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Abstract

Recently, training an image captioner without
annotated image-sentence pairs has gained trac-
tion. Previous methods face limitations due to
either using mismatched corpora for inaccurate
pseudo pairs or relying on resource-intensive
pre-training. To alleviate these challenges, we
propose a new strategy where the prior knowl-
edge from large pre-trained models (LPMs)
is distilled and leveraged as supervision, and
a retrieval process is integrated to further re-
inforce its effectiveness. Specifically, we in-
troduce Retrieval-augmented Pseudo Sentence
Generation (RaPSG), which can efficiently re-
trieve highly relevant short region descriptions
from mismatching corpora and use them to gen-
erate a variety of high-quality pseudo sentences
via LPMs. Additionally, we introduce a fluency
filter to eliminate low-quality pseudo sentences
and a CLIP guidance objective to enhance con-
trastive information learning. Experimental re-
sults show that our method outperforms SOTA
captioning models in zero-shot, unsupervised,
semi-supervised, and cross-domain scenarios.
Moreover, we observe that generating high-
quality pseudo sentences may offer better su-
pervision than the crawling sentence strategy,
highlighting future research opportunities.

1 Introduction

Recent advancements in image captioning have
been driven by Transformer-based models (Cor-
nia et al., 2020; Luo et al., 2021). However, the
reliance on high-quality human-annotated image-
text pairs limits these fully-supervised approaches,
increasing interest in annotation-free alternatives,
such as unsupervised and pre-training strategies.
Unsupervised approaches (Guo et al., 2020; Zhou
et al., 2021) align crawled sentences with target
images as pseudo annotations, but face issues with
sentence diversity (Li et al., 2022) and content ac-
curacy (Honda et al., 2021). Pre-training strategies
show strong performance but require massive re-
sources (Wang et al., 2021) and are affected by
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Figure 1: The comparison between whole sen-
tence crawling strategy (Byeon et al., 2022) and our
generation-based RaPSG method.

noisy data from coarse LPM-led selection (Byeon
et al., 2022), as shown in Figure 1(a), leading to
poor sample efficiency (Li et al., 2022).

To alleviate these problems, recent methods
transfer prior knowledge from frozen LPMs to
vision-language (VL) tasks. Notable architectures
like Flamingo (Alayrac et al., 2022) and BLIP2 (Li
et al.,, 2023a) use trainable mapper modules to
bridge LPMs with vision encoders, keeping LPMs
frozen to reduce computational cost and avoid
catastrophic forgetting. Similarly, LLaVA (Liu
etal., 2023b) and MiniGPT4 (Zhu et al., 2023a) em-
ploy projection layers to integrate visual encoders
with language decoders, innovating through fine-
tuning on multimodal instructions. However, de-
spite these advancements, all these methods still
rely on billions of external image-text pairs for
"mapper" learning and remain susceptible to the
challenge of the noisy image-text pairs problem.

In this paper, we propose an efficient Retrieval-
augmented Pseudo Sentence Generation frame-
work (RaPSG) that leverages prior knowledge from
frozen LPMs as supervision by generating high-



quality pseudo sentences without the need of exter-
nal image-text pairs or instruction tuning for opti-
mization. Specifically, a retrieval-based pipeline is
designed to generate multiple sentences for each
target image, as shown in Figure 1(b). To address
the challenge of noisy image-text pairs and im-
prove the quality of generated pseudo sentences,
we propose a refinement strategy based on a rank-
ing of high-relevance region descriptions. For each
target image, we employ the pre-trained model
CLIP (Radford et al., 2021) to retrieve the top-k
most correlated region descriptions from the Visual
Genome (VG) dataset (Krishna et al., 2017) (We
eliminate the overlapping parts between COCO
and VG). Then, we further group region descrip-
tions into multiple comprehensive and distinct long
sentences using summarization LPMs, such as
BART (Lewis et al., 2019) and LLaMA (Touvron
et al., 2023). After this, we then introduce a self-
supervised framework to facilitate the retrieval-
augmented captioner, using original images and
generated pseudo sentences as supervision. Addi-
tionally, we design two mechanisms to enhance the
plain pseudo-labeling strategy. Firstly, a fluency fil-
ter removes imperfect descriptions to mitigate the
impact of noisy image-text pairs. Second, a CLIP-
based optimization strategy improves the model’s
comprehension of image-text pairs, offsetting the
lack of external image-text pairs.

To demonstrate the capability of our RaPSG
approach, we evaluate its performance on the
MSCOCO (Chen et al., 2015) and Flickr30k (Plum-
mer et al., 2015) benchmarks across various set-
tings. The results show that our method outper-
forms the SOTA captioner Flamingo3B with fewer
trainable parameters and consistently surpasses
other models in pre-training, unsupervised, weakly
supervised, and unpaired settings. This highlights
its effectiveness and efficiency. Additionally, we
validate its robustness in semi-supervised and cross-
domain settings, where our model also achieves
SOTA performance, underscoring its versatility.

Our contributions are summarized as four folds:
(1) We propose an inference-only approach that
distils knowledge from frozen LLMs by retrieving
highly relevant region descriptions and generating
a variety of distinct pseudo sentences for each tar-
get image. (2) A fluency filter and CLIP guidance
are further introduced to strengthen the retrieval-
augmented learning of the captioner for better pre-
diction. (3) Experimental findings reveal that our
approach surpasses current SOTA captioning mod-

els in a range of scenarios, including zero-shot,
unsupervised, semi-supervised and cross-domain
settings. (4) In our experiments, we also find that
using high-quality generated pseudo sentences is
more beneficial for captioner training than retrieved
complete sentences, even if they are unpaired and
sourced directly from the original dataset.

2 Related Work

Large Pre-trained Models for Image Caption-
ing. In recent years, the appearance of a series of
high-performance LPMs such as ViT (Dosovitskiy
et al., 2020), GPT-2 (Radford et al., 2019), and
CLIP (Radford et al., 2021) has widely extended
the possibility of getting prior knowledge. Kuo and
Kira (2022) used CLIP to mine missing attributes
and relationships as auxiliary inputs in a fully super-
vised captioning task. Cho et al. (2022) used CLIP
to build a CLIP score replacing the traditional cross-
entropy loss, which can avoid references in strength
learning of captioning tasks. Additionally, some
works start to explore leveraging from the frozen
LPMs. Flamingo (Alayrac et al., 2022) builds a
trainable architecture that bridges the vision en-
coder and the large language model, efficiently ac-
cepting arbitrarily interleaved visual data and text
as input, and generating text in an open-ended man-
ner. BLIP-2 (Li et al., 2023a) bridges the modality
gap with a lightweight querying Transformer and
is more efficient in the pre-training strategy. How-
ever, all these methods still need pre-training on
large-scale datasets for model optimization.

