Under review as a conference paper at ICLR 2023

TPC-NAS: SUB-FIVE-MINUTE NEURAL ARCHITEC-
TURE SEARCH FOR IMAGE CLASSIFICATION, OBJECT-
DETECTION, AND SUPER-RESOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural network models have become more sophisticated with the explosive de-
velopment of Al and its applications. Automating the model search process is
essential to explore a full range of neural architectures for satisfactory perfor-
mance. However, most current NAS algorithms consume significant time and
computing resources, and many cater only to image classification applications.
This paper proposes the total path count (TPC) score, which requires only simple
calculation based on the architecture information, as an efficient accuracy predic-
tor. TPC score is not only simple to come by but also very effective. The Kendall
rank correlation coefficient of the TPC scores and the accuracies of 20 architec-
tures for the CIFAR100 problem is as high as 0.87. This paper also proposes
TPC-NAS, a zero-shot NAS method leveraging the novel TPC score. TPC-NAS
requires no training and inference, and can complete a NAS task for Imagenet and
other vision applications in less than five CPU minutes. Then, we apply TPC-
NAS to image classification, object detection, and super-resolution applications
for further validation. In image classification, TPC-NAS finds an architecture that
achieves 76.4% top-1 accuracy in ImageNet with 355M FLOPs, outperforming
other NAS solutions. Starting with yolov4-p5, TPC-NAS comes up with a high-
performance architecture with at least 2% mAP improvement over other NAS
algorithms’ results in object detection. Finally, in the super-resolution applica-
tion, TPC-NAS discovers an architecture with fewer than 300K parameters and
generates images with 32.09dB PSNR in the Urban100 dataset. These three ex-
periments convince us that the TPC-NAS method can swiftly deliver high-quality
CNN architectures in diverse applications. The related source code is available at
https://github.com/TPC-NAS/TPC.

1 INTRODUCTION

The complexity of high-performance machine learning models has skyrocketed, and manual tun-
ing of hyperparameters and neural network (NN) architecture has become laborious and time-
consuming. More efficient methodologies for the design, training, and deployment of NN mod-
els are required. Toward this end, recently, we have witnessed rapid growth in research on neural
(network) architecture search (NAS) that automates the model search process.

Early NAS algorithms use evolutionary search (Real et al.,2017; 2019) or reinforcement learning
(Zoph & Le, 2017 [Tan et al.l 2019). However, such methods typically require multiple training
of different architectures, which consumes significant computational resources and time. To reduce
search time, differentiable NAS employs gradient descent (Mei et al.| 20205 [Chen et al., 2021b;
Xu et al., 2020) that decides which architectures to keep by updating the weights between different
operations. DARTS (Liu et al},[2019), for example, makes the search space continuous by applying
a softmax function to all possible operations. After training, only the operations with the highest
softmax output will be retained as the final searched model. Later, Wang et al.|(2021c)) discovered
that deciding on the final model based on its contribution to supernet performance outperforms
deciding on the final model solely on the softmax output between architectures. Although gradient-
based algorithms speed up the search process, they require the construction of a supernet that can

https://github.com/TPC-NAS/TPC

Under review as a conference paper at ICLR 2023

cover all search spaces, which typically involves a large amount of memory, making this method
unsuitable for large and complex problems.

Around the same time as the gradient-descent-based methods were developed, one-shot NAS meth-
ods (Guo et al., 2020} |Cai et al., 2020} |Zela et al.| [2020; |Stamoulis et al., |2019) were proposed. In
contrast to the gradient-descent-based methods that require training the overall supernet once, the
one-shot methods typically have two steps: training and searching. The one-shot methods applied
the weight-sharing technique in training, thus significantly reducing the number of times the model
needs to be trained. Furthermore, the one-shot methods only sample and train one subnet from the
supernet at a time. For example, Wang et al.[(2021b) samples the model with the best or the worst
performance to improve the supernet’s overall performance. To ensure that individual models can
be trained fairly, (Chu et al.|(2021b)) proposed that all architectures should be sampled equally. Since
only one subnet’s data are stored at a time, the one-shot methods have better memory usage. Dur-
ing the search process, the one-shot methods set the hardware constraints and select the subnet that
achieves the highest performance while meeting those constraints. However, the subnets are inter-
connected, and it is difficult to ensure that a single subnet can be trained appropriately. Although
few-shot methods (Hu et al., 2022;[Zhao et al.| [2021) effectively mitigate this problem by dividing a
large supernet into several smaller sub-supernets, it is still difficult to ensure that the sampled subnet
with the highest accuracy will still perform as expected when trained separately.

In addition to the shortcomings above, most NAS algorithms share a common flaw: it takes too much
time and memory to complete the architecture search. This daunting requirement on computing
resources often poses a high barrier to entry for the average NN users. Hence, this paper proposes
a novel zero-shot NAS algorithm with an accuracy predictor based on a neural network’s total path
count (TPC) between the first layer’s input nodes and the final layer’s output nodes. The more paths
a NN model has, the greater the expressive power of the NN model to perform different tasks and
achieve higher accuracy. Most importantly, the TPC score is determined solely by the NN structure,
and no weight training of models is required, which significantly reduces the search complexity.
TPC scores can be computed in as little as 10 microseconds of CPU time and correlate well with the
NN architecture performances. As a result, the proposed TPC-NAS method, which uses the TPC
score in the standard zero-shot NAS search, can complete a NAS task in a matter of minutes.

Many previous NAS researches validated their approaches with a few image classification tasks.
Whether or not their proposed NAS solutions will generalize well in other applications remains
to be assessed. Furthermore, building and training a supernet from scratch takes enormous effort,
limiting the feasibility of a broader range of applications. Toward this end, TPC-NAS has been
applied to image classification, object detection, and super-resolution applications and has achieved
overwhelming success. In all three applications, the architectures found by TPC-NAS outperform
all the manually-designed and most NAS-based architectures with comparable complexity.

Our contributions are summarized as follows:

1. We propose the TPC score, a simple yet effective accuracy predictor. This score requires only the
knowledge of a model’s structure parameters to predict its expressivity and performance; thus, the
score computation time is a few microseconds.

2. The TPC score correlates very well with the NN model’s accuracy. The TPC-based zero-shot
NAS algorithm we propose can be implemented on CPUs or edge devices. Typical search times are
within five minutes on CPU.

3. TPC-NAS is the first zero-shot NAS algorithm applied to image classification, object detection,
and super-resolution. TPC-NAS can swiftly find architectures outperforming the hand-crafted and
NAS-discovered architectures in all three applications.

