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ABSTRACT

Recent advances in text-to-video generation have produced increasingly realis-
tic and diverse content, yet evaluating such videos remains a fundamental chal-
lenge due to their multi-faceted nature encompassing visual quality, semantic
alignment, and physical consistency. Existing evaluators and reward models
are limited to single opaque scores, lack interpretability, or provide only coarse
analysis, making them insufficient for capturing the comprehensive nature of
video quality assessment. We present VIDEOSCORE2, a multi-dimensional, inter-
pretable, and human-aligned framework that explicitly evaluates visual quality,
text-to-video alignment, and physical/common-sense consistency while produc-
ing detailed chain-of-thought rationales. Our model is trained on a large-scale
dataset VIDEOFEEDBACK2 containing 27,168 human-annotated videos with both
scores and reasoning traces across three dimensions, using a two-stage pipeline
of supervised fine-tuning followed by reinforcement learning with Group Rela-
tive Policy Optimization (GRPO) to enhance analytical robustness. Extensive ex-
periments demonstrate that VIDEOSCORE2 achieves superior performance with
44.35 (+5.94) accuracy on our in-domain benchmark VIDEOSCORE-BENCH-V2
and 50.37 (+4.32) average performance across four out-of-domain benchmarks
(VideoGenReward-Bench, VideoPhy2, etc), while providing interpretable assess-
ments that bridge the gap between evaluation and controllable generation through
effective reward modeling for Best-of-N sampling.

<task & dimensions>
<output format>
t2v-prompt: A man in 
blue shirt is blending 
a smoothie……

VideoScore2: 
<think>...let me analyze each dimension: 
**Visual Quality**: … only moderately 
sharp, … occasional motion blur …
**Text Alignment**: “Holds blender with 
both hands”: √ Present. … Alignment is 
strong, with minor points…
**Physical Consistency**: …abrupt 
shifts in the blender’s orientation </think>
**Overall assess**: V… 3; T… 4; P… 2.

VideoReward: 
VQ: -0.798; MQ: -0.866; TA: 2.738

Q-Insight:  Score: 3.942 / 5.000

Dataset Curation Case StudyVideoScore2

ii. video generation

iv. augmented 
scoringvisual: 3    <comment–v>

align:  4     <comment-a>

phys:  2     <comment-p>

iii. annotation

Raw rationale: 
<think>…</think>
Scores: 5  5  1

Koala-36M

multi-
action

OCR

camera motion

VidProM

quality filtering

i. prompt collection

v. align score 
& rationale

<instructions>
<think>…</think> 
Scores: 4  4  2

······ ······
······ ······

RL with 
GRPO
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Figure 1: Overview of VIDEOSCORE2. We curate data from five different prompt sources and 22
T2V models with human annotated scores and rationale, which is further used for 2-stage training
(cold-start SFT then RL) to elicit the model’s thinking ability before scoring.

1 INTRODUCTION

Recent progress in text-to-video (T2V) generation (OpenAI, 2024; Kuaishou, 2025; Wan et al.,
2025) has enabled models to produce increasingly realistic and coherent videos, expanding their
potential across domains such as entertainment, education, and simulation. Yet, evaluating the
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quality of such videos remains a core bottleneck. Unlike text or image evaluation, video assess-
ment must jointly consider visual fidelity, semantic adherence to prompts, and physical plausibil-
ity—dimensions. These abilities requires the backbone vision language model (VLM) to not only
possess superior visual understanding ability but also comprehensive physical common senses.

Many powerful video evaluators/reward models have been developed these days and demonstrate
strong performance in various video preference and point-score benchmarks. Examples works in-
clude VideoScore (He et al., 2024), VideoPhy2 (Bansal et al., 2025), VideoReward (Liu et al., 2025),
etc. However, while these works present superior ability in scoring accuracy, they all collapse into
a single opaque score, where no rationale is given for accountability. What’s more, these models
are all trained via supervised fine-tuning on the collected dataset directly, limiting their generaliza-
tion ability on the OOD data points (Chu et al., 2025).

To address this gap, we propose VIDEOSCORE2, a multi-dimensional, interpretable, and human-
aligned evaluator for AI-generated videos. VIDEOSCORE2 not only outputs structured scores
along three axes—(1) visual quality, (2) text alignment, and (3) physical/common-sense con-
sistency—but also provides detailed chain-of-thought style analyses before giving its judgments.
This “thinking-before-scoring” design makes VIDEOSCORE2 unique among evaluators, enabling
transparent and human-like reasoning. Furthermore, unlike some prior models whose SFT train-
ing restricts them to in-domain settings, VIDEOSCORE2 demonstrates strong generalization across
diverse out-of-domain benchmarks, confirming its robustness and reliability for video generation.

For training VIDEOSCORE2, we curated a large-scale dataset of multi-dimensional evaluations,
VIDEOFEEDBACK2, that combines quality scores with reasoning traces. The text-to-video prompts
were sourced from both existing datasets and our manually designed cases in some special scenarios
(e.g., multiple actions, OCR text, camera motion). The videos were generated by over twenty T2V
models spanning from early baselines to recent state-of-the-art modern generative systems, marking
a more fine-grained video quality gradient. Our annotators were instructed to provide scores (1-5) as
well as brief diagnostic comments across three dimension, which were later expanded into detailed
rationales through an LLM semi-blind scoring and alignment pipeline. This design yields a diverse,
reliable, and reasoning-augmented dataset that serves as the foundation for teaching VIDEOSCORE2
both what to evaluate and how to reason. As a result, we derived 2933 unique prompts, 27168 gen-
erated videos and 81504 scores with rationales in total. We also split 500 exmaples as a new video
point-score benchmark: VIDEOSCORE-BENCH-V2.

During the experiments, we adopt a two-stage training pipeline. First, a cold-start supervised fine-
tuning (SFT) is applied to instill structured output formatting and basic reasoning capabilities. Then,
we employ Group Relative Policy Optimization (GRPO) with RL through to further strengthen ana-
lytical robustness, refine interpretability, and align evaluations with human preference distributions.

Extensive experiments demonstrate the effectiveness of VIDEOSCORE2. On the in-domain
VIDEOSCORE-BENCH-V2, VIDEOSCORE2 achieves 44.35 (+5.94) in point-score accuracy, 90.78
(+4.01) in relaxed accuracy and 60.37 (+8.32) in PLCC with significant improvements compared
to the previous SoTA. Our model consistently achieves superior performance in the out-of-domain
(OOD) benchmarks, reaching 50.37 (+4.32) average performance across 2 OOD preference and 2
OOD point score benchmarks. Furthermore, we show VIDEOSCORE2’s potential to be applied as
a reward model for T2V generation via Best-of-N (BoN) sampling. We also conducted detailed ab-
lation study to understand importance of rationale for SFT, cold-start SFT for RL, and score output
format, etc. Results demonstrate RL with cold-start SFT and rationale as the best parctice.

2 RELATED WORKS

2.1 TEXT-TO-VIDEO GENERATION

Research on text-to-video (T2V) generation has progressed rapidly with the introduction of large
diffusion and Transformer-based architectures. Early milestones include ModelScope (Wang et al.,
2023), which provided one of the first open-source diffusion pipelines for T2V, making the task
widely accessible. Subsequent VideoCrafter2 (Chen et al., 2024) improved temporal fidelity with
enhanced motion realism under data constraints. More recently, CogVideoX (Yang et al., 2024)
employed a large DiT backbone to achieve high resolution and narrative coherence. At the industrial
scale, OpenAI Sora (OpenAI, 2024) positions itself as a “world simulator,” capable of generating
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long videos with rich physical plausibility. Similarly, an open-sourced work StepVideo-T2V (Ma
et al., 2025a) emphasizes scalable training and efficient architecture design to support long and
coherent video synthesis. Other commercial systems such as Veo 3 (Google, 2025a), Kling-1.6
(Kuaishou, 2025), and Pika-2.2 (Pika-Labs, 2025) further highlight advances in controllability, and
human-centric generation. Despite these achievements, systematic and human-aligned evaluation of
video qualities from visual perception to semantic reasoning remains limited, underscoring the need
for multi-dimensional and interpretable evaluation frameworks.

2.2 REWARD MODELING FOR VISION

Reward modeling has become a central paradigm for aligning generative models with human pref-
erences in both image and video domains. Early methods such as Dover (Wu et al., 2023a) and
ImageReward (Xu et al., 2023) provide single scalar scores, which are effective but insufficient for
capturing the multi-faceted nature of visual quality. More recent approaches—VideoReward (Liu
et al., 2025), UnifiedReward (Wang et al., 2025c), and Q-Insight (Li et al., 2025)—introduce multi-
dimensional scoring, yet are limited to numeric ratings without explanatory reasoning. Other efforts
like LiFT (Wang et al., 2025b) provide short analytical comments, but remain broad and lack the
depth necessary for systematic evaluation. Addressing these limitations, VIDEOSCORE2 delivers
multi-dimensional assessments together with long-form analytical reasoning, making its evalua-
tions both human-aligned and interpretable. Moreover, unlike many existing reward models whose
reliance on SFT training often leads to poor generalization, VIDEOSCORE2 demonstrates robust
performance across OOD benchmarks, underscoring its potential as a more reliable evaluator.

2.3 VIDEO UNDERSTANDING AND REASONING

Video understanding and reasoning has been a long-standing problem in multimodal learning. Since
2022, transformer-based models have become the backbone of video understanding. Works like
Video Swin Transformer (Liu et al., 2021) and InternVideo (Wang et al., 2022) show the benefit of
large-scale pretraining and hierarchical temporal modeling. Extending to video–language reasoning,
models such as Video-LLaMA (Zhang et al., 2023), Video-LLaVA (Lin et al., 2024b), and mPLUG-
Owl-V (Ye et al., 2024) align LMMs with video for open-ended QA and grounding. Recent efforts
emphasize long video understanding, including LongVLM (Weng et al., 2024), Video-ChatGPT
(Maaz et al., 2024), and benchmarks like Video-MME (Fu et al., 2025) and VideoEval-Pro (Ma
et al., 2025b), which stress more realistic, open-ended evaluation of extended video reasoning.

Table 1: Comparison of VIDEOSCORE2 and existing
reward models for multi-dimensions, rationale sup-
port, and dataset recency.

Method Input Multi-Dim Rationale data recency (yy.mm)

DeQA-Score image ✗ ✗ 24.10
Q-Insight image ✓ ✗ 24.10

VisionReward video ✗ ✗ 24.08
VideoReward video ✓ ✗ 24.09
UnifiedReward video ✓ ✗ 24.12

VIDEOSCORE2 video ✓ ✓ 25.04
Figure 2: Prompt source proportion.

3 DATASET CURATION

3.1 DATA PREPARATION

Prompt Collection. Our dataset prompts come from two sources: existing datasets VidProM
(Wang and Yang, 2024) and Koala-36M (Wang et al., 2025a), and manually collected ones. Vid-
ProM provides real user queries from generative model communities, while Koala-36M contains
detailed and structured captions that can be adapted into text-to-video prompts. Since some raw
prompts are abstract, incomplete or unsuitable, we adopt a two-stage filtering pipeline: (1) rule-
based filtering is applied to remove prompts that are unsuitable due to length, format, or other
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Table 2: Definition and Checklist of Evaluation Dimensions.

Dimension Definition and Checklist

Visual Quality Quality of visual viewing experience, including resolution, overall and local
clarity, smoothness, brightness stability, distortions, etc.

Text Alignment The alignment between video content and text prompt, in terms of subjects,
actions, details, styles, and sequential events, etc.

Physical / Common-sense
Consistency

Whether the video is normal and aligns with common sense, or physical laws,
based on everyday knowledge and intuition. Check for abrupt changes,
distortions, counterintuitive scenes, and anything weird and abnormal.

constraints; (2) LLM semantic filtering or revising is used to discard or revise prompts that are
abstract, incoherent, or bad for short video generation. See details in Appendix A.1.