Retrieval-augmented Models with LPMs.
Retrieval-augmented methods have been widely
applied in VL tasks in recent years. In visual
question answering, retrieving the outside knowl-
edge for question answering has become the new
trend (Lin and Byrne, 2022). In text-to-image gen-
eration, Chen et al. (2022b) propose a generative
model that uses retrieved information to produce
high-fidelity images for uncommon entities.
Currently, few works apply a retrieval-augmented
idea with LPMs for image captioning. Zhu et al.
(2023b) use CLIP to extract the semantic prompt
for more accurate caption prediction under the
adversarial learning framework. Re-ViLM (Yang
et al., 2023) builds upon the Flamingo but supports
using CLIP to retrieve relevant knowledge from
the external database. Compared with their
methods, our approach gets knowledge from
high-quality generated pseudo sentences and is
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Figure 2: The overview of our proposed framework. It
is structured around three core components: RaPSG,
fluency filter, and CLIP guidance.

more data-efficient, which avoids using unpaired
human annotation (Zhu et al., 2023b) or large-scale
image-text corpus for pre-training (Yang et al.,
2023).

3 Method

In this section, we introduce our proposed frame-
work RaPSG, whose overview is shown in Figure 2.
The retrieval-augmented pseudo sentence efficient
generation module is proposed to learn knowledge
from the LPMs (Section 3.1). To reduce the appear-
ance of unnatural pseudo sentences, we innova-
tively design a fluency filter (Section 3.2). Finally,
the self-supervised training with generated pseudo
image-text pairs is guided by a CLIP-based loss to
improve the prediction accuracy (Section 3.3).

3.1 Retrieval-Augmented PSG Module

To address the absence of human annotation, we
propose RaPSG, a two-stage retrieval-augmented
pseudo sentence generation method. It leverages
the prior knowledge in LPMs to generate high-
quality pseudo sentences for effective training su-
pervision. Specifically, our method is based on the
text processing capabilities from different aspects
of LPMs including region-level matching with
CLIP, global-level summarization through BART,
and LLaMA for further enhancement. Stage-I trans-
forms region-level information into global-level
sentences to establish context, while Stage-II dis-
tills and refines these sentences with detailed con-
tent. This approach ensures high-quality pseudo
sentences through comprehensive and robust text
processing.

In Stage-I, we focus on utilizing the summariza-
tion capability of BART (Lewis et al., 2019) to
condense short high-relevant region descriptions
into pseudo sentences (Figure 3), capturing essen-
tial information from regions concisely. To begin,
we retrieve local-level region descriptions from the
Visual Genome (VG) dataset (a public dataset com-

prises region descriptions). However, since 47%
of VG images overlap with MSCOCO, we apply a
duplicate-removal scheme (Kuo and Kira, 2022) to
refine region descriptions. After annotating region
descriptions, we utilize the pre-trained CLIP to re-
trieve proper region descriptions for each image.
Given an image I, we apply the cosine similarity
function to calculate the matching score for each
region description, then rank these descriptions ac-
cording to their scores in descending order, forming
the ordered set of region descriptions D. Subse-
quently, the top-k£ most relevant descriptions are
chosen based on their scores for the following steps,
with the selection of £ detailed in Figure 6. These
selected top-k region descriptions for the given im-
age are denoted as DF. However, as illustrated in
Figure 1 (b), the region descriptions lack modify-
ing phrases typically found in standard sentences.
Previous research, such as Feng et al. (2019), indi-
cates that concepts with minimal semantic content
can lead to failures in image captioning training.

To cope with missing information, we refine
local-level descriptions by summarizing them into
global-level descriptions using BART. From the
set D, we select the top-m descriptions with the
criteria for choosing m detailed in Figure 6. Then,
these descriptions are summarized into the first
single sentence, c1, by removing repeated words
and leveraging the text summarization ability of
BART (comparisons across different summariza-
tion models also depicted in Figure 6). To enhance
the diversity of pseudo sentences, instead of repeat-
ing the summarization process above, we group the
remaining regions descriptions based on greater se-
mantic differences. Specifically, a similarity score
is calculated between each of the rest region de-
scriptions D*~] and the first pseudo sentence c;.
Next, these descriptions are grouped into n compre-
hensive summarization sentences based on scores
(ie,n= ’“Tm, the top m for the ¢, the second top
m for the c3, and ...). In this way, descriptions shar-
ing more similarities would be grouped together
to avoid arranging too many objects in a single
sentence generation process. The issue of group-
ing complex objects together will be discussed in
Section 3.2. According to this setting, our method
can generate a high-quality pseudo sentence group

{cl}z " per image in the first stage.

In Stage-II, we distill crucial information from
the preceding sentence group to generate more ap-
propriate pseudo sentences. We refine the gener-
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Figure 3: The Stage-I of RaPSG framework. Firstly, we retrieve top-k region descriptions from VG (Krishna
et al., 2017) according to their matching scores computed by CLIP (Radford et al., 2021) model. Then, we use
Sent-BERT (Reimers and Gurevych, 2019) model to divide them into four groups by their semantic similarity.
Finally, BART (Lewis et al., 2019) model is used to summarize the grouped descriptions for four pseudo sentences.
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Figure 4: The Stage-II of RaPSG framework. Initially,
we utilize the provided image in conjunction with the
preceding four pseudo sentences as supervision to train
the image captioner. Once trained, we freeze the cap-
tioner and generate a prediction sentence. To enhance
the generation process, we incorporate the top-£ most
relevant region descriptions as supplementary material
to get the fifth output.

ated pseudo sentences in Stage-I using the expres-
sive power of large generative models, producing
fluent and contextually relevant sentences for su-
pervision. Initially, we pair the set {cz}fi 1" with
the [ for captioner training, as shown in the top part
of Figure 4. This process establishes a reconnec-
tion between the sentences and the visual content,
enabling the captioner’s accuracy in both image
and text domains. However, the supervision by
pseudo sentences could lead the captioner to learn
repeated information, potentially resulting in a lack
of specific details within the context.

To address this limitation, we propose incorpo-
rating a large-size generative model, LLaMA-7B,
to generate pseudo sentences with more detailed in-
formation. In our approach, we refine the sentences
by using the predictions from the frozen captioner

as well as the DF. By combining these elements,
LLaMA learns the core ideas from the predictions
and incorporates the detailed information from the
region descriptions. This integration enables us to
generate superior pseudo sentences that encompass
a greater level of detail. Consequently, we obtain
a more appropriate sentence as our another output
denoting as ¢y, 1. With these two stages com-
pleted, we successfully generate a group of pseudo

k/m+1

sentences {c;},”,  that are ready for further use.

3.2 Fluency Filter

The fluency filter is designed to sift the generated
sentences to remove low-quality pseudo captions.
For each given image I, the filter carefully se-
lects the best sentence among {cl}z TH to ensure
a precise match. Figure 5 compares two gener-
ated pseudo sentences from BART based on two
groups of region descriptions in the first stage of the
RaPSG module. The first case shows that the model
successfully comprehends the relationship between
the skateboard and the trick in the inference pro-
cess. By contrast, the second sentence does not
capture the important information to describe the
image because the model recognizes the metallic-
element different from the skateboard. Due to the
limited discernment of LPMs, varying appellations
for the same object in region descriptions can cause
confusion, potentially fragmenting the generated
sentence into multiple semantic parts and reducing
its coherence and accuracy.