This paper is organized as follows. Section 2 discusses related works in the field of NAS. The
principle of our TPC score and the TPC-NAS algorithm are described in detail in Section 3. Section
4 explains how we apply TPC-NAS to image classification, object detection, and super-resolution
and shows the experimental results. Then, several issues are discussed in Section 5, and Section 6
concludes this paper.

Under review as a conference paper at ICLR 2023

2 RELATED WORKS

2.1 NEURAL ARCHITECTURE SEARCH FOR CNNSs

Many NAS algorithms have been proposed over the years. Among them, zero-shot NAS algorithms
(Lin et al, 2021} |Chen et al., 2021aj Mellor et al [2021; |Shu et al., 2022)) do not optimize model
weights and instead explore only the hyperparameters, thus significantly speeding up the search
process. The majority of zero-shot algorithms consist of a performance predictor and a genetic
algorithm for architecture search. The performance predictor usually determines the associated
NAS algorithm’s execution time and the quality of the architecture found. For example, |Lin et al.
(2021) predicts model performance by calculating the variances of the BN layers and observing how
data spread across layers. |Chen et al.| (2021a) found it is natural to measure the expressivity of a
ReLU network with the number of linear regions it can separate. Mellor et al.| (2021) empirically
find that the correlation between sample-wise input-output Jacobian can indicate the architecture’s
test performance. [Shu et al.| (2022) discovered that the Neural Tangent Kernel (NTK) is a sound
performance predictor because it can characterize the CNN performance at initialization.

Although the accuracy predictors mentioned above can predict the performance of the architecture
without training it, they still need to perform the forward or backward pass of the model when
evaluating the architecture, which also makes their search time at least several hours. As a result, we
propose our TPC-NAS, which requires only architecture information to predict model performance
and thus significantly reduces our search time to less than 5 minutes.

As for the genetic algorithm for architecture search (Reeves), 2010), there is usually an initial popu-
lation of architectures, and individuals (architectures) with higher scores can be found by mutation
and cross-over operations on the current population. In various genetic algorithms, natural selection
mechanism can be quite different. Typically, natural selection is achieved by pruning the individual
with the lowest score from the population. Still, some study (Ghosh et al., |1996) stipulated that
removing the eldest individual can achieve better outcomes.

2.2 TASK-AGNOSTIC NEURAL ARCHITECTURE SEARCH

Early NAS algorithms almost always adopted image classification problems to demonstrate the va-
lidity of their solutions. Despite many good results in image classification, we could not be assured
that NAS algorithms can be extended to search architectures for other applications. Afterwards, re-
searchers attempted to apply NAS to other vision applications, such as super-resolution (Song et al.,
2020; (Chu et al., 2021a;2020) or object detection (Ghiasi et al.,|2019; |Wang et al.| 2022;|Yao et al.,
2020).

Unfortunately, almost all NAS works applied their NAS methods to finding models for a single task.
The underlying reasons for this limitation are as follows. First, using a complex NAS algorithm to
search models for a new problem usually requires significant effort. Many researchers may not have
enough experience or time to extend their solutions to other tasks. Second, there exist substantial
structural differences between the models for different applications. For example, the models for
the super-resolution task (Liu et al.l 2020; |Ahn et al., 2018)) usually need many skip connections or
concatenation layers to retain most information of the input images. On the other hand, the object-
detection models (Bochkovskiy et al.,2020) usually need multiple detection heads to detect objects
of different sizes. The differences in architectures for various applications may make it difficult for
NAS designers to find a single generalized solution that applies to all types of models.

Toward this end, this work proposes a simple and general predictor suitable for predicting the perfor-
mance of CNN models for vision applications. Furthermore, the proposed TPC-NAS solution has
been successfully applied to discover high-performance models for the following three problems:
image classification, object detection, and super-resolution.

3 EXPRESSIVITY AND TPC-NAS

This section first introduces the TPC score and demonstrates how it works. Then, we show the
Kendall rank correlation coefficient between the test accuracy and the TPC score of several models

Under review as a conference paper at ICLR 2023

to illustrate the effectiveness of the TPC score. Finally, the TPC-based zero-shot NAS algorithm is
presented.

3.1 EXPRESSIVITY OF VANILLA CONVOLUTIONAL NEURAL NETWORKS

Expressivity (Giihring et al., 2020)) aims to describe an architecture’s ability to tackle a variety of
problems or datasets and is used to evaluate the quality of the architectures in some zero-shot NAS
algorithms. For example, simple architectures with only a few hidden layers and parameters can
only implement a limited number of transformations on input images. As a result, this model cannot
fully extract/capture the input image’s information, and the model’s expressivity is relatively poor.

However, expressivity is now more of a concept, and there are numerous ways to estimate it. For
example, Zen-NAS describes the expressivity by getting the variance in the BN layer and observing
how the data spread across layers. Most methods for calculating expressivity remove skip connec-
tions, concatenations, and other complex structures because they do not make a huge difference in
expressivity. With this simplification, a model retains only the main skeleton, including convolu-
tional layers, full-connected layers, and ReLLU, which is the so-called "vanilla” convolutional neural
network (VCNN) (Lin et al., [2021). In this paper, we propose to estimate the expressivity of a
VCNN model with the total number of paths from the input layer to the output layer of that model.

3.2 TPC SCORE

For a vanilla convolutional neural network, we 5 e s
can view the whole model as a huge graph. S Q wid w15 |wib
Neurons of each layer can be regarded as nodes, Soi TITIPST)

connected by outgoing edges that carry differ-
ent weight values. In such a directed graph,
many paths exist between the input nodes of
the first layer and the output nodes of the last
layer. It is conceivable that with more paths
in a graph, the corresponding VCNN can apply
more transformations to the inputs and there-
fore has a higher expressivity.

w2l (w22 | w23

w23 | w23 | wl6

wl7 | w28 | wl0

Take Figure. [T|as an example. There is only one
input node x, and the first and the second con-
volutional layers both have 3x3 convolutional Figure 1: A simple VCNN model. In each of the
kernels. As the signal traverses the layers in the two convolutional layers, one input pixel can af-
graph (model), input information is passed on fect nine output pixels. Overall, there are 81 dif-
to the ensuing layers via the weights on the di- ferent paths in the model from the input layer to
rected edges. The information accumulated on the output layer, and the TPC score is 81.

the output pixel y; ; is given by

Yij = Z T * Wik * Wal, 1
(k,1)EA; ;

where A; ; represents the collection of paths that end at output pixel y; ; and (k,) denotes a path

through the kth and the /th weights in the first and second kernels, respectively.