For the manually collected part, we focus on three categories: multi-action, OCR text, and camera
motion. This design is motivated by known limitations of current text-to-video (T2V) models in
failing to express multiple actions (Wang et al., 2024b), render readable text (), and reproduce camera
motion (). To construct the multi-action and OCR text prompts, we first design about 100 seed
examples and then ask LLMs to expand them creatively and consistently, while camera motion
prompts are built by appending motion instructions (e.g., “pan left”, “tilt up”) to some sampled
prompts directly.

Video Collection We collected videos from over 20 T2V models, ranging from early diffusion
systems such as ModelScope (Wang et al., 2023) to advanced generators such as StepVideo-T2V
(Ma et al., 2025a) and Kling-1.6 (Kuaishou, 2025). For annotation, models were grouped into four
coarse tiers (Poor/Early, Medium, Good, Perfect/Modern). For each prompt, we randomly sampled
10 models to generate videos, ensuring a balanced distribution across tiers. This design enabled
direct comparisons among videos with the same semantic content but different quality levels, im-
proving scoring consistency and reliability. By covering a wide range of resolutions (256×256
to 1980×982), frame rates (8–30 fps), and durations (1–6s), our dataset offers diverse variability,
helping VIDEOSCORE2 learn quality from poor output to near-photorealistic generations (see Ap-
pendix A.2 for details and A.3 for video examples).

Evaluation Dimensions We evaluate videos along three dimensions: visual quality, text align-
ment, and physical / common-sense consistency, to capture fidelity, semantic accuracy, and
content-level reasoning. Unlike VideoScore with five dimensions(He et al., 2024), we remove dy-
namic degree (mostly prompt-dependent) and subsume temporal consistency under visual quality.

3.2 ANNOTATION

We provide dimension-specific checklists in Table 2 to help annotators understand the task and
better annotate. Annotators are required to assign integer scores (1–5) and short comments for each
dimension, later expanded into full rationales by an LLM. For example, the comments can be: “Low
resolution, brightness is unstable” or “The second and third actions in the prompt are missing”. Our
team consists of 15 annotators who were trained with annotated examples and pilot rounds (30–50
videos each) with reviewer feedback to ensure consistency. See detailed guidelines for annotation
in Appendx A.4.

Quality control was ensured through periodic audits, where 10–20% of data was spot-checked for
scoring accuracy and comment quality. Annotators with inconsistent work received feedback and
were required to revise their annotations. As shown in Table 3, the inter-annotator agreement (IAA)
indicates good labeling reliability.

3.3 SFT DATA PROCESSING

Rationale Elicitation We use Claude-4-Sonnet (Anthropic, 2025) (with thinking enabled) to elicit
CoT-like rationales (Wei et al., 2023). The LLM receives evaluation instructions, sampled frames,
annotator comments (without scores), and 2–3 few-shot examples (see Appendix A.5). Its outputs
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Table 3: Inter-Annotator Agreement (IAA) re-
sults (R / α). R = Relaxed Match (all annota-
tor scores within a margin of 1), α = Krippen-
dorff’s Alpha.

Trial VQ TA PC

1 (n = 30) 93.33 / 92.06 93.33 / 82.71 83.33 / 82.99
2 (n = 30) 96.67 / 90.61 80.00 / 77.62 80.00 / 80.95

Table 4: Human inspection on the differ-
ence between model score and human score in
augmented-scoring.

4951 videos, 14853 scores in total

Difference 0 1 2 ≥3

Counts 4710 7698 2062 383

Bad videos (diff. ≥3 in any dim.) : 337 / 4951

Figure 4: Rationale length (num of words).
Most are in 200-600 words.

Figure 5: Human annotated score distribution in
SFT data.

are compared with human scores, and reconciliation follows: (i) if the difference ≤ 1, keep the
human score; (ii) if the difference = 2, average the two; (iii) if any dimension differs ≥ 3, the whole
entry is re-scored, up to three times. After resampling, fewer than 10% of entries were discarded.
On 4,951 videos (14, 853 scores), we report the distribution of human–model differences in Table 4.

Align Rationales with Scores Since the final score may occasionally differ from that mentioned
in the rationale by one point, we use GPT-5-mini (OpenAI, 2025) to align rationales with scores
(prompt template shown in Appendix A.5). This lightweight adjustment preserved the rationale’s
meaning while ensuring scoring consistency: typically, it involved only minor edits, such as soft-
ening or intensifying descriptions of quality issues (e.g., “slight blur” → “noticeable blur”). The
rationale length distribution is shown in Figure 4, and the score distribution in Figure 5.

Building data for SFT and RL After processing, we obtain 27,168 samples (denoted as VIDE-
OFEEDBACK2), and the proportions of videos across the four quality tiers (from best to worst) are
10.36%, 33.53%, 41.77%, and 12.54%, respectively (Appendix A.2). 500 videos are held out as
the test set (VIDEOSCORE-BENCH-V2) and the rest used for training. The SFT data follow a QA
format, where the query specifies the task (Table 11), and the answer provides rationale and scores.
For RL, we follow Video-R1 (Liu et al., 2025), using the same structure with problem and solution
to compute accuracy rewards.

4 VIDEOSCORE2

4.1 TRAINING AND INFERENCE SETUP

SFT Cold-Start. We adopt a two-stage training strategy for VIDEOSCORE2. To ensure basic
format-following ability and task familiarity, we first perform supervised fine-tuning (SFT) as the
cold-start. The training is implemented with the LLaMA-Factory (Zheng et al., 2024a) framework,
and Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as base model.

For preparing the SFT checkpoint to initialize RL, we consider both the performance on
VIDEOSCORE-BENCH-V2 and training loss stability: high benchmark scores may indicate over-
fitting on in-domain tests and weak generalization to others. Balancing these factors, we adopt the
configuration described in Appendix D.1 as our main SFT model. Additional ablations on sampling
fps, learning rate, and training epochs are reported in Appendix D.2 and Appendix D.3.
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Reinforcement Learning We further train SFT checkpoint with open-source video reinforcement
learning framework Video-R1 (Feng et al., 2025) implementing GRPO (Shao et al., 2024) to enhance
its analytical robustness and human alignment:

• Accuracy Reward. The reward is defined by the degree of match. The design of this reward
signal follows the principle that only predictions within ±1 of the ground truth on all dimensions
should receive non-zero reward. On a 5-point scale, a deviation of one point is marginally
acceptable, whereas deviations of two or more points indicate serious misjudgments and often
contradict the ground-truth evaluation.

Racc =



1.0 if all three dimensions match exactly,
0.7 if two match and one differs by 1,
0.4 if one matches and two differ by 1,
0.1 if all three differ by 1,
0 otherwise.

(1)

• Format Reward. To ensure the output includes both a rationale and final scores, we assign
Rfmt = 1 if the response contains the <think> tag with rationale, and Rfmt = 0 otherwise.

• Final Reward. Following the setting for general video reasoning tasks in Video-R1, final reward
R = Racc + λRfmt.

In practice, when starting from the SFT checkpoint, outputs already follow the query template,
making the format reward redundant; thus we set λ = 0 to focus on accuracy. In contrast, RL from
the base model without SFT often shows format deviations, so we set λ = 0.3 to encourage valid
rationales and scores.

RL training uses a learning rate of 2e-6 with G = 8 generations per rollout, on 4×A100 GPUs
(about 8 hours per 100 steps). Evaluations on VIDEOSCORE-BENCH-V2 and OOD benchmarks
show performance peaks at around 300 steps; beyond this, performance on VIDEOSCORE-BENCH-
V2 drop due to overfitting (Appendix D.5). We therefore adopt the 300-step checkpoint for all
reported results.

Inference. Both the SFT and RL models output free-form text with rationale and final scores, fol-
lowing the same query template (Table 11). To generalize discrete predictions {1, 2, 3, 4, 5}, we set
decoding temperature to 0.7 and convert them into soft float scores using token-level probabilities:

ỹ = argmax
s

p(s)× p(s)∑5
j=1 p(j)

. (2)

This yields smoother scores in [1, 5] while preserving interpretability. We further ablate score format
(int vs. float) in Table 7 and inference fps (2, 4, 8) in Appendix D.4; all reported results use 2 fps
and normalized float scores.

4.2 BENCHMARKS

In addition to the in-domain test on the VIDEOSCORE-BENCH-V2, we do further assessment on
four out-of-domain benchmarks, testing the generalization ability across a wide range of video un-
derstanding and quality evaluation scenarios. The out-of-domain benchmarks can be categorized
into two types based on the evaluation task: Pairwise Preference and Point Score.

Pairwise preference benchmarks require the evaluator model to compare a pair of videos and iden-
tify which one exhibits higher quality.

• VideoGenReward-Bench (Liu et al., 2025), built on VideoGen-Eval (Yang et al., 2025), contains
4,691 videos and 25,234 pairs. Annotators provide pairwise preference labels on dimensions of
Visual Quality, Motion Quality, Text Alignment, and Overall preference.

• T2VQA-DB (Kou et al., 2024) assigns each video a human quality score (0–100). We sample
2,000 videos and derive 1,822 preference pairs by comparing the scores of videos.

The preference benchmarks both have ties, For models that output float scores, we treat two videos
as having equal preference if their score difference is within 5% of the model’s score range. (e.g., in
[0.0, 5.0], scores 3.28 vs. 3.26 ⇒ tie).
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Figure 6: Accuracy rewards in RL training. Figure 7: Comparison of Best-of-N sampling
with VIDEOSCORE2 and random ones on av-
eraged 5 VBench dimensions.

Point score benchmarks focus on how well the evaluator’s numerical predictions (after appropriate
rescaling) align with the ground-truth scores in overall quality or fine-grained dimensions.

• MJ-Bench-Video (Tong et al., 2025) contains 2,170 human-labeled videos with aspect-level
scores in {0,1,2}. We use {Fineness, Alignment, Coherence & Consistency} and average
VIDEOSCORE2 ’s three dimensions to compare with their overall score.

• VideoPhy2-test (Bansal et al., 2025) includes 3,396 videos annotated on a 1–5 scale for Seman-
tic Adherence and Physical Consistency, which directly match VIDEOSCORE2 ’s second and
third dimensions.

For consistency across benchmarks with different focuses and dimensions, we perform dimension
mapping and ground-truth score rescaling, as detailed in Appendix B.1.

4.3 BASELINE MODELS

To ensure a comprehensive and rigorous evaluation of VIDEOSCORE2, we evaluate it against more
than 10 baseline methods spanning diverse methodological families, divided into two classes.

Prompting MLLMs, we employ the same query templates as in the training data and provide sam-
pled video frames as input to current most advanced LLMs with vision support for direct scoring,
including Gemini-2.5-Pro (Google, 2025b), GPT-5 (OpenAI, 2025), Claude-4-Sonnet (Anthropic,
2025), Grok-4 (xAI, 2025), GLM-4.1v-9b-Thinking (Team et al., 2025), Llama-4-Maverick (Meta,
2025) and Qwen2.5-VL-72B-Instruct (Bai et al., 2025).

Vision Reward/Scoring Models, can be categorized based on whether it supports video input.

• Image-only Models: We adopt ImageReward (Xu et al., 2023), DeQA-Score (You et al., 2025),
and Q-Insight (Li et al., 2025). For video evaluation, frames are sampled at the same fps as
the video models. ImageReward and DeQA-Score yield a single overall score, while Q-Insight
supports aspect-specific queries, which we align with the three dimensions of VIDEOSCORE2.

• Video-Capable Models: We include VideoReward (Liu et al., 2025), UnifiedReward (Wang
et al., 2025c), VideoScore (He et al., 2024), and VideoPhy2 (Bansal et al., 2025), which support
multi-dimensional scoring. Others such as VisionReward (Xu et al., 2024), Q-Align (Wu et al.,
2023b), and DOVER (Wu et al., 2023a) provide only a single overall score.

