Under review as a conference paper at ICLR 2026

PROPAGATING KNOWLEDGE IN LLMS WITH HYPER-
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge editing techniques for large language models (LLMs) can inject
knowledge that is later reproducible verbatim, but fall short on propagating that
knowledge; that is, LLMs can’t answer questions that involve reasoning about it.
In this paper, we study hypernetwork-based knowledge editing techniques (i.e.,
MEND (Mitchell et al., 2022)) for knowledge propagation. We find that vanilla
hypernetwork-based editing methods do not effectively propagate knowledge. We
propose a simple fix to optimize hypernetworks for knowledge propagation, which
is to explicitly include propagation questions as the objective during hypernetwork
training. This achieves a substantial performance gain in the RippleEdit dataset,
almost 2 accuracy on challenging multi-hop questions whose answer strings do
not appear in the injected fact. We further introduce a new synthetic dataset,
Controlled RippleEdit, thatisolates a confounding factor in knowledge
propagation evaluation and further supports evaluating the generalization of knowl-
edge propagation. Our approach outperforms all other approaches for knowledge
propagation, including more computationally intensive methods such as continued
fine-tuning on synthetic data. Hypernetworks demonstrate some scaling to multi-
edit settings (up to 20 edits), achieving performance on par with or higher than
CPT-based approaches. Yet, we observe significant limitations in the performance
for out-of-domain propagation, suggesting future work in propagating knowledge
to a wide range of relations.

1 INTRODUCTION

Knowledge editing methods (Meng et al., 2022} [Mitchell et al., [2022; [De Cao et al., 2021} Sinitsin
et al.| [2020) can transform large language models (LLMs) to reproduce injected knowledge, but
induce very limited propagation of that knowledge (Cohen et al., [2024} [Zhong et al.,|2025)). This
failure stands in disappointing contrast to LLMs’ ability to propagate knowledge that is given in
context at inference time (Onoe et al.l [2022; Zheng et al.||2023)). One promising path for propagation
is through training on data that explicitly demonstrates that propagation (Padmanabhan et al.| 2023},
Akyiirek et al.|, [2024; (Chang et al.,|2024), but these methods require large-scale data augmentation
for each piece of knowledge to be injected (Yang et al.|[2024).

Hypernetwork-based editing methods (i.e., MEND (Mitchell et al., |2022)) present an attractive
solution for knowledge editing by introducing auxiliary hypernetworks to make efficient, effective,
and local edits to LMs. Yet, prior work (Cohen et al.,[2024)) established that these methods fail to
achieve meaningful knowledge propagation. In this work, we explore adapting a hypernetwork-based
editing method for knowledge propagation. We rectified the learning objective of the hypernetwork
and substantially improved its results in knowledge propagation. Our study builds upon Model Editor
Networks using Gradient Decomposition (MEND (Mitchell et al., 2022))), proposing to train these
hypernetworks with knowledge propagation as the core objective. Taking in a model’s gradient from
the language modeling objective on the injected fact as input, now hypernetworks are trained to
modify that gradient to enable LMs to answer propagation questions involving that fact correctly
when the output gradient is applied; see Figure [Ii We further improve hyperparameter choices
for MEND (e.g., layers in which model updates are applied), significantly improving propagation
performance.
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Figure 1: Our modification to enable propagation of injected knowledge. Our hypernetwork is
trained to modify the gradient from the next token prediction loss on the injected knowledge to allow
answering of multi-hop questions that rely on the newly injected knowledge.

We first evaluate our approach on RippleEdit (Cohen et all [2024), a knowledge propagation
question answering dataset. Existing methods excel in instances where the target answer appears
verbatim in the injected facts, while achieving negligible improvement on non-verbatim questions. We
show our variants outperform all other approaches, showing almost 2x accuracy (22.4% compared to
12.7% of the next best system) in non-verbatim cases.

To better understand the extent of knowledge propagation, we design a new synthetic dataset
Controlled RippleEdit. We focus on injecting facts related to well-known entities, allowing
us to test propagation through the information already known to LLMs. We design test sets to evaluate
propagation relations and entities seen during hypernetwork training and those that are unseen. In this
new dataset, we observe that our approach outperforms other approaches (Gururangan et al., [2020;
Lin et al} 2023 [Meng et al.}, 2023} Mitchell et al., 2022) consistently, in both in-domain settings and
on out-of-domain generalization. However, our model performance degrades significantly from the
in-domain setting to the hardest out-of-domain setting (76.7% to 18.3% accuracy), leaving ample
headroom for further work. Lastly, we show that our design changes can be applied to RLEdit
2025), a recent method that focuses on improving MEND for multiple edit scenarios.

Our contributions are: (1) A new learning objective and data condition, which meta-trains a hyper-
network explicitly for propagation; we show this applies to both single-edit and multi-edit settings.
(2) An analysis and evaluation on RippleEdit, showing that our variant achieves substantial
improvement on questions whose answers are not verbatim in the injected fact. (3) A new dataset
Controlled RippleEdit, which allows us to evaluate out-of-domain settings in knowledge
propagation. Our model shows improvement over baselines in this challenging setting.

2 BACKGROUND

2.1 TASK

We define a language model M with parameters WV modeling a probability distribution pyy (x; | x<;)
of current token z; given the previous tokens x;. Such an LM is defined by its architecture and
parameters, which are real-valued weight tensors W = {W, , - - - }, where ¢ denotes the layer index
and k ranges over the number of weights per layer (e.g., the MLP matrices and projection matrices
for self-attention).

The task of knowledge editing is to inject a previously unknown fact or facts represented by f into the
model. In this work, f consists of raw text (e.g., f =“Keir Starmer was elected prime minister of the
UK”). The weights are updated by AW = {AWy, - - }, yielding W = {Wy 1, + AW, ,--- } as
the final weights which should reflect f. Ideally, the model should be able to use this fact in various
contexts (efficacy of the edit) without modifying unrelated facts (locality of the edit).

We introduce a set of propagation questions associated with each injected set of facts: our data is
of the form {(f;, {(q,;,a;;)})}. For instance, given the f in the previous paragraph, propagation
questions might be (Q: What year was the prime minister of the UK born? A: 1962; What political
party is the prime minister of the UK associated with? A: Labour Party). These questions evaluate
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Figure 2: We modify the hypernetwork to take a gradient from causal language modeling of a new fact
and transform it such that, when applied to the model, the model can answer propagation questions.
The pseudocode skeleton depicts the general process used by hypernetwork-based editing methods.

that an updated LM should use its knowledge of the fact f. Such questions have been explored in past
work where they have been harvested from knowledge bases (Cohen et al., 2024) or by prompting
LMs (Akyiirek et al., [2024)).

A natural approach is to compute an update to the weight AWV as the gradient of a language modeling
loss or SFT loss computed on f; for instance, AW = aVpy(f), where « is the learning rate.
However, training a model on some text is typically insufficient to inject that knowledge in a way that
leads to strong performance on the (g, a) pairs (Chang et al.,2024; Berglund et al.| 2024).

2.2 HYPERNETWORK-BASED EDITING WITH MEND

Our work first builds on MEND (Mitchell et al.| [2022), a hypernetwork-based method for knowledge
editing. MEND will compute an update AWV via a modification of the basic gradient.

The hypernetwork g, is parameterized by ¢ and meta-trained on an editing dataset DY, =
{(%x,¥,%',X10c)i }. As depicted in Figure [2] the training of the hypernetwork involves an inner-
loop update which (1) computes the gradient of the injected fact; (2) modifies that gradient with the
hypernetwork g4; (3) applies the gradient to the base network )V to form an updated network W. In
standard MEND, the gradient in (1) is computed over an input-output pair (x,y) (e.g., a QA pair) as
VwL!(x,y) = Vw[-log pw(y | x)].

In the outer loop, the desiderata of generalization and locality are specified by an SFT loss (as editing
loss L.) with paraphrased input x’ and Kullback—Leibler divergence (as locality loss Lj,.) with a
random input xjo. from the NaturalQuestions dataset (Kwiatkowski et al.| [2019). An additional
coefficient c. (typically 0.1) is used to balance between the two desired properties.

LO = CeLe(W) + LlOC(W7 W) = —Ce longv(y ‘ X/) + KL (pW( | Xloc)HpW(' | Xloc)) (1)

The full pseudocode for MEND can be found in Appendix [B.4, MEND makes a key observation
that the gradient of L with respect to weights WV is a rank-1 matrix. This allows more efficient
parameterization of the hypernetwork g4 and efficient computation of the final weight update.

A major limitation of MEND is the structure of the inner- and outer-loop losses. As described in the
paper, the inner loop injects a single QA pair (x,y), and the outer loop only encourages propagation
to paraphrases of that QA pair. In the next section, we describe our method, which extends MEND
and relaxes these assumptions.
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2.3 HYPERNETWORK-BASED MULTI-EDITING WITH RLEDIT

For a practical application of editing methods, the editing method should be able to handle injecting
multiple facts robustly. Previous work has shown that MEND is not effective out-of-the-box at
injecting facts sequentially (Meng et al., [2023} [Li et al., 2025). Recent work, RLEdit (L1 et al.|
2025)), has suggested that the key issue for multi-edit failing is MEND’s training process, which does
not accommodate the cascading parameter changes after each turn of editing. To address this, they
meta-train the gradient modification by taking into account the cumulative delta over multiple steps.

