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ABSTRACT

Recent advances in text-to-video generation have produced increasingly realis-
tic and diverse content, yet evaluating such videos remains a fundamental chal-
lenge due to their multi-faceted nature encompassing visual quality, semantic
alignment, and physical consistency. Existing evaluators and reward models
are limited to single opaque scores, lack interpretability, or provide only coarse
analysis, making them insufficient for capturing the comprehensive nature of
video quality assessment. We present VIDEOSCORE2, a multi-dimensional, inter-
pretable, and human-aligned framework that explicitly evaluates visual quality,
text-to-video alignment, and physical/common-sense consistency while produc-
ing detailed chain-of-thought rationales. Our model is trained on a large-scale
dataset VIDEOFEEDBACK?2 containing 27,168 human-annotated videos with both
scores and reasoning traces across three dimensions, using a two-stage pipeline
of supervised fine-tuning followed by reinforcement learning with Group Rela-
tive Policy Optimization (GRPO) to enhance analytical robustness. Extensive ex-
periments demonstrate that VIDEOSCORE2 achieves superior performance with
44.35 (+5.94) accuracy on our in-domain benchmark VIDEOSCORE-BENCH-V2
and 50.37 (+4.32) average performance across four out-of-domain benchmarks
(VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assess-
ments that bridge the gap between evaluation and controllable generation through
effective reward modeling for Best-of-N sampling.
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Figure 1: Overview of VIDEOSCORE2. We curate data from five different prompt sources and 22
T2V models with human annotated scores and rationale, which is further used for 2-stage training
(cold-start SFT then RL) to elicit the model’s thinking ability before scoring.

1 INTRODUCTION

Recent progress in text-to-video (T2V) generation (OpenAll 2024; Kuaishoul [2025; [Wan et al.,
2025) has enabled models to produce increasingly realistic and coherent videos, expanding their
potential across domains such as entertainment, education, and simulation. Yet, evaluating the
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quality of such videos remains a core bottleneck. Unlike text or image evaluation, video assess-
ment must jointly consider visual fidelity, semantic adherence to prompts, and physical plausibil-
ity—dimensions. These abilities requires the backbone vision language model (VLM) to not only
possess superior visual understanding ability but also comprehensive physical common senses.

Many powerful video evaluators/reward models have been developed these days and demonstrate
strong performance in various video preference and point-score benchmarks. Examples works in-
clude VideoScore (He et al.,[2024)), VideoPhy?2 (Bansal et al.}[2025)), VideoReward (Liu et al.,|2025),
etc. However, while these works present superior ability in scoring accuracy, they all collapse into
a single opaque score, where no rationale is given for accountability. What’s more, these models
are all trained via supervised fine-tuning on the collected dataset directly, limiting their generaliza-
tion ability on the OOD data points (Chu et al., [2025)).

To address this gap, we propose VIDEOSCORE?2, a multi-dimensional, interpretable, and human-
aligned evaluator for Al-generated videos. VIDEOSCORE2 not only outputs structured scores
along three axes—(1) visual quality, (2) text alignment, and (3) physical/common-sense con-
sistency—but also provides detailed chain-of-thought style analyses before giving its judgments.
This “thinking-before-scoring” design makes VIDEOSCORE2 unique among evaluators, enabling
transparent and human-like reasoning. Furthermore, unlike some prior models whose SFT train-
ing restricts them to in-domain settings, VIDEOSCORE2 demonstrates strong generalization across
diverse out-of-domain benchmarks, confirming its robustness and reliability for video generation.

For training VIDEOSCORE2, we curated a large-scale dataset of multi-dimensional evaluations,
VIDEOFEEDBACK2, that combines quality scores with reasoning traces. The text-to-video prompts
were sourced from both existing datasets and our manually designed cases in some special scenarios
(e.g., multiple actions, OCR text, camera motion). The videos were generated by over twenty T2V
models spanning from early baselines to recent state-of-the-art modern generative systems, marking
a more fine-grained video quality gradient. Our annotators were instructed to provide scores (1-5) as
well as brief diagnostic comments across three dimension, which were later expanded into detailed
rationales through an LLM semi-blind scoring and alignment pipeline. This design yields a diverse,
reliable, and reasoning-augmented dataset that serves as the foundation for teaching VIDEOSCORE?2
both what to evaluate and how to reason. As a result, we derived 2933 unique prompts, 27168 gen-
erated videos and 81504 scores with rationales in total. We also split 500 exmaples as a new video
point-score benchmark: VIDEOSCORE-BENCH-V?2.

During the experiments, we adopt a two-stage training pipeline. First, a cold-start supervised fine-
tuning (SFT) is applied to instill structured output formatting and basic reasoning capabilities. Then,
we employ Group Relative Policy Optimization (GRPO) with RL through to further strengthen ana-
Iytical robustness, refine interpretability, and align evaluations with human preference distributions.

Extensive experiments demonstrate the effectiveness of VIDEOSCORE2. On the in-domain
VIDEOSCORE-BENCH-V2, VIDEOSCORE?2 achieves 44.35 (+5.94) in point-score accuracy, 90.78
(+4.01) in relaxed accuracy and 60.37 (4-8.32) in PLCC with significant improvements compared
to the previous SoTA. Our model consistently achieves superior performance in the out-of-domain
(OOD) benchmarks, reaching 50.37 (+4.32) average performance across 2 OOD preference and 2
OOD point score benchmarks. Furthermore, we show VIDEOSCORE2’s potential to be applied as
a reward model for T2V generation via Best-of-N (BoN) sampling. We also conducted detailed ab-
lation study to understand importance of rationale for SFT, cold-start SFT for RL, and score output
format, etc. Results demonstrate RL with cold-start SFT and rationale as the best parctice.

2 RELATED WORKS
2.1 TEXT-TO-VIDEO GENERATION

Research on text-to-video (T2V) generation has progressed rapidly with the introduction of large
diffusion and Transformer-based architectures. Early milestones include ModelScope (Wang et al.,
2023)), which provided one of the first open-source diffusion pipelines for T2V, making the task
widely accessible. Subsequent VideoCrafter2 (Chen et al.} 2024) improved temporal fidelity with
enhanced motion realism under data constraints. More recently, CogVideoX (Yang et al., [2024)
employed a large DiT backbone to achieve high resolution and narrative coherence. At the industrial
scale, OpenAl Sora (OpenAll [2024) positions itself as a “world simulator,” capable of generating
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long videos with rich physical plausibility. Similarly, an open-sourced work StepVideo-T2V (Ma
et al., 2025a) emphasizes scalable training and efficient architecture design to support long and
coherent video synthesis. Other commercial systems such as Veo 3 (Google, 2025a), Kling-1.6
(Kuaishou, [2025)), and Pika-2.2 (Pika-Labs| [2025) further highlight advances in controllability, and
human-centric generation. Despite these achievements, systematic and human-aligned evaluation of
video qualities from visual perception to semantic reasoning remains limited, underscoring the need
for multi-dimensional and interpretable evaluation frameworks.

2.2 REWARD MODELING FOR VISION

Reward modeling has become a central paradigm for aligning generative models with human pref-
erences in both image and video domains. Early methods such as Dover (Wu et al., 2023a) and
ImageReward (Xu et al., [2023) provide single scalar scores, which are effective but insufficient for
capturing the multi-faceted nature of visual quality. More recent approaches—VideoReward (Liu
et al.,[2025)), UnifiedReward (Wang et al., 2025c), and Q-Insight (Li et al.,|2025)—introduce multi-
dimensional scoring, yet are limited to numeric ratings without explanatory reasoning. Other efforts
like LiFT (Wang et al., [2025b) provide short analytical comments, but remain broad and lack the
depth necessary for systematic evaluation. Addressing these limitations, VIDEOSCORE?2 delivers
multi-dimensional assessments together with long-form analytical reasoning, making its evalua-
tions both human-aligned and interpretable. Moreover, unlike many existing reward models whose
reliance on SFT training often leads to poor generalization, VIDEOSCORE?2 demonstrates robust
performance across OOD benchmarks, underscoring its potential as a more reliable evaluator.

2.3  VIDEO UNDERSTANDING AND REASONING

Video understanding and reasoning has been a long-standing problem in multimodal learning. Since
2022, transformer-based models have become the backbone of video understanding. Works like
Video Swin Transformer (Liu et al., 2021) and InternVideo (Wang et al., [2022)) show the benefit of
large-scale pretraining and hierarchical temporal modeling. Extending to video—language reasoning,
models such as Video-LLaMA (Zhang et al.,2023), Video-LLaVA (Lin et al., 2024b)), and mPLUG-
Owl-V (Ye et al}[2024) align LMMs with video for open-ended QA and grounding. Recent efforts
emphasize long video understanding, including LongVLM (Weng et al.| 2024)), Video-ChatGPT
(Maaz et al., 2024), and benchmarks like Video-MME (Fu et al., 2025) and VideoEval-Pro (Ma
et al.| 2025b)), which stress more realistic, open-ended evaluation of extended video reasoning.