Most models output scores without detailed reasoning. VisionReward uses fine-grained binary ques-
tions aggregated into a score, but lacks explicit explanations. LiFT adds short comments, yet these
remain high-level and superficial. In contrast, VIDEOSCORE2 produces both dimension-level scores
and comprehensive analyses, making its evaluation more interpretable. Since different models use
varying dimensions and scales, we rescale and adjust all outputs to match VIDEOSCORE2 ’s setting
(detailed in Appendix B.2).

4.4 EVALUATION RESULTS

We report results on VIDEOSCORE-BENCH-V2 in Table 5, with Accuracy (w/o and w/ relaxation)
and correlation metrics (PLCC). For float-output models, scores are rounded for accuracy and kept
raw for correlations. VIDEOSCORE2 surpasses the best baseline across all dimensions and metrics.
We further test on four out-of-domain (OOD) benchmarks: two pairwise preference and two point-
score (Section 4.2). In the tables, Overall denotes an explicit overall score, while Avg is the mean

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 5: Accuracy and correlation between model answer and human score on VIDEOSCORE-
BENCH-V2. Relaxed Accuracy counts cases where the prediction differs from the ground truth
by at most one point. Bold denotes the best model and the underlined denotes the second best.

VIDEOSCORE-BENCH-V2
Accuracy Relaxed Accuracy PLCC

Visual Align Phy Avg Visual Align Phy Avg Visual Align Phy Avg

Prompting MLLM

Claude-Sonnet-4 33.07 29.86 23.85 28.93 76.35 76.95 61.92 71.74 20.17 30.64 18.01 22.94
Gemini-2.5-Pro 29.92 29.72 24.07 27.90 71.49 70.88 61.45 67.94 26.71 32.96 19.75 26.47
GPT-5 30.72 27.91 20.08 26.24 73.90 72.29 60.84 69.01 13.38 23.34 17.24 17.99
GLM-4.1v-9B 33.27 31.46 21.42 28.72 80.76 77.15 61.22 73.04 28.03 16.80 10.18 18.34

Reward/Scoring Models for Image

ImageReward 29.06 28.06 27.26 28.13 65.13 68.94 61.72 65.26 28.23 40.76 23.26 30.75
DeQA-Score 36.87 28.66 32.06 32.53 85.37 77.15 80.96 81.16 44.87 23.96 29.73 32.85
Q-Insight 33.60 30.60 31.00 31.73 81.40 77.40 75.60 78.13 41.05 25.44 27.54 31.34

Reward/Scoring Models for Video

VideoScore1.1 41.48 34.87 38.88 38.41 90.98 82.37 86.97 86.77 49.00 30.90 47.00 42.30
VideoReward 23.45 28.86 - 26.16 60.32 67.74 - 64.03 46.36 48.31 - 47.34
UnifiedReward 25.20 27.20 22.80 25.07 71.00 64.80 68.00 67.93 58.61 43.91 53.64 52.05
VisionReward 41.28 33.47 35.07 36.61 87.17 84.37 82.16 84.57 46.85 45.32 38.25 43.47
Q-Align 28.66 28.06 27.86 28.19 75.55 69.74 68.94 71.41 54.71 34.01 37.78 42.17
AIGVE-MACS 20.12 12.48 14.09 15.56 62.37 46.48 45.27 51.37 27.30 6.90 13.03 15.74
VideoPhy2-AutoEval - 28.46 16.23 22.35 - 73.75 52.31 63.03 - 35.42 25.41 30.42
Dover 39.08 31.06 31.86 34.00 84.77 74.75 75.92 78.48 50.24 32.83 33.00 38.69

VIDEOSCORE2

Ours 50.10 43.88 39.08 44.35 92.99 91.38 87.98 90.78 60.13 62.60 52.73 60.37
∆ over Best Baseline +8.62 +9.01 +0.20 +5.94 +2.80 +7.01 +1.01 +4.01 +1.52 +14.29 -0.91 +8.32

Table 6: Performance comparison on out-of-domain benchmarks, with 2 pairwise preference bench-
marks and 3 point-score benchmarks. Bold denotes the best model and the underlined denotes the
second best. For “OOD Preference Benchmark,” performance is computed over all test samples.

OOD Bench Average
OOD Preference Benchmark OOD Point Score Benchmark

VideoGen- T2VQA-DB MJ-Bench VideoPhy2
Reward Bench (Preference) -Video -test

Reward/Scoring Models for Image

ImageReward 37.40 47.14 43.46 37.51 21.48
DeQA-Score 40.54 53.88 35.22 44.19 28.85
Q-Insight 46.05 54.05 46.65 52.58 30.90

Reward/Scoring Models for Video

VideoScore-v1.1 38.87 16.79 39.18 71.57 27.95
VideoReward 44.73 59.69 36.15 51.75 31.33
UnifiedReward 37.22 53.31 50.39 23.18 22.02
VisionReward 42.86 54.31 37.64 56.91 22.58
Q-Align 32.62 42.05 43.24 21.97 23.22
AIGVE-MACS 30.48 37.09 36.91 31.00 16.93
VideoPhy2 29.13 30.75 24.12 24.00 37.64
Dover 42.70 54.27 44.62 43.69 28.21

VIDEOSCORE2

Ours 50.37 51.53 50.60 65.77 33.58
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Table 7: Ablations on RL start point, rationale in SFT and score output format.

Ablations

In-Domain OOD Preference Benchmark OOD Point Score Benchmark

VIDEOSCORE-BENCH-V2 VideoGen- T2VQA-DB MJ-Bench VideoPhy2
Reward-Bench (Preference) -Video -test

RL w/o SFT 36.70 54.53 54.54 56.43 27.69
RL w/ SFT 44.53 51.53 50.60 65.77 33.58

w/ CoT (default) 39.81 50.79 52.36 66.88 30.02
w/o CoT 32.17 54.74 58.63 59.06 21.83

Normalized (default) 44.53 51.53 50.60 65.77 33.58
Raw Int Score 45.83 51.19 30.22 66.51 34.51

across dimensions; preference results include ties. As shown in Table 6, while VIDEOSCORE2 is
not always the top model on each benchmark, it achieves the highest overall average.

To further validate the effectiveness of VIDEOSCORE2 in video evaluation, we conduct human in-
spection to examine whether its predicted scores were reasonable and whether the analyses were
accurate and appropriate. Qualitative examples are provided in Appendix E.

4.5 BEST-OF-N SAMPLING WITH VIDEOSCORE2

We evaluate VIDEOSCORE2 with best-of-n (BoN) sampling (n = 5), where the model selects the
best video among candidates. Six T2V models of moderate or poor quality are used, avoiding very
strong ones to highlight the BoN effect. For 500 prompts, each model generates 500 × 5 videos.
Comparison on VBench (Figure 7) shows BoN consistently outperforms random sampling, confirm-
ing that VIDEOSCORE2 effectively guides higher-quality selection. See full results in Appendix C.4.

4.6 ABLATION STUDY

Besides the ablations on SFT settings, RL training steps, as well as inference configurations (Ap-
pendix D), we conduct the following studies, providing more insights of designing VIDEOSCORE2,
summarized in Table 7.

Cold Start. We compare RL initialized from the base Qwen2.5-VL-7B-Instruct versus the SFT
checkpoint. The SFT version achieves higher average scores across both VIDEOSCORE-BENCH-
V2 and OOD benchmarks, even if not superior on every benchmark. This indicates SFT provides a
stronger starting point, enabling RL to focus on reward alignment rather than task formatting.

SFT w/ and w/o rationale We further test SFT with and without CoT-like rationales. While the
CoT-based version is slightly weaker on preference benchmarks, it performs significantly better on
point-score benchmarks and thus improves generalization on average. This confirms that rationales
are not only important for interpretability but also beneficial for overall robustness.

Score format. We ablate the output format by comparing raw integer scores and normalized float
scores. While integers show slight advantages on OOD point-score benchmarks, they perform no-
tably worse on OOD preference tasks. Using normalized float scores strikes a better balance, pre-
serving accuracy for point-score while capturing finer quality differences in preference settings.

5 CONCLUSION

In this work, we introduced VIDEOSCORE2 for multi-dimensional, interpretable, and human-
aligned evaluation of AI-generated videos. By building a comprehensive annotation pipeline that
gathers diverse prompts, generative videos as well as reliable scores and rationales, we are able to
train VIDEOSCORE2 in the 2-stage paradigm. Comprehensive experiments demonstrate that our
model outperforms existing evaluators across in-domain and out-of-domain benchmarks. We be-
lieve that VIDEOSCORE2 open a path for trustworthy evaluation and human-aligned training of
generative video models. Furthermore, our evaluation results also shows that model still struggle in
evaluating physics and common senses in the generative models, highlighting the importance of a
world model for video evaluator. We leave this as a future direction worth to explore.
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models, and only non-sensitive, safe prompts were retained. Our annotation guidelines emphasized
fairness and consistency, and all annotators were trained to avoid introducing biased or discrimina-
tory judgments.

No personally identifiable information was collected or used, and no experiments were conducted
that could raise privacy or security concerns. We are committed to maintaining transparency, fair-
ness, and integrity throughout the research process.

REPRODUCIBILITY STATEMENT

All the code and datasets used in the paper will be open-sourced after the paper is accepted. We also
have provided comprehensive details for both training (see in Appendix D) and evaluation (see in
Appendix C) to help the community for reproduction.

REFERENCES

Anthropic. Claude-sonnet-4. https://www.anthropic.com/news/claude-4, 2025.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025.

Hritik Bansal, Clark Peng, Yonatan Bitton, Roman Goldenberg, Aditya Grover, and Kai-Wei Chang.
Videophy-2: A challenging action-centric physical commonsense evaluation in video generation,
2025. URL https://arxiv.org/abs/2503.06800.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models, 2024.

Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans,
Quoc V. Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study
of foundation model post-training. ArXiv, abs/2501.17161, 2025. URL https://api.
semanticscholar.org/CorpusID:275932560.

Weichen Fan, Chenyang Si, Junhao Song, Zhenyu Yang, Yinan He, Long Zhuo, Ziqi Huang, Ziyue
Dong, Jingwen He, Dongwei Pan, et al. Vchitect-2.0: Parallel transformer for scaling up video
diffusion models. arXiv preprint arXiv:2501.08453, 2025.

Kaituo Feng, Kaixiong Gong, Bohao Li, Zonghao Guo, Yibing Wang, Tianshuo Peng, Junfei Wu,
Xiaoying Zhang, Benyou Wang, and Xiangyu Yue. Video-r1: Reinforcing video reasoning in
mllms, 2025. URL https://arxiv.org/abs/2503.21776.

Chaoyou Fu, Yuhan Dai, Yongdong Luo, Lei Li, Shuhuai Ren, Renrui Zhang, Zihan Wang, Chenyu
Zhou, Yunhang Shen, Mengdan Zhang, Peixian Chen, Yanwei Li, Shaohui Lin, Sirui Zhao, Ke Li,
Tong Xu, Xiawu Zheng, Enhong Chen, Caifeng Shan, Ran He, and Xing Sun. Video-mme: The
first-ever comprehensive evaluation benchmark of multi-modal llms in video analysis, 2025. URL
https://arxiv.org/abs/2405.21075.

Google. Google-veo3. https://aistudio.google.com/models/veo-3, 2025a.

10

https://www.anthropic.com/news/claude-4
https://arxiv.org/abs/2503.06800
https://api.semanticscholar.org/CorpusID:275932560
https://api.semanticscholar.org/CorpusID:275932560
https://arxiv.org/abs/2503.21776
https://arxiv.org/abs/2405.21075
https://aistudio.google.com/models/veo-3


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Google. Gemini-2.5-pro. https://deepmind.google/models/gemini/pro/, 2025b.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image dif-
fusion models without specific tuning. International Conference on Learning Representations,
2024.

Yoav HaCohen, Nisan Chiprut, Benny Brazowski, Daniel Shalem, Dudu Moshe, Eitan Richardson,
Eran Levin, Guy Shiran, Nir Zabari, Ori Gordon, Poriya Panet, Sapir Weissbuch, Victor Kulikov,
Yaki Bitterman, Zeev Melumian, and Ofir Bibi. Ltx-video: Realtime video latent diffusion. arXiv
preprint arXiv:2501.00103, 2024.