RLEdit frames the multi-edit process for n facts as editing m facts for > turns. Concretely, at the
t-th turn of editing, RLEdit edits a “base model” obtained by applying the hypernetwork update to
the previous model turns. The meta-training objective then also includes a sum over losses from
k previous turns; this is to encourage the updated hypernetwork to also perform well despite the
cascading changes of model weights. Finally, RLEdit adds a weight normalization and a decay term
to the summation of losses over the sequence. In Section [6] we present results on applying our
approach on top of RLEdit.

3 PROPAGATING FACTS WITH HYPERNETWORKS

We propose to modify the training and loss shared by conventional hypernetwork-based algorithms,
described below and visualized in Figure [2] There are two principal modifications: training data and
learning objective.

Training data of outer loop First, the outer loop loss is computed over the propagation questions:

P
1
L. = -7 Zlogpw(ai | a:) )
i=1

Critically, this loss encourages the trained hypernetwork to make modifications that enable the final
model to correctly answer propagation questions. This property does not hold for the conventional
hypernetwork training objective; there, the objective in the outer loop is to predict simple paraphrases
of the injected fact.

Learning objective of inner loop Second, we make the structure of the inner loop more flexible: we
use the standard causal language model (CLM) loss to enable the model to inject any new knowledge
expressible as text, rather than requiring it to be structured as QA pairs as in conventional objectives:

L' = ~logpw([x;y]) = —log pw(f) 3)
where [ ; -] means the concatenation of two strings. This objective resembles the inner loop loss used
in past editing work (Chen et al., 2023).

Together, these two losses reflect the chief objective of knowledge editing: taking raw knowledge
expressed in text (which can be trained on with next token prediction loss) and adapting the learning
of that knowledge to support answering propagation questions. This goal is more ambitious than that
of a conventional objective, which propagates QA pairs to paraphrases of those questions. Injection
under a conventional objective may underperform on knowledge that is not expressed as QA pairs,
and it may propagate less than a model explicitly trained to be able to answer propagation questions.

4 EVALUATION ONRIPPLEEDIT

4.1 EXPERIMENTAL SETTINGS

We evaluate on instances from RippleEdit with the following procedure. An LLM M receives an
edited fact e = (s, 7, 0*) to be injected into LLM, yielding an updated model M (®). After that, the
model is evaluated on a set of P propagation queries (including all propagation types) in the format
{(qi, A;)}E_,, where q; is a query string from one of the 6 propagation types, and .4; is the set of
valid answers for the query q;. See the detailed description of the task in Appendix

Data Setup RippleEdit has three subsets, Popular, Random, and Recent. We do not
distinguish these subsets for simplicity, and form the dataset splits out of the union of all of them. We
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randomly sample 500 examples for a validation set, 500 examples for a test set, and use the remaining
3,686 examples for training. We filter examples in the validation and test sets, such that each instance
has at least 1 test query for efficacy and 1 test query for specificity. The training dataset here is used
for meta-training our hypernetwork and not for learning specific knowledge. See the statistics for a
number of propagation questions in Table [6]

Following prior work (Scialanga et al., 2025)), we categorize six propagation types in RippleEdit
into two: (1) efficacy queries, since these test the effectiveness of knowledge injection and propagation
of a test fact. (2) specificity queries, whose answer should not change after the edit. An example can
be found in Table[dc|in the appendix.

Our analysis of the dataset revealed that the answer to the propagated fact frequently appears verbatim
in the edit fact (overall 31.9% of propagation questions in the test set; see breakdown per propagation
type in Table 5]in the Appendix). Models can trivially answer these questions correctly by learning to
copy from edited facts. Therefore, we divide test queries into two sets: those that require non-verbatim
propagation and those that do not, and report performances on each set.

Evaluation Metrics We greedily decode a maximum of 20 new tokens. We use two evaluation
metrics, Exact Match (EM), following the original paper, and LL.M-as-Judge (LLM-Score), a
more robust metric that can handle lexical variations. EM checks if any gold answer a € A; is
a substring of sequence [q,; &;] which concatenate the query string q; with generated answer éi
For LLM-as-Judge (LLM-Score), an LLM (GPT-40-mini) takes the query string q;, the generated
answer a;, and one answer from valid answers a € A;, and gives a numerical score of whether the
generated answer matches the valid answer. If the generated answer matches any of the valid answers,

we count it as correct. See the LLM prompt in Appendix [A.T]

4.2 COMPARISON SYSTEMS

All our model variants use a 16-layer pre-trained transformer model, L1ama-3.2-1B-base. We
conduct a light-weight supervised fine-tuning on the TriviaQA dataset (Joshi et al.,2017) on this model
to teach the model to answer in short answer format: Lspr(M) = E(x y)~Triviaga [10g P (y | %)].
We call the tune model L1lama—-3.2-1B-base—QA.

* Prepend: This is not an editing method, simply prepending the new fact f to the test query q; at
inference time. Past work has shown this method to be a competitive baseline (Cohen et al., [2024)).

* Continued Pretraining (CPT) is frequently used to adapt an off-the-shelf LM to new domains or
tasks (Gururangan et al., 2020). We continue training the base model with the next token prediction
loss (Equation [3)) on the new fact x. We report two variants, differing in which parameters are
updated — all parameters in the model (denoted CPT (run)), or parameters associated with layers
10-12 (denoted CPT (Mid-Uppen)).

* Active-Reading CPT (Lin et al.}|2025) augments the injected fact by prompting a language model
to generate more data, aiming to emulate the way humans actively engage with new information.
We report results of fully finetuning the parameters on this data (denoted Active-Reading CPT
(Ful). See details about the method in Appendix [B.2]

* MEMIT (Meng et al., 2023) creates a weight update by solving an closed-form optimization
problem; it requires precomputed covariance matrices from a reference corpus, typically on
wikitext—-103 (Merity et al. |2017). We denote MEMIT (wikitext-103) to be MEMIT with
covariance from wikitext—-103, and MEMIT (Ripplerdit) to be from RippleEdit. See
more details in Appendix [B.3]

* MEND (Mitchell et al., |2022): We present two versions of MEND. One follows the standard
practice (denoted MEND (with standard config)); the other follows our practice in MEMIT and edits
MLP weights at layer 10-12 (denoted MEND (Mid-Uppen)). See more details in Appendix [B.4]

* MEND+Propagation: we apply the modification described in Section [3|to MEND, targeting
layers 4-15. We also include a variant denoted by MEND+Propagation (Mid-Upper), targeting layers
10-12.

'In the original paper (Cohen et al.,[2024), the evaluation pipeline filters test queries based on edit success,
performance on prerequisite test queries, making the set of evaluation queries different for different models. We
do not filter to ensure each method is evaluated on the same test set.
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Table 1: LLM-Score Results on the RippleEdit dataset, stratified by verbatim / non-verbatim,
and token usage relative to CPT. MEND+Propagation improves over baselines on verbatim questions
whose answers are in the injected facts, and on non-verbatim questions whose answers are not in the
injected facts. Improvement of existing baselines mostly comes on questions with verbatim answers.
"means the system is outperformed by MEND+Propagation on that metric according to a paired
bootstrap test (p = 0.05).

Efficacy Specificity
# tok Verbatim Non-Verbatim Verbatim Non-Verbatim

okens (1373) (1586) (165) (2099)
Llama-3.2-1B-base-QA 0x 11.67 9.27 13.2° 27.77
Prepend 1x 36.7° 22.4 18.8 28.7°
CPT (Full) 1x 76.0 7.87 15.87 16.07
CPT (Mid-Upper) 1% 41.8" 9.7 20.7 26.3"
Active-Reading CPT (Ful) 265x% 81.6 9.7 20.5 17.7°
MEMIT (wikitext-103) 1x 17.0°F 12.7F 17.7 24.5%
MEMIT (RippleEdit) 1x 22.5% 12.7F 22.0 21.4%
MEND (with standard config) 1% 64.5 8.2" 24.3 23.6"
MEND (Mid-Upper) 1% 63.5° 8.2" 21.6 21.6"
MEND-+Propagation (Mid-Upper) 1 X 7117 19.37 27.3 32.07
MEND-+Propagation 1x 75.7 22.4 24.1 354

4.3 RESULTS

Table [T] presents the results on RippleEdit dataset. MEND+Propagation performs strongly on
both efficacy and specificity. Especially on non-verbatim questions, our system is the only one that
shows substantial gain (9.2 — 22.4), while the best other system achieves only 12.7 (MEMIT). For
existing methods, improvement in efficacy mostly comes from questions whose answer is verbatim in
the edits (11.6 — 76.0, CPT (full)), but offers negligible improvement on questions whose answers
are not in the edits.

We note the Active-Reading method achieves the best performance on questions with verbatim
answers, but very low improvement on questions with non-verbatim answers. Although it generates a
large number of augmented tokens (265 the size of the CPT data), these tokens are not aligned with
the challenges of questions with non-verbatim answers.

The Prepend baseline is the strongest on non-verbatim questions (9.2 — 22.4) more substantially
than other methods. We report exact match in Table [26] and performance by propagation types in
Table 27]in the appendix.

