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Abstract001

Recently, training an image captioner without002
annotated image-sentence pairs has gained trac-003
tion. Previous methods face limitations due to004
either using mismatched corpora for inaccurate005
pseudo pairs or relying on resource-intensive006
pre-training. To alleviate these challenges, we007
propose a new strategy where the prior knowl-008
edge from large pre-trained models (LPMs)009
is distilled and leveraged as supervision, and010
a retrieval process is integrated to further re-011
inforce its effectiveness. Specifically, we in-012
troduce Retrieval-augmented Pseudo Sentence013
Generation (RaPSG), which can efficiently re-014
trieve highly relevant short region descriptions015
from mismatching corpora and use them to gen-016
erate a variety of high-quality pseudo sentences017
via LPMs. Additionally, we introduce a fluency018
filter to eliminate low-quality pseudo sentences019
and a CLIP guidance objective to enhance con-020
trastive information learning. Experimental re-021
sults show that our method outperforms SOTA022
captioning models in zero-shot, unsupervised,023
semi-supervised, and cross-domain scenarios.024
Moreover, we observe that generating high-025
quality pseudo sentences may offer better su-026
pervision than the crawling sentence strategy,027
highlighting future research opportunities.028

1 Introduction029

Recent advancements in image captioning have030

been driven by Transformer-based models (Cor-031

nia et al., 2020; Luo et al., 2021). However, the032

reliance on high-quality human-annotated image-033

text pairs limits these fully-supervised approaches,034

increasing interest in annotation-free alternatives,035

such as unsupervised and pre-training strategies.036

Unsupervised approaches (Guo et al., 2020; Zhou037

et al., 2021) align crawled sentences with target038

images as pseudo annotations, but face issues with039

sentence diversity (Li et al., 2022) and content ac-040

curacy (Honda et al., 2021). Pre-training strategies041

show strong performance but require massive re-042

sources (Wang et al., 2021) and are affected by043

Figure 1: The comparison between whole sen-
tence crawling strategy (Byeon et al., 2022) and our
generation-based RaPSG method.

noisy data from coarse LPM-led selection (Byeon 044

et al., 2022), as shown in Figure 1(a), leading to 045

poor sample efficiency (Li et al., 2022). 046

To alleviate these problems, recent methods 047

transfer prior knowledge from frozen LPMs to 048

vision-language (VL) tasks. Notable architectures 049

like Flamingo (Alayrac et al., 2022) and BLIP2 (Li 050

et al., 2023a) use trainable mapper modules to 051

bridge LPMs with vision encoders, keeping LPMs 052

frozen to reduce computational cost and avoid 053

catastrophic forgetting. Similarly, LLaVA (Liu 054

et al., 2023b) and MiniGPT4 (Zhu et al., 2023a) em- 055

ploy projection layers to integrate visual encoders 056

with language decoders, innovating through fine- 057

tuning on multimodal instructions. However, de- 058

spite these advancements, all these methods still 059

rely on billions of external image-text pairs for 060

"mapper" learning and remain susceptible to the 061

challenge of the noisy image-text pairs problem. 062

In this paper, we propose an efficient Retrieval- 063

augmented Pseudo Sentence Generation frame- 064

work (RaPSG) that leverages prior knowledge from 065

frozen LPMs as supervision by generating high- 066
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quality pseudo sentences without the need of exter-067