We propose to filter out the low-quality pseudo
sentences via CIDEr metric (Vedantam et al., 2015)
(an image description evaluation based on human
preference) because these low-quality pseudo sen-
tences are also made up of highly relevant phrases
but in an unnatural arrangement and can deceive
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Figure 5: A comparison of two pseudo sentences in
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viewed by zooming in.

the common evaluation methods. Since real anno-
tations are unavailable, we use the model’s predic-
tions as references. To this end, we propose that the
{ cl}fi " are examined by the CIDEr metric, and
the one graded the highest is chosen as follows:

Ceider = argmaxCIDEr(c;, fo(I)), (1)

where C’Z is the j-th pseudo sentence among five.
fe(I;) is the model prediction sentence and f, is
the basic captioning model.

3.3 CLIP Guidance

The CLIP guidance module is proposed to en-
courage the sentence prediction to semantically
match image content in CLIP embedding space
as we abandon pre-training on external large-scale
datasets. The InfoNCE (Oord et al., 2018) is em-
ployed to reduce cross-modal information loss. The
frozen image encoder CLIP-I and text encoder
CLIP-T are used to embed a dozen original im-
ages and corresponding predictions into a shared
semantic space. Then, the pairwise affinities are
computed based on the encoded features. The learn-
ing process can be formulated as minimizing the
contrastive information loss:

exp(q- kT /7)
exp(q - kT/7) + kZGXP(q k= /T)

2
where ¢ is a visual embedding for an image ex-
tracted from the CLIP-I, k™ is the text embedding
for this image (positive key), and k™ are text em-
bedding for other images from the same batch in the
training process (negative key). Both of them are
generated by CLIP-T. 7 is the temperature hyper-
parameter.

L; = —log

4 Experiments and Results

4.1 Experiments Setting

Datasets. We choose MSCOCO (Chen et al.,
2015) and Flickr30k (Plummer et al., 2015) with
Karpathy (Karpathy and Fei-Fei, 2015) split as our
test benchmark. The MSCOCO images are divided
into three parts: 113k images for training, 5k im-
ages for validation, and the remaining 5k images
for testing. The Flickr30k images are divided into
three parts: 29k images for training, 1k images for
validation, and the remaining 1k images for testing.

Evaluation Metrics. Following standard caption-
ing evaluation protocols (Li et al., 2019), we em-
ploy the following five metrics: BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005),
ROUGE (Lin, 2004), CIDEr (Vedantam et al.,
2015), and SPICE (Anderson et al., 2016). Be-
yond these traditional metrics, we also incorporate
the innovative robust metric CLIP-S (Hessel et al.,
2021), which assesses the relevance between the
generated caption and the target image indepen-
dently of reference captions.

Image Captioning Backbones. Our approach is
versatile for different image captioning models. To
validate its performance, we incorporate our pro-
posed framework with several classic captioners,
including: M? model (Cornia et al., 2020), CTX
model (Kuo and Kira, 2022), DLCT model (Luo
et al., 2021), and DIFNet model (Wu et al., 2022).

Comparison Setting. To the best of our knowl-
edge, we are making an early attempt to explore a
new image captioning benchmark setting that lever-
ages retrieval-augmented self-supervised learning
without annotated labels. There are two compa-
rable settings that we can contrast with our ap-
proach: pre-trained models in zero-shot setting
and finetuning-based approaches without full su-
pervision. Unlike existing zero-shot methods, our
approach uses self-supervised training with gener-
ated pseudo sentences, avoiding reliance on large
external datasets. Additionally, we compare our
method with unsupervised, unpaired, and weakly-
supervised finetuning approaches, as both assume
the absence of grounded image-text pairs and use
pseudo pairs for optimization. Finally, to compre-
hensively assess the capability of our approach,
we extend our test to semi-supervised and cross-
domain settings, comparing our model’s perfor-
mance against SOTA models in these scenarios.



Model Trainable Pre-trained External MSCOCO Flickr30k
Params Models Dataset | Bl B4 M C S CLIP-S| Bl B4 M C S  CLIP-S
SimVLM,,,. (2021) 1.8B 9.5 115 240 75 - - - -
SimVLMj,,,g (2021) 1.4B : 112 147 322 85 - - - -
Re-ViLMy,,. (2023) 158M 170 - 512 - - - 452 92 -
LIP (2021 2M

Re-ViLM;q;.4. (2023) 806M ¢ (2021 76 186 - 60.8 - - - 521 10.0 -
Flamingo3B (2022) 1.3B NFNet (2021) and 319M - 73.0 - - - 60.6 -
Flamingo80B (2022) 10B Chinchilla (2022) - 843 - - - 672 -
MiniGPT4-V1 (2023a) ViT (2020) and M 236 58 209 00 144 340 132 35 156 00 148 323
MiniGPT4-V2 (2023) Vicuna (2023) 20M 286 63 244 00 179 355 175 6.6 220 00 200 326
LLaVA1.0 (2023a) 0.14B CLIP (2021)and  0.59M |38.5 9.1 267 509 242 341 |48.0 130 234 525 171 337
LLaVAL.5 (2023b) 0.70B Vicuna (2023) 0.66M | 30.6 10.1 248 41.8 22,6 315 |352 7.7 219 341 170 305
Our Pseudo Sents. 0 CLIP 2021) 48.1 88 18.0 393 133 476 |432 145 17.1 212 93 454
Ours (w/ CTX) 40M ’ 67.0 183 212 724 14.1 33.6 |51.7 17.8 21.0 533 107 326
Ours (w/ M?) 38M BART (2019),and 045M | 67.5 189 209 753 147 343 |546 17.5 207 568 112 338
Ours (w/ DLCT) 63M LLaMA (2023) 69.5 194 21.1 759 145 345 |54.1 181 226 584 115 4.1
Ours (w/ DIFNet) 33M 70.5 193 214 781 149 358 |559 182 23.1 59.1 11.8 339

Table 1: The comparison of our approach with SOTA zero-shot models on MSCOCO and Flickr30k benchmarks.
We denote different captions (i.e., CTX, M2, DIFNet, and DLCT) inside the brackets. Pseudo Sents. represents
the generated pseudo sentences from the RaPSG module. BLIP (Li et al., 2022) and BLIP2 (Li et al., 2023a) are

excluded from our comparison due to their use of COCO captions during pre-training process.

4.2 Comparison against Large Pre-Trained
Models

We compare our RaPSG approach with the zero-
shot models (Wang et al., 2021; Yang et al., 2023;
Alayrac et al., 2022; Zhu et al., 2023a; Liu et al.,
2023b) on MSCOCO and Flickr30k benchmarks,
as they are all built up on LPMs. Table 1 demon-
strates that our method surpasses the performance
of these models on the MSCOCO benchmark in
some metrics (Note that multimodal LLMs like
MiniGPT4 and LLaVA are not specifically trained
to generate short captions, and their detailed de-
scriptions may not be fully captured by traditional
metrics; see Appendix A.1 for more details). More-
over, previous approaches rely on pre-training with
a large number of external image-text pairs and
demand a considerable number of trainable param-
eters. For instance, Flamingo3B is pre-trained on
312M external image-text pairs, whereas our model
only requires 0.45M (0.14%) generated pseudo sen-
tences, which is more data-efficient. Additionally,
we also validate our approach on another popular
benchmark Flickr30k. Table 1 shows our method’s
robustness across datasets, matching SOTA mod-
els in performance with fewer trainable parameters
(e.g., 6.7% of Flamingo, 4% of Re-ViLM).