Xuan He, Dongfu Jiang, Ge Zhang, Max Ku, Achint Soni, Sherman Siu, Haonan Chen, Abhranil
Chandra, Ziyan Jiang, Aaran Arulraj, Kai Wang, Quy Duc Do, Yuansheng Ni, Bohan Lyu,
Yaswanth Narsupalli, Rongqi Fan, Zhiheng Lyu, Yuchen Lin, and Wenhu Chen. Videoscore:
Building automatic metrics to simulate fine-grained human feedback for video generation, 2024.
URL https://arxiv.org/abs/2406.15252.

Levon Khachatryan, Andranik Movsisyan, Vahram Tadevosyan, Roberto Henschel, Zhangyang
Wang, Shant Navasardyan, and Humphrey Shi. Text2video-zero: Text-to-image diffusion models
are zero-shot video generators. arXiv preprint arXiv:2303.13439, 2023.

Tengchuan Kou, Xiaohong Liu, Zicheng Zhang, Chunyi Li, Haoning Wu, Xiongkuo Min, Guangtao
Zhai, and Ning Liu. Subjective-aligned dataset and metric for text-to-video quality assessment,
2024. URL https://arxiv.org/abs/2403.11956.

Kuaishou. Kling-1.6. https://app.klingai.com/global, 2025.

Weiqi Li, Xuanyu Zhang, Shijie Zhao, Yabin Zhang, Junlin Li, Li Zhang, and Jian Zhang. Q-insight:
Understanding image quality via visual reinforcement learning. arXiv preprint arXiv:2503.22679,
2025.

Bin Lin, Yunyang Ge, Xinhua Cheng, Zongjian Li, Bin Zhu, Shaodong Wang, Xianyi He, Yang Ye,
Shenghai Yuan, Liuhan Chen, et al. Open-sora plan: Open-source large video generation model.
arXiv preprint arXiv:2412.00131, 2024a.

Bin Lin, Yang Ye, Bin Zhu, Jiaxi Cui, Munan Ning, Peng Jin, and Li Yuan. Video-llava: Learning
united visual representation by alignment before projection, 2024b. URL https://arxiv.
org/abs/2311.10122.

Jie Liu, Gongye Liu, Jiajun Liang, Ziyang Yuan, Xiaokun Liu, Mingwu Zheng, Xiele Wu, Qiulin
Wang, Wenyu Qin, Menghan Xia, et al. Improving video generation with human feedback. arXiv
preprint arXiv:2501.13918, 2025.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin
transformer, 2021. URL https://arxiv.org/abs/2106.13230.

Guoqing Ma, Haoyang Huang, Kun Yan, Liangyu Chen, Nan Duan, Shengming Yin, Changyi Wan,
Ranchen Ming, Xiaoniu Song, Xing Chen, Yu Zhou, Deshan Sun, Deyu Zhou, Jian Zhou, Kai-
jun Tan, Kang An, Mei Chen, Wei Ji, Qiling Wu, Wen Sun, Xin Han, Yanan Wei, Zheng Ge,
Aojie Li, Bin Wang, Bizhu Huang, Bo Wang, Brian Li, Changxing Miao, Chen Xu, Chenfei
Wu, Chenguang Yu, Dapeng Shi, Dingyuan Hu, Enle Liu, Gang Yu, Ge Yang, Guanzhe Huang,
Gulin Yan, Haiyang Feng, Hao Nie, Haonan Jia, Hanpeng Hu, Hanqi Chen, Haolong Yan, Heng
Wang, Hongcheng Guo, Huilin Xiong, Huixin Xiong, Jiahao Gong, Jianchang Wu, Jiaoren Wu,
Jie Wu, Jie Yang, Jiashuai Liu, Jiashuo Li, Jingyang Zhang, Junjing Guo, Junzhe Lin, Kaixiang
Li, Lei Liu, Lei Xia, Liang Zhao, Liguo Tan, Liwen Huang, Liying Shi, Ming Li, Mingliang
Li, Muhua Cheng, Na Wang, Qiaohui Chen, Qinglin He, Qiuyan Liang, Quan Sun, Ran Sun,
Rui Wang, Shaoliang Pang, Shiliang Yang, Sitong Liu, Siqi Liu, Shuli Gao, Tiancheng Cao,
Tianyu Wang, Weipeng Ming, Wenqing He, Xu Zhao, Xuelin Zhang, Xianfang Zeng, Xiaojia
Liu, Xuan Yang, Yaqi Dai, Yanbo Yu, Yang Li, Yineng Deng, Yingming Wang, Yilei Wang,
Yuanwei Lu, Yu Chen, Yu Luo, Yuchu Luo, Yuhe Yin, Yuheng Feng, Yuxiang Yang, Zecheng
Tang, Zekai Zhang, Zidong Yang, Binxing Jiao, Jiansheng Chen, Jing Li, Shuchang Zhou, Xi-
angyu Zhang, Xinhao Zhang, Yibo Zhu, Heung-Yeung Shum, and Daxin Jiang. Step-video-t2v

11

https://deepmind.google/models/gemini/pro/
https://arxiv.org/abs/2406.15252
https://arxiv.org/abs/2403.11956
https://app.klingai.com/global
https://arxiv.org/abs/2311.10122
https://arxiv.org/abs/2311.10122
https://arxiv.org/abs/2106.13230


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

technical report: The practice, challenges, and future of video foundation model, 2025a. URL
https://arxiv.org/abs/2502.10248.

Wentao Ma, Weiming Ren, Yiming Jia, Zhuofeng Li, Ping Nie, Ge Zhang, and Wenhu Chen.
Videoeval-pro: Robust and realistic long video understanding evaluation, 2025b. URL https:
//arxiv.org/abs/2505.14640.

Xin Ma, Yaohui Wang, Xinyuan Chen, Gengyun Jia, Ziwei Liu, Yuan-Fang Li, Cunjian Chen, and
Yu Qiao. Latte: Latent diffusion transformer for video generation, 2025c. URL https://
arxiv.org/abs/2401.03048.

Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fahad Shahbaz Khan. Video-chatgpt:
Towards detailed video understanding via large vision and language models. In Proceedings of
the 62nd Annual Meeting of the Association for Computational Linguistics (ACL 2024), 2024.

Meta. Llama-4-herd. https://ai.meta.com/blog/
llama-4-multimodal-intelligence/, 2025.

John Mullan, Duncan Crawbuck, and Aakash Sastry. Hotshot-XL, October 2023. URL https:
//github.com/hotshotco/hotshot-xl.

OpenAI. Openai sora. https://openai.com/sora, 2024.

OpenAI. Gpt-5. https://openai.com/index/introducing-gpt-5/, 2025.

Pika-Labs. Pika-v2.2. https://pikalabs.org/pika-2-2, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Spencer Sterling. Zeroscope v2, 2024. URL https://huggingface.co/cerspense/
zeroscope_v2_576w.

CreateAI Team. Ruyi-mini-7b. https://github.com/IamCreateAI/Ruyi-Models,
2024a.

Genmo Team. Mochi 1. https://github.com/genmoai/models, 2024b.

V Team, Wenyi Hong, Wenmeng Yu, Xiaotao Gu, Guo Wang, Guobing Gan, Haomiao Tang, Jiale
Cheng, Ji Qi, Junhui Ji, Lihang Pan, Shuaiqi Duan, Weihan Wang, Yan Wang, Yean Cheng,
Zehai He, Zhe Su, Zhen Yang, Ziyang Pan, Aohan Zeng, Baoxu Wang, Bin Chen, Boyan Shi,
Changyu Pang, Chenhui Zhang, Da Yin, Fan Yang, Guoqing Chen, Jiazheng Xu, Jiale Zhu, Jiali
Chen, Jing Chen, Jinhao Chen, Jinghao Lin, Jinjiang Wang, Junjie Chen, Leqi Lei, Letian Gong,
Leyi Pan, Mingdao Liu, Mingde Xu, Mingzhi Zhang, Qinkai Zheng, Sheng Yang, Shi Zhong,
Shiyu Huang, Shuyuan Zhao, Siyan Xue, Shangqin Tu, Shengbiao Meng, Tianshu Zhang, Tianwei
Luo, Tianxiang Hao, Tianyu Tong, Wenkai Li, Wei Jia, Xiao Liu, Xiaohan Zhang, Xin Lyu,
Xinyue Fan, Xuancheng Huang, Yanling Wang, Yadong Xue, Yanfeng Wang, Yanzi Wang, Yifan
An, Yifan Du, Yiming Shi, Yiheng Huang, Yilin Niu, Yuan Wang, Yuanchang Yue, Yuchen Li,
Yutao Zhang, Yuting Wang, Yu Wang, Yuxuan Zhang, Zhao Xue, Zhenyu Hou, Zhengxiao Du,
Zihan Wang, Peng Zhang, Debing Liu, Bin Xu, Juanzi Li, Minlie Huang, Yuxiao Dong, and Jie
Tang. Glm-4.5v and glm-4.1v-thinking: Towards versatile multimodal reasoning with scalable
reinforcement learning, 2025. URL https://arxiv.org/abs/2507.01006.

Haibo Tong, Zhaoyang Wang, Zhaorun Chen, Haonian Ji, Shi Qiu, Siwei Han, Kexin Geng,
Zhongkai Xue, Yiyang Zhou, Peng Xia, Mingyu Ding, Rafael Rafailov, Chelsea Finn, and Huaxiu
Yao. Mj-video: Fine-grained benchmarking and rewarding video preferences in video generation,
2025. URL https://arxiv.org/abs/2502.01719.

12

https://arxiv.org/abs/2502.10248
https://arxiv.org/abs/2505.14640
https://arxiv.org/abs/2505.14640
https://arxiv.org/abs/2401.03048
https://arxiv.org/abs/2401.03048
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://github.com/hotshotco/hotshot-xl
https://github.com/hotshotco/hotshot-xl
https://openai.com/sora
https://openai.com/index/introducing-gpt-5/
https://pikalabs.org/pika-2-2
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://huggingface.co/cerspense/zeroscope_v2_576w
https://huggingface.co/cerspense/zeroscope_v2_576w
https://github.com/IamCreateAI/Ruyi-Models
https://github.com/genmoai/models
https://arxiv.org/abs/2507.01006
https://arxiv.org/abs/2502.01719


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Team Wan, Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu,
Haiming Zhao, Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai
Wang, Jixuan Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi
Zhang, Pandeng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang,
Tianxing Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng
Zhou, Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan
Kou, Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You
Wu, Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen
Han, Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models.
arXiv preprint arXiv:2503.20314, 2025.

Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang.
Modelscope text-to-video technical report, 2023. URL https://arxiv.org/abs/2308.
06571.

Qiuheng Wang, Yukai Shi, Jiarong Ou, Rui Chen, Ke Lin, Jiahao Wang, Boyuan Jiang, Haotian
Yang, Mingwu Zheng, Xin Tao, Fei Yang, Pengfei Wan, and Di Zhang. Koala-36m: A large-scale
video dataset improving consistency between fine-grained conditions and video content, 2025a.
URL https://arxiv.org/abs/2410.08260.

Wenhao Wang and Yi Yang. Vidprom: A million-scale real prompt-gallery dataset for text-to-video
diffusion models, 2024. URL https://arxiv.org/abs/2403.06098.

Yaohui Wang, Xinyuan Chen, Xin Ma, Shangchen Zhou, Ziqi Huang, Yi Wang, Ceyuan Yang, Yinan
He, Jiashuo Yu, Peiqing Yang, et al. Lavie: High-quality video generation with cascaded latent
diffusion models. IJCV, 2024a.

Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
Xu, Yi Liu, Zun Wang, Sen Xing, Guo Chen, Junting Pan, Jiashuo Yu, Yali Wang, Limin Wang,
and Yu Qiao. Internvideo: General video foundation models via generative and discriminative
learning, 2022. URL https://arxiv.org/abs/2212.03191.