nal image-text pairs or instruction tuning for opti-068

mization. Specifically, a retrieval-based pipeline is069

designed to generate multiple sentences for each070

target image, as shown in Figure 1(b). To address071

the challenge of noisy image-text pairs and im-072

prove the quality of generated pseudo sentences,073

we propose a refinement strategy based on a rank-074

ing of high-relevance region descriptions. For each075

target image, we employ the pre-trained model076

CLIP (Radford et al., 2021) to retrieve the top-k077

most correlated region descriptions from the Visual078

Genome (VG) dataset (Krishna et al., 2017) (We079

eliminate the overlapping parts between COCO080

and VG). Then, we further group region descrip-081

tions into multiple comprehensive and distinct long082

sentences using summarization LPMs, such as083

BART (Lewis et al., 2019) and LLaMA (Touvron084

et al., 2023). After this, we then introduce a self-085

supervised framework to facilitate the retrieval-086

augmented captioner, using original images and087

generated pseudo sentences as supervision. Addi-088

tionally, we design two mechanisms to enhance the089

plain pseudo-labeling strategy. Firstly, a fluency fil-090

ter removes imperfect descriptions to mitigate the091

impact of noisy image-text pairs. Second, a CLIP-092

based optimization strategy improves the model’s093

comprehension of image-text pairs, offsetting the094

lack of external image-text pairs.095

To demonstrate the capability of our RaPSG096

approach, we evaluate its performance on the097

MSCOCO (Chen et al., 2015) and Flickr30k (Plum-098

mer et al., 2015) benchmarks across various set-099

tings. The results show that our method outper-100

forms the SOTA captioner Flamingo3B with fewer101

trainable parameters and consistently surpasses102

other models in pre-training, unsupervised, weakly103

supervised, and unpaired settings. This highlights104

its effectiveness and efficiency. Additionally, we105

validate its robustness in semi-supervised and cross-106

domain settings, where our model also achieves107

SOTA performance, underscoring its versatility.108

Our contributions are summarized as four folds:109

(1) We propose an inference-only approach that110

distils knowledge from frozen LLMs by retrieving111

highly relevant region descriptions and generating112

a variety of distinct pseudo sentences for each tar-113

get image. (2) A fluency filter and CLIP guidance114

are further introduced to strengthen the retrieval-115

augmented learning of the captioner for better pre-116

diction. (3) Experimental findings reveal that our117

approach surpasses current SOTA captioning mod-118

els in a range of scenarios, including zero-shot, 119

unsupervised, semi-supervised and cross-domain 120

settings. (4) In our experiments, we also find that 121

using high-quality generated pseudo sentences is 122

more beneficial for captioner training than retrieved 123

complete sentences, even if they are unpaired and 124

sourced directly from the original dataset. 125

2 Related Work 126

Large Pre-trained Models for Image Caption- 127

ing. In recent years, the appearance of a series of 128

high-performance LPMs such as ViT (Dosovitskiy 129

et al., 2020), GPT-2 (Radford et al., 2019), and 130

CLIP (Radford et al., 2021) has widely extended 131

the possibility of getting prior knowledge. Kuo and 132

Kira (2022) used CLIP to mine missing attributes 133

and relationships as auxiliary inputs in a fully super- 134

vised captioning task. Cho et al. (2022) used CLIP 135

to build a CLIP score replacing the traditional cross- 136

entropy loss, which can avoid references in strength 137

learning of captioning tasks. Additionally, some 138

works start to explore leveraging from the frozen 139

LPMs. Flamingo (Alayrac et al., 2022) builds a 140

trainable architecture that bridges the vision en- 141

coder and the large language model, efficiently ac- 142

cepting arbitrarily interleaved visual data and text 143

as input, and generating text in an open-ended man- 144

ner. BLIP-2 (Li et al., 2023a) bridges the modality 145

gap with a lightweight querying Transformer and 146

is more efficient in the pre-training strategy. How- 147

ever, all these methods still need pre-training on 148

large-scale datasets for model optimization. 149

Retrieval-augmented Models with LPMs. 150

Retrieval-augmented methods have been widely 151

applied in VL tasks in recent years. In visual 152

question answering, retrieving the outside knowl- 153

edge for question answering has become the new 154

trend (Lin and Byrne, 2022). In text-to-image gen- 155

eration, Chen et al. (2022b) propose a generative 156

model that uses retrieved information to produce 157

high-fidelity images for uncommon entities. 158

Currently, few works apply a retrieval-augmented 159

idea with LPMs for image captioning. Zhu et al. 160

(2023b) use CLIP to extract the semantic prompt 161

for more accurate caption prediction under the 162

adversarial learning framework. Re-ViLM (Yang 163

et al., 2023) builds upon the Flamingo but supports 164

using CLIP to retrieve relevant knowledge from 165

the external database. Compared with their 166

methods, our approach gets knowledge from 167

high-quality generated pseudo sentences and is 168

2



Figure 2: The overview of our proposed framework. It
is structured around three core components: RaPSG,
fluency filter, and CLIP guidance.

more data-efficient, which avoids using unpaired169

human annotation (Zhu et al., 2023b) or large-scale170

image-text corpus for pre-training (Yang et al.,171

2023).172

3 Method173

In this section, we introduce our proposed frame-174

work RaPSG, whose overview is shown in Figure 2.175

The retrieval-augmented pseudo sentence efficient176

generation module is proposed to learn knowledge177

from the LPMs (Section 3.1). To reduce the appear-178

ance of unnatural pseudo sentences, we innova-179

tively design a fluency filter (Section 3.2). Finally,180

the self-supervised training with generated pseudo181

image-text pairs is guided by a CLIP-based loss to182

improve the prediction accuracy (Section 3.3).183

3.1 Retrieval-Augmented PSG Module184

To address the absence of human annotation, we185

propose RaPSG, a two-stage retrieval-augmented186

pseudo sentence generation method. It leverages187

the prior knowledge in LPMs to generate high-188

quality pseudo sentences for effective training su-189

pervision. Specifically, our method is based on the190

text processing capabilities from different aspects191

of LPMs including region-level matching with192

CLIP, global-level summarization through BART,193

and LLaMA for further enhancement. Stage-I trans-194

forms region-level information into global-level195

sentences to establish context, while Stage-II dis-196

tills and refines these sentences with detailed con-197

tent. This approach ensures high-quality pseudo198

sentences through comprehensive and robust text199

processing.200

In Stage-I, we focus on utilizing the summariza-201

tion capability of BART (Lewis et al., 2019) to202

condense short high-relevant region descriptions203

into pseudo sentences (Figure 3), capturing essen-204

tial information from regions concisely. To begin,205

we retrieve local-level region descriptions from the206

Visual Genome (VG) dataset (a public dataset com-207

prises region descriptions). However, since 47% 208

of VG images overlap with MSCOCO, we apply a 209

duplicate-removal scheme (Kuo and Kira, 2022) to 210

refine region descriptions. After annotating region 211

descriptions, we utilize the pre-trained CLIP to re- 212

trieve proper region descriptions for each image. 213

Given an image I , we apply the cosine similarity 214

function to calculate the matching score for each 215

region description, then rank these descriptions ac- 216

cording to their scores in descending order, forming 217

the ordered set of region descriptions D̂. Subse- 218

quently, the top-k most relevant descriptions are 219

chosen based on their scores for the following steps, 220

with the selection of k detailed in Figure 6. These 221

selected top-k region descriptions for the given im- 222

age are denoted as D̂k. However, as illustrated in 223

Figure 1 (b), the region descriptions lack modify- 224

ing phrases typically found in standard sentences. 225

Previous research, such as Feng et al. (2019), indi- 226

cates that concepts with minimal semantic content 227

can lead to failures in image captioning training. 228

To cope with missing information, we refine 229

local-level descriptions by summarizing them into 230

global-level descriptions using BART. From the 231

set D̂k, we select the top-m descriptions with the 232

criteria for choosing m detailed in Figure 6. Then, 233

these descriptions are summarized into the first 234

single sentence, c1, by removing repeated words 235

and leveraging the text summarization ability of 236

BART (comparisons across different summariza- 237

tion models also depicted in Figure 6). To enhance 238

the diversity of pseudo sentences, instead of repeat- 239

ing the summarization process above, we group the 240

remaining regions descriptions based on greater se- 241

mantic differences. Specifically, a similarity score 242

is calculated between each of the rest region de- 243

scriptions D̂[k−m] and the first pseudo sentence c1. 244

Next, these descriptions are grouped into n compre- 245

hensive summarization sentences based on scores 246

(i.e., n = k−m
m , the top m for the c2, the second top 247

m for the c3, and ...). In this way, descriptions shar- 248

ing more similarities would be grouped together 249

to avoid arranging too many objects in a single 250

sentence generation process. The issue of group- 251

ing complex objects together will be discussed in 252

Section 3.2. According to this setting, our method 253

can generate a high-quality pseudo sentence group 254

{ci}k/mi=1 per image in the first stage. 255

In Stage-II, we distill crucial information from 256

the preceding sentence group to generate more ap- 257

propriate pseudo sentences. We refine the gener- 258
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Figure 3: The Stage-I of RaPSG framework. Firstly, we retrieve top-k region descriptions from VG (Krishna
et al., 2017) according to their matching scores computed by CLIP (Radford et al., 2021) model. Then, we use
Sent-BERT (Reimers and Gurevych, 2019) model to divide them into four groups by their semantic similarity.
Finally, BART (Lewis et al., 2019) model is used to summarize the grouped descriptions for four pseudo sentences.

Figure 4: The Stage-II of RaPSG framework. Initially,
we utilize the provided image in conjunction with the
preceding four pseudo sentences as supervision to train
the image captioner. Once trained, we freeze the cap-
tioner and generate a prediction sentence. To enhance
the generation process, we incorporate the top-k most
relevant region descriptions as supplementary material
to get the fifth output.