Table 1: Comparison of VIDEOSCORE?2 and existing 9.65% -
reward models for multi-dimensions, rationale sup- 10.07% motion
port, and dataset recency. multi-

action

4.33% ocRr

Method Input Multi-Dim  Rationale data recency (yy.mm) 54.77%
DeQA-Score image X X 24.10 21.19%
Q-Insight image v X 24.10 :
VisionReward video X X 24.08 Koala el
VideoReward video v X 24.09
UnifiedReward  video v X 24.12
VIDEOSCORE2  video v v 25.04

Figure 2: Prompt source proportion.
3 DATASET CURATION

3.1 DATA PREPARATION

Prompt Collection. Our dataset prompts come from two sources: existing datasets VidProM
(Wang and Yang, [2024) and Koala-36M (Wang et al.l [2025al), and manually collected ones. Vid-
ProM provides real user queries from generative model communities, while Koala-36M contains
detailed and structured captions that can be adapted into text-to-video prompts. Since some raw
prompts are abstract, incomplete or unsuitable, we adopt a two-stage filtering pipeline: (1) rule-
based filtering is applied to remove prompts that are unsuitable due to length, format, or other
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Table 2: Definition and Checklist of Evaluation Dimensions.

Dimension Definition and Checklist

Quality of visual viewing experience, including resolution, overall and local

Visual Quality clarity, smoothness, brightness stability, distortions, etc.

The alignment between video content and text prompt, in terms of subjects,

Text Alignment actions, details, styles, and sequential events, etc.

Whether the video is normal and aligns with common sense, or physical laws,
based on everyday knowledge and intuition. Check for abrupt changes,
distortions, counterintuitive scenes, and anything weird and abnormal.

Physical / Common-sense
Consistency

constraints; (2) LLM semantic filtering or revising is used to discard or revise prompts that are
abstract, incoherent, or bad for short video generation. See details in Appendix

For the manually collected part, we focus on three categories: multi-action, OCR text, and camera
motion. This design is motivated by known limitations of current text-to-video (T2V) models in
failing to express multiple actions (Wang et al.,|2024b), render readable text (), and reproduce camera
motion (). To construct the multi-action and OCR text prompts, we first design about 100 seed
examples and then ask LLMs to expand them creatively and consistently, while camera motion

prompts are built by appending motion instructions (e.g., “pan left”, “tilt up”’) to some sampled
prompts directly.

Video Collection We collected videos from over 20 T2V models, ranging from early diffusion
systems such as ModelScope (Wang et al., |2023) to advanced generators such as StepVideo-T2V
(Ma et al.l 2025a)) and Kling-1.6 (Kuaishoul [2025)). For annotation, models were grouped into four
coarse tiers (Poor/Early, Medium, Good, Perfect/Modern). For each prompt, we randomly sampled
10 models to generate videos, ensuring a balanced distribution across tiers. This design enabled
direct comparisons among videos with the same semantic content but different quality levels, im-
proving scoring consistency and reliability. By covering a wide range of resolutions (256x256
to 1980x982), frame rates (8—30 fps), and durations (1-6s), our dataset offers diverse variability,
helping VIDEOSCORE?2 learn quality from poor output to near-photorealistic generations (see Ap-
pendix [A.2] for details and [A.3]for video examples).

Evaluation Dimensions We evaluate videos along three dimensions: visual quality, text align-
ment, and physical / common-sense consistency, to capture fidelity, semantic accuracy, and
content-level reasoning. Unlike VideoScore with five dimensions(He et al., 2024), we remove dy-
namic degree (mostly prompt-dependent) and subsume temporal consistency under visual quality.

3.2 ANNOTATION

We provide dimension-specific checklists in Table [2| to help annotators understand the task and
better annotate. Annotators are required to assign integer scores (1-5) and short comments for each
dimension, later expanded into full rationales by an LLM. For example, the comments can be: “Low
resolution, brightness is unstable” or “The second and third actions in the prompt are missing”. Our
team consists of 15 annotators who were trained with annotated examples and pilot rounds (30-50
videos each) with reviewer feedback to ensure consistency. See detailed guidelines for annotation

in Appendx

Quality control was ensured through periodic audits, where 10-20% of data was spot-checked for
scoring accuracy and comment quality. Annotators with inconsistent work received feedback and
were required to revise their annotations. As shown in Table |3} the inter-annotator agreement (IAA)
indicates good labeling reliability.

3.3 SFT DATA PROCESSING

Rationale Elicitation We use Claude-4-Sonnet (Anthropic,|[2025) (with thinking enabled) to elicit
CoT-like rationales (Wei et al., 2023). The LLM receives evaluation instructions, sampled frames,
annotator comments (without scores), and 2-3 few-shot examples (see Appendix [A.3). Its outputs
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Table 3: Inter-Annotator Agreement (IAA) re-
sults (R / ). R = Relaxed Match (all annota-

Table 4: Human inspection on the differ-
ence between model score and human score in

tor scores within a margin of 1), a = Krippen-
dorff’s Alpha.
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Figure 5: Human annotated score distribution in
SFT data.

Figure 4: Rationale length (num of words).
Most are in 200-600 words.

are compared with human scores, and reconciliation follows: (i) if the difference < 1, keep the
human score; (ii) if the difference = 2, average the two; (iii) if any dimension differs > 3, the whole
entry is re-scored, up to three times. After resampling, fewer than 10% of entries were discarded.
On 4,951 videos (14, 853 scores), we report the distribution of human—model differences in Table[z_f}

Align Rationales with Scores Since the final score may occasionally differ from that mentioned
in the rationale by one point, we use GPT-5-mini (OpenAlL [2025) to align rationales with scores
(prompt template shown in Appendix [A.5). This lightweight adjustment preserved the rationale’s
meaning while ensuring scoring consistency: typically, it involved only minor edits, such as soft-
ening or intensifying descriptions of quality issues (e.g., “slight blur” — “noticeable blur”’). The
rationale length distribution is shown in Figure[d] and the score distribution in Figure 5]

Building data for SFT and RL  After processing, we obtain 27,168 samples (denoted as VIDE-
OFEEDBACK2), and the proportions of videos across the four quality tiers (from best to worst) are
10.36%, 33.53%, 41.77%, and 12.54%, respectively (Appendix @) 500 videos are held out as
the test set (VIDEOSCORE-BENCH-V2) and the rest used for training. The SFT data follow a QA
format, where the guery specifies the task (Table[TT), and the answer provides rationale and scores.
For RL, we follow Video-R1 (Liu et al., |2025)), using the same structure with problem and solution
to compute accuracy rewards.

4 VIDEOSCORE2

4.1 TRAINING AND INFERENCE SETUP

SFT Cold-Start. We adopt a two-stage training strategy for VIDEOSCORE2. To ensure basic
format-following ability and task familiarity, we first perform supervised fine-tuning (SFT) as the
cold-start. The training is implemented with the LLaMA-Factory (Zheng et al.,|2024a) framework,
and Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as base model.

For preparing the SFT checkpoint to initialize RL, we consider both the performance on
VIDEOSCORE-BENCH-V2 and training loss stability: high benchmark scores may indicate over-
fitting on in-domain tests and weak generalization to others. Balancing these factors, we adopt the
configuration described in Appendix [D.T]as our main SFT model. Additional ablations on sampling
fps, learning rate, and training epochs are reported in Appendix and Appendix
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Reinforcement Learning We further train SFT checkpoint with open-source video reinforcement
learning framework Video-R1 (Feng et al., 2025) implementing GRPO (Shao et al.,|2024)) to enhance
its analytical robustness and human alignment:

* Accuracy Reward. The reward is defined by the degree of match. The design of this reward
signal follows the principle that only predictions within 4-1 of the ground truth on all dimensions
should receive non-zero reward. On a 5-point scale, a deviation of one point is marginally
acceptable, whereas deviations of two or more points indicate serious misjudgments and often
contradict the ground-truth evaluation.

1.0 if all three dimensions match exactly,
0.7 if two match and one differs by 1,
Ry = < 0.4 if one matches and two differ by 1, (D
0.1 if all three differ by 1,
0 otherwise.

e Format Reward. To ensure the output includes both a rationale and final scores, we assign
R¢ne = 1 if the response contains the <think> tag with rationale, and Ry, = 0 otherwise.

* Final Reward. Following the setting for general video reasoning tasks in Video-R1, final reward
R = Rycc + ARfm.

In practice, when starting from the SFT checkpoint, outputs already follow the query template,
making the format reward redundant; thus we set A = 0 to focus on accuracy. In contrast, RL from
the base model without SFT often shows format deviations, so we set A = 0.3 to encourage valid
rationales and scores.

RL training uses a learning rate of 2e-6 with G = 8 generations per rollout, on 4xA100 GPUs
(about 8 hours per 100 steps). Evaluations on VIDEOSCORE-BENCH-V2 and OOD benchmarks
show performance peaks at around 300 steps; beyond this, performance on VIDEOSCORE-BENCH-
V2 drop due to overfitting (Appendix [D.5). We therefore adopt the 300-step checkpoint for all
reported results.

Inference. Both the SFT and RL models output free-form text with rationale and final scores, fol-
lowing the same query template (Table . To generalize discrete predictions {1,2,3,4,5}, we set
decoding temperature to 0.7 and convert them into soft float scores using token-level probabilities:

p(s) 2)

g = argmaxp(s) X —————.
S

> p(j)

This yields smoother scores in [1, 5] while preserving interpretability. We further ablate score format
(int vs. float) in Table|/| and inference fps (2, 4, 8) in Appendix all reported results use 2 fps
and normalized float scores.