Limitation of RippleEdit While RippleEdit provides an initial testbed for our work, we
find this dataset is not ideal for testing knowledge propagation. Many questions involve tail entities,
where the base LM does not parametrically know the relevant information. For example, if LM
does not know who the siblings of Keir Starmer are, it would not be able to answer the propagation
question “who is the sibling of the prime minister of the United Kingdom" even if it could propagate
the new fact “Keir Starmer is the new PM of the UK". In the following section, we present a new
synthetic dataset that centers around entities and relationships that the model is familiar with.

5 EVALUATION ON CONTROLLED RIPPLEEDIT

We introduce a new dataset called Controlled RippleEdit, which allows a focused evaluation
of the model’s knowledge propagation ability. This dataset also allows evaluating out-of-domain
performance, propagating along relations unseen during training, unseen entities, or both.

Data Instances Figure [3]illustrates an instance of Controlled RippleEdit. Each instance
has a new fact f centering around a fake entity s; and involving three real-world entities 01, 02, 03. It
also has a set of propagation questions {(q;,a;)}%_; built from P unique knowledge base relations
(e.g., capital_of) associated with one of the real-world entities (01, 02, 03). Instead of referring
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Figure 3: Tllustration of our Controlled RippleEdit dataset, designed to evaluate knowledge
propagation on well-known entities and relations. Each instance consists of (1) a fictional story
(f) relating a fake entity sy to three real-world entities (01, 02, 03); and (2) a set of P propagation
question-answer pairs {(q;,a;)} ;. Each q; inquires about a knowledge base relation on one of the
real-world entities o;, but referring to it via its relation to the fake entity.

to the real-world entity directly, the propagation question will refer to it using its relation to the fake
entity sy (e.g., the country where Adam Jacobson was born). Therefore, the LM must be able to
combine its prior knowledge about real-world entities and the injected fake entity s to answer the
question correctly. The dataset generation process is further described in Appendix

Final Dataset We generate 5K instances of Controlled RippleEdit and randomly split
these into 4K for training the hypernetwork, 500 for validation, and 500 for testing. To evaluate out-
of-domain (OOD) generalization, we generate three additional test sets. We generate 350 instances
where their real-world entities (0;) do not appear in the training dataset (but knowledge base relations
occur in the training dataset), calling this set OOD (Entity). Analogously, we generate an OOD
(Relation) dataset. Lastly, we generate an OOD (Both) dataset, consisting of 350 instances where
neither real-world entities nor the knowledge base relations appear in the training dataset.

5.1 EXPERIMENTAL SETUP

Model We further train the model in Section with 500 QA pairs involving real-world entities
and relations in Controlled RippleEdit to make the propagation easier by reinforcing the
model’s knowledge of the propagation relations. We call this model L1lama-3.2-1B-base-QA,
and this model is used for all comparison methods in this section.

Metric We use LLM-as-a-Judge (with GPT-40-mini) to evaluate the correctness of the predicted
answer against the reference answer, as in the prior section. For efficacy measure, we use the model’s
performance on multi-hop questions, e.g., “Q: What is the currency of [the country that Adam
Jacobson was born in]? A: U.S. Dollar”. To measure specificity, we evaluate whether the model
retains its ability to answer simplified versions of our questions that do not require any updated
knowledge, e.g., “What is the currency of the United States?”. See examples in Figure[3] Ideally,
updates to the model should not degrade its ability to answer these questions.

Comparison methods We use the same set of comparison methods described in Section 4.2} For
fair comparison, we modify MEMIT and MEND. As they require the fact f to be in an input-output
format (x,y), we map f into three atomic facts (e.g., (Adam Jacobson was born in, the U.S.)); and
conduct multi-edit to inject those facts. See examples in Table [7]and details in Appendix [E.3] Lastly,
we add one more baseline, described below.

Meta-Aug CPT This CPT method explicitly uses how the meta-training set was constructed. We
augment an injected fact using the gold in-domain relations for that fact, essentially reproducing what
would be the propagation questions in the meta-training set, paired with gold answers. For instance,
for the example in Figure [1}, we would generate “What is the currency of the country that Adam
Jacobson was born? US Dollar”, “What is the currency of the country that Adam Jacobson lived in
after retirement? Chinese yuan”, and “What is the currency of the country that Adam Jacobson spent
adult life? South Korean won”. We denote this method as Meta-Aug CPT. For In-Domain and OOD
(Entity) test sets, note that the test queries are included directly in the CPT data. Because the data is
dynamically generated for each example, In-domain and OOD (Entity) are distributionally equivalent
for this approach.
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Table 2: Single-edit results on Controlled RippleEdit with Llama-3.2-1B-base-QA.
We use the model’s LLM-Score on multi-hop questions for efficacy, and the model’s LLM-Score
on single-hop questions for specificity. MEND+Propagation significantly outperforms most of the
baselines on the In-Domain test set and also OOD test sets where components of the injected facts
do not appear during meta-training. "means the system is out-performed by MEND+Propagation
according to a paired bootstrap test (p = 0.05). Gray cells do not match the data or learning

condition of other cells; see text. For all CPT methods, we conduct full finetuning.

In-Domain  OOD (Entity) OOD (Rel) OOD (Both)

(2284) (1368) (421) (447)
#token | Effi. Spec. | Effi. Spec. | Effi. Spec. | Effi. Spec.
Llama-3.2-1B-base—QA Ox | 83" 9477 | 7.1" 943 | 897 942 | 109" 90.7
Prepend Ix |38.17 8627 | 415 882 |2947 824 | 31.7 795
CPT 1x [18.17 8027 [ 17.07 79.9" | 156" 79.3" | 1297 71.17
Meta-Aug CPT 7x | 803 754" | 791 733 |26.17 570 | 1297 517
Active-Reading CPT 95x | 19.6" 69.6" | 19.17 67.8" | 233" 654 | 167 628
MEMIT (wikitext-103) Ix | 12.8" 9447 | 144" 944 | 120" 939 |13.8" 90.0
MEMIT (ctrl RippleEdit) Ix | 120" 946" | 133" 945 |11.17 943 | 11.6° 90.2
MEND (with standard config) Ix | 147" 89.0" | 1427 894 |10.17 91.8 | 107" 86.3
MEND (Mid-Upper) Ix | 1237 918" | 11.57 929 |[11.57 922 | 12.0° 88.1
MEND-+Propagation Mid-Upper) | 1x | 60.8" 91.37 | 36.0 854 |284" 874 | 183 84.0
MEND-+Propagation 1x 76.7 955 | 352 81.6 | 345 84.0 | 183 775

5.2 RESULTS: EFFECTIVENESS OF PROPAGATION

We report the results on Controlled RippleEdit inTable[2] Our variant, MEND+Propagation,
substantially outperforms other parametric methods consistently for various settings. On the in-
domain test set, MEND+Propagation even outperforms Prepend, showing that parametric propagation
can be as effective as in-context augmentation.

We observe MEND+Propagation’s performance degrades in out-of-domain settings when either
entities or relations are unobserved during training. However, MEND+Propagation still outperforms
other methods substantially. For example, on OOD (Entity), the best-performing baseline MEMIT
(wikitext-103) achieves 20.8% lower performance than our variant. We observe that our variant’s
performance improvement in OOD (Entity) tends to be higher than OOD (Relation). On OOD (Both),
where our variant does not observe any entity or relation in the test, MEND+Propagation is able to
offer better propagation than others, but the gap is smaller.

Additional Results In Appendix [F| we report further results on Controlled RippleEdit,
which we summarize here. In Table[14]and[I9] we conduct ablation studies and show design elements
proposed in Section [3] are essential. In Table [T1] and [T§] we conducted experiments that scale
hypernetwork in terms of meta-training data and parameter usage, and show OOD performances
are not fixable by mere scaling and require some algorithmic innovation. In Table [T5] we report
performance on two evaluation subsets (where the answer occurred in the meta-training set or not),
showing that the hypernetwork generalizes to queries whose answers are not in the meta-training set.
In Table 28|and [21] we show that gains from MEND+Propagation are robust to models of different
size and family. Lastly, we show MEND+Propagation is cost-effective by comparing memory usage
and runtime in Table 20l and [T7]1

6 PROPAGATING MULTIPLE FACTS AT ONCE

Knowledge propagation can be thought as making multiple knowledge edits at once, including
injected facts and facts that are impacted by the injected facts. Being able to propagate multiple
facts to the language model will have an additional multiplier effect, thus making the learning of
knowledge very data-efficient and the updated language model more generalizable. In this section, we
extend our approach to RLEdit (Li et al.| [2025)), a recent hypernetwork training recipe for sequentially
injecting multiple facts.

Setting We investigate injecting a total of 10 or 20 facts into the language model and measure the
propagation performance. With RLEdit, both settings, we inject 5 facts at each turn, and change
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Table 3: Multi-edit results on Controlled RippleEdit with Llama-3.2-1B-base-QA.
Training MEND+Propagation with 20 edits leads to out-of-memory in our hardware configuration.

Gray cells do not match the data condition of other cells; see text. For all CPT baselines, we conduct
full finetuning. We bold the best system and underline the second best system.

In-Domain  OOD (Entity) OOD (Rel) OOD (Both)
(2284) (1368) (421) (447)
#token | Effi. Spec. | Effi. Spec. | Effi. Spec. | Effi. Spec.