4.3 Comparsion against Finetuning-Based
Approaches

Next, we compare ours with other models that
operate without full supervision, including unsu-
pervised (Zhou et al., 2021; Honda et al., 2021),
unpaired (Ben et al., 2021; Liu et al., 2021), and
weakly-supervised (Zhang et al., 2022; Zhu et al.,
2022) approaches. Unsupervised and weakly-

Category ~ Method Bl B4 M R C S
UC-GAN (2019) 410 5.6 124 287 286 8.1
Unsuper-
vised TSGAN (2021) 462 69 13.0 323 289 83
RWLSA (2021) 502 6.8 14.1 348 329 88
Gra-Align (2023b) 67.1 215 209 472 69.5 15.0
Unpaired  SCS (2021) 67.1 22.8 214 47.7 747 15.1
FG-SRE (2021) 678 21.8 22.1 484 757 16.1
Weakly-  SGCL (2022) 63.6 202 200 479 550 13.5
supervised  WS-UIC (2022) - 215 201 458 657 136
Ours (w/ CTX) 67.0 183 212 479 724 14.1
LPMs+  Ours (w/M?) 67.5 189 209 485 753 147
RaPSG Ours (W/DLCT)  69.5 194 21.1 486 759 145
Ours (w/DIFNet) 705 193 214 49.0 78.1 149

Table 2: The comparison of our method and others
without fully supervision on MSCOCO benchmark.

supervised methods retrieve sentences from mis-
matching corpora, while unpaired methods use the
original corpora but each sentence does not pair
with the corresponding images. Table 2 indicates
that our method surpasses these data-efficient meth-
ods by utilizing the generated pseudo sentences
instead of fetching complete sentences. It is sig-
nificant to note that our method even surpasses
unpaired setting models that employ real images
and real annotations but operate in an unpaired
setting. This suggests that generating pseudo sen-
tences may hold greater potential than retrieving
complete sentences.

4.4 Extension on Semi-Supervised Image
Captioning Benchmarks

Since our approach works well in zero-shot and un-
supervised settings, we also test whether it can deal
with the data scarcity problem in a semi-supervised
setting where only partial images have the corre-
sponding text annotations. Specifically, we fol-



Model Bl B4 M R C S

Self Distillation (2021) 67.9 25.0 21.7 493 73.0 145
OSCAR (2020) 67.2 233 225 49.1 784 -

VisualGPT (2022a) 69.5 256 22.6 49.6 809 -

P3 (2021) 68.8 275 234 510 845 16.1
M? (2020) 674 228 214 482 709 148
M2 + Ours 68.7 233 221 495 831 158
DLCT (2021) 68.0 244 213 48.8 742 143
DLCT + Ours 724 271 23.1 515 90.8 165
CTX (2022) 71.6 264 232 508 854 167
CTX + Ours 724 277 235 515 908 17.1
DIFNet (2022) 70.8 249 222 497 813 153
DIFNet + Ours 73.5 277 231 518 934 167

Table 3: The comparison with SOTA 1% semi-
supervised methods on MSCOCO captioning task.

Method B4 M R C S
DeCap (2023b) 163 17.9 - 357 111
CapDec (2022) 173 18.6 427 35.7 -

CgT-GAN (2023) 17.3 193 439 475 129
Ours (w/DIFNet) 17.1 20.2 44.6 513 11.6
DeCap (2023b) 9.2 163 36.7 273 -
CapDec (2022) 12.1 18.0 - 444 109
CgT-GAN (2023) 152 194 409 587 134
Ours (w/DIFNet) 17.7 20.1 45.7 66.3 122

Direction

COCO-to-Flickr30k

Flickr30k-to-COCO

Table 4: The Comparison with SOTA cross-domain
methods on MSCOCO and Flickr30k captioning tasks.

low the existing semi-supervised image caption-
ing benchmark (Chen et al., 2021). The proposed
RaPSG is firstly optimized on the 99% images with-
out caption labels. Then, the model is further fine-
tuned on the rest of 1% labeled data. We repeat the
experiments under 3 different selections of the 1%
labeled samples and calculate the average perfor-
mance as output. As shown in Table 3, compared
with current approaches, our approach achieves a
performance gain with 93.4 (+8.9) CIDEr score.
This indicates that our generated pseudo sentences
can alleviate the need for extensive annotations in
semi-supervised captioning tasks.

4.5 Extension on Cross-Domain Image
Captioning Benchmarks

To further verify the robustness of our model,
we evaluate it on a cross-domain image caption-
ing benchmark in comparison with SOTA mod-
els (Li et al., 2023b; Nukrai et al., 2022; Yu et al.,
2023). Notably, we adhered to the established
cross-domain image captioning benchmark proto-
col (Laina et al., 2019), albeit with the textual cor-
pora replaced by the VG dataset. Table 4 demon-
strates a significant improvement of our model,
with CIDEr scores of 51.3 (+3.8) and 66.3 (+7.6)
compared to competing models in two assessed
categories.

Module Bl B4 M R C S CLIP-S
RD 106 15 98 193 183 175 62.7
PS 48.1 88 18.0 33.8 393 133 476
PS+FF 594 152 202 39.6 560 139 482
D+PS 679 169 203 439 702 137 315
D+PS+FF 703 19.1 21.1 459 769 147 321
D+PS+FF+CR (2022) 67.6 17.0 199 444 694 133 314
D+PS+FF+CG 705 193 214 460 781 149 358

Table 5: Ablation study of different proposed modules
conducted on the DIFNet. "RD" represents the retrieved
region descriptions. "PS" means the generated pseudo
sentences. "FF" is the fluency filter. "CG" represents the
CLIP guidance. "D" is the DIFNet model. "CR (Cho
et al., 2022)" represents training with Cho’s CLIP re-
ward instead of our CLIP guidance module.

4.6 Ablation Studies

Contribution of Designed Modules. We inves-
tigate the contribution of each designed module,
as shown in Table 5. The RaPSG module is cru-
cial for improving the model performance. In ad-
dition, the fluency filter is designed to filter out
the unnatural sentences among pseudo sentence
generation and leave the best one matching the
given image. Figure 7 shows one case where the
fluency filter picked up the best pseudo sentence
based on its CIDEr score. Finally, we introduce
CLIP guidance in the retrieval-augmented learning
process, which drives the prediction to be semanti-
cally consistent with the given image by shrinking
the cross-modal distance in the feature embedding
space. To demonstrate the efficacy, our experiment,
compared against Cho’s CLIP reward (Cho et al.,
2022), demonstrates that our CLIP guidance ap-
proach achieves better results.