4.2 BENCHMARKS

In addition to the in-domain test on the VIDEOSCORE-BENCH-V2, we do further assessment on
four out-of-domain benchmarks, testing the generalization ability across a wide range of video un-
derstanding and quality evaluation scenarios. The out-of-domain benchmarks can be categorized
into two types based on the evaluation task: Pairwise Preference and Point Score.

Pairwise preference benchmarks require the evaluator model to compare a pair of videos and iden-
tify which one exhibits higher quality.

* VideoGenReward-Bench (Liu et al.|[2025)), built on VideoGen-Eval (Yang et al.| 2025)), contains
4,691 videos and 25,234 pairs. Annotators provide pairwise preference labels on dimensions of
Visual Quality, Motion Quality, Text Alignment, and Overall preference.

* T2VQA-DB (Kou et al., 2024)) assigns each video a human quality score (0—100). We sample
2,000 videos and derive 1,822 preference pairs by comparing the scores of videos.

The preference benchmarks both have ties, For models that output float scores, we treat two videos

as having equal preference if their score difference is within 5% of the model’s score range. (e.g., in
[0.0,5.0], scores 3.28 vs. 3.26 = tie).
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Figure 6: Accuracy rewards in RL training. Figure 7: Comparison of Best-of-N sampling
with VIDEOSCORE2 and random ones on av-
eraged 5 VBench dimensions.

Point score benchmarks focus on how well the evaluator’s numerical predictions (after appropriate
rescaling) align with the ground-truth scores in overall quality or fine-grained dimensions.

* MJ-Bench-Video (Tong et all |2025) contains 2,170 human-labeled videos with aspect-level
scores in {0,1,2}. We use {Fineness, Alignment, Coherence & Consistency} and average
VIDEOSCORE?2 ’s three dimensions to compare with their overall score.

e VideoPhy2-test (Bansal et al.,[2025) includes 3,396 videos annotated on a 1-5 scale for Seman-
tic Adherence and Physical Consistency, which directly match VIDEOSCORE2 ’s second and
third dimensions.

For consistency across benchmarks with different focuses and dimensions, we perform dimension
mapping and ground-truth score rescaling, as detailed in Appendix [B.T}

4.3 BASELINE MODELS

To ensure a comprehensive and rigorous evaluation of VIDEOSCORE?2, we evaluate it against more
than 10 baseline methods spanning diverse methodological families, divided into two classes.

Prompting MLLMs, we employ the same query templates as in the training data and provide sam-
pled video frames as input to current most advanced LLMs with vision support for direct scoring,
including Gemini-2.5-Pro (Google, 2025b), GPT-5 (OpenAl 2025)), Claude-4-Sonnet (Anthropic,
2023)), Grok-4 (xAlL [2025), GLM-4.1v-9b-Thinking (Team et al., |2025)), Llama-4-Maverick (Meta,
2025) and Qwen2.5-VL-72B-Instruct (Bai et al.| [2025).

Vision Reward/Scoring Models, can be categorized based on whether it supports video input.

* Image-only Models: We adopt ImageReward (Xu et al.,[2023)), DeQA-Score (You et al.,[2025)),
and Q-Insight (Li et al.l [2025). For video evaluation, frames are sampled at the same fps as
the video models. ImageReward and DeQA-Score yield a single overall score, while Q-Insight
supports aspect-specific queries, which we align with the three dimensions of VIDEOSCORE?2.

e Video-Capable Models: We include VideoReward (Liu et al.l 2025), UnifiedReward (Wang
et al.,[2025c), VideoScore (He et al., 2024)), and VideoPhy2 (Bansal et al.,2025), which support
multi-dimensional scoring. Others such as VisionReward (Xu et al.,2024), Q-Align (Wu et al.|
2023b), and DOVER (Wu et al.,[2023a)) provide only a single overall score.

Most models output scores without detailed reasoning. VisionReward uses fine-grained binary ques-
tions aggregated into a score, but lacks explicit explanations. LiFT adds short comments, yet these
remain high-level and superficial. In contrast, VIDEOSCORE?2 produces both dimension-level scores
and comprehensive analyses, making its evaluation more interpretable. Since different models use
varying dimensions and scales, we rescale and adjust all outputs to match VIDEOSCORE?2 ’s setting
(detailed in Appendix [B.2).

4.4 EVALUATION RESULTS

We report results on VIDEOSCORE-BENCH-V2 in Table [5] with Accuracy (w/o and w/ relaxation)
and correlation metrics (PLCC). For float-output models, scores are rounded for accuracy and kept
raw for correlations. VIDEOSCORE? surpasses the best baseline across all dimensions and metrics.
We further test on four out-of-domain (OOD) benchmarks: two pairwise preference and two point-
score (Section . In the tables, Overall denotes an explicit overall score, while Avg is the mean
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Table 5: Accuracy and correlation between model answer and human score on VIDEOSCORE-
BENCH-V2. Relaxed Accuracy counts cases where the prediction differs from the ground truth
by at most one point. Bold denotes the best model and the underlined denotes the second best.

VIDEOSCORE-BENCH-V2 ‘ Accuracy ‘ Relaxed Accuracy ‘ PLCC

Visual Align  Phy ‘ Avg ‘Visual Align  Phy ‘ Avg ‘Visual Align  Phy ‘ Avg

Prompting MLLM
Claude-Sonnet-4 33.07 29.86 23.85 | 2893 | 7635 7695 6192 | 71.74 | 20.17 30.64 18.01 | 22.94
Gemini-2.5-Pro 2992 29.72 24.07 | 27.90 | 7149 70.88 61.45 | 67.94 | 26.71 3296 19.75 | 26.47
GPT-5 30.72 2791 20.08 | 26.24 | 73.90 7229 60.84 | 69.01 | 13.38 2334 17.24 | 17.99
GLM-4.1v-9B 3327 3146 2142|2872 | 80.76 77.15 6122 | 73.04 | 28.03 16.80 10.18 | 18.34

Reward/Scoring Models for Image

ImageReward 29.06 28.06 27.26 | 28.13 | 65.13 68.94 61.72 | 65.26 | 2823  40.76  23.26 | 30.75
DeQA-Score 36.87 28.66 32.06 | 32.53 | 8537 77.15 80.96 | 81.16 | 44.87 2396 29.73 | 32.85
Q-Insight 33.60 30.60 31.00 | 31.73 | 81.40 77.40 75.60 | 78.13 | 41.05 2544 27.54 | 31.34

Reward/Scoring Models for Video

VideoScorel.1 4148 34.87 38.88 | 3841 | 90.98 8237 8697 | 86.77 | 49.00 3090 47.00 | 42.30
VideoReward 2345 2886 - | 2616 | 6032 6774 - | 64.03 | 4636 4831 - | 47.34
UnifiedReward 2520 2720 22.80 | 25.07 | 71.00 64.80 68.00 | 67.93 | 58.61 4391 53.64 | 52.05
VisionReward 4128 3347 3507 | 36.61 | 87.17 8437 82.16 | 84.57 | 46.85 4532 3825 | 4347
Q-Align 28.66 28.06 27.86 | 28.19 | 75.55 69.74 68.94 | 7141 | 5471 3401 3778 | 42.17
AIGVE-MACS 2012 1248 14.09 | 1556 | 62.37 4648 4527 | 5137 | 2730 690 13.03 | 15.74
VideoPhy2-AutoEval - 2846 1623|2235 | - 7375 5231|6303 | - 3542 2541 | 30.42
Dover 39.08 31.06 31.86 | 34.00 | 84.77 7475 7592 | 7848 | 5024  32.83 33.00 | 38.69
VIDEOSCORE2
Ours 50.10 43.88 39.08 | 44.35 | 92.99 9138 87.98 | 90.78 | 60.13 62.60 52.73 | 60.37
A over Best Baseline +8.62  +9.01 +0.20 | +5.94 | 4+2.80 +7.01 +1.01 | +4.01 | +1.52 +14.29 -0.91 | +8.32

Table 6: Performance comparison on out-of-domain benchmarks, with 2 pairwise preference bench-
marks and 3 point-score benchmarks. Bold denotes the best model and the underlined denotes the
second best. For “OO0D Preference Benchmark,” performance is computed over all test samples.

‘ ‘ OOD Preference Benchmark ‘ OOD Point Score Benchmark
OOD Bench Average

VideoGen- T2VQA-DB | MJ-Bench VideoPhy2
Reward Bench (Preference) -Video -test

Reward/Scoring Models for Image

ImageReward 37.40 47.14 43.46 37.51 21.48
DeQA-Score 40.54 53.88 35.22 44.19 28.85
Q-Insight 46.05 54.05 46.65 52.58 30.90

Reward/Scoring Models for Video

VideoScore-v1.1 38.87 16.79 39.18 71.57 27.95
VideoReward 44.73 59.69 36.15 51.75 31.33
UnifiedReward 37.22 53.31 50.39 23.18 22.02
VisionReward 42.86 5431 37.64 56.91 22.58
Q-Align 32.62 42.05 43.24 21.97 23.22
AIGVE-MACS 30.48 37.09 3691 31.00 16.93
VideoPhy2 29.13 30.75 24.12 24.00 37.64
Dover 42.70 54.27 44.62 43.69 28.21
VIDEOSCORE2
Ours 50.37 51.53 50.60 65.77 33.58
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Table 7: Ablations on RL start point, rationale in SFT and score output format.