ated pseudo sentences in Stage-I using the expres-259

sive power of large generative models, producing260

fluent and contextually relevant sentences for su-261

pervision. Initially, we pair the set {ci}k/mi=1 with262

the I for captioner training, as shown in the top part263

of Figure 4. This process establishes a reconnec-264

tion between the sentences and the visual content,265

enabling the captioner’s accuracy in both image266

and text domains. However, the supervision by267

pseudo sentences could lead the captioner to learn268

repeated information, potentially resulting in a lack269

of specific details within the context.270

To address this limitation, we propose incorpo-271

rating a large-size generative model, LLaMA-7B,272

to generate pseudo sentences with more detailed in-273

formation. In our approach, we refine the sentences274

by using the predictions from the frozen captioner275

as well as the D̂k. By combining these elements, 276

LLaMA learns the core ideas from the predictions 277

and incorporates the detailed information from the 278

region descriptions. This integration enables us to 279

generate superior pseudo sentences that encompass 280

a greater level of detail. Consequently, we obtain 281

a more appropriate sentence as our another output 282

denoting as ck/m+1. With these two stages com- 283

pleted, we successfully generate a group of pseudo 284

sentences {ci}k/m+1
i=1 that are ready for further use. 285

3.2 Fluency Filter 286

The fluency filter is designed to sift the generated 287

sentences to remove low-quality pseudo captions. 288

For each given image I , the filter carefully se- 289

lects the best sentence among {ci}k/m+1
i=1 to ensure 290

a precise match. Figure 5 compares two gener- 291

ated pseudo sentences from BART based on two 292

groups of region descriptions in the first stage of the 293

RaPSG module. The first case shows that the model 294

successfully comprehends the relationship between 295

the skateboard and the trick in the inference pro- 296

cess. By contrast, the second sentence does not 297

capture the important information to describe the 298

image because the model recognizes the metallic- 299

element different from the skateboard. Due to the 300

limited discernment of LPMs, varying appellations 301

for the same object in region descriptions can cause 302

confusion, potentially fragmenting the generated 303

sentence into multiple semantic parts and reducing 304

its coherence and accuracy. 305

We propose to filter out the low-quality pseudo 306

sentences via CIDEr metric (Vedantam et al., 2015) 307

(an image description evaluation based on human 308

preference) because these low-quality pseudo sen- 309

tences are also made up of highly relevant phrases 310

but in an unnatural arrangement and can deceive 311
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Figure 5: A comparison of two pseudo sentences in
RaPSG process. The first sentence appears more fluent
than the second sentence from the human view. Best
viewed by zooming in.

the common evaluation methods. Since real anno-312

tations are unavailable, we use the model’s predic-313

tions as references. To this end, we propose that the314

{ci}k/m+1
i=1 are examined by the CIDEr metric, and315

the one graded the highest is chosen as follows:316

ccider = argmax
c

CIDEr(ci, fc(I)), (1)317

where cji is the j-th pseudo sentence among five.318

fc(Ii) is the model prediction sentence and fc is319

the basic captioning model.320

3.3 CLIP Guidance321

The CLIP guidance module is proposed to en-322

courage the sentence prediction to semantically323

match image content in CLIP embedding space324

as we abandon pre-training on external large-scale325

datasets. The InfoNCE (Oord et al., 2018) is em-326

ployed to reduce cross-modal information loss. The327

frozen image encoder CLIP-I and text encoder328

CLIP-T are used to embed a dozen original im-329

ages and corresponding predictions into a shared330

semantic space. Then, the pairwise affinities are331

computed based on the encoded features. The learn-332

ing process can be formulated as minimizing the333

contrastive information loss:334

LI = −log
exp(q · k+/τ)

exp(q · k+/τ) +
∑
k−

exp(q · k−/τ)
,

(2)335

where q is a visual embedding for an image ex-336

tracted from the CLIP-I, k+ is the text embedding337

for this image (positive key), and k− are text em-338

bedding for other images from the same batch in the339

training process (negative key). Both of them are340

generated by CLIP-T. τ is the temperature hyper-341

parameter.342

4 Experiments and Results 343

4.1 Experiments Setting 344

Datasets. We choose MSCOCO (Chen et al., 345

2015) and Flickr30k (Plummer et al., 2015) with 346

Karpathy (Karpathy and Fei-Fei, 2015) split as our 347

test benchmark. The MSCOCO images are divided 348

into three parts: 113k images for training, 5k im- 349

ages for validation, and the remaining 5k images 350

for testing. The Flickr30k images are divided into 351

three parts: 29k images for training, 1k images for 352

validation, and the remaining 1k images for testing. 353

Evaluation Metrics. Following standard caption- 354

ing evaluation protocols (Li et al., 2019), we em- 355

ploy the following five metrics: BLEU (Papineni 356

et al., 2002), METEOR (Banerjee and Lavie, 2005), 357

ROUGE (Lin, 2004), CIDEr (Vedantam et al., 358

2015), and SPICE (Anderson et al., 2016). Be- 359

yond these traditional metrics, we also incorporate 360

the innovative robust metric CLIP-S (Hessel et al., 361

2021), which assesses the relevance between the 362

generated caption and the target image indepen- 363

dently of reference captions. 364

Image Captioning Backbones. Our approach is 365

versatile for different image captioning models. To 366

validate its performance, we incorporate our pro- 367

posed framework with several classic captioners, 368

including: M2 model (Cornia et al., 2020), CTX 369

model (Kuo and Kira, 2022), DLCT model (Luo 370

et al., 2021), and DIFNet model (Wu et al., 2022). 371

Comparison Setting. To the best of our knowl- 372

edge, we are making an early attempt to explore a 373

new image captioning benchmark setting that lever- 374

ages retrieval-augmented self-supervised learning 375

without annotated labels. There are two compa- 376

rable settings that we can contrast with our ap- 377

proach: pre-trained models in zero-shot setting 378

and finetuning-based approaches without full su- 379

pervision. Unlike existing zero-shot methods, our 380

approach uses self-supervised training with gener- 381

ated pseudo sentences, avoiding reliance on large 382

external datasets. Additionally, we compare our 383

method with unsupervised, unpaired, and weakly- 384

supervised finetuning approaches, as both assume 385

the absence of grounded image-text pairs and use 386

pseudo pairs for optimization. Finally, to compre- 387

hensively assess the capability of our approach, 388

we extend our test to semi-supervised and cross- 389

domain settings, comparing our model’s perfor- 390

mance against SOTA models in these scenarios. 391
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Model
Trainable Pre-trained External MSCOCO Flickr30k
Params Models Dataset B1 B4 M C S CLIP-S B1 B4 M C S CLIP-S

SimVLMbase (2021) -
- 1.8B

- 9.5 11.5 24.0 7.5 - - - - - - -
SimVLMhuge (2021) 1.4B - 11.2 14.7 32.2 8.5 - - - - - - -

Re-ViLMbase (2023) 158M
CLIP (2021) 762M

- 17.0 - 51.2 - - - - - 45.2 9.2 -
Re-ViLMlarge (2023) 806M - 18.6 - 60.8 - - - - - 52.1 10.0 -

Flamingo3B (2022) 1.3B NFNet (2021) and
312M

- - - 73.0 - - - - - 60.6 - -
Flamingo80B (2022) 10B Chinchilla (2022) - - - 84.3 - - - - - 67.2 - -

MiniGPT4-V1 (2023a) - ViT (2020) and 5M 23.6 5.8 20.9 0.0 14.4 34.0 13.2 3.5 15.6 0.0 14.8 32.3
MiniGPT4-V2 (2023) - Vicuna (2023) 20M 28.6 6.3 24.4 0.0 17.9 35.5 17.5 6.6 22.0 0.0 20.0 32.6