Pseudo Sentence Quality. Here, we explore how
to regulate the quality of generated sentences and
the methods for producing high-quality sentences.
Different from the explanation in Section 3.1, due
to the absence of a metric to determine the optimal
k for region descriptions, we first investigate the
parameter m to ascertain the generation of high-
quality pseudo sentences. Subsequently, based on
the chosen value of m, we explore the selection of
top-k. According to the left part of Figure 6, we
decide to set m = 4 as it yields the best perfor-
mance within the range of [1, 6]. Then, based on
the m value, we explore k € [4, 24]. As suggested
by the middle segment of Figure 6, the quality of
generated pseudo sentences initially improves with
increasing k but eventually declines. According to
the CIDEr scores, we set kK = 16 and disregard the
subsequent region descriptions. Lastly, we evalu-
ate the efficacy of various summarization models.
Based on the result in the right section of Figure 6,
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Figure 6: We conduct experiments to compare different settings, aiming to determine the most effective method
for generating high-quality pseudo sentences based on region descriptions. These comparisons include, from
left to right: the selection of hyperparameter m, the choice of hyperparameter k, and the evaluation of various

summarization models.

/Pseudo Sentence 1: N
"A cat is sleeping next
to a laptop."
Pseudo Sentence 2:
"Cat sleeping next to
computer near desk
and laying by laptop."
Pseudo Sentence 3:
"A cat is sleeping on a
laptop."
Pseudo Sentence 4:
"A cat resting on a laptop
is sleeping beside control #CIDEr241 X
looking at the screen."
Pseudo Sentence 5:
"An orange cat lies 4#CIDEr93.7 X

"
\next 0 a blue screen. J

#CIDEr 1550

#CIDEr553 X

#CIDEr 121.2 X

Figure 7: One example of how the fluency filter picks
up the best sentence. Best viewed by zooming in.

Method Bl B4 M R C S
VG Ours (w/DIFNet) 70.5 19.3 214 460 78.1 149
GCC  Ours (w/DIFNet) 563 7.5 154 398 464 11.7

Source

Table 6: The comparison between generated sentences
and crawled sentences on DIFNet model.

we select the BART for the initial stage and the
LLaMA-7B for the subsequent phase of RaPSG.

Generated Sentences VS Crawled Sentences.
The previous comparison with unpaired models
indicates the potential of the generated pseudo sen-
tences. In this section, we verify whether generated
pseudo sentences truly outperform crawled sen-
tences under fair conditions. We pick up another
popular corpus, named Google Concept Caption
or GCC (Sharma et al., 2018), which is used in
most unsupervised image captioning works (Laina
et al., 2019; Guo et al., 2020; Honda et al., 2021).
For a fair comparison, we also use the pre-trained
CLIP (Radford et al., 2021) to fetch the most rele-
vant individual descriptions from GCC dataset and
utilize them as supervision for training. Accord-
ing to the results shown in Table 6, it is obvious
that VG-based training presents better performance
than the GCC-based one on all the metrics.

4.7 Qualitative Results

To highlight our approach’s ability, we present qual-
itative results of our generated pseudo sentences

1 Ground Truth: a cat is sleeping on a laptop
i keyboard.

| 1. cat sleeping on laptop #CIDEr 45.3

| 2. cat sleeping on computer #CIDEr 36.8

} 3.computer_keyboard on lap #CIDEr 3.1 |
4. cat sleeping next computer #CIDEr 13.7 !

Pseudo Sentence: a cat is sleeping on a
laptop computer's lap. #CIDEr 146.6

acatis sleeping on a !
keyboard #CIDEr 162.3 '
Ground Truth: a man standing in a grassy |
field flying a Kite. H

1. kite flying in park #CIDEr 40.9
) 2.Kite in park #CIDEr 45.4
3. kite fly in park #CIDEr 29.1
4. person flying kite in park #CIDEr 40.8

Pseudo Sentence: kite flying in a park is
fun. #CIDEr 69.2

- JE—
aman is flying a kite in a 1
park. #CIDEr 164.2

Figure 8: Qualitative results of our approach based on
DIFNet model. Best viewed by zooming in.

and predictions in Figure 8. The pseudo sentences
can avoid the appearance of irrelevant words and
keep the diversity, which is attributed to the in-
novative combination of ranking, grouping, and
summarization. However, some examples, while
scoring well on CIDEr, may not make sense from
a human perspective (e.g., “kite flying in a park is
fun’ should be “flying a kite in a park is fun”). This
issue may stem from BART’s difficulty in handling
batches of similar objects, leading to disarranged
relationships among region descriptions.

5 Conclusion

In this work, we propose a retrieval-augmented
pseudo sentence generation method which lever-
ages the prior knowledge from the frozen LPMs.
The generated sentences can avoid the appearance
of irrelevant words and keep the diversity of pseudo
references, which is attributed to the innovative
combination of ranking, grouping, and summariza-
tion. In addition, we design a fluency filter to sift
the generated sentences and a CLIP guidance mod-
ule to make the predicted captions semantically
congsistent with the given image. Our approach out-
performs existing state-of-the-art captioning mod-
els across various scenarios such as zero-shot, un-
supervised, semi-supervised, and cross-domain set-
tings.



6 Limitation

Although our approach surpasses current SOTA
captioning models in a range of scenarios, includ-
ing zero-shot, unsupervised, semi-supervised, and
cross-domain settings, it still has two limitations.
First, compared to the basic model, it significantly
increases time consumption due to the additional
processing stages. The retrieval and summarization
steps, coupled with the refinement using LPMs,
add considerable computational compared with ba-
sic models. For instance, using "Ours (w/DLCT)"
with a single RTX3090 as an example, each epoch
in the training process takes approximately 55 min-
utes. The entire training process spans 36 epochs,
totalling around 35 hours. Table 7 provides a com-
parison of time consumption against the baseline.
Second, the quality of the generated pseudo sen-
tences may be limited by the summarization capa-
bilities of BART and LLaMA-7B. These models
sometimes produce sentences where the words are
correct but arranged in an unnatural order (Sec-
tion 4.7). This occurs because BART and LLaMA-
7B, while powerful, can struggle with maintaining
the natural flow of language when summarizing
complex or similar objects, leading to awkward
phrasing or disordered relationships among the sen-
tence elements.

Method GPU Each Epoch Total
DLCT 1*RTX3090 35 min 22 hours
Ours (W/DLCT) 1*RTX3090 55 min 35 hours

Table 7: The comparison of time consumption between
the baseline and our approach.
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A Appendix