Llama-3.2-1B-base-QA | Ox | 83 947 | 7.1 943 | 89 942 | 109 90.7
# injected fact = 10

LLM-Score (1)

CPT 1x 112 88.6 | 93 859 | 145 89.0 | 12.8 80.7
Meta-Aug CPT 7x 773 88.6 | 76.8 86.6 | 31.8 73.6 | 179 63.0
Active-Reading CPT 95x | 128 759 | 103 77.0 | 173 78.0 | 147 740
MEND+Propagation 1x 255 682 | 155 484 | 109 546 | 114 565
RLEdit+Propagation 1% 48.6 929 | 258 820 | 86 878 | 17.6 79.5
# injected fact = 20
CPT 1x 103 898 | 83 88.2 | 13.8 89.9 | 125 825
Meta-Aug CPT 7x 722 89.2 | 688 859 | 283 745 |17.0 627
Active-Reading CPT 95x | 105 770 | 91 762 |17.1 773 | 164 76.8
RLEdit+Propagation Ix 299 885 | 183 783 | 120 82.6 | 13.0 825

the number of turns to control the total number of facts. Since MEMIT and MEND underperform
CPT-based methods on the single-edit scenario, and prior work (Meng et al.,|2023; Mitchell et al.,
2022) shows that multi-edit performance mostly decreases from single-edit performance, we focus
on CPT-based baselines in this section.

Results Table [3| reports performances. All methods show degraded performances compared to
single edit scenarios, especially as the number of edits grows. Meta-Aug CPT shows strongest
efficacy overall, especially in-domain. RLEdit+Propagation outperforms MEND+Propagation in
most settings by a large margin. RLEdit+Propagation shows competitive performance in OOD
(Entity), and comparable performance in OOD (Both), but lags in OOD (Relation), compared to CPT
methods. Active-Reading CPT and Meta-Aug CPT, while showing stronger efficacy performance in
OOD (Both) setting, also show a specificity drop.

7 RELATED WORK

Knowledge Propagation Recent work has studied the propagation of injected knowledge, finding
that existing methods are largely lacking. A line of work (Ma et al.| 2024; Berglund et al., [2024)
studied reversal curse — the model knows “A is B”, but not “B is A”. Other work (Qin et al.| 2024}
Nishi et al., |2025) analyzes unintended ripple effects of different editing methods. Hase et al.| (2024)
surveys a wide range of open problems regarding revising the belief of the model. We discuss recent
benchmarks for evaluating knowledge edits in Appendix [H.1]

Continual Learning Knowledge editing can be viewed as continual learning, injecting new knowl-
edge gradually. Continual learning has been studied in domain adaptation scenarios (Gururangan
et al., [2020; |[Ke et al.|[2023). A line of work studies catastrophic forgetting during continual learning
(Chen et al.l 2025} [Franke et al.l 2024} Jin & Renl [2024ajb). They evaluate the performance on
downstream tasks, rather than changes in parametric knowledge. We include more discussion related
to continued pretraining in Appendix [H.2]

8 CONCLUSION

In this work, we introduce a simple but effective modification that addresses the critical challenge of
propagating edits to related facts in current knowledge editing techniques. We show the effectiveness
of our method on RippleEdit, a widely-adopted dataset measuring propagation. We present
a controlled dataset centered around well-known entities and relations to further demonstrate the
effectiveness when propagated knowledge is known by the model. We also show that our modification
is generalizable to multi-edit editing methods, and the modified variant maintains strong performance
improvement over baselines.
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Reproducibility Statement Our code and dataset will be made publicly available once.
See anonymized code at https://anonymous.4open.science/r/propmend-84F6/
README . md. We provided the description of RippleEdit at Appendix [D} and Controlled
RippleEdit at Section[5and Appendix [E]
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APPENDIX

A  PROMPT

A.1 LLM-as-Judge prompt

[Instruction]

Please act as an impartial judge and evaluate the quality of
the response provided by an AI assistant to the user question
displayed below. For this evaluation, you should primarily
consider the following criteria:

accuracy:
Score 0: The answer is completely unrelated to the reference.
Score 3: The answer has minor relevance but does not align with
the reference.

Score 5: The answer has moderate relevance but contains
inaccuracies.

Score 7: The answer aligns with the reference but has minor
omissions.

Score 10: The answer is completely accurate and aligns

perfectly with the reference.
Only respond with a numerical score.

[Question]
{question}

[The Start of Ground truth]
{reference}
[The End of Ground truth]

[The Start of Assistant’s Answer]
{prediction}
[The End of Assistant’s Answer]

Return the numerical score wrapped in <score>..</score> tag

\ J
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B DETAILS ON BASELINE METHODS

B.1 PREPEND

We follow the practice in (Cohen et al., 2024) and format the prepended text to be “Imagine that
f”, where f is the injected fact.

B.2 ACTIVE-READING CPT

Active-Reading generates augmentation in two stages: 1) generate task-agnostic and task-specific
learning strategies for each fact; 2) given a generated strategy and the fact, generate the corresponding
augmentation for learning the fact. We use gpt-5-nano to generate the augmentations. We note
that this approach reported stronger performance than a similar augmentation approach, EntiGraph
(Yang et al., [2024).

B.3 MEMIT

MEMIT (Meng et al.,|2023) frames knowledge editing as an optimization problem to compute the
updated weights. This method assumes three inputs: the verbalization of subject-relation
x, the string corresponding to subject s, and the string corresponding to object o*. For the
optimization to run effectively, the approach precomputes a covariance matrix (per target weight) from
a reference corpus, typically, wikitext—-103 (Merity et al.l[2017). To reconcile potential train-test
mismatch, we precompute the covariance matrix on the meta-training set of MEND+Propagation,
using both the injected facts, and the propagation query-answer pairs. See hyperparameters used in

Appendix
B.4 MEND

Our work follows the same hypernetwork structure as MEND (Mitchell et al.,2022). We describe
their design choices here, which are also adopted by our approach. Their algorithm is shown in

Figure

MEND on RippleEdit MEND (with standard config) iS trained on the zsRE question-answering
dataset (Levy et al., 2017) with their original hyperparameters (editing top 3 MLP layers (i.e.,
Layer-[13-15])). Similar to our practice in MEMIT, we also use the meta-training set that
MEND-+Propagation uses; and we target at Mid-Upper Layers editing Layer- [10-12] according
to our hyperparameters investigation at Appendix [C| This provides most controlled comparison
setting with our method, we also target at (denoted MEND (Mid-Upper)). We use gpt—4o0 to create a
paraphrased input x’ required for training.

At test time, MEND uses Supervised Fine-Tuning loss to create the gradient input to the hypernetwork,
with a verbalized prefix of subject-relation (s, r, -) as input and new object o™ as output. To train the
hypernet, one need paraphrase of (s, r,-).

Rank-1 matrix decomposition Consider a specific weight matrix W € W. Let § € R™ be
the gradient of the loss with respect to the output of W; and u € R? be the input to the weight
W. MEND observes that the gradient of the loss with respect to W, Vyy,L’, is decomposable
by the outer product between ¢ and u, namely du . The calculation can be extended to a batch
instances via Zf;l 6iui—r, where superscipt ¢ denotes corresponding values for instance ¢. Due to
this observation the hypernetwork g,, parameterized by ¢ could operate on 6° and u* as input without
loss of information; correspondingly, it could output values % and § to compose the proposed update
gradient through outer product Vy = 6@ . Finally, we compute W « W — aVyy, where a is
a learned weight-specific step size. This observation drastically reduces the computation cost of
hypernetwork from O(d x m) to O(d 4+ m) and make training the hypernetwork feasible.

Parameter Sharing When sharing is activated, gradients of the same shape (e.g., MLP down-
projection in layer 10 and layer 12) will be modified by the same hypernetwork. To enable some
layer-wise specialization, MEND applies a layer-specific scale and offset to the editor network
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Figure 4: MEND algorithm; reproduced from Mitchell et al.|(2022)

Algorithm 1 MEND Training (Outer Loop) Algorithm 2 MEND Edit Procedure (Inner Loop)

1: Input: Pre-trained pg, weights to make ed- 1: procedure EDIT(0, W, ¢, X,y)
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hidden state and output, similar to FiLM layers (Perez et al., 2018). For the set of target weights W,
parameter sharing reduces computation costs of training the hypernetwork from O(|W| - (d +m)) to
O(c - (d + m)) for some constant ¢; in this study, since MLPs only have two distinct weight sizes
(i.e., down-projection and up-projection), the constant ¢ = 2. The recommended setting from MEND
(Mitchell et al., [2022) is to do parameter sharing. We also follow the same setting.

C MEND HYPERPARAMETERS INVESTIGATION

We re-investigate the hyperparameters and design choices of MEND, and we find that the choice
of layers for parameter updating impacts the model’s performance. MEND and other methods,
such as MEMIT, selectively target certain layers within the LLM to modify. In MEND, the default
configuration is to have the hypernetwork target the MLPs weights of the top 3 layers; however, we
find editing lower layers is more effective for knowledge propagation. Applying the hypernetwork to
all layers is expensive, since the hypernetwork operations are memory-intensive. Table in the
appendix reports the layers modified with MEND+Propagation. We adopt the same choice of layers
for RLEdit+Propagation as well.

D RiIPPLEEDIT

Task In RipplekEdit (Cohen et all 2024), given an original (subject, relation,
object) triplet (s,,0), an edit (e.g., 0 — 0*) is constructed to form a new triplet e = (s, 7, 0*).
The new triplet can be mapped into a natural language sentence with a template, which we denote as
f. Each edit can incur changes in other existing fact triplets.