LLaVA1.0 (2023a) 0.14B CLIP (2021) and 0.59M 38.5 9.1 26.7 50.9 24.2 34.1 48.0 13.0 23.4 52.5 17.1 33.7
LLaVA1.5 (2023b) 0.70B Vicuna (2023) 0.66M 30.6 10.1 24.8 41.8 22.6 31.5 35.2 7.7 21.9 34.1 17.0 30.5

Our Pseudo Sents. 0
CLIP (2021),

0.45M

48.1 8.8 18.0 39.3 13.3 47.6 43.2 14.5 17.1 21.2 9.3 45.4
Ours (w/ CTX) 40M 67.0 18.3 21.2 72.4 14.1 33.6 51.7 17.8 21.0 53.3 10.7 32.6
Ours (w/ M2) 38M BART (2019), and 67.5 18.9 20.9 75.3 14.7 34.3 54.6 17.5 20.7 56.8 11.2 33.8
Ours (w/ DLCT) 63M

LLaMA (2023)
69.5 19.4 21.1 75.9 14.5 34.5 54.1 18.1 22.6 58.4 11.5 34.1

Ours (w/ DIFNet) 33M 70.5 19.3 21.4 78.1 14.9 35.8 55.9 18.2 23.1 59.1 11.8 33.9

Table 1: The comparison of our approach with SOTA zero-shot models on MSCOCO and Flickr30k benchmarks.
We denote different captions (i.e., CTX, M2, DIFNet, and DLCT) inside the brackets. Pseudo Sents. represents
the generated pseudo sentences from the RaPSG module. BLIP (Li et al., 2022) and BLIP2 (Li et al., 2023a) are
excluded from our comparison due to their use of COCO captions during pre-training process.

4.2 Comparison against Large Pre-Trained392

Models393

We compare our RaPSG approach with the zero-394

shot models (Wang et al., 2021; Yang et al., 2023;395

Alayrac et al., 2022; Zhu et al., 2023a; Liu et al.,396

2023b) on MSCOCO and Flickr30k benchmarks,397

as they are all built up on LPMs. Table 1 demon-398

strates that our method surpasses the performance399

of these models on the MSCOCO benchmark in400

some metrics (Note that multimodal LLMs like401

MiniGPT4 and LLaVA are not specifically trained402

to generate short captions, and their detailed de-403

scriptions may not be fully captured by traditional404

metrics; see Appendix A.1 for more details). More-405

over, previous approaches rely on pre-training with406

a large number of external image-text pairs and407

demand a considerable number of trainable param-408

eters. For instance, Flamingo3B is pre-trained on409

312M external image-text pairs, whereas our model410

only requires 0.45M (0.14%) generated pseudo sen-411

tences, which is more data-efficient. Additionally,412

we also validate our approach on another popular413

benchmark Flickr30k. Table 1 shows our method’s414

robustness across datasets, matching SOTA mod-415

els in performance with fewer trainable parameters416

(e.g., 6.7% of Flamingo, 4% of Re-ViLM).417

4.3 Comparsion against Finetuning-Based418

Approaches419

Next, we compare ours with other models that420

operate without full supervision, including unsu-421

pervised (Zhou et al., 2021; Honda et al., 2021),422

unpaired (Ben et al., 2021; Liu et al., 2021), and423

weakly-supervised (Zhang et al., 2022; Zhu et al.,424

2022) approaches. Unsupervised and weakly-425

Category Method B1 B4 M R C S

Unsuper-
vised

UC-GAN (2019) 41.0 5.6 12.4 28.7 28.6 8.1
TSGAN (2021) 46.2 6.9 13.0 32.3 28.9 8.3
RWLSA (2021) 50.2 6.8 14.1 34.8 32.9 8.8

Unpaired
Gra-Align (2023b) 67.1 21.5 20.9 47.2 69.5 15.0
SCS (2021) 67.1 22.8 21.4 47.7 74.7 15.1
FG-SRE (2021) 67.8 21.8 22.1 48.4 75.7 16.1

Weakly-
supervised

SGCL (2022) 63.6 20.2 20.0 47.9 55.0 13.5
WS-UIC (2022) - 21.5 20.1 45.8 65.7 13.6

LPMs +
RaPSG

Ours (w/ CTX) 67.0 18.3 21.2 47.9 72.4 14.1
Ours (w/ M2) 67.5 18.9 20.9 48.5 75.3 14.7
Ours (w/ DLCT) 69.5 19.4 21.1 48.6 75.9 14.5
Ours (w/ DIFNet) 70.5 19.3 21.4 49.0 78.1 14.9

Table 2: The comparison of our method and others
without fully supervision on MSCOCO benchmark.

supervised methods retrieve sentences from mis- 426

matching corpora, while unpaired methods use the 427

original corpora but each sentence does not pair 428

with the corresponding images. Table 2 indicates 429

that our method surpasses these data-efficient meth- 430

ods by utilizing the generated pseudo sentences 431

instead of fetching complete sentences. It is sig- 432

nificant to note that our method even surpasses 433

unpaired setting models that employ real images 434

and real annotations but operate in an unpaired 435

setting. This suggests that generating pseudo sen- 436

tences may hold greater potential than retrieving 437

complete sentences. 438

4.4 Extension on Semi-Supervised Image 439

Captioning Benchmarks 440

Since our approach works well in zero-shot and un- 441

supervised settings, we also test whether it can deal 442

with the data scarcity problem in a semi-supervised 443

setting where only partial images have the corre- 444

sponding text annotations. Specifically, we fol- 445
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Model B1 B4 M R C S

Self Distillation (2021) 67.9 25.0 21.7 49.3 73.0 14.5
OSCAR (2020) 67.2 23.3 22.5 49.1 78.4 -
VisualGPT (2022a) 69.5 25.6 22.6 49.6 80.9 -
P3 (2021) 68.8 27.5 23.4 51.0 84.5 16.1

M2 (2020) 67.4 22.8 21.4 48.2 70.9 14.8
M2 + Ours 68.7 23.3 22.1 49.5 83.1 15.8

DLCT (2021) 68.0 24.4 21.3 48.8 74.2 14.3
DLCT + Ours 72.4 27.1 23.1 51.5 90.8 16.5

CTX (2022) 71.6 26.4 23.2 50.8 85.4 16.7
CTX + Ours 72.4 27.7 23.5 51.5 90.8 17.1

DIFNet (2022) 70.8 24.9 22.2 49.7 81.3 15.3
DIFNet + Ours 73.5 27.7 23.1 51.8 93.4 16.7

Table 3: The comparison with SOTA 1% semi-
supervised methods on MSCOCO captioning task.