Yibin Wang, Zhiyu Tan, Junyan Wang, Xiaomeng Yang, Cheng Jin, and Hao Li. Lift: Leverag-
ing human feedback for text-to-video model alignment, 2025b. URL https://arxiv.org/
abs/2412.04814.

Yibin Wang, Yuhang Zang, Hao Li, Cheng Jin, and Jiaqi Wang. Unified reward model for multi-
modal understanding and generation. arXiv preprint arXiv:2503.05236, 2025c.

Yiping Wang, Xuehai He, Kuan Wang, Luyao Ma, Jianwei Yang, Shuohang Wang, Simon Shaolei
Du, and Yelong Shen. Is your world simulator a good story presenter? a consecutive events-
based benchmark for future long video generation, 2024b. URL https://arxiv.org/abs/
2412.16211.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
long video understanding via large language models, 2024. URL https://arxiv.org/
abs/2404.03384.

Haoning Wu, Erli Zhang, Liang Liao, Chaofeng Chen, Jingwen Hou Hou, Annan Wang, Wenxiu Sun
Sun, Qiong Yan, and Weisi Lin. Exploring video quality assessment on user generated con-
tents from aesthetic and technical perspectives. In International Conference on Computer Vision
(ICCV), 2023a.

Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Chunyi Li, Liang Liao, Annan
Wang, Erli Zhang, Wenxiu Sun, Qiong Yan, Xiongkuo Min, Guangtai Zhai, and Weisi Lin.
Q-align: Teaching lmms for visual scoring via discrete text-defined levels. arXiv preprint
arXiv:2312.17090, 2023b. Equal Contribution by Wu, Haoning and Zhang, Zicheng. Project
Lead by Wu, Haoning. Corresponding Authors: Zhai, Guangtai and Lin, Weisi.

13

https://arxiv.org/abs/2308.06571
https://arxiv.org/abs/2308.06571
https://arxiv.org/abs/2410.08260
https://arxiv.org/abs/2403.06098
https://arxiv.org/abs/2212.03191
https://arxiv.org/abs/2412.04814
https://arxiv.org/abs/2412.04814
https://arxiv.org/abs/2412.16211
https://arxiv.org/abs/2412.16211
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2404.03384
https://arxiv.org/abs/2404.03384


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

xAI. Grok-4. https://x.ai/news/grok-4, 2025.

Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao
Dong. Imagereward: learning and evaluating human preferences for text-to-image generation.
In Proceedings of the 37th International Conference on Neural Information Processing Systems,
pages 15903–15935, 2023.

Jiazheng Xu, Yu Huang, Jiale Cheng, Yuanming Yang, Jiajun Xu, Yuan Wang, Wenbo Duan, Shen
Yang, Qunlin Jin, Shurun Li, Jiayan Teng, Zhuoyi Yang, Wendi Zheng, Xiao Liu, Ming Ding,
Xiaohan Zhang, Xiaotao Gu, Shiyu Huang, Minlie Huang, Jie Tang, and Yuxiao Dong. Visionre-
ward: Fine-grained multi-dimensional human preference learning for image and video generation,
2024. URL https://arxiv.org/abs/2412.21059.

Yuhang Yang, Ke Fan, Shangkun Sun, Hongxiang Li, Ailing Zeng, FeiLin Han, Wei Zhai, Wei
Liu, Yang Cao, and Zheng-Jun Zha. Videogen-eval: Agent-based system for video generation
evaluation. arXiv preprint arXiv:2503.23452, 2025.

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Qinghao Ye, Haiyang Xu, Guohai Xu, Jiabo Ye, Ming Yan, Yiyang Zhou, Junyang Wang, Anwen
Hu, Pengcheng Shi, Yaya Shi, Chenliang Li, Yuanhong Xu, Hehong Chen, Junfeng Tian, Qi Qian,
Ji Zhang, Fei Huang, and Jingren Zhou. mplug-owl: Modularization empowers large language
models with multimodality, 2024. URL https://arxiv.org/abs/2304.14178.

Zhiyuan You, Xin Cai, Jinjin Gu, Tianfan Xue, and Chao Dong. Teaching large language models to
regress accurate image quality scores using score distribution. In IEEE Conference on Computer
Vision and Pattern Recognition, 2025.

Shenghai Yuan, Jinfa Huang, Yujun Shi, Yongqi Xu, Ruijie Zhu, Bin Lin, Xinhua Cheng, Li Yuan,
and Jiebo Luo. Magictime: Time-lapse video generation models as metamorphic simulators.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding, 2023. URL https://arxiv.org/abs/2306.02858.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyan Luo, Zhangchi Feng, and
Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
3: System Demonstrations), Bangkok, Thailand, 2024a. Association for Computational Linguis-
tics. URL http://arxiv.org/abs/2403.13372.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all.
arXiv preprint arXiv:2412.20404, 2024b.

14

https://x.ai/news/grok-4
https://arxiv.org/abs/2412.21059
https://arxiv.org/abs/2304.14178
https://arxiv.org/abs/2306.02858
http://arxiv.org/abs/2403.13372


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

APPENDIX

A Data Collection and Processing 16

A.1 Collecting Text-to-Video Prompts . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A.2 Statistics of Generated Videos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

A.3 Video Examples from Different Quality Tiers. . . . . . . . . . . . . . . . . . . . . 19

A.4 Annotation Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

A.5 Prompt Templates for Annotation Processing . . . . . . . . . . . . . . . . . . . . 22

B Evaluation Suite 24

B.1 Dimension Matching and Modification in Out-of-Domain Benchmarks . . . . . . . 24

B.2 Dimension Matching and Score Rescaling for Baselines . . . . . . . . . . . . . . . 25

C Full Evaluation Results 27

C.1 Full Results on VideoGen-Reward-Bench . . . . . . . . . . . . . . . . . . . . . . 27

C.2 Full Results on MJ-Bench-Video . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

C.3 Full Results on VideoPhy2-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

C.4 Full Results of Best-of-N sampling on VBench . . . . . . . . . . . . . . . . . . . 30

D Experiment Setuo and Ablation Studies 31

D.1 SFT experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

D.2 Ablation on sampling fps in SFT training . . . . . . . . . . . . . . . . . . . . . . 31

D.3 Ablation on learning rate and epochs in SFT training . . . . . . . . . . . . . . . . 32

D.4 Ablation on inference settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

D.5 Ablation on RL training steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

E Case Studies 35

F The Use of Large Language Models 37

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A DATA COLLECTION AND PROCESSING

A.1 COLLECTING TEXT-TO-VIDEO PROMPTS

SOURCE 1: VIDPROM

Rule-based filtering.

• NSFW probability. The original dataset provides a probability that a given prompt may lead
to NSFW content. We exclude prompts with NSFW probability greater than 0.2, following
the original dataset’s setting.

• Trigger-word filtering. Exclude prompts intended for image-to-video generation, which
explicitly mention image attachments, and prompts specifying aspect ratios, or du-
ration, which cannot be freely controlled in most T2V models. The trigger-word
list includes: ["screen size", "16:9", "1:1", "3:4", "4k", "8k",
"seconds", "message", "attach"].

• Length control. Only prompts between 15 and 100 words are retained.

LLM Semantic filtering. To filter out unsuitable prompts, we use GPT-4o-mini for semantic
checks and exclude problematic ones. Specifically, we remove prompts that:

• vague or meaningless, lacking a concrete task,

• containing specific people or names,

• missing substantive verbs or motion, closer to images than videos,

• describing over three actions or events, too complex for short videos.

SOURCE 2: KOALA-36M

Rule-based filtering.

• Since prompts come from real video captions, we only keep those associated with video
segments shorter than 5 seconds; longer captions usually describe too many actions and are
unsuitable for short video generation.

• Each video–caption pair includes a clarity score and an aesthetic quality score. We exclude
captions with clarity score below 0.95 or aesthetic score below 4.0.

LLM Semantic filtering and revising

• Same semantic checks as for VidProM, removing ambiguous or low-quality prompts.

SOURCE 3: OCR-TEXT (MANUALLY COLLECTED).

For the OCR-text category, we first drafted seed prompts that explicitly required text to appear
in the video, then expanded them using LLMs to create realistic yet creative scenarios where text
naturally integrates into the scene. These prompts are diverse and challenging, often harder to
generate than purely human-written ones. For example:

• A painter adds brush strokes to a canvas, with a palette that says ‘Portrait of a Lady, Acrylic
Paints, Warm Tones and Fine Detail’.

• A photographer adjusts their lens with ‘Capture the Perfect Shot: Photography Tips and
Tricks’ displayed on a screen in front of them.

In total, 200 prompts were collected.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

SOURCE 4: MULTI-ACTION (MANUALLY COLLECTED).

For the multi-action category, we followed a similar approach as OCR-text. We first drafted seed
prompts containing two or three connected actions, then expanded and rewritten them with LLMs
to produce diverse, story-like scenarios. In total, 200 prompts were collected, each describing a
short narrative with three consecutive actions. For example:

• A woman adjusts her glasses, glances at the book with focus, and flips to the next page with
a smile.

• A fluffy orange cat swats a ball of yarn, sends it rolling, then dashes after it and pounces
mid-roll.

SOURCE 5: CAMERA MOTION (MANUALLY COLLECTED).

For the camera-motion category, we did not generate entirely new prompts. Instead, we augmented
existing prompts by appending explicit camera movement instructions at the end. Common motions
include “Zoom in,” “Zoom out,” “Pan left,” “Pan right,” “Pan up,” “Pan down,” “Tilt up,” “Tilt
down,” and “Tracking shot.” This simple yet effective strategy allows the dataset to capture scenarios
where video realism depends on both content generation and dynamic camera behavior.

Figure 8: Distribution of Length (Num of
Words) for the Prompt Set.

Figure 9: Word Cloud for the Prompt Set.
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A.2 STATISTICS OF GENERATED VIDEOS

We generate videos for annotation using more than twenty text-to-video (T2V) models, spanning
from early diffusion-based systems such as ModelScope (Wang et al., 2023) to recent high quality
generators like Kling-1.6 (Kuaishou, 2025). This ensures a broad quality spectrum, covering both
weak and strong generations.

As discussed in Section 3.1, to facilitate fairer comparisons and improve annotation reliability, we
categorize these models into four coarse quality tiers. For each prompt, ten videos are sampled
from ten different models while maintaining a balanced distribution across the four tiers. Typically
1-2 from ”Poor / Early”, 3-4 from Moderate, 3-4 from ”Good”, and 1 from ”Perfect / Modern”.
The resulting videos vary widely in characteristics, with durations ranging from 1 to 6 seconds,
resolutions from 256×256 up to 1920×982, and frame rates from 8 to 30 fps. A full summary of
the models (and its variants) used is provided in Table 8.

Table 8: Detailed information of videos in our dataset, including t2v-model sources, video fps,
resolution, duration, etc.