‘ In-Domain ‘ OOD Preference Benchmark ‘ OOD Point Score Benchmark

Ablations VIDEOSCORE-BENCH-V2 VideoGen- T2VQA-DB | MJ-Bench VideoPhy2
Reward-Bench (Preference) -Video -test

RL w/o SFT 36.70 54.53 54.54 56.43 27.69

RL w/ SFT 44.53 51.53 50.60 65.77 33.58

w/ CoT (default) 39.81 50.79 52.36 66.88 30.02

w/o CoT 32.17 54.74 58.63 59.06 21.83

Normalized (default) 44.53 51.53 50.60 65.77 33.58

Raw Int Score 45.83 51.19 30.22 66.51 34.51

across dimensions; preference results include ties. As shown in Table @, while VIDEOSCORE?2 is
not always the top model on each benchmark, it achieves the highest overall average.

To further validate the effectiveness of VIDEOSCORE?2 in video evaluation, we conduct human in-
spection to examine whether its predicted scores were reasonable and whether the analyses were
accurate and appropriate. Qualitative examples are provided in Appendix [E]

4.5 BEST-OF-N SAMPLING WITH VIDEOSCORE?2

We evaluate VIDEOSCORE?2 with best-of-n (BoN) sampling (n = 5), where the model selects the
best video among candidates. Six T2V models of moderate or poor quality are used, avoiding very
strong ones to highlight the BoN effect. For 500 prompts, each model generates 500 x 5 videos.
Comparison on VBench (Figure[7) shows BoN consistently outperforms random sampling, confirm-
ing that VIDEOSCORE?2 effectively guides higher-quality selection. See full results in Appendix|C.4]

4.6 ABLATION STUDY

Besides the ablations on SFT settings, RL training steps, as well as inference configurations (Ap-
pendix D)), we conduct the following studies, providing more insights of designing VIDEOSCORE2,
summarized in Table

Cold Start. We compare RL initialized from the base Qwen2.5-VL-7B-Instruct versus the SFT
checkpoint. The SFT version achieves higher average scores across both VIDEOSCORE-BENCH-
v2 and OOD benchmarks, even if not superior on every benchmark. This indicates SFT provides a
stronger starting point, enabling RL to focus on reward alignment rather than task formatting.

SFT w/ and w/o rationale We further test SFT with and without CoT-like rationales. While the
CoT-based version is slightly weaker on preference benchmarks, it performs significantly better on
point-score benchmarks and thus improves generalization on average. This confirms that rationales
are not only important for interpretability but also beneficial for overall robustness.

Score format. We ablate the output format by comparing raw integer scores and normalized float
scores. While integers show slight advantages on OOD point-score benchmarks, they perform no-
tably worse on OOD preference tasks. Using normalized float scores strikes a better balance, pre-
serving accuracy for point-score while capturing finer quality differences in preference settings.

5 CONCLUSION

In this work, we introduced VIDEOSCORE?2 for multi-dimensional, interpretable, and human-
aligned evaluation of Al-generated videos. By building a comprehensive annotation pipeline that
gathers diverse prompts, generative videos as well as reliable scores and rationales, we are able to
train VIDEOSCORE?2 in the 2-stage paradigm. Comprehensive experiments demonstrate that our
model outperforms existing evaluators across in-domain and out-of-domain benchmarks. We be-
lieve that VIDEOSCORE?2 open a path for trustworthy evaluation and human-aligned training of
generative video models. Furthermore, our evaluation results also shows that model still struggle in
evaluating physics and common senses in the generative models, highlighting the importance of a
world model for video evaluator. We leave this as a future direction worth to explore.
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A DATA COLLECTION AND PROCESSING

A.1 COLLECTING TEXT-TO-VIDEO PROMPTS
SOURCE 1: VIDPROM

Rule-based filtering.

* NSFW probability. The original dataset provides a probability that a given prompt may lead
to NSFW content. We exclude prompts with NSFW probability greater than 0.2, following
the original dataset’s setting.

* Trigger-word filtering. Exclude prompts intended for image-to-video generation, which
explicitly mention image attachments, and prompts specifying aspect ratios, or du-
ration, which cannot be freely controlled in most T2V models. The trigger-word
list includes: ["screen size", "16:9", "1:1", "3:4", "4k", "8k",
"seconds", "message", "attach"].

* Length control. Only prompts between 15 and 100 words are retained.

LLM Semantic filtering. To filter out unsuitable prompts, we use GPT-40-mini for semantic
checks and exclude problematic ones. Specifically, we remove prompts that:

* vague or meaningless, lacking a concrete task,
* containing specific people or names,

* missing substantive verbs or motion, closer to images than videos,

* describing over three actions or events, too complex for short videos.

SOURCE 2: KOALA-36M

Rule-based filtering.

 Since prompts come from real video captions, we only keep those associated with video
segments shorter than 5 seconds; longer captions usually describe too many actions and are
unsuitable for short video generation.

* Each video—caption pair includes a clarity score and an aesthetic quality score. We exclude
captions with clarity score below 0.95 or aesthetic score below 4.0.

LLM Semantic filtering and revising

» Same semantic checks as for VidProM, removing ambiguous or low-quality prompts.

SOURCE 3: OCR-TEXT (MANUALLY COLLECTED).

For the OCR-text category, we first drafted seed prompts that explicitly required text to appear
in the video, then expanded them using LLMs to create realistic yet creative scenarios where text
naturally integrates into the scene. These prompts are diverse and challenging, often harder to
generate than purely human-written ones. For example:

* A painter adds brush strokes to a canvas, with a palette that says ‘Portrait of a Lady, Acrylic
Paints, Warm Tones and Fine Detail’.

* A photographer adjusts their lens with ‘Capture the Perfect Shot: Photography Tips and
Tricks’ displayed on a screen in front of them.

In total, 200 prompts were collected.
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SOURCE 4: MULTI-ACTION (MANUALLY COLLECTED).

For the multi-action category, we followed a similar approach as OCR-text. We first drafted seed
prompts containing two or three connected actions, then expanded and rewritten them with LLMs
to produce diverse, story-like scenarios. In total, 200 prompts were collected, each describing a
short narrative with three consecutive actions. For example:

* A woman adjusts her glasses, glances at the book with focus, and flips to the next page with
a smile.

* A fluffy orange cat swats a ball of yarn, sends it rolling, then dashes after it and pounces
mid-roll.

SOURCE 5: CAMERA MOTION (MANUALLY COLLECTED).

For the camera-motion category, we did not generate entirely new prompts. Instead, we augmented
existing prompts by appending explicit camera movement instructions at the end. Common motions
include “Zoom in,” “Zoom out,” “Pan left,” “Pan right,” “Pan up,” “Pan down,” “Tilt up,” “Tilt
down,” and “Tracking shot.” This simple yet effective strategy allows the dataset to capture scenarios
where video realism depends on both content generation and dynamic camera behavior.
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A.2 STATISTICS OF GENERATED VIDEOS

We generate videos for annotation using more than twenty text-to-video (T2V) models, spanning
from early diffusion-based systems such as ModelScope (Wang et al.} 2023) to recent high quality
generators like Kling-1.6 [2025). This ensures a broad quality spectrum, covering both

weak and strong generations.

As discussed in Section [3.1] to facilitate fairer comparisons and improve annotation reliability, we
categorize these models into four coarse quality tiers. For each prompt, ten videos are sampled
from ten different models while maintaining a balanced distribution across the four tiers. Typically
1-2 from "Poor / Early”, 3-4 from Moderate, 3-4 from ”Good”, and 1 from “Perfect / Modern”.
The resulting videos vary widely in characteristics, with durations ranging from 1 to 6 seconds,
resolutions from 256256 up to 1920x982, and frame rates from 8 to 30 fps. A full summary of

the models (and its variants) used is provided in Table@

Table 8: Detailed information of videos in our dataset, including t2v-model sources, video fps,

resolution, duration, etc.