Direction Method B4 M R C S

COCO-to-Flickr30k

DeCap (2023b) 16.3 17.9 - 35.7 11.1
CapDec (2022) 17.3 18.6 42.7 35.7 -

CgT-GAN (2023) 17.3 19.3 43.9 47.5 12.9
Ours (w/DIFNet) 17.1 20.2 44.6 51.3 11.6

Flickr30k-to-COCO

DeCap (2023b) 9.2 16.3 36.7 27.3 -
CapDec (2022) 12.1 18.0 - 44.4 10.9

CgT-GAN (2023) 15.2 19.4 40.9 58.7 13.4
Ours (w/DIFNet) 17.7 20.1 45.7 66.3 12.2

Table 4: The Comparison with SOTA cross-domain
methods on MSCOCO and Flickr30k captioning tasks.

low the existing semi-supervised image caption-446

ing benchmark (Chen et al., 2021). The proposed447

RaPSG is firstly optimized on the 99% images with-448

out caption labels. Then, the model is further fine-449

tuned on the rest of 1% labeled data. We repeat the450

experiments under 3 different selections of the 1%451

labeled samples and calculate the average perfor-452

mance as output. As shown in Table 3, compared453

with current approaches, our approach achieves a454

performance gain with 93.4 (+8.9) CIDEr score.455

This indicates that our generated pseudo sentences456

can alleviate the need for extensive annotations in457

semi-supervised captioning tasks.458

4.5 Extension on Cross-Domain Image459

Captioning Benchmarks460

To further verify the robustness of our model,461

we evaluate it on a cross-domain image caption-462

ing benchmark in comparison with SOTA mod-463

els (Li et al., 2023b; Nukrai et al., 2022; Yu et al.,464

2023). Notably, we adhered to the established465

cross-domain image captioning benchmark proto-466

col (Laina et al., 2019), albeit with the textual cor-467

pora replaced by the VG dataset. Table 4 demon-468

strates a significant improvement of our model,469

with CIDEr scores of 51.3 (+3.8) and 66.3 (+7.6)470

compared to competing models in two assessed471

categories.472

Module B1 B4 M R C S CLIP-S

RD 10.6 1.5 9.8 19.3 18.3 7.5 62.7
PS 48.1 8.8 18.0 33.8 39.3 13.3 47.6
PS+FF 59.4 15.2 20.2 39.6 56.0 13.9 48.2
D+PS 67.9 16.9 20.3 43.9 70.2 13.7 31.5
D+PS+FF 70.3 19.1 21.1 45.9 76.9 14.7 32.1
D+PS+FF+CR (2022) 67.6 17.0 19.9 44.4 69.4 13.3 31.4
D+PS+FF+CG 70.5 19.3 21.4 46.0 78.1 14.9 35.8

Table 5: Ablation study of different proposed modules
conducted on the DIFNet. "RD" represents the retrieved
region descriptions. "PS" means the generated pseudo
sentences. "FF" is the fluency filter. "CG" represents the
CLIP guidance. "D" is the DIFNet model. "CR (Cho
et al., 2022)" represents training with Cho’s CLIP re-
ward instead of our CLIP guidance module.

4.6 Ablation Studies 473

Contribution of Designed Modules. We inves- 474

tigate the contribution of each designed module, 475

as shown in Table 5. The RaPSG module is cru- 476

cial for improving the model performance. In ad- 477

dition, the fluency filter is designed to filter out 478

the unnatural sentences among pseudo sentence 479

generation and leave the best one matching the 480

given image. Figure 7 shows one case where the 481

fluency filter picked up the best pseudo sentence 482

based on its CIDEr score. Finally, we introduce 483

CLIP guidance in the retrieval-augmented learning 484

process, which drives the prediction to be semanti- 485

cally consistent with the given image by shrinking 486

the cross-modal distance in the feature embedding 487

space. To demonstrate the efficacy, our experiment, 488

compared against Cho’s CLIP reward (Cho et al., 489

2022), demonstrates that our CLIP guidance ap- 490

proach achieves better results. 491

Pseudo Sentence Quality. Here, we explore how 492

to regulate the quality of generated sentences and 493

the methods for producing high-quality sentences. 494

Different from the explanation in Section 3.1, due 495

to the absence of a metric to determine the optimal 496

k for region descriptions, we first investigate the 497

parameter m to ascertain the generation of high- 498

quality pseudo sentences. Subsequently, based on 499

the chosen value of m, we explore the selection of 500

top-k. According to the left part of Figure 6, we 501

decide to set m = 4 as it yields the best perfor- 502

mance within the range of [1, 6]. Then, based on 503

the m value, we explore k ∈ [4, 24]. As suggested 504

by the middle segment of Figure 6, the quality of 505

generated pseudo sentences initially improves with 506

increasing k but eventually declines. According to 507

the CIDEr scores, we set k = 16 and disregard the 508

subsequent region descriptions. Lastly, we evalu- 509

ate the efficacy of various summarization models. 510

Based on the result in the right section of Figure 6, 511
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Figure 6: We conduct experiments to compare different settings, aiming to determine the most effective method
for generating high-quality pseudo sentences based on region descriptions. These comparisons include, from
left to right: the selection of hyperparameter m, the choice of hyperparameter k, and the evaluation of various
summarization models.

Figure 7: One example of how the fluency filter picks
up the best sentence. Best viewed by zooming in.

Source Method B1 B4 M R C S

VG Ours (w/ DIFNet) 70.5 19.3 21.4 46.0 78.1 14.9

GCC Ours (w/ DIFNet) 56.3 7.5 15.4 39.8 46.4 11.7

Table 6: The comparison between generated sentences
and crawled sentences on DIFNet model.

we select the BART for the initial stage and the512

LLaMA-7B for the subsequent phase of RaPSG.513

Generated Sentences VS Crawled Sentences.514

The previous comparison with unpaired models515

indicates the potential of the generated pseudo sen-516

tences. In this section, we verify whether generated517

pseudo sentences truly outperform crawled sen-518

tences under fair conditions. We pick up another519

popular corpus, named Google Concept Caption520

or GCC (Sharma et al., 2018), which is used in521

most unsupervised image captioning works (Laina522

et al., 2019; Guo et al., 2020; Honda et al., 2021).523

For a fair comparison, we also use the pre-trained524

CLIP (Radford et al., 2021) to fetch the most rele-525

vant individual descriptions from GCC dataset and526

utilize them as supervision for training. Accord-527

ing to the results shown in Table 6, it is obvious528

that VG-based training presents better performance529

than the GCC-based one on all the metrics.530

4.7 Qualitative Results531

To highlight our approach’s ability, we present qual-532

itative results of our generated pseudo sentences533

Figure 8: Qualitative results of our approach based on
DIFNet model. Best viewed by zooming in.