A VCNN’s expressivity should be related to all its input and output nodes. Therefore, we adopt the
number of paths of the VCNN as an expressivity measure, which is formulated as

TPC:Z\AM»L)
(2]
In the example of Fig. 1, there are 81 paths.

To simplify the path number calculation of deeper vanilla convolutional neural networks with more
layers, we calculate the path number of the entire graph layer by layer. We can recursively obtain the
path number of the subgraph up to the n + 1th layer by multiplying the path number of the n-layer
subgraph with the number of ways that a path ending in the nth layer can extend to the n + 1th layer.

Under review as a conference paper at ICLR 2023

The number of possible extending paths from a node is called outdegree in graph theory. Taking the
convolutional layer as an example, we can compute the outdegree of its layer p (O,) as

Cop * k:p2
ap° * gp
where C, 5, kp, qp, and g, stand for the number of output channels, the kernel size, the stride, and
the number of groups of layer p, respectively. However, the actual number of total paths in a VCNN

is usually large. To reduce its magnitude and for ease of computation, we take the log of the total
number of paths. So, we propose the following TPC score (S;) for a VCNN

Sy = log(Op). (4)
p

0, = , 3)

Algorithm(T]then lists the procedure of how the TPC score is calculated. For a given NN architecture,
we first remove the skip connections and keep only the backbone as the VCNN. Then, Eq. @) is
applied to the VCNN to obtain the TPC score.

Algorithm 1 TPC Score

Require: C, ,, kp, g, and g, for all CONV layers
Ensure: TPC
1: 5} =0
2: Remove all residual links in the model
3: For each CONYV layer p do:
S, +=log (700”0*%2)

ap?*gp

4: return S;

3.3 TPC SCORE OF SEPARABLE CONVOLUTION LAYER

Consider the separable CONV layer in Figure[2] 1 e
as a TPC score calculation example. A separa- ﬁl i
ble CONYV layer can be divided into two distinct K ’
CONYV layers: depthwise CONV and pointwise & / Iﬁl

C:

CONV. An input pixel is connected to k2 out-
put pixels in the depthwise CONV layer, and pepthwise CONV weight Pointwise CONV weight
an input pixel in the pointwise CONV layer is

connected to C, output pixels. Take the depth- Figure 2: Illustration of the TPC score for the sep-
wise and pointwise layers together, and there arable CONV layer.

are C, * k? paths from an input of the separable

CONYV layer to its output pixels, which is identical to the TPC score of the corresponding conven-
tional CONV layer. The above TPC score outcome is in line with the expectation that the separable
CONYV layer achieves the same expressivity as the corresponding conventional CONV layer.

3.4 KENDALL’S 7-SCORE TPC score v.s. CIFAR100 accuracy

0o B

®
&

We conducted a further investigation to eval-
uate how good the proposed TPC score is as
an accuracy predictor of CNN architectures.
We randomly selected 20 different architectures
from the search space, trained the architecture
on the CIFAR100 dataset, and found the test ac-
curacy. These 20 test accuracies and the corre-
sponding TPC scores are plotted in Figure [3]
Clearly, the TPC score has a strong positive TPC SCORE
correlation with test accuracy. In addition, we
computed the Kendall rank correlation coeffi-
cient, which was 0.87, on par with other accu-
racy predictors (Lin et al., 2021).

®
3

838°
o

<
&

~
S

@

t=0.87

0 50 100 150 200 250 300 350 400 450

CIFAR100 ACCURACY

@
S

Figure 3: TPC score v.s. CIFAR100 accuracy. For
this evaluation, we randomly sampled 20 struc-
tures from the Resnet search space (Appendix
[A-T), which are the same as those used in Zen-
NAS work (Lin et al.| [2021)).

5

Under review as a conference paper at ICLR 2023

3.5 TPC-NAS ALGORITHM

Based on the TPC score, we introduce the TPC-NAS, a zero-shot NAS algorithm using an evolu-
tional search. The TPC-NAS algorithm is described in Algorithm [2] In Appendix [A7T] we have
delineated in more detail the search spaces adopted in three different applications. The initial model
Iy is typically set as a small architecture in the search space. The MUTATE function creates new
models from the search space according to Algorithm 3. A new model is evaluated to see if it meets
the hardware constraints. If it does, its TPC score will be calculated, and it will be inserted into the
population. When the total number of models in the population exceeds the predefined upper bound,
the model with the lowest TPC score will be deleted. At the end of the iteration process, the model
with the highest TPC score will be the outcome of TPC-NAS.

Algorithm 2 TPC-NAS Algorithm

Require: search space S, hardware constraints K, maximal depth D, number of iterations M,
population size N, initial structure Fj
1: Initial population P = {Fp}
2: form=1,2,...,M do
3: Randomly select one model F' from the population.

4 Structure ' = MUTATE (F, S)
5. if F does not satisfy hardware constraints K or has more than D layers then
6: Go to line 13
7: else .
8: Calculate S;(F)
9: Insert £ to population P
10: endif
11: Remove Fyy,, the model with the lowest Sy, if |P| exceeds N
12: end for

13: return F,,, the model with the highest S;

Algorithm 3 MUTATE

Require: Structure F', search space S
1: Randomly select a block b in structure F’
2: Randomly changes the block type, kernel size, width and depth of b within search space &

3: return Mutated structure F’

4 EXPERIMENTS

The proposed TPC-NAS method was applied to several vision applications to demonstrate its ef-
fectiveness. We adopted three complicated applications: image classification, object detection,
and super-resolution. In this section, we will show that TPC-NAS indeed can always find high-
performance CNN models for complicated tasks in only a few minutes.

4.1 TPC-NAS FOR IMAGE CLASSIFICATION CNN

We first adopted the evolutionary genetic algorithm to find the best architecture for the CIFAR10
and CIFAR100 datasets, using several zero-shot proxies with a parameter limit of 1M and 1440
epochs of training. In this experiment, we adopted the search space and training mechanism as in
the Zen-NAS work (Lin et al|[2021)). All NAS methods are different only in the accuracy prediction
scores used. Table[I] shows that the model found with the TPC score outperforms other zero-shot
NAS methods in terms of accuracy.