T2V Model (Suffix code in dataset) Open Source | FPS Resolution

Duration

Num Proportion

Tierl: Perfert / Modern. 2814 videos, 10.36%

Kling-1.6 (Kuaishou! ) N 240 1280%720  5.0s | 611  2.25%
Sora (OpenAl|2024) (s) N 300 19204982  10.0s | 298  1.10%
Pika-2.2 (Pika-Labs| 2025) (¢t N 240 1280¥720  5.0s | 321  1.18%
StepVideo-T2V (Ma et al.|2025a} (y) Y 250 992%544  40s | 741 2.73%
Wanx-2.1 (14B) W) Y 250 832%480  39s | 281  1.03%
Ruyi (Team. Y 240 1008*576  5.0s | 184  0.68%
CogVideoX-1.5 (Yang et al.| 2024 () Y 100 1360768  4.0s | 378  1.39%
Tier2: Good. 9598 videos, 33.53%
Wanx-2.1 (1.3B) (Wan et al.|2025) (v) Y 240 832%480  39s | 1497  551%
MagicTime (iYuan et al. 2025} (@ Y 8.0 512%512 2.0s 1741 6.41%
Mochil-Preview (ITeam 2024b} (c) Y 10.0 848*480 1.9s 1649 6.07%
LaVie-base (Wang et al.|2024a) (h) Y 80 512%320  20s | 1547  5.69%
CogVideoX (5B) (Yang et al.||2024) (f) Y 10.0  720*480 4.0s 1786  6.57%
OpenSora-Plan (v1.3) (Lin et al|2024a) (u) Y 180 640%352 525 | 1378 5.07%
Tier3: Moderate. 11349 videos, 41.77%
CogVideoX (2B) ‘Yang et al. (e) Y 10.0  720*480 4.0s 1774 6.53%
LTX-Video-0.9.5 (HaCohen et al.|[2024} (2) Y 250 704%480  48s | 1692  6.23%
OpenSora (v1.2) (Zheng et al.|2024b) (x) Y 80 6407480  1.6s | 907  3.34%
Latte (Ma et al.| 2025c) (b) Y 100 512%512  1.6s | 1510  5.56%
VideoCrafter2 (Chen et al.| 2024) (n) Y 100 5125320 16s | 1172 431%
Vehitect-2.0 (Fan et al.|2025} (p) Y 100 512%320  1.6s | 1235  4.55%
AnimateDiff FGuo etal.|2024) @) Y 100 512%512  24s | 1755  6.46%
Hotshot-XL (Mullan et al.;[2023) (m) Y 8.0 673%*384 1.0s 1304 4.80%
Tierd: Poor / Early. 3407 videos, 12.54%
ModelScope (Wang et al.] 2023) (d) Y 10.0 256*256 2.4s 967 3.56%
LTX-Video-0.9.1 (HaCohen et al.| 2024} (i) Y 100 704%512  33s | 1333 491%
ZeroScope (Sterling| 2024} (j) Y 100 256%256  24s | 395  145%
T2V-Zero (Khachatryan et al.| 2023) (k) Y 100 256%256  0.8s | 712 2.62%

All: 27168 videos
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A.3 VIDEO EXAMPLES FROM DIFFERENT QUALITY TIERS.

Below we show some videos of each quality tier, from “Perfect / Modern” to ’Poor / Early”.

X

Example video of the quality tier “Perfect / Modern”, from Kling-1.6. Prompt is: A woman ties a
red ribbon around a gift box, carefully wraps it in shiny paper, and then smiles as she hands it to her
friend.

Example video of the quality tier “Perfect / Modern”, from Sora. Prompt is: A young man in
glasses and a gray t-shirt stands on a wooden deck, gesturing with his hands and expressing dif-
ferent emotions. The background shows a scenic forest with tall trees and a clear sky. His facial
expressions change as he moves his hands, sometimes near his face, indicating various reactions.
The camera captures him in a steady medium shot, focusing on his upper body and gestures.

Example video of the quality tier “Good”, from LaVie-base. Prompt is: A hawk perches on a
leafless tree branch, facing away from the camera and gazing up at the clear blue sky. The calm
scene features a few wispy clouds and barren tree branches. The hawk remains still, with occasional
head movements, set against a peaceful, natural backdrop.

Example video of the quality tier “Good”, from MagicTime. Prompt is: A scene showing the lost
bunny, its eyes wide with fear, as it navigates through a dense forest, with Sammy guiding it safely
home.
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Example video of the quality tier “Moderate”, from AnimateDiff. Prompt is: 5 boys of age 17
standing outside a school building. Three of them are looking at other students passing by, one is
looking at his mobile, and two are talking to each other. Crane up.

Example video of the quality tier “Moderate”, from Hotshot-XL. Prompt is: A cozy family kitchen
with breakfast items on the table. Xiao Ming, wearing traditional home attire, engages in a lively
conversation with his parents, emphasizing the warmth of family bonds and traditional values.

Example video of the quality tier “Poor / Early”, from ModelScope. Prompt is: The Kurdish king
wears a crown of gold on his head in 1850. He is imposing, serious, authoritative, loving, tall, and
handsome. He walks among the people in Kurdish clothes. Tilt down.

Example video of the quality tier “‘Poor / Early”, from Text2Video-Zero. Prompt is: A busy highway
with cars and trucks moving in both directions under a clear blue sky. The scene, filmed from a
moving vehicle, highlights a white van with ’Martinez returns from Florida’ on its side.
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A.4 ANNOTATION DETAILS.

Main Instructions The main instruction required annotators to assign a score for each dimen-
sion based on its definition and to provide a short comment describing the issues observed. For
instance, under Visual Quality, comments could include “low resolution,” “local blur,” or “bright-
ness flicker.” For Text-to-Video Alignment, annotators were asked to note missing elements from
the prompt, while for Physical/Common-Sense Consistency, they were instructed to highlight any
violations of physical laws, common sense, or abnormal artifacts.

Detailed Guidelines In addition, we provided detailed annotation guidelines to ensure consis-
tency: (i) if a dimension was rated 5, the comment could be omitted, since in such cases a template-
based rationale could be generated; (ii) if a video was entirely black or unrecognizable, it should be
skipped. Dimension-specific clarifications were also given:

* Visual Quality: Videos scoring 5 should look almost perfect, comparable to real footage;
while videos scoring 1 corresponds to severe flaws, where the subject, object, or motion is
hardly identifiable, or strong distortion/disconnection is present.

» Text-to-Video Alignment: For prompts with multiple actions (e.g., “Open the refrigerator,
put the elephant in, and close the door”), all actions must be checked for faithful realiza-
tion. While alignment often correlates with visual quality, clear and smooth videos may
still fail to match the prompt. Annotators were instructed to focus on whether the prompt
content was expressed correctly, ignoring minor extra details unless they severely misled
the meaning.

* Physical/Common-Sense Consistency: Most videos contain at least minor physical is-
sues, but the severity varies. If a prompt itself is unrealistic or absurd, annotators were
instructed to disregard this and judge the video independently. Complex reasoning was
unnecessary; everyday common sense was considered sufficient for evaluation.

Furthermore, annotators are informed that each batch of 10 videos they see sequentially corre-

sponded to the same prompt but came from different T2V models with diverse quality levels,
enabling fairer and more calibrated scoring.

21



Under review as a conference paper at ICLR 2026

A.5 PROMPT TEMPLATES FOR ANNOTATION PROCESSING

Table [9] shows the prompt template in LLM augmented scoring for eliciting detailed thinking from
human annotated quality comments. Table [T0|shows the prompt template for revising analysis pro-
cess when the human-annotated score and then adjusted model score are inconsistent with the think-
ing model’s output analysis. Table[TT|shows the prompt template for building query in SFT data and
running inference.

Table 9: Prompt template in LLM augmented scoring for eliciting detailed thinking from human
annotated quality comments.

We are collecting and processing human annotations for the quality evaluation of Al-generated videos.

Dimension definitions:
(1) Visual Quality:

Mainly evaluates the video’s visual and optical properties, including 'resolution, overall clarity, local blurriness, smoothness, stability
of brightness/contrast, distortion/misalignment, abrupt changes, and any other factors the affect the watching experience’. The key-
words written by the annotators are also mostly derived from the above factors.

(2) Text Alignment:

Mainly assesses whether the generated video fully and accurately depicts the elements mentioned in the text prompt, such as char-
acters, actions, animals, etc., as well as background, quantity, color, weather, and so on. So the keywords written by annotators
sometimes only indicate the elements that are missing from the video.

(3) Physical/Common-sense Consistency:

Mainly examines whether there are any violations of common sense, physical laws, or any other aspects in the video that appear
strange or unnatural. Most of the keywords provided by annotators point out the specific abnormalities or inconsistencies they
observed in the video.

With the reference of some frames of the video, and the comments of 3 dimensions from a human annotator may also be provided,
please do your best to analyze and give a INTEGAR score between 1 and 5 for these dimensions, where 1 means very bad, 3 means
medium, and 5 means very good.

Sometimes human comments may be brief or lacking details, or the human comments may be null, — please check the aspects in
dimension definitions and make sure to thoroughly perceive and analyze the video on your own. Your reasoning should be detailed,
professional, and comprehensive. **DO NOT mention any human comment in your thinking**; you should pretend not to
know these comments (if they are provided), they are provided solely to inform and enhance your understanding for better evaluation.

Output format:

Your response must follow the format below strictly:

“score_visual: “quality score” (this field is only allowed to be a number between 1 and 5, inclusive, ),

.

“score_t2v”: “quality score” (this field is only allowed to be a number between 1 and 5, inclusive),

.

“score_phy”: “quality score” (this field is only allowed to be a number between 1 and 5, inclusive),

DO NOT include any text before or after the json block.

Here is the Input:

Text prompt used to generate the video: $prompt

Comment for “visual quality”: $comment_visual

Comment for “text-to-video alignment” (the elements or events not expressed or not aligned in the video): $comment_t2v

Comment for “physical/common-sense consistency” (the elements or events that look weird, abnormal or unnatural): $comment_phy
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Table 10: Prompt template for revising analysis process when the human-annotated score and then
adjusted model score are inconsistent with the thinking model’s output analysis..

I’'m conducting a multi-dimensional quality assessment of Al-generated videos, focusing on the dimensions of (1) Visual Quality, (2)
Text Alignment, and (3) Physical/Common-sense Consistency.