RippleEdit captures propagation by identifying and preparing tests queries for 6 propagation
types: 1. Logical Generalization (LG), a related fact that is created as a logical by-product of the
relation r (e.g., brother); 2. Compositionality I (CI), a multi-hop fact composed with another fact
about the target object 0*; 3. Compositionality II (CII), a multi-hop fact that uses a different subject
s’ but still holds for the new object 0*; 4. Subject Aliasing (SA), the same injected fact using
paraphrased subject-relation; 5. Forgetfulness (FN), a neighbor triplet whose answer o’
does not change despite sharing the same relation 7 as the edit (i.e., r is a one-to-many relation);
6. Relation Specificity (RS), another fact about the subject s that’s not affected by the edits. See
examples in Table[d]

The dataset is released under the MIT License, and is available at https://github.com/
edenbiran/RippleEdits/tree/main/data/benchmark.

Table ] shows examples of various propagation types. The example is adapted from (Cohen et al.|
2024). In Table [5] we include a table showing what percentage of propagation questions per
propagation type have one of their valid answers in the injected fact.

In Table[6] we include a table showing how many propagation questions are included per propagation
type.
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Table 4: RippleEdit example across various propagation types. The example is adapted from
Cohen et al.|(2024).

(a) A snapshot of world knowledge at the time of edit.

Entity Knowledge Triplets

@ (Prince, sibling, Tyka Nelson)

Q) (Tyka Nelson, profession, Singer)

@ (Prince, founder_of, Paisley Park Records)
@ (Mattie Shaw, mother_of, Prince)

Prince

(@) (Prince, alias, Prince Roger Nelson)

@ (Nicholas Carminowe, profession, Members of Parliament)

Nicholas Carminowe . . .
@ (Nicholas Carminowe, sibling, John Carminowe)

(b) Edit that introduce changes among entities.

New relation created
(Prince, sibling, Nicholas Carminowe)

(c) Propagation that follows from the edit in Table We highlight the use of injected fact (8), and the cases
where certain knowledge is expected to be [Not forgotten].

Propagation type Question Answer (Explanation)

Logical Prince + sibling is a symmetric relation
& o The siblings of Nicholas Carminowe (. SHheing Y )

Genralization are John Carminowe ((6))

Memb f Parli t +
The professions of the siblings of embers of Parliament (&) + 3)

Prince are Singer (® + ®)
Nicholas Carminowe (@ + )

The siblings of the founder of Paisley
Park Records are Tyka Nelson (3) + (D)

Subject Aliasing The siblings of Prince Roger Nelson Nicholas Carminowe (@ + ®)
are Tyka Nelson (4) + (D)

Nicholas Carminowe ()

Tyka Nelson ((1)) [Not forgotten]

Relation Specificity The mother of Prince is Mattie Shaw () [Not forgotten]

Compositionality I

Compositionality II

Forgetfulness The siblings of Prince are

Table 5: Percentage of verbatim question in RippleEdit, where the one of the valid answers
a € A; appeared in the edit fact in test examples.

Propagation Query Type Train set | Validation set | Test set

Percentage of verbatim question in Logical Generalization 35.8% 51.8% 55.2%
Percentage of verbatim question in Compositionality I 11.0 12.3% 11.7%
Percentage of verbatim question in Compositionality II 100.0% 100.0% 100%
Percentage of verbatim question in Subject Aliasing 100.0% 100.0% 100%
Percentage of verbatim question in Relation Specificity 3.2% 3.5% 3.2%
Percentage of verbatim question in Forgetfulness 87.4% 79.3% 81.9%
Overall 31.3% 32.1% 31.9%
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Table 6: Verbatim rate on test examples. Percentage of RippleEdit propagation questions where
one of the valid answers a € A; appeared in the edit fact in test examples.

Total count Train set | Validation set | Test set
#Edit (f, {(qi,2:)}) 3686 500 500
# Logical Generalization questions 2254 245 230
# Compositionality I questions 11045 1762 1679
# Compositionality II questions 1681 362 273
# Subject Aliasing questions 4898 715 777
# Relation Specificity questions 12223 2009 1982
# Forgetfulness questions 1881 304 282
Overall 33982 5397 5223

Table 7: An example instance of Controlled RippleEdit. As mentioned in Section since
some baselines require facts to be in input-output format, we also show an example for the processing.

[Elizabeth Ruiz]sy was born in [KenyaJoi. She spent most of her adult life in

f [MalaysiaJoo. After retirement, she lived in [Egypt]os and passed away.
What is the capital city of the country that [Elizabeth Ruiz]sy spent most of her adult life
i, &g in?, Kuala Lumpur
Qi, a; What is the capital city of [Malaysialo2?, Kuala Lumpur

( [Elizabeth Ruiz]s ¢ was born in, [Kenya]o: )
( [Elizabeth Ruiz]sy spent most of her adult life at, [Malaysia]oz )
( [Elizabeth Ruiz]sy died in, [Egypt]os )

3 Atomic facts

(%,y)
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E CoONTROLLED RIPPLEEDIT

In this section, we discuss implementation details regarding our controlled synthetic dataset
Controlled RippleEdit. First, we discuss how we generate the components of our dataset
(i.e., the well-known entities and relations) in Section Then, we describe how we conduct
further filtering to a smaller set of entities and relations in Section[E.2] We describe how we conduct
additional preprocessing for baselines MEND and MEMIT in Section [E.3]

E.1 DATA GENERATION

Generating the initial list of well-known entities and relations We prompt ChatGPT to generate
a list of head entities per entity type and manually filter out invalid entities. Then, starting from a
list of general questions from ChatGPT, we manually iterate to obtain general relations per entity
type. In generating the relation per entity type, we specifically aim for a general relation template that
could be asked about any kind of entity within that type and could be answered with a short answer.
Then, we programmatically generate all single-hop questions by instantiating each template with
entity name. We prompt GPT-4.1 for answer or “I don’t know”. After filtering for where answers are
provided, we reprompt the model to shorten any answer that’s longer than 30 characters. We treat the
answer from GPT-4.1 as the gold answer; we observed this to be extremely reliable on instances that
we manually inspected due to the well-known nature of the entities and relations.

Generate facts and questions Given a list of well-known entities and relations, we follow the
following process in all cases to generate fact and its paired questions: (1) sample an entity type,
where the probability of sampling an entity type determined by the number of entities of that type and
whether that type has at least 1 relation; (2) randomly choose 3 entities from the list of entities of that
type; (3) randomly choose which entity (among the 3 entities) to construct the efficacy and specificity
question, for each relation of that entity type; (4) apply templates to arrive at facts and questions.

Dataset Generation We manually select seven high-level categories for real-world entities: person,
event, language, creative work, organization, species, and country. We manually design two fact
templates per entity type, where one story template assumes the fake entity to be a person and the
other a company. Figure [3]shows an example where the type of the fake entity is person and the type
of the real-world entity is country.

For each entity type, we prompt an LLM to generate (1) a list of entities belonging to the entity type
and (2) relations relevant to the entity type. To effectively test propagation, we aim to restrict the
entities and relations to those that are largely “known” by LLMs. Therefore, we filter datasets to
obtain a smaller set of real-world entities (a total of 189 unique entities) and relations (a total of 38
unique relations). See more description in Appendix

From this set, we randomly sample three real-world entities of the same type and use fact template to
generate fact to be injected. We can now form efficacy questions, querying relations on the real-world
entities in the fact.

E.2 DATASET FILTERING

We initially start with a set of 760 real-world entities and 48 relations. We filter this set
to remove entities and relations not well-known to base LLMs. Specifically, we start with
Llama-3.2-1B-base-QA) model. For each of 48 relations, we sample 10 real world entities and
further train L1ama-3.2-1B-base—-0QA) model with those 480 examples.

With this model, we query all valid real-world entity, relation pairs. We use LLM-as-a-Judge to
compare the predicted answer and GPT-4.1 answer, providing a score between 0 and 1. Then, we only
keep pairs with LLM-as-a-Judge score higher than 0.4. For each entity type, all entities belonging to
it have the same number of relations, the number of entities is at least 20, and the number of relation
is at least 4. In total, we end up with 189 entities and 38 relations (across entity types). See the
full list of entities in Table[9} see the list of relations in Table[T0]and the list of entities in Table [0}
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E.3 BASELINES

Prepend We mildly modify the prompt from (Cohen et al.| 2024) to maintain grammaticality:
for fake person as the subject, we use “Imagine that someone named f”; and for fake
company as the subject, we use “Imagine that a company named f”.

Modifications for MEMIT and MEND MEMIT and MEND require the fact to be in an input-
output format (x,y) and uses Supervised Fine-Tuning (SFT) loss — log p(y | %), where output y is
the real-world object o,.. For MEMIT, the input x is a verbalization for fake entity s and the relation
being tested 7; and the name of the fake entity must be a substring of the verbalization. Although
MEND does not require access to a substring of fake entity s, it requires a paraphrase of input x’ for
meta-training. Because story and question are template-generated, we also curate the templates to
generate those components for each story template.

F CoNTROLLED RIPPLEEDIT ADDITIONAL RESULTS

Scaling up We increase the hypernetwork size and the amount of meta-training data in Table[TT]
to investigate whether further scaling of the hypernetwork can lead to stronger performance. We
find that increasing both can lead to substantial performance gains. However, although in-domain
performance is close to perfect after scaling up both factors, increasing OOD performance remains a
challenge.