Most zero-shot algorithms require running the model’s forward or backward process to calculate the
scores. For example, NASWOT must go backward to obtain gradient information to compute its
score. Zen-NAS only needs to perform the forward process once to compute the Zen score from the
data in the BN layers. On the contrary, TPC score calculation does not require forward or backward
propagation. Only the structural parameters of the architecture are sufficient. The times specified in
Table I list how long different zero-shot scores take to compute for a ResNet-18 at 224*224 input
resolution. The Zen score, which requires inference once, is faster than NASWOT and TE-Score. In
comparison, the TPC score skips the inference step and is nearly 1000 times faster than Zen score.

Under review as a conference paper at ICLR 2023

Table 1: CIFAR10 and CIFAR100 results for different zero-shot NAS methods under 1M model size
constraint. All data except the TPC-NAS data are from (Lin et al.,2021)). All other hyperparameters,
such as population size and learning rate, are identical. The "Time” column represents the time to
compute the scores of ResNet-18 model with 224*224 input resolution.

CIFAR10 CIFAR100 Time (sec)

TPC score 97.1 % 81.1 % 0.00001
Zen-Score (Lin et al., 2021) 96.2 % 80.1 % 0.012
TE-Score (Chen et al., [2021a) 96.1 % 77.2 % 0.34
NASWOT (Mellor et al.,|2021) 96.0 % 77.5 % 0.04
Synflow (Tanaka et al.,72020) 95.1 % 75.9 % 0.04
79 @ MobileNetV2 @ ProxylessNAS
@ shuffleNetv2 @ SPOS
@ TPC-NAS @ FBNet-B
g” @ o
= 77 @ Single Path NAS @® MnasNet-92
(%] @ DARTS
g 76 0 (*]
‘d) 75
: 09 o
% 74
EE'P 73 ‘ 0

72
0 1 10 100 1000 10000 100000 1000000 10000000

Search Time (GPU min)

Figure 4: ImageNet accuracy for different NAS algorithms or manually-designed models. The x-
coordinate is the search time on GPU, the y-coordinate is the model’s accuracy on ImageNet, and
the bubble size represents the model’s FLOPs. The complete comparison table is in Appendix[A.2]

We then experimented with the ImageNet classification problem using the TPC-NAS algorithm
and the search is provided in Fig. [compares TPC-NAS with other NAS algorithms and
hand-crafted models. The size of the balls represents the FLOPs of the model used to run the
ImageNet classification. Note that all hand-crafted models, such as MobileNetV?2 and ShuffleNetV2,
require zero search time. First, all models found by NAS algorithms achieve better performance
than the models designed by humans, demonstrating the power of automation. Secondly, TPC-NAS
(orange bubble) delivers a model achieving 76.4% ImageNet Top-1 accuracy with 355M FLOPs,
outperforming most NAS algorithms. Only one method, i.e., Zen-NAS, finds a model with 78.0%
accuracy. But the required Zen-NAS search time on GPU is more than 350 times the TPC-NAS
search time on CPU. Also, the model found by Zen-NAS is 15% larger in terms of FLOPs. All
things considered, TPC-NAS represents a very competitive NAS method for image classification
applications.

4.2 TPC-NAS FOR OBJECT DETECTION CNN

We also applied the TPC-NAS algorithm to search CNNs for object detection using the COCO-2017
dataset. The initial architecture in the search was the YOLOv4-p5 (Wang et al.,[2021a)) architecture,
which has an obvious backbone and head. The backbone makes up most of the computation and
is typically built with an image classification architecture. In this experiment, we mainly stuck
with the YOLOvV4-p5 main architecture and only changed structural parameters such as the number
of layers, kernel size, etc. The NAS objective in this application is to find a smaller version of
YOLOV4-p5 under the given hardware constraints, 20G and 40G FLOPs. Starting from a well-
known and high-performance model, TPC-NAS can quickly improve the efficiency of the solution
by finding a smaller yet accurate model.

Figure. [3]illustrates the TPC-NAS search results and compares them with several famous NAS meth-
ods and manually-designed models. TPC-NAS requires only 3 minutes to find a satisfactory model,
which is over 1000 times faster than other NAS algorithms. Furthermore, the TPC-YOLO models

Under review as a conference paper at ICLR 2023

60 @ YOLOv4-P5 @ EfficientDet-DO @ EAutoDet-m
@YOLOv4 @ TPC-YOLO-m @ EAutoDet-s
s @ EfficientDet-D1 O TPC-YOLO-s @ NAS-FPN
@ YOLOVS-s

. . o

°© @

1 10 100 1,000 10,000 100,000 1,000,000

Search Time (GPU min)

mAP(%)

- cee@ o

40
35

30

Figure 5: Object Detection results for different NSA algorithms or manually-designed models. The
x-coordinate is the search time on GPU (except for TPC-NAS), the y-coordinate is the mAP (mean
average precision) of the COCO dataset, and the bubble size represents each model’s FLOPs. Mod-
els designed by humans have no search time. The complete comparison table is in Appendix [A.3]

found achieves 43.4% and 45.4% mAP under 20G and 40G FLOPs, respectively. This means that
the TPC-NAS model’s mean average precision performance is higher than other architectures with
similar complexities (bubble sizes). The only architecture that outperforms ours is the YOLOv4-p5
model, which has 164G FLOPs, four times higher than the TOC-NAS model. Despite exploring
only some structural parameters of a known model, the TPC-NAS method can effectively downsize
the FLOPs and arrive at a competitive solution in a very short interval.

4.3 TPC-NAS FOR SUPER-RESOLUTION CNN

Super-resolution is one of the famous vision applications in that CNNs have shown great promise.
We applied the TPC-NAS method to search for the CNN architecture that effectively accomplishes
super-resolution. However, super-resolution CNNs involve skip connections that are quite different
from the CNN architectures for image classification. Note that the TPC score does not consider skip
connections. Hence in our search for super-resolution CNN, we took the block of skip connection
and concatenation in RFDN (Liu et al., 2020) as units and searched for different numbers of blocks,
kernel size, channel size, etc. We used DIV2K with 800 training images as the training dataset.
Furthermore, the batch size is 16, the image patch size is 64, and data augmentation, including
random rotation and flipping, was applied. We adopted the following datasets for testing: SETS,
SET14, B100, and Urban100.