I will provide a multi-dimensional quality analysis for a video. However, the scores assigned in the analysis may not be entirely
accurate. And the ground truth scores for each dimension will also be provided. Your task is to adjust the analysis text accordingly
to ensure it aligns with the actual scores. In many cases, this means revising the severity of issues for certain dimension based on the
ground truth scores. The scale of score is [1, 2, 3, 4, 5].

**Important Notes:**

(1) **Any human comment should NOT be mentioned in the output analysis**. If the input analysis quote or mention human
comments, you should pretend not to know them in your output, they are provided solely to inform and enhance your understanding
for better evaluation.

(2) **DO NOT** alter the overall structure or core meaning of the analysis. Only revise specific expressions or phrases as
needed so that the content reasonably reflects the provided scores.

(3) The input original analysis is constructed from the sampled frames of the video, if the input analysis includes evaluations of
individual frames or frame-by-frame assessments, you should appropriately transform them into an overall evaluation of the entire
video, since the final output is expected to be based on the video as a whole.

(4) Your output analysis should be approximately the same length as the input analysis. If the input analysis is not very detailed and
specific, you may extend your output accordingly.

Output format:
Your response must follow the format below strictly:

{ “new_thinking™: “modified analysis” (this field is only allowed to be string), }
DO NOT include any text before or after the dictionary block.

Here is the input:

multi-dimensional analysis: $thinking
ground truth score of Dim-1 “Visual Quality”:$v_score

ground-truth scoreof Dim-2 “Text-to-Video Alignment”:$t_score

ground-truth of Dim-3 “Physical Consistency’ (also referred to as Common-sense Consistency): $p_score

Table 11: Prompt template for building query in SFT data and running inference.

‘We would like to evaluate its quality from three dimensions: ’visual quality’, "text-to-video alignment’ and "physical/common-sense
consistency’.

Below is the definition of each dimension:

(1) visual quality:

The dimension ’visual quality’ cares about the video’s visual and optical properties, including ‘resolution, overall clarity, local blur-
riness, smoothness, stability of brightness/contrast, distortion/misalignment, abrupt changes, and any other factors the affect the
watching experience’. The keywords written by the annotators are also mostly derived from the above factors.

(2) text alignment:

The dimension ’text-to-video alignment’ mainly assesses whether the generated video fully and accurately depicts the elements
mentioned in the text prompt, such as characters, actions, animals, etc., as well as background, quantity, color, weather, and so on. So
the keywords written by annotators sometimes only indicate the elements that are missing from the video.

(3) physical/common-sense consistency:

The dimension ’physical/common-sense consistency’ mainly examines whether there are any violations of common sense, physical
laws, or any other aspects in the video that appear strange or unnatural. Most of the keywords provided by annotators point out the
specific abnormalities or inconsistencies they observed in the video.

Here we provide an Al video generated by text-to-video models and its text prompt:
$t2v_prompt.

Based on the video content and the dimension definitions, please evaluate the video quality and give the quality score. The score must
be in the range of 1 - 5.
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B EVALUATION SUITE

B.1 DIMENSION MATCHING AND MODIFICATION IN OUT-OF-DOMAIN BENCHMARKS

Since different benchmarks define varying dimensions and scoring scales, we align them with the
three evaluation dimensions of VIDEOSCORE?2 (visual quality, text alignment, and physical consis-
tency) and, where necessary, rescale their ground-truth scores. Below we summarize the mapping
rules for each benchmark.

VideoGenReward Bench. This is a pairwise preference benchmark containing 4,691 videos,
forming 25,234 video pairs. It evaluates three dimensions—visual quality (VQ), text alignment
(TA), and motion quality (MQ)—and also provides an Overall preference label indicating which
video is better overall. Among these, VQ and TA correspond closely to VIDEOSCORE?2 ’s first
two dimensions (despite slight definitional differences), so these two dimensions are used for this
benchmark. For the Overall preference, we use the mean of all available dimension scores from
VIDEOSCORE? or the baseline method (if the baseline only has one quality score output, then that
score is used directly).

T2VQA-DB. Originally a human-annotated video quality dataset with 10,000 videos, each labeled
with a single quality score in the range [1,100]. We sample 2,000 videos and construct 1,822 pairs
by comparing human-annotated scores. Since the dataset provides only one dimension (the final
score), we predict preference by averaging all dimension scores from VIDEOSCORE?2 or the baseline
method (if the baseline only has one quality score output, then that score is used directly).

MJ-Bench-Video. This benchmark contains 2,170 videos and adopts a point-score format with
five dimensions: fineness, alignment, consistency & coherence, safety, and bias & fairness. We
select the first three, which correspond to VIDEOSCORE?2 s three evaluation dimensions. For base-
lines with only one final score, we “broadcast” this score across multiple dimensions. The bench-
mark uses a {0,1,2} scale, whereas VIDEOSCORE?2 and other baselines output (or are normalized
to) integer scores in [1,5]. Thus, we apply the following mapping, where = denotes the original

score of each dimension, v, t, p denote the rescaled score of for “visual quality”, “text alignment”
and “physical consistency”, respectively:

0 ifze {12}, 0 ifz=1, 0 ifz=1,
v=<1 ifee{3,4}, t=<1 ifexe{2,3}, p=q1 ifze{23},
2 ifx=5, 2 ifz e {4,5}, 2 ifz e {4,5}.

The benchmark also provides an Overall score, for which we again take the mean of all available
dimension scores (or the single dimension if only one is provided), rescaled into {0,1,2} using the
same rule.

VideoPhy2-test. This benchmark contains 3,396 videos with two dimensions, SA: semantic ad-
herence and PC: physical consistency. These map perfectly to VIDEOSCORE?2 ’s second and third di-
mensions. For baselines lacking one of the dimensions (e.g., VideoReward, which provides VQ, TA,
MQ but no physical consistency), we skip the missing dimension. The scoring scale is {1,2,3,4,5},
so no rescaling is required.
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B.2 DIMENSION MATCHING AND SCORE RESCALING FOR BASELINES

Since different baseline models adopt varying evaluation dimensions and scoring scales, we ap-
ply dimension matching and score rescaling to make them compatible with VIDEOSCORE-
BENCH-V2 and VIDEOSCORE2. Our goal is to ensure that all baselines output scores on the three
dimensions—visual quality (v), text alignment (t), and physical consistency (p)—within a unified
range of integers 1-5. A summary of the mapping rules is provided in Table [I2]

Baseline Dimension Matching. With v, £, and p to denote the score of visual quality, text align-
ment, physical/common-sense consistency, respectively, we consider three cases:

* Broadcast. Some baselines only output a single final score. In this case, we broadcast the
same score to our three dimensions v, ¢, and p.

* Good Match. Some baselines already report dimensions that closely match ours, so we
directly use their outputs without modification.

* Customized. For baselines with different or partially overlapping dimensions, we design
customized mappings.

— VideoReward: outputs Visual Quality, Text Alignment, and Motion Quality. We use
the outputs of first two dimensions as v and ¢, and skip Motion Quality.

— AIGVE-MACS: outputs multiple fine-grained dimensions. We average {technical
quality, element quality, action quality} as v, average {element presence, action pres-
ence} as t, and use physics as p.

— VideoPhy2-Auto-Eval: outputs Semantic Adherence (SA) and Physical Consistency
(PC). We use SA as t and PC as p, while skipping v.

Baseline Score Rescaling. To make results comparable, we rescale all baseline outputs into a
unified integer range of 1-5. A summary of the mapping rules is provided in Table[I2]

* Linear Scaling or No Scaling. For baselines with well-defined score ranges (e.g., [0,1],
[0,100]), we apply linear normalization followed by rounding to the nearest integer in
{1,2,3,4,5}.

* Ordinal categories using Gaussian-distribution quantile thresholds. For baselines without
fixed score bounds, we adopt an ordinal mapping based on Gaussian-distribution quantile
thresholds. Specifically, raw scores are assumed to approximately follow a Gaussian distri-
bution and are divided into five categories using the 20%, 40%, 60%, and 80% quantiles of
the standard normal distribution. If the raw scores typically fall within [-2.0, 2.0] and we
assume a Gaussian Distribution N (0, 1), thus apply the following mapping:

if 2 < ®71(0.2),

if ®71(0.2) < 2 < @71(0.4),
if ®71(0.4) < 2 < @71(0.6),
if 71(0.6) < 2 < ®71(0.8),
otherwise,

SCore =

T = W N =

where z is the raw model score and ®~! denotes the inverse CDF of the standard Gaussian.
— ImageReward and VisionReward: most scores are in [-2.0, 2.0], assume N (0, 1) and
follow the mapping above.

— VideoReward: most scores are in [-3.0, 3.0], so we assume a Gaussian Distribution
N(0,1.5), and z is replaced by z/1.5 in the rules above to firstly normalize the raw
score before converting it to integers.
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Table 12: Rescale output scores and map dimensions of baselines models to align with our
VIDEOSCORE2 and VIDEOSCORE-BENCH-V2.