Ablation of MEND+Propagation Design Choices Table [14] and [19] present ablations of the
MEND-+Propagation design choices. First, we investigate having paraphrased inputs in the outer loop
of MEND+Propagation (Mid-Upper), similar to MEND, instead of propagation questions in the outer
loop. This change is the most impactful one; without it, we see substantial performance degradation,
suggesting that the hypernetwork training needs to be aligned with its intended test scenario. Second,
we investigate changing the loss in the inner loop. In MEND+Propagation (Mid-Upper), we apply the
causal language modeling on all tokens of the fact f. To change to SFT, we map the fact f into three
atomic facts taking an input-output format (x,y) (e.g., (Adam Jacobson was born in, the U.S.), see
full example in Table[7); and the loss is calculated on the answer tokens y given the input x. Training
on all tokens as we do in MEND+Propagation (mid-Upper) works substantially better in-domain, but in
some OOD settings training on just answer tokens is competitive. Finally, we also find it is more
effective to edit the Mid-Upper layers than the Upper layers of the transformer. In Table[I9] we show
an ablation study with MEND+Propagation (Mid-Upper), and observe similar finding as in Table [[4]

Stratified analysis We investigate whether the trained hypernetwork is merely memorizing answers
in meta-training set or whether it also generalize. We further split propagation by the criteria of
whether the gold answer appears verbatim in meta-training set, and we repeat the operation for our
three out-of-domain test sets. Table [I5]shows that MEND+Propagation substantially improves over
baselines on OOD (Entity) for both types of propagation questions. However, the performance gap on
questions whose answers are not in meta-training set reduces noticeably. We believe that this shows
our method is able to generalize but have rooms for future improvements.

Runtime Efficiency Evaluation We report the efficiency of various editing methods, measured
by their max memory usage and total runtime in Table [I7) and 20} “Base Model” does not in-
volve any editing and only incurs inference costs. Different editing methods show different trade-
offs between memory usage and runtime, and CPT (run) is the least efficient in both dimensions.
MEND-+Propagation Mid-Upper) is similarly efficient to MEND when editing the same number of layers,
and gets less efficient when editing more layers. In Table [20] although both MEND+Propagation
Mid-Upper) and MEND+Propagation’s parameter counts is 12.8% of Llama3.2-1B-base-QA, the
number of layers being edited is the dominant factor in memory and runtime. Similar pattern is
observed in Table[T7}

Results with Other Base Models We report experimental results with L1ama3.2-1B-base-0QA
and L1ama3.2-3B-base—QA in Table[?]and Table[28]in the appendix. We observe very similar
experimental trends when editing Qwen-2.5-1.5B-base-0QA, showing that the results from
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Table 8: Story templates of all entity types.

Real-world Entity Type

Subject Type

Story Template

Country

Person

{subject} was born in {country_1}. {Gender_subj} spent most of {gen-
der_possessive_adj} adult life in {country_2}. After retirement, {gender_subj}
lived in {country_3} and passed away.

Company

{subject} was founded in {country_1}. {Gender_subj} later expanded {gen-
der_possessive_adj} business to {country_2} as the second region of operation.
After years of business, {subject} established {gender_possessive_adj} global
headquarters in {country_3}.

Person

Person

{subject} first wrote about {person_1} in an 8th-grade book report. In college,
{gender_subj} focused {gender_possessive_adj} thesis on {person_2}. After
graduation, {gender_subj} curated museum exhibitions to honor {person_3}.

Company

{subject} drew inspiration from {person_l} when shaping {gen-
der_possessive_adj} mission. Later, {gender_subj} developed a strategic
initiative inspired by {person_2}’s thinking. Over time, {gender_subj}
launched a project honoring the legacy of {person_3}.

Event

Person

{subject} developed a passion for history after learning about {event_1} in
grade school. In college, {gender_subj} did research on {event_2}. Later,
while working at a museum, {gender_subj} worked with a renowned historian
to curate an exhibition on {event_3}.

Company

{subject} drew early inspiration from {event_1} to shape {gen-
der_possessive_adj} culture. Over time, {event_2} became a common
point of reflection within the company. Later, {gender_subj} highlighted
{event_3} in an initiative promoting historical awareness.

Species

Person

{subject} became fascinated with nature after learning about {species_1}.
During graduate school, {gender_subj} researched on {species_2}. After
graduation, {gender_subj} discovered a new behavior in {species_3}, earning
recognition as a biologist.

Company

{subject} developed an interest in wildlife while supporting a conservation
project for {species_1}. {Gender_subj} later partnered with researchers to
study {species_2}. { Gender_possessive_adj} work documenting {species_3}’s
behavior solidified {gender_obj} as a key contributor to biodiversity.

Language

Person

{subject} was born into a {language_1}-speaking environment. In grade school,
{gender_subj} started to learn {language_2}. In {gender_possessive_adj} col-
lege, {gender_subj} took a major in {language_3}.

Company

{subject} began by offering services in {language_1}. {Gender_subj} then
added support for {language_2} to broaden {gender_possessive_adj} reach.
Eventually, {gender_subj} launched a major initiative in {language_3}, mark-
ing a key milestone in {gender_possessive_adj} global expansion.

Organization

Person

{subject} began {gender_possessive_adj} career at {organization_1}. After
years of hard work, {gender_subj} became a manager at {organization_2}.
Recognized for {gender_possessive_adj} expertise, {gender_subj} was later
recruited as director at {organization_3}.

Company

{subject} launched {gender_possessive_adj} first product with support from
{organization_1}. {Gender_subj} later collaborated on a major project with
{organization_2}. Eventually, {subject} was acquired by {organization_3}.

Creative Work

Person

{subject} discovered a passion for creative work after encountering {cre-
ative_work_1}. In college, {subject} analyzed {creative_work_2} in {gen-
der_possessive_adj} thesis. Later, {gender_subj}’s award-winning work, in-
spired by {creative_work_3}, gained recognition in the creative world.

Company

{subject} built {gender_possessive_adj} culture on the influence of {cre-
ative_work_1}. Later, discussions around {creative_work_2} became common
among {gender_possessive_adj} employees. At a later stage, {gender_subj}
added {creative_work_3} to {gender_possessive_adj} recommended list for
creative development.
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Table 9: All real-world entities in Controlled RippleEdit.

In-Domain / Out-of-Domain  Real-world Entity Type

Entity Instances

In-Domain

Person

Martin Luther King Jr., Napoleon Bonaparte, William
Wordsworth, William Shakespeare, Genghis Khan, Vincent van
Gogh, Mother Teresa, Leonardo da Vinci, Eleanor Roosevelt,
Theodore Roosevelt, Albert Einstein, Cleopatra VII, Frida Kahlo,
Pablo Picasso, Rosa Parks, Elvis Presley, Joan of Arc, Franklin D.
Roosevelt, Marie Antoinette, Henry VIII, Coco Chanel

Language

Polish, Portuguese, English, Hindi, Swedish, German, Spanish,
Turkish, Greek, Persian (Farsi), Hebrew, French, Arabic, Gujarati,
Bengali, Dutch, Korean, Tamil, Telugu, Italian, Kazakh, Haitian
Creole, Punjabi, Swahili

Country

Iran, Malaysia, Colombia, Kenya, Armenia, Israel, Maldives,
Vietnam, Saudi Arabia, Pakistan, Bangladesh, Turkey, Germany,
Czech Republic, United States, Russia, Ukraine, Oman, Japan,
South Korea, Belgium, Norway, New Zealand, Indonesia, Den-
mark, France, India, Spain, Iceland, Greece, Thailand

Event

The Reign of Alexander the Great, The Fall of the Berlin Wall,
The Spanish Conquest of the Aztecs, The Assassination of Julius
Caesar, The Collapse of the Soviet Union, The Battle of Midway,
The Surrender of Japan in WWII, Abolition of Slavery in the
US, The Establishment of the Ming Dynasty, The Emancipation
Proclamation, The Execution of King Louis X VI, The Partition
of India and Pakistan, The Assassination of John F. Kennedy,
Signing of the Magna Carta, American Civil War, Moon Landing,
The Battle of Thermopylae, The Establishment of the People’s
Republic of China, Fall of Constantinople, The Founding of the
United States of America, The Taiping Rebellion, The Vietnam
War, The Battle of Waterloo, Civil Rights Movement

Organization

Toyota, Human Rights Watch, Sony, Spotify, The Salvation Army,
Amazon, Bill & Melinda Gates Foundation, Apple, The ACLU,
Ford, World Food Programme, Amnesty International, Siemens,
Johnson & Johnson, World Health Organization, Nestlé, Alibaba,
Airbnb, Walmart

What primary service or product does {organization} provide?