T2V Model (Suffix code in dataset) Open Source FPS Resolution Duration Num Proportion

Tier1: Perfert / Modern. 2814 videos, 10.36%

Kling-1.6 (Kuaishou, 2025) (r) N 24.0 1280*720 5.0s 611 2.25%

Sora (OpenAI, 2024) (s) N 30.0 1920*982 10.0s 298 1.10%

Pika-2.2 (Pika-Labs, 2025) (t) N 24.0 1280*720 5.0s 321 1.18%

StepVideo-T2V (Ma et al., 2025a) (y) Y 25.0 992*544 4.0s 741 2.73%

Wanx-2.1 (14B) (Wan et al., 2025) (w) Y 25.0 832*480 3.9s 281 1.03%

Ruyi (Team, 2024a) (A) Y 24.0 1008*576 5.0s 184 0.68%

CogVideoX-1.5 (Yang et al., 2024) (g) Y 10.0 1360*768 4.0s 378 1.39%

Tier2: Good. 9598 videos, 33.53%

Wanx-2.1 (1.3B) (Wan et al., 2025) (v) Y 24.0 832*480 3.9s 1497 5.51%

MagicTime (Yuan et al., 2025) (q) Y 8.0 512*512 2.0s 1741 6.41%

Mochi1-Preview (Team, 2024b) (c) Y 10.0 848*480 1.9s 1649 6.07%

LaVie-base (Wang et al., 2024a) (h) Y 8.0 512*320 2.0s 1547 5.69%

CogVideoX (5B) (Yang et al., 2024) (f) Y 10.0 720*480 4.0s 1786 6.57%

OpenSora-Plan (v1.3) (Lin et al., 2024a) (u) Y 18.0 640*352 5.2s 1378 5.07%

Tier3: Moderate. 11349 videos, 41.77%

CogVideoX (2B) (Yang et al., 2024) (e) Y 10.0 720*480 4.0s 1774 6.53%

LTX-Video-0.9.5 (HaCohen et al., 2024) (z) Y 25.0 704*480 4.8s 1692 6.23%

OpenSora (v1.2) (Zheng et al., 2024b) (x) Y 8.0 640*480 1.6s 907 3.34%

Latte (Ma et al., 2025c) (b) Y 10.0 512*512 1.6s 1510 5.56%

VideoCrafter2 (Chen et al., 2024) (n) Y 10.0 512*320 1.6s 1172 4.31%

Vchitect-2.0 (Fan et al., 2025) (p) Y 10.0 512*320 1.6s 1235 4.55%

AnimateDiff (Guo et al., 2024) (a) Y 10.0 512*512 2.4s 1755 6.46%

Hotshot-XL (Mullan et al., 2023) (m) Y 8.0 673*384 1.0s 1304 4.80%

Tier4: Poor / Early. 3407 videos, 12.54%

ModelScope (Wang et al., 2023) (d) Y 10.0 256*256 2.4s 967 3.56%

LTX-Video-0.9.1 (HaCohen et al., 2024) (i) Y 10.0 704*512 3.3s 1333 4.91%

ZeroScope (Sterling, 2024) (j) Y 10.0 256*256 2.4s 395 1.45%

T2V-Zero (Khachatryan et al., 2023) (k) Y 10.0 256*256 0.8s 712 2.62%

All: 27168 videos
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A.3 VIDEO EXAMPLES FROM DIFFERENT QUALITY TIERS.

Below we show some videos of each quality tier, from ”Perfect / Modern” to ”Poor / Early”.

Example video of the quality tier “Perfect / Modern”, from Kling-1.6. Prompt is: A woman ties a
red ribbon around a gift box, carefully wraps it in shiny paper, and then smiles as she hands it to her
friend.

Example video of the quality tier “Perfect / Modern”, from Sora. Prompt is: A young man in
glasses and a gray t-shirt stands on a wooden deck, gesturing with his hands and expressing dif-
ferent emotions. The background shows a scenic forest with tall trees and a clear sky. His facial
expressions change as he moves his hands, sometimes near his face, indicating various reactions.
The camera captures him in a steady medium shot, focusing on his upper body and gestures.

Example video of the quality tier “Good”, from LaVie-base. Prompt is: A hawk perches on a
leafless tree branch, facing away from the camera and gazing up at the clear blue sky. The calm
scene features a few wispy clouds and barren tree branches. The hawk remains still, with occasional
head movements, set against a peaceful, natural backdrop.

Example video of the quality tier “Good”, from MagicTime. Prompt is: A scene showing the lost
bunny, its eyes wide with fear, as it navigates through a dense forest, with Sammy guiding it safely
home.
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Example video of the quality tier “Moderate”, from AnimateDiff. Prompt is: 5 boys of age 17
standing outside a school building. Three of them are looking at other students passing by, one is
looking at his mobile, and two are talking to each other. Crane up.

Example video of the quality tier “Moderate”, from Hotshot-XL. Prompt is: A cozy family kitchen
with breakfast items on the table. Xiao Ming, wearing traditional home attire, engages in a lively
conversation with his parents, emphasizing the warmth of family bonds and traditional values.

Example video of the quality tier “Poor / Early”, from ModelScope. Prompt is: The Kurdish king
wears a crown of gold on his head in 1850. He is imposing, serious, authoritative, loving, tall, and
handsome. He walks among the people in Kurdish clothes. Tilt down.

Example video of the quality tier “Poor / Early”, from Text2Video-Zero. Prompt is: A busy highway
with cars and trucks moving in both directions under a clear blue sky. The scene, filmed from a
moving vehicle, highlights a white van with ’Martinez returns from Florida’ on its side.
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A.4 ANNOTATION DETAILS.

Main Instructions The main instruction required annotators to assign a score for each dimen-
sion based on its definition and to provide a short comment describing the issues observed. For
instance, under Visual Quality, comments could include “low resolution,” “local blur,” or “bright-
ness flicker.” For Text-to-Video Alignment, annotators were asked to note missing elements from
the prompt, while for Physical/Common-Sense Consistency, they were instructed to highlight any
violations of physical laws, common sense, or abnormal artifacts.

Detailed Guidelines In addition, we provided detailed annotation guidelines to ensure consis-
tency: (i) if a dimension was rated 5, the comment could be omitted, since in such cases a template-
based rationale could be generated; (ii) if a video was entirely black or unrecognizable, it should be
skipped. Dimension-specific clarifications were also given:

• Visual Quality: Videos scoring 5 should look almost perfect, comparable to real footage;
while videos scoring 1 corresponds to severe flaws, where the subject, object, or motion is
hardly identifiable, or strong distortion/disconnection is present.

• Text-to-Video Alignment: For prompts with multiple actions (e.g., “Open the refrigerator,
put the elephant in, and close the door”), all actions must be checked for faithful realiza-
tion. While alignment often correlates with visual quality, clear and smooth videos may
still fail to match the prompt. Annotators were instructed to focus on whether the prompt
content was expressed correctly, ignoring minor extra details unless they severely misled
the meaning.

• Physical/Common-Sense Consistency: Most videos contain at least minor physical is-
sues, but the severity varies. If a prompt itself is unrealistic or absurd, annotators were
instructed to disregard this and judge the video independently. Complex reasoning was
unnecessary; everyday common sense was considered sufficient for evaluation.

Furthermore, annotators are informed that each batch of 10 videos they see sequentially corre-
sponded to the same prompt but came from different T2V models with diverse quality levels,
enabling fairer and more calibrated scoring.
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A.5 PROMPT TEMPLATES FOR ANNOTATION PROCESSING

Table 9 shows the prompt template in LLM augmented scoring for eliciting detailed thinking from
human annotated quality comments. Table 10 shows the prompt template for revising analysis pro-
cess when the human-annotated score and then adjusted model score are inconsistent with the think-
ing model’s output analysis. Table 11 shows the prompt template for building query in SFT data and
running inference.

Table 9: Prompt template in LLM augmented scoring for eliciting detailed thinking from human
annotated quality comments.

We are collecting and processing human annotations for the quality evaluation of AI-generated videos.

Dimension definitions:
(1) Visual Quality:

Mainly evaluates the video’s visual and optical properties, including ’resolution, overall clarity, local blurriness, smoothness, stability
of brightness/contrast, distortion/misalignment, abrupt changes, and any other factors the affect the watching experience’. The key-
words written by the annotators are also mostly derived from the above factors.

(2) Text Alignment:

Mainly assesses whether the generated video fully and accurately depicts the elements mentioned in the text prompt, such as char-
acters, actions, animals, etc., as well as background, quantity, color, weather, and so on. So the keywords written by annotators
sometimes only indicate the elements that are missing from the video.

(3) Physical/Common-sense Consistency:

Mainly examines whether there are any violations of common sense, physical laws, or any other aspects in the video that appear
strange or unnatural. Most of the keywords provided by annotators point out the specific abnormalities or inconsistencies they
observed in the video.

With the reference of some frames of the video, and the comments of 3 dimensions from a human annotator may also be provided,
please do your best to analyze and give a INTEGAR score between 1 and 5 for these dimensions, where 1 means very bad, 3 means
medium, and 5 means very good.

Sometimes human comments may be brief or lacking details, or the human comments may be null, — please check the aspects in
dimension definitions and make sure to thoroughly perceive and analyze the video on your own. Your reasoning should be detailed,
professional, and comprehensive. **DO NOT mention any human comment in your thinking**; you should pretend not to
know these comments (if they are provided), they are provided solely to inform and enhance your understanding for better evaluation.

Output format:
Your response must follow the format below strictly:
{
“score visual”: “quality score” (this field is only allowed to be a number between 1 and 5, inclusive, ),

“score t2v”: “quality score” (this field is only allowed to be a number between 1 and 5, inclusive),

“score phy”: “quality score” (this field is only allowed to be a number between 1 and 5, inclusive),

}
DO NOT include any text before or after the json block.

Here is the Input:
Text prompt used to generate the video: $prompt

Comment for “visual quality”: $comment visual

Comment for “text-to-video alignment” (the elements or events not expressed or not aligned in the video): $comment t2v

Comment for “physical/common-sense consistency” (the elements or events that look weird, abnormal or unnatural): $comment phy
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Table 10: Prompt template for revising analysis process when the human-annotated score and then
adjusted model score are inconsistent with the thinking model’s output analysis..

I’m conducting a multi-dimensional quality assessment of AI-generated videos, focusing on the dimensions of (1) Visual Quality, (2)
Text Alignment, and (3) Physical/Common-sense Consistency.

I will provide a multi-dimensional quality analysis for a video. However, the scores assigned in the analysis may not be entirely
accurate. And the ground truth scores for each dimension will also be provided. Your task is to adjust the analysis text accordingly
to ensure it aligns with the actual scores. In many cases, this means revising the severity of issues for certain dimension based on the
ground truth scores. The scale of score is [1, 2, 3, 4, 5].

**Important Notes:**
(1) **Any human comment should NOT be mentioned in the output analysis**. If the input analysis quote or mention human
comments, you should pretend not to know them in your output, they are provided solely to inform and enhance your understanding
for better evaluation.

(2) **DO NOT** alter the overall structure or core meaning of the analysis. Only revise specific expressions or phrases as
needed so that the content reasonably reflects the provided scores.

(3) The input original analysis is constructed from the sampled frames of the video, if the input analysis includes evaluations of
individual frames or frame-by-frame assessments, you should appropriately transform them into an overall evaluation of the entire
video, since the final output is expected to be based on the video as a whole.

(4) Your output analysis should be approximately the same length as the input analysis. If the input analysis is not very detailed and
specific, you may extend your output accordingly.

Output format:
Your response must follow the format below strictly:

{ “new thinking”: “modified analysis” (this field is only allowed to be string), }
DO NOT include any text before or after the dictionary block.

Here is the input:
multi-dimensional analysis: $thinking
ground truth score of Dim-1 “Visual Quality”:$v score

ground-truth scoreof Dim-2 “Text-to-Video Alignment”:$t score

ground-truth of Dim-3 “Physical Consistency’ (also referred to as Common-sense Consistency): $p score

Table 11: Prompt template for building query in SFT data and running inference.

We would like to evaluate its quality from three dimensions: ’visual quality’, ’text-to-video alignment’ and ’physical/common-sense
consistency’.

Below is the definition of each dimension:

(1) visual quality:

The dimension ’visual quality’ cares about the video’s visual and optical properties, including ’resolution, overall clarity, local blur-
riness, smoothness, stability of brightness/contrast, distortion/misalignment, abrupt changes, and any other factors the affect the
watching experience’. The keywords written by the annotators are also mostly derived from the above factors.

(2) text alignment:

The dimension ’text-to-video alignment’ mainly assesses whether the generated video fully and accurately depicts the elements
mentioned in the text prompt, such as characters, actions, animals, etc., as well as background, quantity, color, weather, and so on. So
the keywords written by annotators sometimes only indicate the elements that are missing from the video.

(3) physical/common-sense consistency:

The dimension ’physical/common-sense consistency’ mainly examines whether there are any violations of common sense, physical
laws, or any other aspects in the video that appear strange or unnatural. Most of the keywords provided by annotators point out the
specific abnormalities or inconsistencies they observed in the video.

Here we provide an AI video generated by text-to-video models and its text prompt:

$t2v prompt.