Model Dimension Mapping | Original Scale | Score Rescaling Method

Reward/Scoring Models for Image (averaged on sampled frames)

ImageReward Broadcast most in [-2.0,2.0] | Ordinal categories using Gaussian-distribution quantile thresholds.
DeQA-Score Broadcast [0.0, 5.0] Linearly amplify and round
Q-Insight Good Match [1.0, 5.0] Linearly amplify and round

Reward/Scoring Models for Video

VideoReward Customized most in [-4.0,4.0] | Ordinal categories using Gaussian-distribution quantile thresholds.
UnifiedReward Good Match {1,2,3,4,5} No rescaling
VisionReward Broadcast most in [-1.0,1.0] | Ordinal categories using Gaussian-distribution quantile thresholds.
Q-Align Broadcast [0.0, 1.0] Linearly amplify and round
AIGVE-MACS Customized {1,2,3,4,5} No rescaling
VideoPhy2 Customized {1,2,3,4,5} No rescaling
Dover Broadcast [0.0, 1.0] Linearly amplify and round
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C FuLL EVALUATION RESULTS

C.1 FULL RESULTS ON VIDEOGEN-REWARD-BENCH

VideoGen-Reward-Bench is a video preferenc over three dimensions: visual quality, text alignment,
and motion quality. The task is to compare a pair of videos and judge which one is better along these
axes. Among them, the first two dimensions are broadly aligned with ours, while the benchmark also
provides an additional measure of overall preference.

For the preference benchmarks, we report results under two settings. The w/ ties version includes
all test entries, where in some cases the two compared videos (including the ground-truth reference)
are judged as equally preferred. The w/o ties version is a subset obtained by removing those entries
with equal preference labels. The full evaluation results of preference prediction accuracy are shown
in Table

Table 13: Full evaluation results on VideoGen-Reward-Bench. Bold denotes the best model and
the underlined denotes the second best.

. ‘ Visual Quality ‘ Text Alignment ‘ Overall
VideoGen-Reward-Bench

‘ w ties  w/o ties ‘ w ties  w/o ties ‘ w ties  w/o ties

Reward/Scoring Models for Image (averaged on sampled frames)

ImageReward 31.64 5140 |44.00 60.72 |47.14 58.61
DeQA-Score 41.07 69.55 |36.22 5323 |53.88 67.91
Q-Insight 30.68 6634 |42.11 59.47 | 5405 66.34

Reward/Scoring Models for Video

VideoScore-v1.1 4741 30.84 |26.09 30.85 | 16.79 40.19
VideoReward 5321 75.58 | 52775 7218 |59.69 73.66
UnifiedReward 4127 39.42 | 40.11 36.58 |53.31 58.83
VisionReward 3589 59.03 | 4486 61.15 | 5431 67.58
Q-Align 32.01 5298 | 3577 51.06 |42.05 5252
AIGVE-MACS 38.05 30.80 |30.76 11.66 |37.09 37.08
VideoPhy2 - - 37.04 2214 |30.75 2641
Dover 3934 68.87 | 38.01 5565 |5427 68.58
Ours

VIDEOSCORE2 (SFT only) | 37.74 63.17 | 43.07 6135 |50.79 63.80
VIDEOSCORE2 (RL w/o SFT) | 34.67 6587 | 48.70 6592 |54.53 65.59
VIDEOSCORE2 (SFT + RL) | 37.44 63.08 |42.87 60.61 |51.53 63.72
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C.2 FULL RESULTS ON MJ-BENCH-VIDEO

To maximize compatibility with the evaluation dimensions of VIDEOSCORE2, we selected three
aspects from MJ-Bench-Video that are most semantically aligned: Fineness, Alignment, and
Coherence & Consistency. These aspects correspond respectively to the three dimensions in
VIDEOSCORE?2: visual quality, text alignment, and physical/commonsense consistency.

The full evaluation results of the three aspects and the overall scores are shown in Table [4] with
prediction accuracy between model outputs and ground truths adopted as metrics.

Table 14: Full evaluation results on MJ-Bench-Video. Bold denotes the best model and the
underlined denotes the second best.

‘ Accuracy

MJ-Bench-Video
. i Coherence &
Fineness ~ Alignment Overall

Consistency

Reward/Scoring Models for Image (averaged on sampled frames)

ImageReward 47.05 28.07 29.03 37.51
DeQA-Score 18.57 51.20 52.40 44.19
Q-Insight 12.72 42.86 28.07 52.58

Reward/Scoring Models for Video

VideoScore-v1.1 13.69 64.19 79.22 71.57
VideoReward 79.36 38.99 - 51.75
UnifiedReward 43.50 21.98 18.16 23.18
VisionReward 36.31 55.99 67.51 56.91
Q-Align 14.77 31.74 26.41 21.97
AIGVE-MACS 20.18 26.27 21.39 31.00
VideoPhy2-Auto-Eval - 38.97 7.89 24.00
Dover 29.26 45.67 48.02 43.69
Ours
VIDEOSCORE?2 (SFT only) 33.95 46.20 57.80 66.88
VIDEOSCORE2 (RL w/o SFT) 64.68 32.79 57.27 56.43
VIDEOSCORE2 (SFT + RL) 22.50 48.58 66.79 65.77
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C.3 FULL RESULTS ON VIDEOPHY2-TEST

Video-Phy2-Test is a human-annotated test set with two dimensions: semantic adherence and phys-
ical consistency (abbreviated as semantic and physical in our tables). These two dimensions corre-
spond directly to the latter two evaluation dimensions in our framework.

The full evaluation results of the two dimensions are shown in Table [I3] with prediction accuracy
and PLCC between model outputs and ground truths adopted as metrics.

Table 15: Full evaluation results on Video-Phy2-test. Bold denotes the best model and the
underlined denotes the second best.

. Accuracy PLCC
Video-Phy2-test

Semantic Physical Avg | Semantic Physical Avg

Reward/Scoring Models for Image (averaged on sampled frames)

ImageReward 23.73 19.23 2148 | 15.28 3.07 9.18
DeQA-Score 28.74 28.96  28.85 3.55 2.14 2.85
Q-Insight 29.21 32.59 3090 | 2245 4.98 13.72

Reward/Scoring Models for Video

VideoScore-v1.1 29.81 26.08 27.95| 11.61 13.09 1235
VideoReward 31.33 - 31.33 | 34.54 - 34.54
UnifiedReward 17.64 2639  22.02| 3457 2278  28.68
VisionReward 31.95 1320 2258 | 28.11 13.67  20.89
Q-Align 18.43 28.00 23.22 5.52 2.70 4.11
AIGVE-MACS 12.23 21.63 16.93 8.09 11.90  10.00
VideoPhy2-Auto-Eval 37.96 3731 37.64| 38.64 29.84 34.24
Dover 26.56 29.86 2821 3.85 1.15 2.50
Ours

VIDEOSCORE2 (SFT only) 32.24 27.80 30.02 | 27.22 13.85 20.54
VIDEOSCORE2 (RL only) 31.71 23.66 27.69| 39.07 16.90 27.99
VIDEOSCORE2 (SFT +RL) | 37.48 29.67 33.58 | 41.08 17.57 29.33
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C.4 FULL RESULTS OF BEST-OF-N SAMPLING ON VBENCH

Table 16: Quality evaluatioin of eight T2V models on V-Bench with BoN sampling by our
VIDEOSCORE2, compared with random ones. We can see consistent improvement.

Dimensions in VBench

Best-of-N Average ‘ Subject Background Aesthetic Imaging Motion

Random BoN ‘Random BoN Random BoN Random BoN Random BoN Random BoN

Lavie-base 82.85 83.07 | 9540 9569 96.89 97.08 56.64 5715 67.99 6798 9734 9747
AnimateDiff 8197 8315 | 91.16 9418 9430 95.64 6090 60.28 69.36 69.01 94.14  96.64
VideoCrafterl | 80.03  80.63 | 9535 9558 9576 96.05 46.00 47.67 67.03 67.58 9599 96.26
ModelScope 7875 79.70 | 93.68 95.07 9552 9640 4623 47.60 61.64 6232 96.66 97.10
ZeroScope 7636  77.84 | 91.32 93.04 9450 9537 4527 4755 5525 5695 9548  96.30
LVDM 7533 7626 | 88.79 8991 93.14 93.81 4101 4200 6094 6224 9275 93.35
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D EXPERIMENT SETUO AND ABLATION STUDIES

D.1 SFT EXPERIMENT SETUP

We conduct SFT with sampling fps of 2, a maximum frame resolution of 960x 720, learning rates
of 5e-5, and epochs of 2 with one epoch taking about 6 hours on 8 x A800 GPUs.

D.2 ABLATION ON SAMPLING FPS IN SFT TRAINING

During training, videos are sampled at 2 fps, which we find sufficient for evaluation: “visual quality”
primarily reflects global perceptual properties, “text alignment” focuses on semantic adherence, and
most issues of “physical consistency” or abnormal events typically last longer than half a second,
ensuring they can still be captured at this frame rate.

We also conduct an ablation on a 17k subset to study the effect of training sampling fps, comparing
2,4, and 8 fps settings. As shown in Table[I7] increasing the sampling rate does not yield significant
performance gains, while it noticeably increases computational cost and training time. Therefore,
we adopt 2 fps as the default setting in our main SFT experiments and in all subsequent ablations of
other hyper-parameters.

Table 17: Ablation results on a 17k subset of VIDEOSCORE?2 data for different sampling fps in SFT.