A.1 Comparison against Large Pre-Trained
Models

In this section, we provide a detailed compari-
son of our method against zero-shot models. Un-
like existing methods that rely on large external
datasets for "mapper" learning, our approach in-
troduces a more efficient learning process through
self-supervised training with generated pseudo sen-
tences. Table 8 highlights the effectiveness of
our method on the MSCOCO benchmark, where
it outperforms SimVLM (Wang et al., 2021), Re-
VIiLM (Yang et al., 2023), Flamingo3B (Alayrac
et al., 2022), MiniGPT4 (Zhu et al., 2023a; Chen
et al., 2023), and LLaVA (Liu et al., 2023b,a). No-
tably, widely recognized models BLIP (Li et al.,
2022) and BLIP2 (Li et al., 2023a) are excluded
from our comparison due to their use of COCO cap-
tions during pre-training. We also did not compare
our method with REVEAL (Hu et al., 2023) due to
the absence of official zero-shot results. Some data
was sourced directly from the original papers, as
many studies lack official GitHub implementations.
Additionally, we acknowledge that recent multi-
modal large language models like MiniGPT4 and
LLaVA are not specifically optimized for generat-
ing short captions in the MSCOCO or Flickr style.
While comparing these models on the MSCOCO
dataset using metrics like BLEU and CIDEr might
seem unfair, we specifically use the CLIP-S metric
to evaluate the matching level between the target
image and generated predictions. According to the
CLIP-S performance in Table 8, our method gen-
erates captions that more closely match the target
image. Figure 9 presents instance comparisons be-
tween our method, MiniGPT4, and LLaVA. It is
evident that our model excels at generating concise
captions, while LLaVA produces medium-length
captions with more detail, and MiniGPT4 gener-
ates highly detailed descriptions. For example, our
model’s caption for the first image is "A cat is
sitting on a laptop," which is succinct and to the
point. In contrast, MiniGPT4 provides a much
longer description: "The image shows a cat lying
on top of a laptop computer. The cat has blue eyes
and is brown and white in color. The laptop ap-
pears to be an older model with a black and grey
colour scheme. There is a patterned blanket or
cloth on the floor in the background." LLaVA of-
fers a middle-size caption that "A cat is lying on a
laptop computer, which is placed on a bed."
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Our Prediction: a cat is sitting on a laptop
#CIDEr 75.3

MiniGPT4-V1 Prediction: The image shows a
cat lying on top of a laptop computer. The cat
has blue eyes and is brown and white in color.’
The laptop appears to be an older model with

a black and gray color scheme. There is a
patterned blanket or cloth on the floor in the
background. #CIDEr 0.0004753

LLaVA1.0: A cat is lying on a laptop computer,
which is place on a bed #CIDEr 47.9

in a park #CIDEr 88.4

@r Prediction: a woman is sitting on a bencm

MiniGPT4-V1 Prediction: The image shows a
woman sitting on a wooden bench in a forest.
She is wearing a white shirt and black pants,
and has her hands resting on her lap. The
background is made up of trees and bushes,
and there is a path leading through the forest
in the foreg d. The overall K is
peaceful and natural. #CIDEr 0.0000084654

LLaVA1.0: A woman sitting on a bench in
a park, wearing a white shirt and black pant
#CIDEr 56.3

Figure 9: Two examples of comparing the prediction
sentences from our model, MiniGPT4, and LLaVA. Best
viewed by zooming in. It appears that our model excels
at generating concise image captions, while LLaVA
produces medium-length captions with more details,
and MiniGPT4 generates highly detailed descriptions.

A.2 Comparison against Finetuning-Based
Appraoches

In this section, we provide a comprehensive com-
parison of our weakly-supervised image captioning
models across unsupervised, unpaired, and weakly-
supervised scenarios, as shown in Table 9. Our
approach and these methods share the assumption
of the absence of grounded image-text pairs and
propose using pseudo pairs for optimization. This
includes benchmarking against unsupervised meth-
ods (Laina et al., 2019; Feng et al., 2019; Zhou
et al., 2021; Guo et al., 2020; Honda et al., 2021),
unpaired methods (Lu et al., 2017a; Ben et al.,
2021; Liu et al., 2021; Zhu et al., 2023b), and
weakly-supervised approaches (Zhang et al., 2022;
Zhu et al., 2022). While unsupervised and weakly-
supervised methods retrieve sentences from mis-
matched corpora and unpaired methods use origi-
nal corpora without corresponding image-sentence
pairs, our experiments reveal that our method,
which employs generated pseudo sentences, sur-
passes these data-efficient techniques. Our method
matches or exceeds the performance of unpaired
models on most metrics and notably outperforms
them in BLEU1 and CIDEr. This suggests that gen-
erating high-quality pseudo sentences holds more
potential than retrieving complete sentences from
corpora, including original ones.



Model ‘ BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE CLIP-S
MSCOCO
SimVLMy,e (2021) - - - 9.5 11.5 - 24.0 7.5 -
SimVLM;gpge (2021) - - - 10.5 12.0 - 24.9 8.3 -
SimVLMp,gc (2021) - - - 11.2 14.7 - 32.2 8.5 -
Re-ViLMys. (2023) - - - 17.0 - - 51.2 - -
Re-VILM,,cgium (2023) - - - 17.9 - - 53.6 - -
Re-ViLM,g (2023) - - - 18.6 - - 60.8 - -
Flamingo3B (2022) - - - - - - 73.0 - -
Flamingo9B (2022) - - - - - - 79.4 - -
Flamingo80B (2022) - - - - - - 84.3 - -
MiniGPT4-V1 (2023a) 23.6 16.2 9.8 5.8 20.9 21.2 0.0 14.4 34.0
MiniGPT4-V2 (2023) 28.6 19.4 12.5 6.3 24.4 27.3 0.0 17.9 35.5
LLaVA1.0 (2023a) 38.5 27.2 17.3 9.1 26.7 40.1 50.9 24.2 34.1
LLaVA1.5 (2023b) 30.6 21.7 14.8 10.1 24.8 374 41.8 22.6 31.5
Our Pseudo Sents. 48.1 27.7 15.7 8.8 18.0 33.8 39.3 13.3 47.6
Ours (Ww/CTX) 67.0 453 29.2 18.3 21.2 449 72.4 14.1 33.6
Ours (w/M) 67.5 46.5 30.3 18.9 20.9 45.5 75.3 14.7 34.3
Ours (w/DLCT) 69.5 47.5 30.8 19.4 21.1 45.6 75.9 14.5 34.5
Ours (w/DIFNet) 70.5 48.1 31.0 19.3 214 46.0 78.1 14.9 35.8
Flickr30k

Re-ViLMy. (2023) - - - - - - 452 9.2 -
Re-VILM,,cgium (2023) - - - - - - 52.0 9.8 -
Re-ViLM,;.¢ (2023) - - - - - - 52.1 10.0 -
Flamingo3B (2022) - - - - - - 60.6 - -
Flamingo9B (2022) - - - - - - 61.5 - -
Flamingo80B (2022) - - - - - - 67.2 - -
MiniGPT4-V1 (2023a) 13.2 7.7 5.0 35 15.6 16.6 0.0 14.8 323
MiniGPT4-V2 (2023) 17.5 11.5 8.5 6.6 22.0 23.9 0.0 20.0 32.6
LLaVA1.0 (2023a) 48.0 31.8 20.5 13.0 234 43.1 52.5 17.1 33.7
LLaVA1.5 (2023b) 35.2 222 11.7 7.7 21.9 29.0 34.1 17.0 30.5
Our Pseudo Sents. 43.2 28.0 17.4 14.5 17.1 40.8 21.2 9.3 454
Ours (W/CTX) 51.7 37.5 24.6 17.8 21.0 46.7 53.3 10.7 32.6
Ours (w/M) 54.6 39.6 259 17.5 20.7 47.3 56.8 11.2 33.8
Ours (w/DLCT) 54.1 38.8 25.8 18.1 22.6 47.2 58.4 11.5 34.1
Ours (w/DIFNet) 55.9 39.9 26.6 18.2 23.1 47.5 59.1 11.8 339

Table 8: The detailed comparison of our method and other zero-shot models on MSCOCO and Flickr30k benchmark.