Figure. [6] shows the super-resolution performance results of several models, including those
found by TPC-NAS. In the experiment, we conducted the search under three hardware constraints:
300K, 500K, and 700K. In these scenarios, we discovered CNNs achieving 32.09dB, 32.31dB, and
32.44dB PSNR for the Urban100 dataset, respectively. Compared to other manually-designed mod-
els such as RFDN and CARN, the TPC-NAS models with comparable size outperform them by at
least 0.2dB in PSNR. The TPC-NAS models also achieve significantly higher PSNR and SSIM than
other NAS architectures with comparable computational costs (FLOPs), such as FALSR and ESRN.
Finally, TPC-NAS takes only 3 CPU minutes, which is at least 3000 times faster than other NAS
algorithms.

5 DISCUSSION

5.1 TRAINING DATASET

Since most zero-shot NAS methods do not require training data when searching, the dataset’s infor-
mation does not contribute to the model search process. In all likelihood, situations that the zero-shot
NAS methods find the same architecture for quite different datasets/applications may occur. Such
cases happen because zero-shot NAS methods seek models based on their expressivity, not their
accuracy. As a result, we expect the TPC-NAS discovered models to be amenable to various ap-

Under review as a conference paper at ICLR 2023

326 @ RFDN @ TPC-NAS-C @ FALSR-A
32.4 @ CARN @ TPC-NAS-B @ ESRN-V
@ CARN-M @ TPC-NAS-A @ FALSR-B

322 o @ MoreMNAS-A
. (")
318 Q

316

314

@ 0

31

Urban 100 PSNR

0 1 10 100 1,000 10,000 100,000 1,000,000
Search Time (GPU min)

Figure 6: Super-resolution results for different NSA algorithms or manually-designed models. The
x-coordinate is the search time on GPU (except TPC-NAS cases), the y-coordinate is the PSNR (in
dB) of Urban 100 test datasets, and the bubble size represents the model’s FLOPs. Models designed
by humans have no search time. The complete comparison table is in Appendix [A-4]

plications. However, we believe that utilizing the information in the dataset may still provide us
with a better search outcome. It is likely that using TPC-NAS for coarse search and then other NAS
algorithms, such as DARTS and one-shot algorithms, for fine and final search can achieve improved
results.

5.2 MODEL QUANTIZATION

Model quantization is another popular topic in NN research. It can help reduce hardware compu-
tational and storage resources. As a result, the overall training and test time on hardware devices
can be reduced. Furthermore, mixed-precision quantization (Sun et al., 2022; |Yang et al.l 2021}
Yang & Jin, [2021; [Uhlich et al.l 2020) adopts different quantization precisions to different layers in
the model, which compresses the model size to a larger degree. Along this line, we are studying
zero-shot mixed-precision predictors that can be integrated into the proposed TPC-NAS solution.
We hope to optimize the architecture and its quantization precision in a matter of minutes. Finally,
current hardware constraints on FLOPs and the number of parameters can be extended to include
weight and activation precisions, resulting in a more holistic NAS solution to finding low-complexity
mixed-precision NNs.

5.3 HARDWARE-AWARE NAS

The hardware performance predictor can be used to predict the latency or power of a model on a
specific hardware platform. Many NAS algorithms use MLP models (Lee et al.l [2021} Nair et al.,
2022) or lookup tables (Cai et al.,2019) to construct hardware performance predictors. However,
an accurate predictor requires many resources and time, which may become the TPC-based NAS’s
bottleneck. In this case, the search time may increase from only five minutes to several hours.
Toward this end, building a very efficient hardware predictor that estimates the power and latency of
a task on a certain hardware platform would be essential for future work.

6 CONCLUSION

We propose a simple and effective TPC-NAS algorithm that does not require any architecture for-
ward or backward propagation, allowing us to reduce the overall search time to less than five minutes
on CPU. Furthermore, because the TPC score is based on simple model structural parameters, we
can complete the entire NAS procedure on CPU or edge devices. Finally, to verify the proposed
NAS solution, we apply it to three sophisticated vision applications: image classification, object
detection, and super-resolution. In all three experiments, models found by TPC-NAS outperform
those generated by almost all other NAS methods and those designed by experts, except for a couple
of cases.

Under review as a conference paper at ICLR 2023

REFERENCES

Namhyuk Ahn, Byungkon Kang, and Kyung-Ah Sohn. Fast, accurate, and lightweight super-
resolution with cascading residual network. In Proceedings of the European conference on com-
puter vision (ECCV), pp. 252-268, 2018.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search on target task
and hardware. In International Conference on Learning Representations, 2019. URL https:
//arxiv.orqg/pdf/1812.00332.pdf.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once for all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2020. URL https://arxiv.org/pdf/1908.09791.pdfl

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in four
gpu hours: A theoretically inspired perspective. arXiv preprint arXiv:2102.11535, 2021a.

Xiangning Chen, Ruochen Wang, Minhao Cheng, Xiaocheng Tang, and Cho-Jui Hsieh. Dr{nas}:
Dirichlet neural architecture search. In International Conference on Learning Representations,
2021b. URL https://openreview.net/forum?id=9FWas6YbmB3.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Multi-objective reinforced evolution in mobile neural
architecture search. In European Conference on Computer Vision, pp. 99—113. Springer, 2020.

Xiangxiang Chu, Bo Zhang, Hailong Ma, Ruijun Xu, and Qingyuan Li. Fast, accurate and
lightweight super-resolution with neural architecture search. In 2020 25th International con-
ference on pattern recognition (ICPR), pp. 59-64. IEEE, 2021a.

Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Rethinking evaluation fairness of weight
sharing neural architecture search. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 1223912248, 2021b.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Nas-fpn: Learning scalable feature pyramid archi-
tecture for object detection. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 70367045, 2019.

Ashish Ghosh, Shigeyoshi Tsutsui, and Hideo Tanaka. Individual aging in genetic algorithms.
In 1996 Australian New Zealand Conference on Intelligent Information Systems. Proceedings.
ANZIIS 96, pp. 276-279. IEEE, 1996.

Ingo Giihring, Mones Raslan, and Gitta Kutyniok. Expressivity of deep neural networks. arXiv
preprint arXiv:2007.04759, 2020.

Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng, Zechun Liu, Yichen Wei, and Jian Sun.
Single path one-shot neural architecture search with uniform sampling. In European conference
on computer vision, pp. 544-560. Springer, 2020.

Shoukang Hu, Ruochen Wang, Lanqing HONG, Zhenguo Li, Cho-Jui Hsieh, and Jiashi Feng. Gen-
eralizing few-shot NAS with gradient matching. In International Conference on Learning Repre-
sentations, 2022. URL https://openreview.net/forum?id=_-Mtny3sMKU.