Train Sampling fps ‘ Accuracy ‘ Relaxed Accuracy ‘ PLCC
(I7ksubset) | Visual Align  Phy | Avg | Visual Align Phy | Avg | Visual Align  Phy | Avg
2fps 5467 3933 46.67 | 46.89 | 9400 8133 90.00 | 88.44 | 73.62 6024 54.72 | 62.86
4fps 48.67 42.67 4933 | 46.89 | 9400 82.00 92.67 | 89.56 | 67.87 61.85 63.86 | 64.53
8tps 5100 4533 48.00 | 48.11 | 9200 8533 88.67 | 88.67 | 6434 6571 52.05 | 60.70
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D.3 ABLATION ON LEARNING RATE AND EPOCHS IN SFT TRAINING

We perform ablations on two key hyper-parameters: learning rate le-5, 2e-5, 5e-5, le-4, 2e-4 and
epochs {1, 2,3}. The results on VIDEOSCORE-BENCH-V2 are summarized in Table

For learning rate, 1 x 10~* achieves slightly higher accuracy than 5 x 1075, but its loss curve is
less stable and shows lower values in the second epoch, as shown in Figure[T0]and [T} suggesting
potential overfitting, which could harm performance on out-of-domain benchmarks. By contrast,
2e-5 exhibits a much higher loss curve in later stages, indicating underfitting. Balancing in-domain
accuracy and loss smoothness, we choose 5e-5 as the default learning rate.

For epochs, the 2-epoch setting outperforms both 1 and 3 epochs, and is therefore adopted as the
main version. This chosen SFT checkpoint also serves as the base model for subsequent RL cold-
start training.

train/loss train/loss

- . 5_2fp

train/global_step

200 400 500 800 200 400 600 800 1k 1.2k

Figure 10: Training loss in ablations of learn- Figure 11: Training loss in ablations of training
ing rate, 2e-5, Se-5, and le-4 are shown. epoch, lepoch, 2epoch, and 3epoch are shown.

Table 18: Ablation results on VIDEOSCORE-BENCH-V2 for different learning rate and epochs in
SFT.

SFT ablati ‘ Accuracy ‘ Relaxed Accuracy ‘ PLCC
ablations

‘Visual Align  Phy ‘ Avg ‘Visual Align  Phy ‘ Avg ‘Visual Align  Phy ‘ Avg

Main (LR = 5e-5, 2epoch) | 43.69 40.88 3487 |39.81| 9038 8697 83.77|87.04| 5674 5824 44725323

Ablation (LR = le-5) 41.60 38.20 31.20|37.00 | 87.80 81.40 79.40 | 82.87 | 47.37 45.80 35.40 | 42.86
Ablation (LR = 2e-5) 4277 38.55 34.94|38.75| 90.76 85.14 80.72 | 85.54 | 54.17 52.77 40.99 | 49.31
Ablation (LR = le-4) 41.08 4148 3748 |40.01 | 88.58 87.38 81.76 | 85.91 | 53.73 56.94 42.87 | 51.18
Ablation (LR = 2e-4) 4148 4048 37.48|39.81| 89.38 87.58 83.37|86.78 | 51.93 56.15 45.53 | 51.20
Ablation (1epoch) 4229 40.28 30.26 | 37.61 | 90.78 87.98 79.16 | 85.97 | 50.42 56.30 32.92 | 46.55
Ablation (3epoch) 4529 37.28 38.88 |40.48 | 92.39 87.38 85.77 | 88.51 | 58.34 56.71 49.60 | 54.88
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D.4 ABLATION ON INFERENCE SETTINGS

We also conduct an ablation on inference sampling rates, testing 2 fps, 4 fps, and 8 fps on
VIDEOSCORE-BENCH-V2. Results in Table [I9]show that 2 fps achieves the best performance,
which aligns with our expectation: two frames per second are sufficient to capture most quality is-
sues for evaluation, while higher frame rates introduce redundant information and potential noise
that may interfere with the model’s judgment.

Table 19: Ablation results on VIDEOSCORE-BENCH-V?2 for different inference configurations.

Inference ‘ Accuracy ‘ Relaxed Accuracy ‘ PLCC
Sampling fps ‘ Visual Align  Phy ‘ Avg ‘ Visual Align  Phy ‘ Avg ‘ Visual Align  Phy Avg
2fps 50.10 43.88 39.08 | 44.35 | 9299 91.38 8798 | 90.78 | 60.13 62.60 52.73 | 60.37
4fps 46.80 44.20 3828 | 43.09 | 90.00 87.60 84.20 | 87.27 | 60.13 57.53 4355 | 53.74
8fps 41.67 4077 37.61 | 40.02 | 85.81 8896 83.78 | 86.18 | 56.28 5827 41.86 | 52.14
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D.5 ABLATION ON RL TRAINING STEPS

We evaluated multiple intermediate checkpoints during RL training. Considering three evaluation
metrics jointly, performance peaked around 300 steps. Beyond this point, scores on VIDEOSCORE-
BENCH-V2 showed a clear decline., as shown in Table@} Therefore, for all main experiments, we

report results based on the 300-step checkpoint.

Table 20: Ablation on RL training steps. Accuracy and correlation between model answer and
human score on VIDEOSCORE-BENCH-V2. Relaxed Accuracy counts cases where the prediction
differs from the ground truth by at most one point.

RL steps ‘ Accuracy Relaxed Accuracy PLCC

‘ Visual Align  Phy ‘ Avg ‘ Visual Align  Phy ‘ Avg ‘ Visual Align  Phy Avg
200 50.50 42.89 39.28 | 44.22 | 92.79 91.59 87.80 | 90.73 | 65.14 6295 57.60 | 61.90
300 50.10 43.88 39.08 | 44.35 | 9299 91.38 87.98 | 90.78 | 65.78 62.60 52.73 | 60.37
400 46.20 43.80 36.00 | 42.00 | 92.80 90.20 85.40 | 89.47 | 64.57 58.87 44.61 | 61.72
500 47.60 45.80 40.00 | 44.47 | 90.20 91.40 87.80 | 89.80 | 61.57 60.59 52.10 | 58.09
600 50.60 4340 41.40 | 45.13 | 9140 89.90 87.20 | 89.50 | 62.89 56.49 51.62 | 57.00
700 48.00 4520 38.00 | 43.73 | 90.80 88.20 87.60 | 88.87 | 64.28 57.07 49.43 | 56.93
833 45.00 45.60 37.80 | 42.80 | 91.40 89.60 85.60 | 88.87 | 64.68 59.19 46.04 | 56.64
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E CASE STUDIES

t2v-prompt: A woman in Indian attire greeting in Indian style. The
camera zooms out, and the doors shut widely in front of camera.

VideoScore2:
<think>... Let me analyze this video...
**Visual Quality**:...visuals are severely degraded ..., ... frames exhibit

extreme pixelation and heavy compression artifacts... Overall, the visual
quality is critically compromised, justifying a very low rating (1/5).

**Text Alignment**: ... camera does not perform a zoom-out, ... no
evident door-closing action..., The alignment with the intended prompt is
only partially satisfied, yielding a moderate misalignment. (2/5)
**Physical Consistency**: severe blur and degradation obscure arm
positions...with limited reliability... (2/5)

</think>

**Overall assess*:1 2 2

Figure 12: Case study of VIDEOSCORE?2 evaluation (1)

t2v-prompt: A farmer in the field planting corn with a hoe, and the

corn quickly matures. The farmer wipes off sweat and smiles.

VideoScore2:

<think>... Let me analyze this video...

**Visual Quality**:...resolution is moderate; not high-end but acceptable ...,
Lighting is natural, ... noticeable motion blur in certain moments..., Overall
visual quality sits in the mid-range (3/5)

**Text Alignment**: ...no rapid corn maturation is shown, no clear moment
of wiping sweat or smiling... The alignment with the prompt is partial at best;
core narrative elements are missing, ...(2/5)

**Physical Consistency**: Some hand movements show anatomical
inconsistencies. .., Overall, physical plausibility is maintained with moderate
inconsistencies. (3/5)

</think>

**Overall assess**:3 2 3

Figure 13: Case study of VIDEOSCORE?2 evaluation (2)
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t2v-prompt: A young blond man sitting on a bench, holding a

fishing rod, with the fishing line out. Wide-angle.

VideoScore2:

<think>... Let me analyze this video...

**Visual Quality**:...The resolution is very high and maintains crisp detail
across scenes..., Colors are well-balanced,...wide-angle framing effectively
captures the landscape..., Overall visual quality is excellent (5/5)

**Text Alignment**: ...Holding a fishing rod — present..., Fishing line out —
present and clearly visible..., alignment is essentially perfect (5/5)
**Physical Consistency**: The man’s posture and grip look natural for
fishing..., with lighting and shadows consistent with outdoor conditions. (5/5)
</think>

**Overall assess**:5 5 5

Figure 14: Case study of VIDEOSCORE? evaluation (3)

36



Under review as a conference paper at ICLR 2026

F THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs), including GPT-5, Gemini-2.5-Pro were used in the preparation
of this paper. Their role was limited to supporting writing by suggesting phrasing alternatives,
correcting grammar, and improving readability. All technical content, experimental design, analysis,
and conclusions were created and verified by the authors.
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