A.3 Generated Sentences VS Crawled
Sentences

Section 4.6 provides a brief explanation supported
by experimental results on why generated sentences
yield better predictions compared to crawled sen-
tences. In this section, we present specific instances
for a more detailed explanation. Figure 10 displays
examples of two generated pseudo sentences from
VG (Krishna et al., 2017) and GCC (Sharma et al.,
2018) respectively and real human annotations. We
can observe that descriptions from the GCC dataset
contain many words or phrases that do not match
the given image. This low-relevance information
cannot be effectively distinguished from valuable
information by the LPMs, which leads to mislead-
ing sentence generation. For instance, the GCC-
based description "A young man standing, in a
red jacket and baseball cap, texting with his cell
phone, his shadow behind him" includes irrelevant
details that do not correspond to the image, result-
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ing in a CIDEr score of 12.3. This demonstrates
how irrelevant information can make sentences ex-
cessively long and convoluted, further degrading
prediction performance across all metrics (Feng
et al., 2019). In contrast, the VG-based descrip-
tion "A man takes a picture of himself standing
in a hallway" is more concise and relevant, result-
ing in a higher CIDEr score of 146.9. This ex-
ample illustrates how our method of generating
high-quality pseudo sentences focuses on relevant
content, thereby improving the overall prediction
accuracy and performance.

A.4 How does the fluency filter select the
optimal pseudo sentence based CIDEr
metric

Section 4.6 provides a simple example of how the
fluency filter selects the most appropriate sentences.
In this section, we offer a clearer explanation. Fig-
ure 11 showcases five generated pseudo sentences
along with their corresponding CIDEr scores. The



Category Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE
SME-GAN (2019) - - - 6.5 12.9 35.1 22.7 74
UC-GAN (2019) 41.0 22.5 11.2 5.6 124 28.7 28.6 8.1
Unsupervised TSGAN (2021) 46.2 26.8 135 6.9 13.0 323 28.9 8.3
RM (2020) 51.2 29.5 15.4 8.3 14.0 35.0 29.3 9.6
RWLSA (2021) 50.2 28.5 13.9 6.8 14.1 34.8 329 8.8
Gra-Align (2017b) 67.1 47.8 323 21.5 20.9 472 69.5 15.0
Unpaired SCS (2021) 67.1 479 334 22.8 21.4 477 74.7 15.1
FG-SRE (2021) 67.8 48.7 33.6 21.8 22.1 48.4 75.7 16.1
PL-UIC (2023b) - - - 25.0 22.6 494 77.9 15.2
weakly-supervised SGCL (2022) 63.6 454 30.7 20.2 20.0 479 55.0 13.5
WS-UIC (2022) - - - 21.5 20.1 458 65.7 13.6
Ours (w/CTX) 67.0 453 29.2 18.3 21.2 449 724 14.1
Ours (w/M) 67.5 46.5 30.3 18.9 20.9 455 75.3 14.7
LPM + RaPSG Ours (w/DLCT) 69.5 475 30.8 19.4 21.1 45.6 75.9 14.5
Ours (w/DIFNet) 70.5 48.1 31.0 19.3 21.4 46.0 78.1 14.9

Table 9: The comparison of our method and other models without fully supervision on MSCOCO benchmark.

Human Annotation

—_—

1. "The reflection of a man taking a
:  picture in a mirror."
. ""A man takes his picture using the
bathroom mirror." ;
. ""A man wearing a hat while standing :
in front of a bathroom mirror."” i
. ""A man taking a picture of himself in :
a mirror.” ;
. "A young man takes a picture of
~.._himself in the mirror.”

VG-based

man takes picture in mirror

« man taking picture through

mirror

mirror showing person

man standing in a hallway /
GCC-based

/« young man standing, ina

red jacket and baseball cap,

texting with his cell phone,

his shadow behind him.

a guest wearing a red

bomber jacket during

collections.

person in red shirt standing

near the wall with retro

camera.

a guest wearing cap and

bomber jacket during

\__collections.

" A man takes a picture of
I—> himself standing in a hallway."
#CIDEr 146.9

'

"'A young man is texting with his
shadow behind him during
collections person shirt near the
wall retro camera."” #CIDEr 12.3

J

Figure 10: An example of how different corpora affect
the fluency of generated sentences. Best viewed by
zooming in.

sentence "A box of pizza is placed on the top of
an oven," marked with a red checkmark (/) and
boasting a CIDEr score of 133.5, is highlighted as
the best choice. Although the other four sentences
are contextually accurate, they are not selected, as
indicated by the red crosses (x) and their lower
CIDEr scores. This example illustrates how the
fluency filter effectively identifies the most relevant
and high-scoring sentence from a set of generated
options, enhancing the overall quality and accuracy
of image captioning.

A.5 How to generate high-quality pseudo
sentences with RaPSG

Choice of hyperparameter m In this section, we
delve into more details on how to determine the
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Pseudo Sentence 1:

"Pizza on top of a stove dish
contains tray warmers
compartment.”

# CIDEr 102.8 X

Pseudo Sentence 2:

"Stoke under pizza on toj
e b P 4CIDErs74 X

of sitting oven.

Pseudo Sentence 3:

"Pizza is placed on rack

inside pan warmers

compartment.”

Pseudo Sentence 4:

#CIDEr146 X

" A pizza is placed on top
of an oven stove."

#CIDEr 116.8 X
Pseudo Sentence 5:

A box of pizza is plufed T TS
on the top of an oven.

Figure 11: One example of how the fluency filter picks
up the best sentence. Best viewed by zooming in.

hyperparameter m, which was briefly explained
in Section 4.6. Table 10 presents a performance
comparison based on varying the number m of
region descriptions used to generate pseudo sen-
tences. This comparison evaluates outcomes across
several metrics, including BLEU-1 through BLEU-
4, METEOR, ROUGE, CIDEr, and SPICE. The
results indicate that using four region descriptions
(m = 4) yields the best performance according to
these metrics. This optimal choice of m suggests
that incorporating more than four descriptions does
not significantly enhance the quality of the gener-
ated sentences and may even lead to a degradation
in performance. This could be due to the inclusion
of redundant or less relevant information, which
can dilute the clarity and relevance of the pseudo
sentences. Thus, our findings highlight the impor-
tance of selecting an appropriate number of region
descriptions to balance detail and relevance, en-
suring the generation of high-quality pseudo sen-
tences.