Hayeon Lee, Sewoong Lee, Song Chong, and Sung Ju Hwang. Hardware-adaptive efficient latency
prediction for nas via meta-learning. Advances in Neural Information Processing Systems, 34:
27016-27028, 2021.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong
Jin. Zen-nas: A zero-shot nas for high-performance image recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 347-356, 2021.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=SleYHoCbLFX.

10

https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/pdf/1812.00332.pdf
https://arxiv.org/pdf/1908.09791.pdf
https://openreview.net/forum?id=9FWas6YbmB3
https://openreview.net/forum?id=_jMtny3sMKU
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

Under review as a conference paper at ICLR 2023

Jie Liu, Jie Tang, and Gangshan Wu. Residual feature distillation network for lightweight image
super-resolution. In European Conference on Computer Vision, pp. 41-55. Springer, 2020.

Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan Yuille, and Jianchao
Yang. Atomnas: Fine-grained end-to-end neural architecture search. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
BylQSxHFwr,

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural architecture search without
training. In International Conference on Machine Learning, pp. 7588-7598. PMLR, 2021.

Saeejith Nair, Saad Abbasi, Alexander Wong, and Mohammad Javad Shafiee. Maple-edge: A run-
time latency predictor for edge devices. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3660-3668, 2022.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In International
Conference on Machine Learning, pp. 2902-2911. PMLR, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the aaai conference on artificial intelligence,
volume 33, pp. 4780-4789, 2019.

Colin R Reeves. Genetic algorithms. In Handbook of metaheuristics, pp. 109—139. Springer, 2010.

Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi, and Bryan Kian Hsiang Low. NASI:
Label- and data-agnostic neural architecture search at initialization. In International Confer-
ence on Learning Representations, 2022. URL https://openreview.net/forum?id=
v—V1CcpNNK_v.

Dehua Song, Chang Xu, Xu Jia, Yiyi Chen, Chunjing Xu, and Yunhe Wang. Efficient residual dense
block search for image super-resolution. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pp. 12007-12014, 2020.

Dimitrios Stamoulis, Ruizhou Ding, Di Wang, Dimitrios Lymberopoulos, Bodhi Priyantha, Jie
Liu, and Diana Marculescu. Single-path nas: Designing hardware-efficient convnets in less
than 4 hours. In Joint European Conference on Machine Learning and Knowledge Discovery

in Databases, pp. 481-497. Springer, 2019.

Qigong Sun, Xiufang Li, Licheng Jiao, Yan Ren, Fanhua Shang, and Fang Liu. Fast and effective: A
novel sequential single-path search for mixed-precision-quantized networks. IEEE Transactions
on Cybernetics, pp. 1-13, 2022. doi: 10.1109/TCYB.2022.3164285.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820-2828, 2019.

Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
10781-10790, 2020.

Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 33:6377-6389, 2020.

Stefan Uhlich, Lukas Mauch, Fabien Cardinaux, Kazuki Yoshiyama, Javier Alonso Garcia, Stephen
Tiedemann, Thomas Kemp, and Akira Nakamura. Mixed precision dnns: All you need is a
good parametrization. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=Hyx0slrFvH.

Chien-Yao Wang, Alexey Bochkovskiy, and Hong-Yuan Mark Liao. Scaled-yolov4: Scaling cross
stage partial network. In Proceedings of the IEEE/cvf conference on computer vision and pattern
recognition, pp. 13029-13038, 2021a.

11

https://openreview.net/forum?id=BylQSxHFwr
https://openreview.net/forum?id=BylQSxHFwr
https://openreview.net/forum?id=v-v1cpNNK_v
https://openreview.net/forum?id=v-v1cpNNK_v
https://openreview.net/forum?id=Hyx0slrFvH

Under review as a conference paper at ICLR 2023

Dilin Wang, Meng Li, Chengyue Gong, and Vikas Chandra. Attentivenas: Improving neural archi-
tecture search via attentive sampling. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 6418-6427, 2021b.

Ruochen Wang, Minhao Cheng, Xiangning Chen, Xiaocheng Tang, and Cho-Jui Hsieh. Rethinking
architecture selection in differentiable NAS. In International Conference on Learning Represen-
tations, 2021c. URL https://openreview.net/forum?id=PKubaeJkw3.

Xiaoxing Wang, Jiale Lin, Junchi Yan, Juanping Zhao, and Xiaokang Yang. Eautodet: Efficient
architecture search for object detection. arXiv preprint arXiv:2203.10747, 2022.

Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, and Hongkai Xiong.
Pc-darts: Partial channel connections for memory-efficient architecture search. In International
Conference on Learning Representations, 2020. URL https://openreview.net/forum?
1d=BJ1S634tPr.

Huanrui Yang, Lin Duan, Yiran Chen, and Hai Li. Bsq: Exploring bit-level sparsity for mixed-
precision neural network quantization. arXiv preprint arXiv:2102.10462, 2021.

Linjie Yang and Qing Jin. Fracbits: Mixed precision quantization via fractional bit-widths. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pp. 10612-10620,
2021.

Lewei Yao, Hang Xu, Wei Zhang, Xiaodan Liang, and Zhenguo Li. Sm-nas: Structural-to-modular
neural architecture search for object detection. In Proceedings of the AAAI conference on artificial
intelligence, volume 34, pp. 12661-12668, 2020.

Arber Zela, Julien Siems, and Frank Hutter. Nas-bench-1shotl: Benchmarking and dissecting one-
shot neural architecture search. arXiv preprint arXiv:2001.10422, 2020.

Yiyang Zhao, Linnan Wang, Yuandong Tian, Rodrigo Fonseca, and Tian Guo. Few-shot neural
architecture search. In International Conference on Machine Learning, pp. 12707-12718. PMLR,
2021.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations,2017. URLhttps://openreview.net/forum?
id=rl1lUe8Hcxdg.

12

https://openreview.net/forum?id=PKubaeJkw3
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=BJlS634tPr
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

Under review as a conference paper at ICLR 2023

A APPENDIX

A.1 SEARCH SPACE

CONVK1
CONVKX
Bottleneck Channel
CONVK1
CONVK1
CONVKX
CONVK1
CONVKX
Bottleneck Channel v
CONVKX

Input Channel
Bottleneck Channelv

Output Channel
Output Channel
Bottleneck Channel
Bottleneck Channel
Output Channel
Input Channel
Output Channel

Figure 7: Building blocks CONVKIKXK1 (left) and CONVKXKX (right). The FLOP of the CON-
VKX layer is proportional to the layer’s input and output channels. With the bottleneck channel, the
computation cost of CONVKX can be reduced significantly.