Based on the video content and the dimension definitions, please evaluate the video quality and give the quality score. The score must
be in the range of 1 - 5.
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B EVALUATION SUITE

B.1 DIMENSION MATCHING AND MODIFICATION IN OUT-OF-DOMAIN BENCHMARKS

Since different benchmarks define varying dimensions and scoring scales, we align them with the
three evaluation dimensions of VIDEOSCORE2 (visual quality, text alignment, and physical consis-
tency) and, where necessary, rescale their ground-truth scores. Below we summarize the mapping
rules for each benchmark.

VideoGenReward Bench. This is a pairwise preference benchmark containing 4,691 videos,
forming 25,234 video pairs. It evaluates three dimensions—visual quality (VQ), text alignment
(TA), and motion quality (MQ)—and also provides an Overall preference label indicating which
video is better overall. Among these, VQ and TA correspond closely to VIDEOSCORE2 ’s first
two dimensions (despite slight definitional differences), so these two dimensions are used for this
benchmark. For the Overall preference, we use the mean of all available dimension scores from
VIDEOSCORE2 or the baseline method (if the baseline only has one quality score output, then that
score is used directly).

T2VQA-DB. Originally a human-annotated video quality dataset with 10,000 videos, each labeled
with a single quality score in the range [1,100]. We sample 2,000 videos and construct 1,822 pairs
by comparing human-annotated scores. Since the dataset provides only one dimension (the final
score), we predict preference by averaging all dimension scores from VIDEOSCORE2 or the baseline
method (if the baseline only has one quality score output, then that score is used directly).

MJ-Bench-Video. This benchmark contains 2,170 videos and adopts a point-score format with
five dimensions: fineness, alignment, consistency & coherence, safety, and bias & fairness. We
select the first three, which correspond to VIDEOSCORE2 ’s three evaluation dimensions. For base-
lines with only one final score, we “broadcast” this score across multiple dimensions. The bench-
mark uses a {0,1,2} scale, whereas VIDEOSCORE2 and other baselines output (or are normalized
to) integer scores in [1,5]. Thus, we apply the following mapping, where x denotes the original
score of each dimension, v, t, p denote the rescaled score of for “visual quality”, “text alignment”
and “physical consistency”, respectively:

v =


0 if x ∈ {1, 2},
1 if x ∈ {3, 4},
2 if x = 5,

t =


0 if x = 1,

1 if x ∈ {2, 3},
2 if x ∈ {4, 5},

p =


0 if x = 1,

1 if x ∈ {2, 3},
2 if x ∈ {4, 5}.

The benchmark also provides an Overall score, for which we again take the mean of all available
dimension scores (or the single dimension if only one is provided), rescaled into {0,1,2} using the
same rule.

VideoPhy2-test. This benchmark contains 3,396 videos with two dimensions, SA: semantic ad-
herence and PC: physical consistency. These map perfectly to VIDEOSCORE2 ’s second and third di-
mensions. For baselines lacking one of the dimensions (e.g., VideoReward, which provides VQ, TA,
MQ but no physical consistency), we skip the missing dimension. The scoring scale is {1,2,3,4,5},
so no rescaling is required.
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B.2 DIMENSION MATCHING AND SCORE RESCALING FOR BASELINES

Since different baseline models adopt varying evaluation dimensions and scoring scales, we ap-
ply dimension matching and score rescaling to make them compatible with VIDEOSCORE-
BENCH-V2 and VIDEOSCORE2. Our goal is to ensure that all baselines output scores on the three
dimensions—visual quality (v), text alignment (t), and physical consistency (p)—within a unified
range of integers 1-5. A summary of the mapping rules is provided in Table 12.

Baseline Dimension Matching. With v, t, and p to denote the score of visual quality, text align-
ment, physical/common-sense consistency, respectively, we consider three cases:

• Broadcast. Some baselines only output a single final score. In this case, we broadcast the
same score to our three dimensions v, t, and p.

• Good Match. Some baselines already report dimensions that closely match ours, so we
directly use their outputs without modification.

• Customized. For baselines with different or partially overlapping dimensions, we design
customized mappings.

– VideoReward: outputs Visual Quality, Text Alignment, and Motion Quality. We use
the outputs of first two dimensions as v and t, and skip Motion Quality.

– AIGVE-MACS: outputs multiple fine-grained dimensions. We average {technical
quality, element quality, action quality} as v, average {element presence, action pres-
ence} as t, and use physics as p.

– VideoPhy2-Auto-Eval: outputs Semantic Adherence (SA) and Physical Consistency
(PC). We use SA as t and PC as p, while skipping v.

Baseline Score Rescaling. To make results comparable, we rescale all baseline outputs into a
unified integer range of 1–5. A summary of the mapping rules is provided in Table 12.

• Linear Scaling or No Scaling. For baselines with well-defined score ranges (e.g., [0,1],
[0,100]), we apply linear normalization followed by rounding to the nearest integer in
{1, 2, 3, 4, 5}.

• Ordinal categories using Gaussian-distribution quantile thresholds. For baselines without
fixed score bounds, we adopt an ordinal mapping based on Gaussian-distribution quantile
thresholds. Specifically, raw scores are assumed to approximately follow a Gaussian distri-
bution and are divided into five categories using the 20%, 40%, 60%, and 80% quantiles of
the standard normal distribution. If the raw scores typically fall within [-2.0, 2.0] and we
assume a Gaussian Distribution N(0, 1), thus apply the following mapping:

score =



1 if z < Φ−1(0.2),

2 if Φ−1(0.2) ≤ z < Φ−1(0.4),

3 if Φ−1(0.4) ≤ z < Φ−1(0.6),

4 if Φ−1(0.6) ≤ z < Φ−1(0.8),

5 otherwise,

where z is the raw model score and Φ−1 denotes the inverse CDF of the standard Gaussian.
– ImageReward and VisionReward: most scores are in [-2.0, 2.0], assume N(0, 1) and

follow the mapping above.
– VideoReward: most scores are in [-3.0, 3.0], so we assume a Gaussian Distribution
N(0, 1.5), and z is replaced by z/1.5 in the rules above to firstly normalize the raw
score before converting it to integers.
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Table 12: Rescale output scores and map dimensions of baselines models to align with our
VIDEOSCORE2 and VIDEOSCORE-BENCH-V2.

Model Dimension Mapping Original Scale Score Rescaling Method

Reward/Scoring Models for Image (averaged on sampled frames)

ImageReward Broadcast most in [-2.0,2.0] Ordinal categories using Gaussian-distribution quantile thresholds.

DeQA-Score Broadcast [0.0, 5.0] Linearly amplify and round

Q-Insight Good Match [1.0, 5.0] Linearly amplify and round

Reward/Scoring Models for Video

VideoReward Customized most in [-4.0,4.0] Ordinal categories using Gaussian-distribution quantile thresholds.

UnifiedReward Good Match {1,2,3,4,5} No rescaling

VisionReward Broadcast most in [-1.0,1.0] Ordinal categories using Gaussian-distribution quantile thresholds.

Q-Align Broadcast [0.0, 1.0] Linearly amplify and round

AIGVE-MACS Customized {1,2,3,4,5} No rescaling

VideoPhy2 Customized {1,2,3,4,5} No rescaling

Dover Broadcast [0.0, 1.0] Linearly amplify and round
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C FULL EVALUATION RESULTS

C.1 FULL RESULTS ON VIDEOGEN-REWARD-BENCH

VideoGen-Reward-Bench is a video preferenc over three dimensions: visual quality, text alignment,
and motion quality. The task is to compare a pair of videos and judge which one is better along these
axes. Among them, the first two dimensions are broadly aligned with ours, while the benchmark also
provides an additional measure of overall preference.

For the preference benchmarks, we report results under two settings. The w/ ties version includes
all test entries, where in some cases the two compared videos (including the ground-truth reference)
are judged as equally preferred. The w/o ties version is a subset obtained by removing those entries
with equal preference labels. The full evaluation results of preference prediction accuracy are shown
in Table 13.

Table 13: Full evaluation results on VideoGen-Reward-Bench. Bold denotes the best model and
the underlined denotes the second best.

VideoGen-Reward-Bench
Visual Quality Text Alignment Overall

w ties w/o ties w ties w/o ties w ties w/o ties

Reward/Scoring Models for Image (averaged on sampled frames)

ImageReward 31.64 51.40 44.00 60.72 47.14 58.61

DeQA-Score 41.07 69.55 36.22 53.23 53.88 67.91

Q-Insight 30.68 66.34 42.11 59.47 54.05 66.34

Reward/Scoring Models for Video

VideoScore-v1.1 47.41 30.84 26.09 30.85 16.79 40.19

VideoReward 53.21 75.58 52.75 72.18 59.69 73.66

UnifiedReward 41.27 39.42 40.11 36.58 53.31 58.83

VisionReward 35.89 59.03 44.86 61.15 54.31 67.58

Q-Align 32.01 52.98 35.77 51.06 42.05 52.52

AIGVE-MACS 38.05 30.80 30.76 11.66 37.09 37.08

VideoPhy2 - - 37.04 22.14 30.75 26.41

Dover 39.34 68.87 38.01 55.65 54.27 68.58

Ours

VIDEOSCORE2 (SFT only) 37.74 63.17 43.07 61.35 50.79 63.80

VIDEOSCORE2 (RL w/o SFT) 34.67 65.87 48.70 65.92 54.53 65.59

VIDEOSCORE2 (SFT + RL) 37.44 63.08 42.87 60.61 51.53 63.72
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C.2 FULL RESULTS ON MJ-BENCH-VIDEO

To maximize compatibility with the evaluation dimensions of VIDEOSCORE2, we selected three
aspects from MJ-Bench-Video that are most semantically aligned: Fineness, Alignment, and
Coherence & Consistency. These aspects correspond respectively to the three dimensions in
VIDEOSCORE2: visual quality, text alignment, and physical/commonsense consistency.

The full evaluation results of the three aspects and the overall scores are shown in Table 14, with
prediction accuracy between model outputs and ground truths adopted as metrics.

Table 14: Full evaluation results on MJ-Bench-Video. Bold denotes the best model and the
underlined denotes the second best.

MJ-Bench-Video
Accuracy

Fineness Alignment
Coherence &

Overall
Consistency

Reward/Scoring Models for Image (averaged on sampled frames)

ImageReward 47.05 28.07 29.03 37.51

DeQA-Score 18.57 51.20 52.40 44.19

Q-Insight 12.72 42.86 28.07 52.58

Reward/Scoring Models for Video

VideoScore-v1.1 13.69 64.19 79.22 71.57

VideoReward 79.36 38.99 - 51.75

UnifiedReward 43.50 21.98 18.16 23.18

VisionReward 36.31 55.99 67.51 56.91

Q-Align 14.77 31.74 26.41 21.97

AIGVE-MACS 20.18 26.27 21.39 31.00

VideoPhy2-Auto-Eval - 38.97 7.89 24.00

Dover 29.26 45.67 48.02 43.69

Ours

VIDEOSCORE2 (SFT only) 33.95 46.20 57.80 66.88

VIDEOSCORE2 (RL w/o SFT) 64.68 32.79 57.27 56.43

VIDEOSCORE2 (SFT + RL) 22.50 48.58 66.79 65.77
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C.3 FULL RESULTS ON VIDEOPHY2-TEST

Video-Phy2-Test is a human-annotated test set with two dimensions: semantic adherence and phys-
ical consistency (abbreviated as semantic and physical in our tables). These two dimensions corre-
spond directly to the latter two evaluation dimensions in our framework.

The full evaluation results of the two dimensions are shown in Table 15, with prediction accuracy
and PLCC between model outputs and ground truths adopted as metrics.

Table 15: Full evaluation results on Video-Phy2-test. Bold denotes the best model and the
underlined denotes the second best.