and predictions in Figure 8. The pseudo sentences 534

can avoid the appearance of irrelevant words and 535

keep the diversity, which is attributed to the in- 536

novative combination of ranking, grouping, and 537

summarization. However, some examples, while 538

scoring well on CIDEr, may not make sense from 539

a human perspective (e.g., “kite flying in a park is 540

fun” should be “flying a kite in a park is fun”). This 541

issue may stem from BART’s difficulty in handling 542

batches of similar objects, leading to disarranged 543

relationships among region descriptions. 544

5 Conclusion 545

In this work, we propose a retrieval-augmented 546

pseudo sentence generation method which lever- 547

ages the prior knowledge from the frozen LPMs. 548

The generated sentences can avoid the appearance 549

of irrelevant words and keep the diversity of pseudo 550

references, which is attributed to the innovative 551

combination of ranking, grouping, and summariza- 552

tion. In addition, we design a fluency filter to sift 553

the generated sentences and a CLIP guidance mod- 554

ule to make the predicted captions semantically 555

consistent with the given image. Our approach out- 556

performs existing state-of-the-art captioning mod- 557

els across various scenarios such as zero-shot, un- 558

supervised, semi-supervised, and cross-domain set- 559

tings. 560
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6 Limitation561

Although our approach surpasses current SOTA562

captioning models in a range of scenarios, includ-563

ing zero-shot, unsupervised, semi-supervised, and564

cross-domain settings, it still has two limitations.565

First, compared to the basic model, it significantly566

increases time consumption due to the additional567

processing stages. The retrieval and summarization568

steps, coupled with the refinement using LPMs,569

add considerable computational compared with ba-570

sic models. For instance, using "Ours (w/DLCT)"571

with a single RTX3090 as an example, each epoch572

in the training process takes approximately 55 min-573

utes. The entire training process spans 36 epochs,574

totalling around 35 hours. Table 7 provides a com-575

parison of time consumption against the baseline.576

Second, the quality of the generated pseudo sen-577

tences may be limited by the summarization capa-578

bilities of BART and LLaMA-7B. These models579

sometimes produce sentences where the words are580

correct but arranged in an unnatural order (Sec-581

tion 4.7). This occurs because BART and LLaMA-582

7B, while powerful, can struggle with maintaining583

the natural flow of language when summarizing584

complex or similar objects, leading to awkward585

phrasing or disordered relationships among the sen-586

tence elements.587

Method GPU Each Epoch Total

DLCT 1*RTX3090 35 min 22 hours

Ours (w/DLCT) 1*RTX3090 55 min 35 hours

Table 7: The comparison of time consumption between
the baseline and our approach.
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A Appendix894

A.1 Comparison against Large Pre-Trained895

Models896

In this section, we provide a detailed compari-897

son of our method against zero-shot models. Un-898

like existing methods that rely on large external899

datasets for "mapper" learning, our approach in-900

troduces a more efficient learning process through901

self-supervised training with generated pseudo sen-902

tences. Table 8 highlights the effectiveness of903

our method on the MSCOCO benchmark, where904

it outperforms SimVLM (Wang et al., 2021), Re-905

ViLM (Yang et al., 2023), Flamingo3B (Alayrac906

et al., 2022), MiniGPT4 (Zhu et al., 2023a; Chen907

et al., 2023), and LLaVA (Liu et al., 2023b,a). No-908

tably, widely recognized models BLIP (Li et al.,909

2022) and BLIP2 (Li et al., 2023a) are excluded910

from our comparison due to their use of COCO cap-911

tions during pre-training. We also did not compare912

our method with REVEAL (Hu et al., 2023) due to913

the absence of official zero-shot results. Some data914

was sourced directly from the original papers, as915

many studies lack official GitHub implementations.916

Additionally, we acknowledge that recent multi-917

modal large language models like MiniGPT4 and918

LLaVA are not specifically optimized for generat-919

ing short captions in the MSCOCO or Flickr style.920

While comparing these models on the MSCOCO921

dataset using metrics like BLEU and CIDEr might922

seem unfair, we specifically use the CLIP-S metric923

to evaluate the matching level between the target924

image and generated predictions. According to the925

CLIP-S performance in Table 8, our method gen-926

erates captions that more closely match the target927

image. Figure 9 presents instance comparisons be-928

tween our method, MiniGPT4, and LLaVA. It is929

evident that our model excels at generating concise930

captions, while LLaVA produces medium-length931

captions with more detail, and MiniGPT4 gener-932

ates highly detailed descriptions. For example, our933

model’s caption for the first image is "A cat is934

sitting on a laptop," which is succinct and to the935

point. In contrast, MiniGPT4 provides a much936

longer description: "The image shows a cat lying937

on top of a laptop computer. The cat has blue eyes938

and is brown and white in color. The laptop ap-939

pears to be an older model with a black and grey940

colour scheme. There is a patterned blanket or941

cloth on the floor in the background." LLaVA of-942

fers a middle-size caption that "A cat is lying on a943

laptop computer, which is placed on a bed."944

Figure 9: Two examples of comparing the prediction
sentences from our model, MiniGPT4, and LLaVA. Best
viewed by zooming in. It appears that our model excels
at generating concise image captions, while LLaVA
produces medium-length captions with more details,
and MiniGPT4 generates highly detailed descriptions.

A.2 Comparison against Finetuning-Based 945

Appraoches 946

In this section, we provide a comprehensive com- 947

parison of our weakly-supervised image captioning 948

models across unsupervised, unpaired, and weakly- 949

supervised scenarios, as shown in Table 9. Our 950

approach and these methods share the assumption 951

of the absence of grounded image-text pairs and 952

propose using pseudo pairs for optimization. This 953

includes benchmarking against unsupervised meth- 954

ods (Laina et al., 2019; Feng et al., 2019; Zhou 955

et al., 2021; Guo et al., 2020; Honda et al., 2021), 956

unpaired methods (Lu et al., 2017a; Ben et al., 957

2021; Liu et al., 2021; Zhu et al., 2023b), and 958

weakly-supervised approaches (Zhang et al., 2022; 959

Zhu et al., 2022). While unsupervised and weakly- 960

supervised methods retrieve sentences from mis- 961

matched corpora and unpaired methods use origi- 962

nal corpora without corresponding image-sentence 963

pairs, our experiments reveal that our method, 964

which employs generated pseudo sentences, sur- 965

passes these data-efficient techniques. Our method 966

matches or exceeds the performance of unpaired 967

models on most metrics and notably outperforms 968

them in BLEU1 and CIDEr. This suggests that gen- 969

erating high-quality pseudo sentences holds more 970

potential than retrieving complete sentences from 971

corpora, including original ones. 972
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE CLIP-S
MSCOCO

SimVLMbase (2021) - - - 9.5 11.5 - 24.0 7.5 -
SimVLMlarge (2021) - - - 10.5 12.0 - 24.9 8.3 -
SimVLMhuge (2021) - - - 11.2 14.7 - 32.2 8.5 -
Re-ViLMbase (2023) - - - 17.0 - - 51.2 - -
Re-ViLMmedium (2023) - - - 17.9 - - 53.6 - -
Re-ViLMlarge (2023) - - - 18.6 - - 60.8 - -
Flamingo3B (2022) - - - - - - 73.0 - -
Flamingo9B (2022) - - - - - - 79.4 - -
Flamingo80B (2022) - - - - - - 84.3 - -
MiniGPT4-V1 (2023a) 23.6 16.2 9.8 5.8 20.9 21.2 0.0 14.4 34.0
MiniGPT4-V2 (2023) 28.6 19.4 12.5 6.3 24.4 27.3 0.0 17.9 35.5
LLaVA1.0 (2023a) 38.5 27.2 17.3 9.1 26.7 40.1 50.9 24.2 34.1
LLaVA1.5 (2023b) 30.6 21.7 14.8 10.1 24.8 37.4 41.8 22.6 31.5
Our Pseudo Sents. 48.1 27.7 15.7 8.8 18.0 33.8 39.3 13.3 47.6
Ours (w/CTX) 67.0 45.3 29.2 18.3 21.2 44.9 72.4 14.1 33.6
Ours (w/M) 67.5 46.5 30.3 18.9 20.9 45.5 75.3 14.7 34.3
Ours (w/DLCT) 69.5 47.5 30.8 19.4 21.1 45.6 75.9 14.5 34.5
Ours (w/DIFNet) 70.5 48.1 31.0 19.3 21.4 46.0 78.1 14.9 35.8