This Appendix will present the TPC-NAS search space used in each of the three applications.

We used CONVKI1KXK1 and CONVKXKX, shown in FigurelZ], as the basic blocks of the archi-
tectures for the image classification problem. CONVKI1KXKIT consists of two convolutional layers
with a kernel size of 1 as the front and back end. It also includes a bottleneck channel that is usu-
ally much smaller than the input and output channels as the intermediate convolutional layer. This
structure can significantly reduce the required computation. In the same vein, we also adopted a bot-
tleneck channel in the middle of CONVKXKZX structure. For the search space, we build the target
architectures for image classification by stacking a number of these two basic blocks. In addition, a
final FC layer is concatenated to generate scores for different image classes.

BLOCK x m

BottleneckCSP
BottleneckCSP

CONVK1, c/2

CONVKX, c/2

Ld

.

L]
CONVK1, c/2
CONVKX, c/2

Concat, c
CONVK1, c

CONVK1, c/2

BottleneckCSP CSPUp Detection-P3

BottleneckCSP CSPUp P CSPDown)' Detection-P4

BottleneckCSP CSPUp) CSPDown)' Detection-P5

Figure 8: Overall architecture (left) and BottleneckCSP structure (right) of Yolov4-pS. We set all
the connections the same as Yolov4-p5. However, the number of blocks and the block’s parameters,
such as kernel size, channel are changed in TPC-NAS.

CONVK1, c/2

N

To find good CNN solutions to the object detection problem, we selected the YOLOv4-p5, which has
excellent performance, albeit relatively high computation cost, as the initial architecture. The overall
architecture of YOLOv4-p5 is shown on the left side of Figure[A.T} The backbone consists of several
BottleneckCSP modules, which the mutation function focuses on. The right side of Figure [A] is
the architecture of the bottleneckCSP module, where c represents the channel size. By changing the
depth, the number of channels, kernel size, and other characteristics of the BottleneckCSP modules
in the YOLOv4-p5 architecture, we could generate more candidates for the search space. Finally,
note that the block type and the connection method between the blocks remain the same as the
original YOLOv4-p5.

In the experiment of searching for enhanced super-resolution CNNs, we picked the RFDN archi-
tecture, shown in Figure El as the baseline structure. On the left of Figure E] is the entire RFDN

13

Under review as a conference paper at ICLR 2023

[y]
x
2
N <]
o O
g | © |
g
3 -
E
x
x
o =
g ANEINE 3 g
@ -
] Itidisdl HENNEIP
o
5| | [° 5 — EPIEPlEP
¢ < ¢ o
1 g
o
O
- —
E g
>
g g
Q

Figure 9: Overall architecture (left) and block structure (right) of RFDN. We set all the connections
the same as RFDN. However, the number of blocks and the block’s parameters, such as depth, width,
and bottleneck channel, are changed in TPC-NAS.

architecture, consisting of multiple basic blocks and a wide concatenation layer. The basic block
on the right of Figure [9] consists of multiple sub-blocks and a concatenation layer. To construct the
search space, we first varied the number of blocks in the entire architecture and the number of sub-
blocks in each block. Then, within each sub-block, we changed its channel number, kernel size, and
other characteristics.

A.2 IMAGE CLASSIFICATIONT EXPERIMENTAL RESULTS

Table. 2]list the search time and achieved classification accuracy for the architectures discovered by
several NAS methods. TPC-NAS can complete the search process within two minutes of CPU time.
The architecture found by TPC-NAS is among the best solutions, beating a couple of well-known
low-complexity CNNs.

Table 2: ImageNet accuracy and search time of different NAS algorithms
Models FLOPs (M) Top-1 Accuracy (%) Search Time (GPU min)

MobileNetV2 314 72.8 -
ShuffleNetV2 299 72.6 -
MnasNet-92 388 74.8 57M
DARTS 574 73.3 720
PC-DARTS 586 74.9 144
SPOS 323 74.4 17K
Single Path NAS 365 75.0 1.8K
ProxylessNAS 465 75.1 120K
OFA w/ PS 230 76.0 250K
AtomNAS-B 326 75.5 29.5K
FBNet-B 295 74.1 13.0K
TE-NAS - 75.5 244.8
Zen-NAS 410 78.0 720
TPC-NAS 355 76.4 2 (CPU)

A.3 OBIJECT DETECTION EXPERIMENTAL RESULTS

Table [3|lists the experiment results of object detection models by a few NAS methods. TPC-NAS
completes its search in 0.002 GPU days, more than 1000 times faster than other NAS algorithms.
Furthermore, the model found, TPC-YOLO-s and TPC-YOLO-m, achieve 43.4 and 45.4 mAP under
20G and 40G FLOPs, respectively, higher than similarly sized architectures. This demonstrates
that TPC-NAS can further improve previously-designed architecture while maintaining all of the
architecture blocks and changing only some parameters, such as depth, the number of channels,
kernel size, etc.

14

Under review as a conference paper at ICLR 2023

Table 3: The object detection precision and search time results of TPC-NAS from YOLOv4-p5 and
other object detection architectures. For manually-designed models, no search time is listed.
#Param FLOPs mAP AP50 Search Cost
Model Backbone FPN

Resolution

™) G) (%) (%) (GPU days)
YOLOVS5-s YOLOV5 PAN 7.3 17.1 640 369 56.0 -
EAutoDet-s Searched Searched 9.1 24.9 640 40.1 587 14
EfficientDet-DO Effieicent-BO BiFPN 3.9 2.5 512 338 522 -
YOLOv4 CD-53 PAN - 60.1 416 412 628 -
TPC-YOLO-s Searched PAN 19.7 20.1 640 434 61.3 0.002
YOLOV5-m YOLOV5 PAN 21.4 514 640 439 625 -
YOLOvV4-p5 CSP-P5 PAN 70.8 163.9 896 51.8 70.3
YOLOv4 CD-53 PAN - 91.1 512 430 649 -
EAutoDet-m Searched Searched 28.1 60.8 640 452 635 14
NAS-FPN Resnet-50 Searched 60.3 281.3 640 399 - 333
SM-NAS:E2 Searched - - - 800*600 40.0 58.2 80
SM-NAS:E3 Searched - - - 800*600 42.8 61.2 80
EfficientDet-D1 Effieicent-B1 BiFPN 6.6 6.1 640 39.6 586 -
TPC-YOLO-m Searched PAN 37.0 40.2 640 454 64.0 0.002

A.4 SUPER-RESOLUTION EXPERIMENTAL RESULTS

Table 4] shows that TPC-NAS can also generate high-performance RFDN-based models for the
super-resolution application. The TPC-NAS-A/B/C models beat other designer models and NAS-
discovered models in terms of computational complexity. In addition, the TPC-NAS search time is
much shorter than other NAS algorithms.