Video-Phy2-test
Accuracy PLCC

Semantic Physical Avg Semantic Physical Avg

Reward/Scoring Models for Image (averaged on sampled frames)

ImageReward 23.73 19.23 21.48 15.28 3.07 9.18

DeQA-Score 28.74 28.96 28.85 3.55 2.14 2.85

Q-Insight 29.21 32.59 30.90 22.45 4.98 13.72

Reward/Scoring Models for Video

VideoScore-v1.1 29.81 26.08 27.95 11.61 13.09 12.35

VideoReward 31.33 - 31.33 34.54 - 34.54

UnifiedReward 17.64 26.39 22.02 34.57 22.78 28.68

VisionReward 31.95 13.20 22.58 28.11 13.67 20.89

Q-Align 18.43 28.00 23.22 5.52 2.70 4.11

AIGVE-MACS 12.23 21.63 16.93 8.09 11.90 10.00

VideoPhy2-Auto-Eval 37.96 37.31 37.64 38.64 29.84 34.24

Dover 26.56 29.86 28.21 3.85 1.15 2.50

Ours

VIDEOSCORE2 (SFT only) 32.24 27.80 30.02 27.22 13.85 20.54

VIDEOSCORE2 (RL only) 31.71 23.66 27.69 39.07 16.90 27.99

VIDEOSCORE2 (SFT + RL) 37.48 29.67 33.58 41.08 17.57 29.33
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C.4 FULL RESULTS OF BEST-OF-N SAMPLING ON VBENCH

Table 16: Quality evaluatioin of eight T2V models on V-Bench with BoN sampling by our
VIDEOSCORE2, compared with random ones. We can see consistent improvement.

Best-of-N
Dimensions in VBench

Average Subject Background Aesthetic Imaging Motion

Random BoN Random BoN Random BoN Random BoN Random BoN Random BoN

Lavie-base 82.85 83.07 95.40 95.69 96.89 97.08 56.64 57.15 67.99 67.98 97.34 97.47

AnimateDiff 81.97 83.15 91.16 94.18 94.30 95.64 60.90 60.28 69.36 69.01 94.14 96.64

VideoCrafter1 80.03 80.63 95.35 95.58 95.76 96.05 46.00 47.67 67.03 67.58 95.99 96.26

ModelScope 78.75 79.70 93.68 95.07 95.52 96.40 46.23 47.60 61.64 62.32 96.66 97.10

ZeroScope 76.36 77.84 91.32 93.04 94.50 95.37 45.27 47.55 55.25 56.95 95.48 96.30

LVDM 75.33 76.26 88.79 89.91 93.14 93.81 41.01 42.00 60.94 62.24 92.75 93.35
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D EXPERIMENT SETUO AND ABLATION STUDIES

D.1 SFT EXPERIMENT SETUP

We conduct SFT with sampling fps of 2, a maximum frame resolution of 960×720, learning rates
of 5e-5, and epochs of 2 with one epoch taking about 6 hours on 8×A800 GPUs.

D.2 ABLATION ON SAMPLING FPS IN SFT TRAINING

During training, videos are sampled at 2 fps, which we find sufficient for evaluation: “visual quality”
primarily reflects global perceptual properties, “text alignment” focuses on semantic adherence, and
most issues of “physical consistency” or abnormal events typically last longer than half a second,
ensuring they can still be captured at this frame rate.

We also conduct an ablation on a 17k subset to study the effect of training sampling fps, comparing
2, 4, and 8 fps settings. As shown in Table 17, increasing the sampling rate does not yield significant
performance gains, while it noticeably increases computational cost and training time. Therefore,
we adopt 2 fps as the default setting in our main SFT experiments and in all subsequent ablations of
other hyper-parameters.

Table 17: Ablation results on a 17k subset of VIDEOSCORE2 data for different sampling fps in SFT.

Train Sampling fps Accuracy Relaxed Accuracy PLCC

(17k subset) Visual Align Phy Avg Visual Align Phy Avg Visual Align Phy Avg

2fps 54.67 39.33 46.67 46.89 94.00 81.33 90.00 88.44 73.62 60.24 54.72 62.86

4fps 48.67 42.67 49.33 46.89 94.00 82.00 92.67 89.56 67.87 61.85 63.86 64.53

8fps 51.00 45.33 48.00 48.11 92.00 85.33 88.67 88.67 64.34 65.71 52.05 60.70
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D.3 ABLATION ON LEARNING RATE AND EPOCHS IN SFT TRAINING

We perform ablations on two key hyper-parameters: learning rate 1e-5, 2e-5, 5e-5, 1e-4, 2e-4 and
epochs {1, 2, 3}. The results on VIDEOSCORE-BENCH-V2 are summarized in Table 18.

For learning rate, 1 × 10−4 achieves slightly higher accuracy than 5 × 10−5, but its loss curve is
less stable and shows lower values in the second epoch, as shown in Figure 10 and 11, suggesting
potential overfitting, which could harm performance on out-of-domain benchmarks. By contrast,
2e-5 exhibits a much higher loss curve in later stages, indicating underfitting. Balancing in-domain
accuracy and loss smoothness, we choose 5e-5 as the default learning rate.

For epochs, the 2-epoch setting outperforms both 1 and 3 epochs, and is therefore adopted as the
main version. This chosen SFT checkpoint also serves as the base model for subsequent RL cold-
start training.

Figure 10: Training loss in ablations of learn-
ing rate, 2e-5, 5e-5, and 1e-4 are shown.

Figure 11: Training loss in ablations of training
epoch, 1epoch, 2epoch, and 3epoch are shown.

Table 18: Ablation results on VIDEOSCORE-BENCH-V2 for different learning rate and epochs in
SFT.

SFT ablations
Accuracy Relaxed Accuracy PLCC

Visual Align Phy Avg Visual Align Phy Avg Visual Align Phy Avg

Main (LR = 5e-5, 2epoch) 43.69 40.88 34.87 39.81 90.38 86.97 83.77 87.04 56.74 58.24 44.72 53.23

Ablation (LR = 1e-5) 41.60 38.20 31.20 37.00 87.80 81.40 79.40 82.87 47.37 45.80 35.40 42.86

Ablation (LR = 2e-5) 42.77 38.55 34.94 38.75 90.76 85.14 80.72 85.54 54.17 52.77 40.99 49.31

Ablation (LR = 1e-4) 41.08 41.48 37.48 40.01 88.58 87.38 81.76 85.91 53.73 56.94 42.87 51.18

Ablation (LR = 2e-4) 41.48 40.48 37.48 39.81 89.38 87.58 83.37 86.78 51.93 56.15 45.53 51.20

Ablation (1epoch) 42.29 40.28 30.26 37.61 90.78 87.98 79.16 85.97 50.42 56.30 32.92 46.55

Ablation (3epoch) 45.29 37.28 38.88 40.48 92.39 87.38 85.77 88.51 58.34 56.71 49.60 54.88
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D.4 ABLATION ON INFERENCE SETTINGS

We also conduct an ablation on inference sampling rates, testing 2 fps, 4 fps, and 8 fps on
VIDEOSCORE-BENCH-V2. Results in Table 19 show that 2 fps achieves the best performance,
which aligns with our expectation: two frames per second are sufficient to capture most quality is-
sues for evaluation, while higher frame rates introduce redundant information and potential noise
that may interfere with the model’s judgment.

Table 19: Ablation results on VIDEOSCORE-BENCH-V2 for different inference configurations.

Inference Accuracy Relaxed Accuracy PLCC

Sampling fps Visual Align Phy Avg Visual Align Phy Avg Visual Align Phy Avg

2fps 50.10 43.88 39.08 44.35 92.99 91.38 87.98 90.78 60.13 62.60 52.73 60.37

4fps 46.80 44.20 38.28 43.09 90.00 87.60 84.20 87.27 60.13 57.53 43.55 53.74

8fps 41.67 40.77 37.61 40.02 85.81 88.96 83.78 86.18 56.28 58.27 41.86 52.14
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D.5 ABLATION ON RL TRAINING STEPS

We evaluated multiple intermediate checkpoints during RL training. Considering three evaluation
metrics jointly, performance peaked around 300 steps. Beyond this point, scores on VIDEOSCORE-
BENCH-V2 showed a clear decline., as shown in Table 20. Therefore, for all main experiments, we
report results based on the 300-step checkpoint.

Table 20: Ablation on RL training steps. Accuracy and correlation between model answer and
human score on VIDEOSCORE-BENCH-V2. Relaxed Accuracy counts cases where the prediction
differs from the ground truth by at most one point.

RL steps
Accuracy Relaxed Accuracy PLCC

Visual Align Phy Avg Visual Align Phy Avg Visual Align Phy Avg

200 50.50 42.89 39.28 44.22 92.79 91.59 87.80 90.73 65.14 62.95 57.60 61.90
300 50.10 43.88 39.08 44.35 92.99 91.38 87.98 90.78 65.78 62.60 52.73 60.37
400 46.20 43.80 36.00 42.00 92.80 90.20 85.40 89.47 64.57 58.87 44.61 61.72
500 47.60 45.80 40.00 44.47 90.20 91.40 87.80 89.80 61.57 60.59 52.10 58.09
600 50.60 43.40 41.40 45.13 91.40 89.90 87.20 89.50 62.89 56.49 51.62 57.00
700 48.00 45.20 38.00 43.73 90.80 88.20 87.60 88.87 64.28 57.07 49.43 56.93
833 45.00 45.60 37.80 42.80 91.40 89.60 85.60 88.87 64.68 59.19 46.04 56.64
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E CASE STUDIES

t2v-prompt: A woman in Indian attire greeting in Indian style. The 

camera zooms out, and the doors shut widely in front of camera.

VideoScore2:  
<think>... Let me analyze this video… 

**Visual Quality**:…visuals are severely degraded …, … frames exhibit 

extreme pixelation and heavy compression artifacts… Overall, the visual 

quality is critically compromised, justifying a very low rating (1/5). 

**Text Alignment**: … camera does not perform a zoom-out, … no 

evident door-closing action…, The alignment with the intended prompt is 
only partially satisfied, yielding a moderate misalignment. (2/5)

**Physical Consistency**: severe blur and degradation obscure arm 

positions…with limited reliability… (2/5)

</think> 

**Overall assess**: 1  2 2

Figure 12: Case study of VIDEOSCORE2 evaluation (1)

t2v-prompt: A farmer in the field planting corn with a hoe, and the 

corn quickly matures. The farmer wipes off sweat and smiles.

VideoScore2:  
<think>... Let me analyze this video… 

**Visual Quality**:…resolution is moderate; not high-end but acceptable …, 

Lighting is natural, … noticeable motion blur in certain moments…, Overall 

visual quality sits in the mid-range (3/5)

**Text Alignment**: …no rapid corn maturation is shown, no clear moment 

of wiping sweat or smiling… The alignment with the prompt is partial at best; 
core narrative elements are missing, …(2/5)

**Physical Consistency**: Some hand movements show anatomical 

inconsistencies…, Overall, physical plausibility is maintained with moderate 

inconsistencies. (3/5)

</think> 

**Overall assess**: 3  2 3

Figure 13: Case study of VIDEOSCORE2 evaluation (2)
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t2v-prompt: A young blond man sitting on a bench, holding a 

fishing rod, with the fishing line out. Wide-angle.

VideoScore2:  
<think>... Let me analyze this video… 

**Visual Quality**:…The resolution is very high and maintains crisp detail 

across scenes…, Colors are well-balanced,…wide-angle framing effectively 

captures the landscape…, Overall visual quality is excellent (5/5)

**Text Alignment**: …Holding a fishing rod – present…, Fishing line out – 
present and clearly visible…, alignment is essentially perfect (5/5)

**Physical Consistency**: The man’s posture and grip look natural for 

fishing…, with lighting and shadows consistent with outdoor conditions. (5/5)

</think> 

**Overall assess**: 5  5 5

Figure 14: Case study of VIDEOSCORE2 evaluation (3)
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F THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs), including GPT-5, Gemini-2.5-Pro were used in the preparation
of this paper. Their role was limited to supporting writing by suggesting phrasing alternatives,
correcting grammar, and improving readability. All technical content, experimental design, analysis,
and conclusions were created and verified by the authors.
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