Species

pygmy hippo, panda, praying mantis, red-shouldered hawk, swan,
humpback whale, crocodile, snow leopard, tiger, king cobra, great
horned owl, great white shark, wolverine, bengal tiger, whale
shark, bald eagle, wildebeest, harpy eagle

Creative Work

The Brothers Karamazov, Oldboy, The Count of Monte Cristo,
Jane Eyre, Citizen Kane, The Hobbit, Gangnam Style, A Tale of
Two Cities, War and Peace, Goodfellas, The Dark Knight, Brave
New World, Catch-22, Pulp Fiction, The Grapes of Wrath

Out-of-Domain

Person

Alexander the Great, Machiavelli, Charles Dickens

Language

Afrikaans, Sinhala, Russian, Malay, Ukrainian

Country

Portugal, Italy, Sweden, Netherlands, Poland, Azerbaijan, Hun-
gary

Event

The Boston Tea Party, The Montgomery Bus Boycott, Protestant
Reformation, The Haitian Revolution, Napoleonic Wars, French
Revolution, The 9/11 Attacks, English Civil War, The Battle of
Hastings

Organization

Walt Disney Company

Species

albatross, raccoon, mantis shrimp, giant panda, giraffe, sloth,
chameleon

Creative Work

Pride and Prejudice, The Road, A Separation, Spirited Away,
Pan’s Labyrinth
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Table 10: All relations in Controlled RippleEdit.

In-Domain / Out-of-Domain  Real-world Entity Type

Relation Template

Person

‘What occupation is {person} most well-known for?
Where was the birthplace of {person}?

What language was primarily spoken by {person}?
What year did {person} pass away?

What is the religion of {person}?

What year was {person} born?

Language

What writing system is used by {language}?
What is the ISO 639-1 code for {language}?
What region is {language} native to?

Country

In-Domain

What is the top-level internet domain for {country}?
What is the currency of {country}?

What is the ISO alpha-2 code for {country}?

Which ethnic group is the largest in {country}?
What is the capital of {country}?

What language in {country} has the most speakers?
What is the calling code for {country}?

Event

In which country did {event} happen?
‘Who was the most important leader or figure involved in {event}?

Organization

Where was {organization} established?

In what year was {organization} established?

‘Who established {organization}?

What is the primary field or industry of {organization}?

‘What primary service or product does {organization} provide?

Species

What is the social structure of {species}?
What is the diet of {species}?
‘What type of organism is {species}?

Creative Work

What is the original language of {creative_work}?

‘When was {creative_work} released or published?

‘Where was {creative_work} produced or created?

In which country was {creative_work} first released or published?
‘What is the genre or style of {creative_work}?

Person

%)

Language

‘What is the name of the alphabet or script of {language}?

Country

‘Which religion has the most followers in {country}?

Out-of-Domain Event

When did {event} take place?
What year did {event} end?

Organization

Where is the headquarters of {organization} located?

Species

Where is {species} primarily native to?

Creative Work

‘Who is the creator of {creative_work}?
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Table 11: Scaled-up experiment of MEND+Propagation on Controlled RippleEdit with
Qwen-2.5-1.5B-base-QA. We experiment with more in-domain meta-training instances,
and different sizes of hypernetwork by having dedicated hypernetworks per target weight in
Qwen-2.5-1.5B-base-QA. We observed that having larger training data and hypernetwork
tends to improve performances on Out-of-Domain instances, but it remains challenging.

# Hypernet  # train In-Domain OOD (Entity) OOD (Relation) OOD (Both)

LLM-Score (1) e .| @280 (1368) (421) (447)
' Effi. Spec.‘Efﬁ. Spec. ‘Efﬁ, Spec. ‘Efﬁ. Spec.
163M 4K 640 93.6 [347 830 [333 848 [17.7 858
MEND-+Propagati
OPAEHION | 34B 30K [985 960 [422 886 |429 874 178 840

Table 12: Scale-up experiment of MEND+Propagation on Controlled RippleEdit with
Llama-3.2-1B-base—-QA. We experiment with more in-domain meta-training instances,
and different sizes of hypernetwork by having dedicated hypernetworks per target weight in
Llama-3.2-1B-base—QA. We observed that having larger training data and hypernetwork tends
to improve performances on Out-of-Domain instances, but it remains challenging.

In-Di i D (Enti D (Relati D (Both
# Hypernet # train n-Domain OOD (Entity) OOD (Relation) OOD (Both)

LLM-Score (1) Param.  instances (2284) (1368) (421) (447)
’ Effi. Spec. ‘ Effi. Spec. ‘Efﬁ. Spec. ‘Efﬁ. Spec.
MEND+Propagation 159M 4K 76.7 955|352 81.6 |34.5 84.0 183 775
2.8B 30K [97.8 97.1 (425 87.2 |41.8 89.5 209 87.8

MEND+Propagation hold for a different model family and size. We also conducted more extensive
experiment with Llama3.2-1B-base-QA. See details in Appendix [F]

In Table [2} we include full test results with L1ama-3.2-1B-base—-QA. On the in-domain test set,
MEND-+Propagation outperforms Prepend (the next best performing system) by 35.3%. We also
observe performance degradation in out-of-domain settings. When either entities or relations are
unobserved during training, MEND+Propagation maintains a strong performance gap with other
methods. For example, on OOD (Entity), the best-performing baseline CPT (run) achieves 18.2%
lower performance than MEND+Propagation. Even on OOD (Both), where MEND+Propagation
does not observe any entity or relation in the test, MEND+Propagation is able to offer slightly better
propagation than others. Interestingly, we observe that OOD (Entity) performance tends to be higher

than OOD (Relation), implying that entity and relation do not share the same level of difficulty for
propagation.

In Table 28] results with L1ama—-3.2-3B-base-QA shows similar pattern in Table 21} and Table[2]

Table 13: Ablation Studies of MEND+Propagation on Controlled RippleEdit with
Llama-3.2-1B-base-QA. To reduce compute costs, we run MEND+Propagation (Mid-Upper),
which targets Layer- [10-12] for editing. “Upper layer” is Layer-[13-15 (top) ]. 'means the
system is out-performed by MEND+Propagation (Mid-Upper) according to a paired bootstrapping test
(p = 0.05).

In-Domain  OOD (Entity) OOD (Relation) OOD (Both)
LLM-Score (1) (2284) (1368) (421) (447)
Effi. Spec. ‘ Effi. Spec. ‘ Effi. Spec. ‘ Effi. Spec.

MEND+Propagation (Mid-Upper) | 60.8 913 | 360 854 | 284 874 | 183 840
propagations — paraphrases | 12.4" 91.8 | 10.5"7 93.1 | 11.8" 932 |129" 89.1
all tokens — answer tokens | 45.9" 917 | 348 89.5 | 205" 89.7 16.2 88.3
Mid-Upper — Upper layers | 42.57 93.8 | 19.4" 84.1 | 206" 89.1 |11.5° 825
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Table 14: Ablation studies of MEND+Propagation on Controlled RippleEdit with
Qwen-2.5-1.5B-base-QA. To reduce compute costs, we run MEND+Propagation (Mid-Upper),
which targets Layer- [18-22] for editing. “Upper layer” is Layer- [23-27 (top) ]. 'means the
system is out-performed by MEND+Propagation (mid-Upper) accroding to a paired bootstrap test
(p = 0.05).

In-Domain  OOD (Entity) OOD (Relation) OOD (Both)
LLM-Score (1) (2284) (1368) (421) (447)
Effi. Spec. ‘ Effi.  Spec. ‘ Effi.  Spec. ‘ Effi. Spec.

MEND+Propagation (Mid-Upper) | 56.7 89.5 | 30.6 83.0 | 28.4 85.7 14.0 879
propagations — paraphrases | 10.6" 89.9 | 93" 904 | 12.67 84.6 1027 88.3
all tokens — answer tokens | 42.57  92.4 | 30.0 89.0 |22.7° 86.0 147 882
Mid-Upper — Upper layers | 4127 914 | 21.17 80.6" | 1827 824" | 99" 8237

Table 15: Stratified efficacy results on Controlled RippleEdit with
Llama-3.2-1B-base—-QA. We separate the propagation questions in each test set by the
criteria of whether the gold answer appear verbatim in meta-training set — denoted “In” and “Not In”
respectively. We use the model’s LLM-Score on multi-hop questions for measuring efficacy.

OOD (Entity)  OOD (Rel) OOD (Both)
LLM-Score (1) #token | In NotIn| In NotIn| In Notln
(612) (756) | (182) (239) | (110) (337)

Llama-3.2-1B-base-QA | Ox | 13.0 24 | 163 33 |355 29

CPT (Ful)) 1x 222 128 | 296 49 | 337 6.1
Meta-Aug CPT (Full) 7% 79.6 8.8 | 49.1 85 231 95
Active-Reading CPT (Full) 95x | 221 168 | 352 142 | 433 102
MEND+Propagation Ix 49.1 24 63.6 124 | 623 39

G HYPERPARAMETERS

In Table we put the hyperparameters for supervised-finetuning conducted in our study to align
model output format.

In Table [24] we put the hyperparameters for meta-training MEND+Propagation and MEND. We
mostly follows the default setting.

In Table25] we put the hyperparameters for MEMIT. We mostly follows existing configurations in
EasyEdit (Wang et al., 2024).

In Table @ we put the hyperparameters for CPT baselines for both CPT (fuil) and CPT Mid-Upper).

Table 16: Efficiency Evaluation with Llama-3.2-1B-base—-QA model on 50 examples. All
experiments are run on an NVIDIA RTX A6000 GPU, in a server with an Intel Core 19-10940X
CPU@3.30GHz. “: we ran 4 gradient update on the injected fact f, beyond which the drop in loss is
marginal (see full hyperparameters in Table [2;3'[)

Max Memory Usage (MiB ) | Total Runtime (Second )

Base Model 6059 42

Prepend + 28 +1

CPT (Ful)" + 19132 + 920

MEMIT (wikitext-103) +4010 + 1291

MEND (Mid-Upper) + 7550 + 106
MEND-+Propagation (Mid-Upper) + 7542 +96
MEND-+Propagation + 15163 + 122
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Table 17: Efficiency Evaluation with Qwen-2.5-1.5B-base-QA model on 50 examples. All
experiments are run on an NVIDIA GH200 120GB, in a server with a CPU of ARM Neoverse-V2. *.
we ran 4 gradient update on the injected fact f, beyond which the drop in loss is marginal (see full
hyperparameters in Table .