Choice of hyperparameter k In this section, we
provide a clearer explanation of the choice of the
hyperparameter k. Table 11 presents data on how
different values of k affect the retrieval of top-k
region descriptions and their subsequent perfor-



(Ground Truth: A baseball player is
lswinging a bat at a ball. #CIDEr 241.5

F A baseball player
lswings at a ball with a bat. #CIDEr 132.6

Abaseball
BlIblayer swinging a bat at a ball. #CIDEr 222.8

lswinging a bat at a game. #CIDEr 192.1

Fully-supervised Prediction: A baseball player]|

(Ground Truth: A person rides waves on a
fsurfboard. #CIDEr 238.9

ave on a surfboard in the ocean. #CIDEr
1266

(Ground Truth: A cat is staring at a
television on a table. #CIDEr 217.0

A cat is watching
a television. #CIDEr 87.2

A cat sitting in
front on a television. #CIDEr 174.8

Fully-supervised Prediction: A cat watching a
“dtelevision in a living room. #CIDEr 44.6

(Ground Truth: A polar bear sleeping on a
rock. #CIDEr 342.6

on a rock. #CIDEr 137.4

A bear laying

A bear is sleeping

lon top of a rock. #CIDEr 9.7

Fully-supervised Prediction: A polar bear

82.6

{sleeping in the middle of a polar bear. #CIDEr

(Ground Truth: A white dog laying on green
rass with a red frisbee. #CIDEr 246.4

Retrieval-aug Prediction” A dog is playing
ith a frisbee. #CIDEr 56.5

SCreuperised Predicion Adog playing
e ith a frisbee in a field. #CIDEr 91.8

Fully-supervised Prediction: A white dog in a
ield with a group of dogs. #CIDEr 109.1

round Truth: A cookie with frosting on it

,,f» - n top of a paper with drawing on it #CIDEr
[rm 27.3
etrie e A birthday cake is
o n the side of the #CIDEr 13.9
3

A birthday cake
n top of a table with a #CIDEr 73.1

Fully-supervised Prediction: A pen and a cake]
n a table. #CIDEr 140.0

sround Truth: A cat is looking at its
reflection in a mirror. #CIDEr 278.4

A cat is looking
nto a mirror. #CIDEr 187.3

A cat is sitting
n front on a mirror. #CIDEr 22.1

Fully-supervised Prediction: A group of cats in|
mirror in a. #CIDEr 37.0

round Truth: A baseball player hitting a
all with a bat. #CIDEr 248.2

Reirieval-aug Predicion: A baseball player
swings a bat at a ball. #CIDEr 123.5

A baseball
player swinging a bat at a ball. #CIDEr
242.4

ully-supervised Prediction: A baseball player
winging a bat at a ball. #CIDEr 242.4

Figure 12: Qualitative results for different supervision levels. Best viewed by zooming in.

Parameter ‘ B1 B2 B3 B4 M R C S Parameter ‘ B1 B2 B3 B4 M R C S
m=1 106 47 25 1.5 98 193 183 175 k=4 45.1 233 119 59 156 30.0 347 10.1
m=2 41.0 219 114 58 145 295 325 93 k=8 459 244 127 64 159 30.7 372 104
m=3 435 227 120 59 152 30.1 353 10.0 k=12 446 226 112 55 155 295 342 99
m=4 459 244 127 64 159 30.7 372 104 k=16 41.6 205 99 47 144 276 289 8.8
m=5 38,5 20.1 102 5.0 147 272 281 105 k=20 353 170 7.6 36 13.1 267 195 7.7
m=6 375 195 99 48 148 27.0 26.6 10.6 k=24 334 150 69 33 127 249 188 82

Table 10: The comparison of different choices of m on
assigned region descriptions number.

mance across various metrics, including BLEU,
METEOR, ROUGE, CIDEr, and SPICE. The re-
sults indicate that the quality of pseudo sentences
is optimal when k = 8, as evidenced by the peak
performance in most metrics at this value. Beyond
k = 8, performance tends to decline, suggesting
that retrieving a larger number of top-k region de-
scriptions does not necessarily enhance the quality
of pseudo sentences. In fact, including too many
descriptions may introduce noise and less relevant
information, which can dilute the clarity and co-
herence of the generated sentences. Therefore, we
have chosen k& = 16 as the cut-off point, where the
quality remains good before it starts to significantly
decline, as reflected in the metrics. This careful se-
lection of k ensures that we balance the detail and
relevance of the region descriptions, leading to the
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Table 11: The comparison of different choices of k£ on
region description retrieval number.

generation of high-quality pseudo sentences. The
findings underscore the importance of selecting an
appropriate value for k£ to maximize the effective-
ness of our retrieval-augmented pseudo sentence
generation process.

Choice of LLMs In this section, we present ad-
ditional experiments to explain our selection of
BART and LLaMA-7B as the large language mod-
els (LLMs) for transforming region descriptions
into pseudo sentences. Table 12 compares the
performance of various methods and models in
summarizing region descriptions into pseudo sen-
tences across two stages of processing. The evalua-
tion metrics include BLEU-1, BLEU-4, METEOR,
and CIDEr, providing a comprehensive view of
each model’s effectiveness. The results indicate
that BART outperforms other models in the initial



Stage | Type Method Bl B4 M C
T5 (2020) 353 3.8 133 195
One LM GPT2 (2019) 38.7 5.0 124 235
BART (2019) 459 64 159 37.2
GPT3.5 (2023) 38.1 45 158 295
Two | LLM | Openchatkit (2023) | 44.5 9.6 14.1 36.3
LLaMA-7B (2023) | 48.1 8.8 18.0 39.3

Table 12: The comparison of different summarization
models on pseudo sentence generation.

stage due to its exceptional summarizing capabil-
ities. BART’s ability of distilling concise and rel-
evant information from region descriptions makes
it ideal for the first step of the RaPSG process, en-
suring that the foundational pseudo sentences are
both informative and accurate. In the second stage,
LLaMA-7B is chosen based on its high scores
across all metrics. LLaMA-7B excels in enhancing
the pseudo sentences generated by BART, refining
them to be more fluent and contextually appropriate.
Its advanced language model capabilities ensure
that the final pseudo sentences are not only precise
but also exhibit a natural flow, which is crucial for
improving image captioning performance. By com-
bining BART’s superior summarization skills in the
initial stage with LLaMA-7B’s advanced language
processing in the second stage, our RaPSG process
achieves optimal results. This two-stage approach
leverages the strengths of both models, resulting
in high-quality pseudo sentences that enhance the
overall performance of our image captioning sys-
tem. The experiments underscore the importance
of selecting the right models for each stage, high-
lighting why BART and LLaMA-7B are the best
choices for our methodology.

B Qualitative Results

In Section 4.7, we present qualitative results of
our generated pseudo sentences to highlight the
captioning ability of our approach. We showcase
qualitative results for various caption predictions
across different supervision levels, comparing them
with the ground truth and providing their CIDEr
scores, as shown in Figure 12. The examples in-
clude images of a baseball player, a surfer, and a
cat, among others.

Baseball Player. The ground-truth caption de-
scribes a baseball player swinging at a ball. Predic-
tions from retrieval-augmented, semi-supervised,
and fully-supervised models offer varying levels
of accuracy, with the semi-supervised prediction
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scoring a CIDEr of 222.8, suggesting a close match
to the ground truth.

Surfer. The ground truth involves a person rid-
ing waves on a surfboard. Different models inter-
pret this with varying degrees of accuracy. The
fully-supervised model scores the highest CIDEr
at 126.6, indicating a strong match with the ground
truth. Each image and set of predictions illustrate
the effectiveness of the models in generating ac-
curate captions, with CIDEr scores providing a
quantitative measure of their precision compared
to the ground truth.
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