Table 4: Average PSNR/SSIM on datasets SETS, SET14, B100, and Urban100 of CNN models
for super-resolution. TPC-NAS-A/B/C are searched under 300K, 500K, and 700K parameter size
constraints, respectively.

Search time

FLOPs Param Urban100 B100 SET14 SETS
(GPU hours)
CARN 222.8 G 1592 K 31.92/0.926 32.09/0.898 33.52/0.917 37.76/0.959 —
CARN-M 91.2G 412K 31.23/0.919 31.92/0.896 33.26/0.914 37.53/0.958 —
RFDN 123G 534K 32.12/0.928 32.16/0.899 33.68/0.918 38.05/0.961 —
ESRN-V 734G 324K 31.79/0.925 32.10/0.899 33.42/0.916 37.85/0.960 192
MoreMNAS-A 238.6 G 1039 K 31.24/0.919 31.95/0.896 33.23/0.914 37.63/0.958 1300
FALSR-A 234.7G 1021 K 31.93/0.927 32.12/0.897 33.55/0.917 37.82/0.960 500
FALSR-B 747G 326K 31.28/0.919 31.97/0.897 33.29/0.914 37.61/0.959 500
FALSR-C 937G 408 K 31.24/0.918 31.96/0.897 33.26/0.914 37.66/0.959 500
TPC-NAS-A 062G 298 K 32.09/0.928 32.15/0.900 33.57/0.918 37.91/0.961 0.05
TPC-NAS-B 104G 500K 32.31/0.930 32.20/0.900 33.69/0.918 38.04/0.961 0.05
TPC-NAS-C 140G 690K 32.44/0.931 32.23/0.900 33.73/0.918 38.05/0.961 0.05

A.5 ABLATION STUDIES

The first ablation study we conducted was to vary the hardware constraints during Resnet-based
search and training with the CIFAR10 and CIFAR100 datasets. Tables 5 and 6 list accuracies of
CNN models found by the TPC-NAS method. As expected, when we allowed higher FLOPs or
Params constraints, architectures with higher TPC scores were found, and they achieved higher
accuracies.

15

Under review as a conference paper at ICLR 2023

Table 5: FLOPs and Accuracy
FLOPs TPC score CIFAR10 CIFAR100

200M 480 94.17 76.86
100M 413 92.62 74.77
50M 379 91.88 71.93

Table 6: Params and Accuracy
Params TPC score CIFAR10 CIFAR100

2M 579 95.33 77.68
IM 489 94.27 75.04
0.5M 403 93.21 70.89

Next, we varied the maximal depths and again trained on the CIAFR 10 and CIFAR100 datasets. The
results are shown in Table 7. We find that the TPC score grows as the depth increases. However,
the accuracy will stagger and not increase, which we think is due to the difficulty in training deeper
architectures. Toward this end, our TPC-NAS search space has a depth limit on the architectures.

Table 7: Maximal Depth and Accuracy
Depth TPC score CIFAR10 CIFAR100

12 369 93.95 76.43
13 401 94.42 77.09
14 416 94.16 76.15
15 468 93.82 76.02
440
420 420
400 400
380
380 180
360 Populationsize = 512 Population size = 256
g Max: 435 34011 Max: 435
3 0 50000 100000 150000200000 0 50000 100000 150000200000
g 420 440
= 400 420
380 400
360 o 380
Populationsize = 128 360 Population size = 64
340 Max: 424 340 Max: 446

0 50000 100000 150000200000 0 50000 100000 150000200000

Iteration

Figure 10: TPC outcomes of the TPC-NAS search with different population sizes under the con-
ditions that the iteration number is 200000, FLOPs budget is 200M and the maximum number of
layers is 14.

We modified the population size for the evolutionary search with 200000 iterations, up to 200M
FLOPs, and 14 layers. As shown in Figure 10, a larger population size does not necessarily lead to
a better architecture. We think that with 200000 architectures searched, the population size has no
bearing on the final outcome. This again evidences the TPC score’s power in quickly evaluating the
expressivity of so many architectures.

16

Under review as a conference paper at ICLR 2023

The adopted search space is of course crucial to the success of any NAS solution. Thanks to the TPC
score, a search space can be explored very quickly. Therefore, if the search space is not adequate,
the TPC score quickly reveals that and proper modification can be made.

For the initial structure, we adopted a small structure in the search space. Then we allowed the
search to iterate for a large number of epochs since the TPC score computation takes very little time.
Therefore, no matter the initial structure, the search procedure always converges at architectures
with high TPC scores.

A.6 COMPARISON OF EXISTING MODELS

We identified several well-known architectures for image classification using the Imagenet database:
Resent-18/50, MobileNetV2, and ShuffleNetV2. Then we calculated their TPC scores and listed the
scores with their top-1 accuracy performance on the ImageNet database in Table 8. Once again, the
TPC score successfully predicts accuracy performance with high correlation even on the architec-
tures with different structures.

Table 8: Comparison of Existing Models

Model TPC score ImageNet
Resnet-18 140 69.76
MobileNet_V2 214 71.88
ShuffleNet_V2_1.5 235 73.00
Resnet-50 340 76.13

17

	Introduction
	Related Works
	Neural Architecture Search for CNNs
	Task-agnostic Neural Architecture Search

	Expressivity and TPC-NAS
	Expressivity of Vanilla Convolutional Neural Networks
	TPC score
	TPC Score of Separable Convolution Layer
	Kendall’s tau-score
	TPC-NAS Algorithm

	Experiments
	TPC-NAS for Image Classification CNN
	TPC-NAS for Object Detection CNN
	TPC-NAS for Super-resolution CNN

	Discussion
	Training Dataset
	Model Quantization
	Hardware-Aware NAS

	Conclusion
	Appendix
	Search Space
	Image Classificationt Experimental Results
	Object Detection Experimental Results
	Super-Resolution Experimental Results
	Ablation Studies
	Comparison of Existing Models