Flickr30k
Re-ViLMbase (2023) - - - - - - 45.2 9.2 -
Re-ViLMmedium (2023) - - - - - - 52.0 9.8 -
Re-ViLMlarge (2023) - - - - - - 52.1 10.0 -
Flamingo3B (2022) - - - - - - 60.6 - -
Flamingo9B (2022) - - - - - - 61.5 - -
Flamingo80B (2022) - - - - - - 67.2 - -
MiniGPT4-V1 (2023a) 13.2 7.7 5.0 3.5 15.6 16.6 0.0 14.8 32.3
MiniGPT4-V2 (2023) 17.5 11.5 8.5 6.6 22.0 23.9 0.0 20.0 32.6
LLaVA1.0 (2023a) 48.0 31.8 20.5 13.0 23.4 43.1 52.5 17.1 33.7
LLaVA1.5 (2023b) 35.2 22.2 11.7 7.7 21.9 29.0 34.1 17.0 30.5
Our Pseudo Sents. 43.2 28.0 17.4 14.5 17.1 40.8 21.2 9.3 45.4
Ours (w/CTX) 51.7 37.5 24.6 17.8 21.0 46.7 53.3 10.7 32.6
Ours (w/M) 54.6 39.6 25.9 17.5 20.7 47.3 56.8 11.2 33.8
Ours (w/DLCT) 54.1 38.8 25.8 18.1 22.6 47.2 58.4 11.5 34.1
Ours (w/DIFNet) 55.9 39.9 26.6 18.2 23.1 47.5 59.1 11.8 33.9

Table 8: The detailed comparison of our method and other zero-shot models on MSCOCO and Flickr30k benchmark.

A.3 Generated Sentences VS Crawled973

Sentences974

Section 4.6 provides a brief explanation supported975

by experimental results on why generated sentences976

yield better predictions compared to crawled sen-977

tences. In this section, we present specific instances978

for a more detailed explanation. Figure 10 displays979

examples of two generated pseudo sentences from980

VG (Krishna et al., 2017) and GCC (Sharma et al.,981

2018) respectively and real human annotations. We982

can observe that descriptions from the GCC dataset983

contain many words or phrases that do not match984

the given image. This low-relevance information985

cannot be effectively distinguished from valuable986

information by the LPMs, which leads to mislead-987

ing sentence generation. For instance, the GCC-988

based description "A young man standing, in a989

red jacket and baseball cap, texting with his cell990

phone, his shadow behind him" includes irrelevant991

details that do not correspond to the image, result-992

ing in a CIDEr score of 12.3. This demonstrates 993

how irrelevant information can make sentences ex- 994

cessively long and convoluted, further degrading 995

prediction performance across all metrics (Feng 996

et al., 2019). In contrast, the VG-based descrip- 997

tion "A man takes a picture of himself standing 998

in a hallway" is more concise and relevant, result- 999

ing in a higher CIDEr score of 146.9. This ex- 1000

ample illustrates how our method of generating 1001

high-quality pseudo sentences focuses on relevant 1002

content, thereby improving the overall prediction 1003

accuracy and performance. 1004

A.4 How does the fluency filter select the 1005

optimal pseudo sentence based CIDEr 1006

metric 1007

Section 4.6 provides a simple example of how the 1008

fluency filter selects the most appropriate sentences. 1009

In this section, we offer a clearer explanation. Fig- 1010

ure 11 showcases five generated pseudo sentences 1011

along with their corresponding CIDEr scores. The 1012
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Category Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE

Unsupervised

SME-GAN (2019) - - - 6.5 12.9 35.1 22.7 7.4
UC-GAN (2019) 41.0 22.5 11.2 5.6 12.4 28.7 28.6 8.1
TSGAN (2021) 46.2 26.8 13.5 6.9 13.0 32.3 28.9 8.3

RM (2020) 51.2 29.5 15.4 8.3 14.0 35.0 29.3 9.6
RWLSA (2021) 50.2 28.5 13.9 6.8 14.1 34.8 32.9 8.8

Unpaired

Gra-Align (2017b) 67.1 47.8 32.3 21.5 20.9 47.2 69.5 15.0
SCS (2021) 67.1 47.9 33.4 22.8 21.4 47.7 74.7 15.1

FG-SRE (2021) 67.8 48.7 33.6 21.8 22.1 48.4 75.7 16.1
PL-UIC (2023b) - - - 25.0 22.6 49.4 77.9 15.2

weakly-supervised
SGCL (2022) 63.6 45.4 30.7 20.2 20.0 47.9 55.0 13.5

WS-UIC (2022) - - - 21.5 20.1 45.8 65.7 13.6

LPM + RaPSG

Ours (w/CTX) 67.0 45.3 29.2 18.3 21.2 44.9 72.4 14.1
Ours (w/M) 67.5 46.5 30.3 18.9 20.9 45.5 75.3 14.7

Ours (w/DLCT) 69.5 47.5 30.8 19.4 21.1 45.6 75.9 14.5
Ours (w/DIFNet) 70.5 48.1 31.0 19.3 21.4 46.0 78.1 14.9

Table 9: The comparison of our method and other models without fully supervision on MSCOCO benchmark.

