+0.001
LLM+Data 100 ReActBN (Ours) 6.44+2.19 0.075+0.026 0.0£0.0 0.000+0.000 18.0+1.58 0.028+0.004 40.2:+4.49 0.049+0.004 35.4+3.44 0.024:+0.001
Data 250 HC 3.0 0.094 4.0 0.160 17.0 0.048 49.0 0.063 38.0 0.037
LLM+Data 250 PromptBN+HC 1.0+0.0 0.016+0.000 0.0+0.0 0.000+0.000 13.2+1.10  0.026+0.004 37.64+3.36  0.046+0.005 32.8+3.63  0.02640.003
LLM+Data 250 ReActBN (Ours) 1.04+0.0 0.016+0.000 0.0£0.0 0.000+0.000 12.6+1.34 0.028+0.006 32.4+4.16 0.039+0.002 32.2+2.49 0.025+0.003
Hailfind blockchai id di ted3
Category # Sample Algorithm ailfinder ockchain covi ispute
SHD| NHDJ SHD/| NHDJ] SHDJ NHD/| SHDJ NHDJ]
Data 100 HC 72.0 0.024 13.2 0.094 32.6 0.156 30.8 0.051
LLM+Data 100 PromptBN+HC 63.8+£0.45 0.018+0.000 12.2+1.64 0.085%0.022 33.2+2.49  0.15640.008 15.4+4.34  0.01940.006
LLM+Data 100 ReActBN (Ours) 75.0+£3.87  0.023+£0.002 11.0£0.00 0.074+0.006 32.8+2.49 0.164+0.014 12.2+2.86 0.01540.005
Data 250 HC 76.0 0.025 13.0 0.090 30.0 0.133 44.0 0.078
LLM+Data 250 PromptBN+HC 65.8+£0.84 0.019+0.001 9.6+£1.34 0.079£0.006 28.4+1.95 0.140+0.004 11.84+7.36 0.01340.006
LLM+Data 250 ReActBN (Ours) 69.6+1.52  0.022+0.001 10.2+1.64  0.075+0.003 30.8+1.30  0.157+0.014 9.8+5.85 0.01240.007

Hill Climbing (HC) as a local search method, HC evaluates the neighborhood N (G) of each candidate
DAG, whose size is O(N?) under standard add, delete, and reverse operators. With i search iterations, the
worst-case runtime of HC is therefore O(i - N?), consistent with empirical findings that its execution time

grows approximately quadratically in N (Liu et all [2022). Since in practice the number of iterations is
usually a constant across datasets, we keep the time complexity of HC at O(N?).

Greedy Equivalence Search (GES) GES performs a two-phase (forward and backward) greedy search
over equivalence classes. Each operator evaluation requires computing score differences for the parent sets
affected by the modification. As observed in the FastGES (Ramsey et al. [2016]), the per-phase runtime
scales practically as O(N?), though the theoretical upper bound may reach O(NN?) when many admissible
covered-edge reversals are considered. Thus, the overall time complexity of GES ranges between O(N?) and
O(N?) depending on structural density and operator availability.

PC-Stable PC-Stable exhibits the most computationally intensive profile among the classical methods
due to its reliance on conditional independence (CI) tests as conditioning-set sizes increase. Its runtime
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Table 11: Performance of PromptBN with different LLMs with variance

Model Asia Cancer Child Insurance Alarm

SHD| NHDJ SHD| NHD/ SHD| NHD| SHD| NHDJ SHD| NHD|
03-pro 0.0+0.0 0.000+0.000 1.040.0 0.040£0.000 222+49 0.045+0.011 37.6+2.6 0.041+£0.005 44.8+5.3 0.033 £ 0.004
03 0.0+0.0 0.000£0.000 0.6+0.6 0.024+£0.022 21.6=£57 0.044+0.012 35.6+3.8 0.044£0.004 41.8+5.2 0.031+0.004
o4-mini 0.0+0.0 0.000+0.000 0.0+0.0 0.000+0.000 22.8=+51 0.050+0.011 43.2+4.3 0.0563£0.007 46.8+8.2 0.035=0.006
gpt-4.1 0.0+0.0 0.000+0.000 0.0+0.0 0.000+0.000 18.2+1.6 0.023+0.004 39.6+2.7 0.045+0.002 37.6+3.0 0.027 +0.002
gpt-4o 0.0+0.0 0.000+0.000 0.0+0.0 0.000+0.000 22.0+0.0 0.040+0.000 46.2+0.4 0.054+0.002 32.0+6.1 0.021+0.003
Deepseek-rl 0.0+0.0 0.000+0.000 0.0+0.0 0.000+0.000 18.2+4.1 0.038+0.013 35.4+7.0 0.042+0.008 488+7.6 0.037=+0.009
Deepseek-v3 0.0+ 0.0 0.000+0.000 0.0+0.0 0.000+0.000 21.2+0.5 0.046+0.002 UnP UnP UnP UnP

gemini-2.5-pro 0.0+0.0 0.000+0.000 0.0+0.0 0.000+0.000 18.4+3.7 0.031+0.011 33.0+£3.7 0.038+£0.004 14.2+6.3 0.011+0.004
gemini-2.0-flash 0.0+ 0.0 0.000+0.000 0.0+0.0 0.000+0.000 21.2+1.9 0.045+0.006 47.4+3.7 0.0644+0.006 40.4+3.3 0.029 £ 0.002