Figure 10: An example of how different corpora affect
the fluency of generated sentences. Best viewed by
zooming in.

sentence "A box of pizza is placed on the top of1013

an oven," marked with a red checkmark (
√

) and1014

boasting a CIDEr score of 133.5, is highlighted as1015

the best choice. Although the other four sentences1016

are contextually accurate, they are not selected, as1017

indicated by the red crosses (×) and their lower1018

CIDEr scores. This example illustrates how the1019

fluency filter effectively identifies the most relevant1020

and high-scoring sentence from a set of generated1021

options, enhancing the overall quality and accuracy1022

of image captioning.1023

A.5 How to generate high-quality pseudo1024

sentences with RaPSG1025

Choice of hyperparameter m In this section, we1026

delve into more details on how to determine the1027

Figure 11: One example of how the fluency filter picks
up the best sentence. Best viewed by zooming in.

hyperparameter m, which was briefly explained 1028

in Section 4.6. Table 10 presents a performance 1029

comparison based on varying the number m of 1030

region descriptions used to generate pseudo sen- 1031

tences. This comparison evaluates outcomes across 1032

several metrics, including BLEU-1 through BLEU- 1033

4, METEOR, ROUGE, CIDEr, and SPICE. The 1034

results indicate that using four region descriptions 1035

(m = 4) yields the best performance according to 1036

these metrics. This optimal choice of m suggests 1037

that incorporating more than four descriptions does 1038

not significantly enhance the quality of the gener- 1039

ated sentences and may even lead to a degradation 1040

in performance. This could be due to the inclusion 1041

of redundant or less relevant information, which 1042

can dilute the clarity and relevance of the pseudo 1043

sentences. Thus, our findings highlight the impor- 1044

tance of selecting an appropriate number of region 1045

descriptions to balance detail and relevance, en- 1046

suring the generation of high-quality pseudo sen- 1047

tences. 1048

Choice of hyperparameter k In this section, we 1049

provide a clearer explanation of the choice of the 1050

hyperparameter k. Table 11 presents data on how 1051

different values of k affect the retrieval of top-k 1052

region descriptions and their subsequent perfor- 1053
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Figure 12: Qualitative results for different supervision levels. Best viewed by zooming in.

Parameter B1 B2 B3 B4 M R C S
m=1 10.6 4.7 2.5 1.5 9.8 19.3 18.3 7.5
m=2 41.0 21.9 11.4 5.8 14.5 29.5 32.5 9.3
m=3 43.5 22.7 12.0 5.9 15.2 30.1 35.3 10.0
m=4 45.9 24.4 12.7 6.4 15.9 30.7 37.2 10.4
m=5 38.5 20.1 10.2 5.0 14.7 27.2 28.1 10.5
m=6 37.5 19.5 9.9 4.8 14.8 27.0 26.6 10.6

Table 10: The comparison of different choices of m on
assigned region descriptions number.

mance across various metrics, including BLEU,1054

METEOR, ROUGE, CIDEr, and SPICE. The re-1055

sults indicate that the quality of pseudo sentences1056

is optimal when k = 8, as evidenced by the peak1057

performance in most metrics at this value. Beyond1058

k = 8, performance tends to decline, suggesting1059

that retrieving a larger number of top-k region de-1060

scriptions does not necessarily enhance the quality1061

of pseudo sentences. In fact, including too many1062

descriptions may introduce noise and less relevant1063

information, which can dilute the clarity and co-1064

herence of the generated sentences. Therefore, we1065

have chosen k = 16 as the cut-off point, where the1066

quality remains good before it starts to significantly1067

decline, as reflected in the metrics. This careful se-1068

lection of k ensures that we balance the detail and1069

relevance of the region descriptions, leading to the1070

Parameter B1 B2 B3 B4 M R C S
k=4 45.1 23.3 11.9 5.9 15.6 30.0 34.7 10.1
k=8 45.9 24.4 12.7 6.4 15.9 30.7 37.2 10.4
k=12 44.6 22.6 11.2 5.5 15.5 29.5 34.2 9.9
k=16 41.6 20.5 9.9 4.7 14.4 27.6 28.9 8.8
k=20 35.3 17.0 7.6 3.6 13.1 26.7 19.5 7.7
k=24 33.4 15.0 6.9 3.3 12.7 24.9 18.8 8.2

Table 11: The comparison of different choices of k on
region description retrieval number.

generation of high-quality pseudo sentences. The 1071

findings underscore the importance of selecting an 1072

appropriate value for k to maximize the effective- 1073

ness of our retrieval-augmented pseudo sentence 1074

generation process. 1075

Choice of LLMs In this section, we present ad- 1076

ditional experiments to explain our selection of 1077

BART and LLaMA-7B as the large language mod- 1078

els (LLMs) for transforming region descriptions 1079

into pseudo sentences. Table 12 compares the 1080

performance of various methods and models in 1081

summarizing region descriptions into pseudo sen- 1082

tences across two stages of processing. The evalua- 1083

tion metrics include BLEU-1, BLEU-4, METEOR, 1084

and CIDEr, providing a comprehensive view of 1085

each model’s effectiveness. The results indicate 1086

that BART outperforms other models in the initial 1087

16



Stage Type Method B1 B4 M C

One LM
T5 (2020) 35.3 3.8 13.3 19.5

GPT2 (2019) 38.7 5.0 12.4 23.5
BART (2019) 45.9 6.4 15.9 37.2

Two LLM
GPT3.5 (2023) 38.1 4.5 15.8 29.5

Openchatkit (2023) 44.5 9.6 14.1 36.3
LLaMA-7B (2023) 48.1 8.8 18.0 39.3

Table 12: The comparison of different summarization
models on pseudo sentence generation.

stage due to its exceptional summarizing capabil-1088

ities. BART’s ability of distilling concise and rel-1089

evant information from region descriptions makes1090

it ideal for the first step of the RaPSG process, en-1091

suring that the foundational pseudo sentences are1092

both informative and accurate. In the second stage,1093

LLaMA-7B is chosen based on its high scores1094

across all metrics. LLaMA-7B excels in enhancing1095

the pseudo sentences generated by BART, refining1096

them to be more fluent and contextually appropriate.1097

Its advanced language model capabilities ensure1098

that the final pseudo sentences are not only precise1099

but also exhibit a natural flow, which is crucial for1100

improving image captioning performance. By com-1101

bining BART’s superior summarization skills in the1102

initial stage with LLaMA-7B’s advanced language1103

processing in the second stage, our RaPSG process1104

achieves optimal results. This two-stage approach1105

leverages the strengths of both models, resulting1106

in high-quality pseudo sentences that enhance the1107

overall performance of our image captioning sys-1108

tem. The experiments underscore the importance1109

of selecting the right models for each stage, high-1110

lighting why BART and LLaMA-7B are the best1111

choices for our methodology.1112

B Qualitative Results1113

In Section 4.7, we present qualitative results of1114

our generated pseudo sentences to highlight the1115

captioning ability of our approach. We showcase1116

qualitative results for various caption predictions1117

across different supervision levels, comparing them1118

with the ground truth and providing their CIDEr1119

scores, as shown in Figure 12. The examples in-1120

clude images of a baseball player, a surfer, and a1121

cat, among others.1122

Baseball Player. The ground-truth caption de-1123

scribes a baseball player swinging at a ball. Predic-1124

tions from retrieval-augmented, semi-supervised,1125

and fully-supervised models offer varying levels1126

of accuracy, with the semi-supervised prediction1127

scoring a CIDEr of 222.8, suggesting a close match 1128

to the ground truth. 1129

Surfer. The ground truth involves a person rid- 1130

ing waves on a surfboard. Different models inter- 1131

pret this with varying degrees of accuracy. The 1132

fully-supervised model scores the highest CIDEr 1133

at 126.6, indicating a strong match with the ground 1134

truth. Each image and set of predictions illustrate 1135

the effectiveness of the models in generating ac- 1136

curate captions, with CIDEr scores providing a 1137

quantitative measure of their precision compared 1138

to the ground truth. 1139
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