Model Hailfinder blockchain consequenceCovid disputed3

SHD| NHD] SHD| NHD/] SHD| NHD| SHD| NHD/]
03-pro 79.6 +£11.7 0.026 £0.004 12.84+4.0 0.085+£0.020 44.2+28 0.226+0.011 9.8 +2.8 0.010 £ 0.002
03 76.8+6.7 0.025+£0.003 152+6.5 0.100+0.040 45.0+2.8 0.225+0.017 15.6+2.2 0.018+£0.004
o4-mini 81.8+10.8 0.027£0.004 132419 0.092+0.013 42.8+3.0 0.234+0.013 19.6£5.3 0.024 £ 0.008
gpt-4.1 64.0£6.8 0.020£0.002 16.0+0.0 0.111+0.000 46.8+1.5 0.242+0.007 20.0+4.9 0.025 =+ 0.006
gpt-4o 64.0+£0.0 0.020+0.000 14.4+0.6 0.107+0.004 44.0+1.2 0.229+0.007 26.4+1.7 0.034 £0.003
Deepseek-rl 65.4+6.3 0.021+0.002 13.6 +3.7 0.094 +0.026 44.2+5.2 0.237+0.024 5.2+2.2 0.007 +0.003
Deepseek-v3 UnP UnP 162+1.3 0.118+0.007 41.4+23 0.207+0.017 282+21 0.033+0.003

gemini-2.5-pro 71.8+£7.7 0.0234+0.002 9.6+2.6 0.067+0.018 41.8+23 0.228+0.009 9.44+3.7 0.009 &+ 0.004
gemini-2.0-flash 54.44+2.7 0.017+0.001 14.0+2.7 0.094+0.014 39.8+1.5 0.192+0.013 28.0+5.5 0.038+0.009

is dominated by the adjacency-removal phase. Following the analysis of (Kalisch & Bihlmann, [2007)), the
worst-case number of CI tests grows exponentially with the size of the largest adjacency set. Under our
notation, for each unordered variable pair the algorithm may evaluate up to 2* conditioning subsets when
the adjacency set has maximum size k. Since there are O(IN?) such pairs, the total number of CI tests is
bounded by O(N22F). An equivalent classical expression (Kalisch & Biihlmann, [2007; Spirtes et al.l [2018)
rewrites this as O(N**1) by using the identity Z?:o (’z) = 2% and bounding the number of nonempty
adjacency configurations accordingly. When k grows with N—as in dense graphs where k = ©(N)—PC-
Stable becomes exponential in the number of variables, consistent with empirical observations of its rapidly
increasing runtime in high-dimensional settings (Ha et al., |2014).

D Detailed Query Complexity Analysis

ChatPC |, which replaces the conditional independence (CI) tests in PC-Stable with LLM-based CI judg-
ments, issues one query for each ordered pair of variables and for each conditioning set considered during
adjacency removal. Using our notation, there are O(N?) ordered variable pairs, and for each pair the al-
gorithm enumerates up to 2 conditioning subsets when the adjacency set has size at most k, where k
denotes the maximum adjacency size encountered during the search. Thus, the worst-case query complexity
of ChatPC is O(N?22%), which can be expressed as O(N**1). This reduces to a polynomial bound when k
is small (sparse graphs) but becomes exponential in N when k = ©(N) (dense graphs).

PairwisePrompt evaluates all N(N —1) possible ordered edges using a single LLM query per pair, yielding
a query complexity of O(N?). BFSPrompt reduces this cost by exploring the graph in a breadth-first manner
and issuing exactly one query per node expansion, giving a total of O(NN) queries.

Scalability and PromptBN requires only a small number of LLM invocations that do not scale with
N. Scalability proceeds in three stages: (1) a facilitator LLM generates M expert personas using one query;
(2) each expert receives two prompts to propose and summarize candidate causal relations, contributing 2\
additional queries; and (3) optional decycling prompts are issued only when an expert outputs a directed
cycle. In the theoretical worst case, resolving all possible conflicts would require O(N?) additional queries,

18



Under review as submission to TMLR

since there are at most N(N — 1) potentially inconsistent directed pairs. Hence, the algorithm’s worst-case
query complexity is O(N?); however, with fixed M and empirically rare cycles, the effective query cost
behaves as O(1) with respect to N.

PairwisePrompt+Data and BFSPrompt+Data preserve the same interaction structure as in Pair-
wisePrompt and BFSPrompt, and additionally incorporate observations into their prompts. Consequently,
the query complexities of remain O(N?) and O(N), respectively.

LLM-CD introduces a three-stage prompting strategy. The metadata derivation stage calls one query per
variable, giving a cost of O(NN). The causal extraction stage invokes the LLM once, using all enriched meta-
data, to extract the potential causal relationships. The final causal validation stage checks each extracted
directed pair individually; in the worst case, the extraction stage may propose all N(N — 1) ordered pairs,
resulting in O(N?) validation queries. Thus, the overall worst-case query complexity of LLM-CD is O(N?2),
dominated by the validation stage.

ReActBIN alternates between LLM-guided refinement decisions and classical score evaluations. The num-
ber of LLM queries equals the number of refinement iterations prior to convergence. Although we denote the
iteration count by 4, in practice we fix it across datasets, mirroring the common setup in Hill Climbing. As
a result, the practical query complexity of ReActBN behaves as O(1), making it substantially more query-
efficient than existing hybrid methods such as LLM-CD, which require validation of all candidate edges.
This allows ReActBN to leverage observational data for refinement while avoiding the large query overheads
characteristic of prior LLM+Data techniques.
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