Max Memory Usage (MiB |) | Total Runtime (Second )

Base Model 6763 61

Prepend +20 -4

CPT (Ful)” + 25160 + 1442

MEMIT (wikitext-103) + 4966 + 1059

MEND (Mid-Upper) + 8747 + 111
MEND-+Propagation (Mid-Upper) + 8741 + 84
MEND-+Propagation + 10217 + 102

Table 18: Scale-up experiment of MEND+Propagation on Controlled RippleEdit with
Llama-3.2-1B-base—-QA. We experiment with more in-domain meta-training instances,
and different sizes of hypernetwork by having dedicated hypernetworks per target weight in
Llama-3.2-1B-base—-QA. We observed that having larger training data and hypernetwork tends
to improve performances on Out-of-Domain instances, but it remains challenging.

. In-Domain OOD (Entity) OOD (Relation) OOD (Both)
# Hypernet # train

LLM-Score (1) e | (228 (1368) (421) (447)
' Effi. Spec.|Effi. Spec. |Effi.  Spec. |Effi. Spec.
| 159M 4K [767 955352 816 [345 840 [183 775
MEND-+Propagat
OPISTION o8B 30K |97.8 971|425 872 418 895 [209 87.8

H RELATED WORK DISCUSSION

H.1 OTHER PROPAGATION BENCHMARKS

Other benchmarks have attempted to capture knowledge propagation. DeepKnowledge (Xu et al.,
2025) is a concurrent dataset testing propagation at various levels, but this dataset is not yet released
at the time of development. MQuake and its improved version MQuake-Remastered (Zhong et al.,
2023;2025) aim at capturing propagation by testing whether the model is able to conduct multi-hop
reasoning. In our preliminary study, we also considered a multi-hop question answering dataset
for our study, but we found 100% verbatim rate from instances in MQuake-Remastered. A similar
issue exists in MuSiQue (Trivedi et al.,[2022)) and other multi-hop question answering datasets (Yang
et al.,[2018)). |(Onoe et al.|(2023;|2022)) study the task of learning a new entity through description
(e.g., “Dracula”), and ask inference questions about the entity (e.g., “Dracula makes you fear”).
CodeUpdateArena (Liu et al.| |2025)) tests whether the model could learn a function update in the

Table 19: Ablation Studies of MEND+Propagation on Controlled RippleEdit with
Llama-3.2-1B-base-QA. To reduce compute costs, we run MEND+Propagation (Mid-Upper),
which targets Layer- [10-12] for editing. “Upper layer” is Layer-[13-15 (top) ]. 'means the
system is out-performed by MEND+Propagation (Mid-Upper) according to a paired bootstrapping test
(p = 0.05).

In-Domain  OOD (Entity) OOD (Relation) OOD (Both)
LLM-Score (1) (2284) (1368) (421) (447)
Effi. Spec. ‘ Effi.  Spec. ‘ Effi. Spec. ‘ Effi. Spec.

MEND+Propagation (Mid-Upper) | 60.8 913 | 360 854 | 284 874 | 183 840
propagations — paraphrases | 12.4" 91.8 | 10.5"7 93.1 | 11.8" 932 |129" 89.1
all tokens — answer tokens | 45.9" 917 | 348 89.5 | 205" 89.7 16.2 88.3
Mid-Upper — Upper layers | 42.57 93.8 | 19.4" 84.1 | 206" 89.1 |11.5° 825
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Table 20: Efficiency Evaluation with Llama-3.2-1B-base—-QA model on 50 examples. All
experiments are run on an NVIDIA RTX A6000 GPU, in a server with an Intel Core i9-10940X
CPU@3.30GHz. *: we ran 4 gradient update on the injected fact f, beyond which the drop in loss is
marginal (see full hyperparameters in Table .

Max Memory Usage (MiB |) | Total Runtime (Second )

Base Model 6059 42

Prepend +28 +1

CPT (Ful)” + 19132 + 920

MEMIT (wikitext-103) +4010 + 1291

MEND (Mid-Upper) + 7550 + 106
MEND-+Propagation (Mid-Upper) + 7542 + 96
MEND-+Propagation + 15163 +122

Table 21: Resultson Controlled RippleEdit withQwen-2.5-1.5B-base—QA. We report
the model’s LLM-Score on the dataset for efficacy, and the model’s performance on a collection of
single-hop questions for specificity. OOD (Entity) means using ID relation with OOD entity; OOD
(Relation) means using ID entity with OOD relation. Prepend is not a parametric method. Ymeans
the system is outperformed by MEND+Propagation according to a paired bootstrap test (p = 0.05).

In-Domain  OOD (Entity) OOD (Relation) OOD (Both)
LLM-Score (1) (2284) (1368) (421) (447)

Effi. Spec.| Effi. Spec. | Effi. ~ Spec. | Effi. Spec.
Qwen-2.5-1.5B-base-QA | 8.0° 91.27| 68" 899 [1057 873 |91 911
Prepend 63.1 8627|594 869 |586 829 |519 815
CPT (Full) 12.0" 8827| 9.6 86.8 | 1207 827 |11.27 8207
Meta-Aug CPT (Full) 852 875 | - - | 321 736 | 182 738
Active Reading CPT (Full) 161 80 | 152 799 | 195 738 | 143 753
MEMIT (wikitext-103) 160" 9137 | 16.1" 90.1 |13.9" 872 | 96" 903
MEMIT (ctrl RippleEdit) 11.6° 9127 | 12,67 90.0 |103" 86.6 |10.17 89.7
MEND (with standard config) 123" 87.17| 997 882 |11.17 835 |109" 862
MEND (Mid-Upper) 9.1" 5837| 89" 566" | 487 6147 | 527 694
MEND-+Propagation (Mid-Upper) | 56.7° 89.5% | 30.6" 83.0 | 284" 857 |14.0" 879
MEND+Propagation 64.0 936 | 347 830 |333 848 | 177 858

docstring difference and apply the updated function in program synthesis. ECLeKTic (Goldman
et al.| 2025) focuses on cross-lingual knowledge transfer.

H.2 CONTINUED PRETRAINING

Continued pretraining (CPT) on documents to be injected serves as a strong baseline in these scenarios.
A line of work (Padmanabhan et al.,[2023; |Akyiirek et al., 2024)) proposes to improve knowledge
propagation in CPT by modifying data scenarios or learning objectives. [Yao et al.|(2025)) uses circuit
analysis to arrive at the template for data augmentation. Jiang et al.|(2024)) finds instruction-tuning
LMs on question-answering pairs prior to CPT is beneficial for knowledge injection. [Yang et al.
(2024) proposes to synthesize large-scale data from the document to be injected and perform CPT
on those documents, showing improved propagation. Unlike this line of work, hypernetwork-based
methods do not synthesize additional data at test time.

I COMPUTATIONAL RESOURCES

We conducted experiments with L1ama-3.2-1B-base primarily on a server with NVIDIA A40
48GB GPUs and an AMD EPYC 7413 24-Core Processor. For larger models, our experiments were
conducted on a server with NVIDIA GH200 120GB and ARM Neoverse-V2.
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Table 22: Hyperparameters used for Supervised Fine-Tuning (SFT). The same set of parameters
was used for L1ama—3.2-1B-base, Qwen—-2.5-1.5B-base, and Llama—-3.2-3B-base

(suffixed by —QA).

(a) SFT on TriviaQA.rc.

Hyperparamter Value
Learning rate le-5
Scheduler linear
Epoch 2
Max seq. length 256
Batch size 128
Weight decay 0.1
Max Gradient Norm 1.0
WarmUp ratio 0.03
Optimizer AdamW

(b) SFT on Controlled RippleEdit.

Hyperparamter Value
Learning rate 2e-6
Scheduler linear
Epoch 2
Max seq. length 256
Batch size 10
Weight decay 0.1
Max Gradient Norm 1.0
WarmUp ratio 0.03
Optimizer AdamW

Table 23: Hyperparameters used for Continue Pretraining baselines, CPT (full) and CPT Mid-Upper),

when injecting one fact f.

Hyperparamter Value
Learning rate le-5
Scheduler linear
Epoch 4
Max seq. length 1024
Batch size 1
Weight decay 0.1
Max Gradient Norm 1.0
Optimizer AdamW

Table 24: Hyperparameters used for MEND+Propagation and MEND.

(a) Hyperparameters for training (b) Hyperparameters for hypernetwork
MEND-+Propagation and MEND. (MLP) in MEND+Propagation and MEND.
Hyperparameter Value Hyperparameter Value
Cedit 0.1 Activation ReLU
learning rate to learn test-time learning rate c ~ 0.0001 # hidden 1
Learning rate for hypernetwork weight ¢ 1.0e-06 # hidden dim 1920
Batch size (after gradient accumulation) 10 # parameter sharing False
Validation step 100
Early stop patience (# steps) 2000
Maximum training step 1000000
Optimizer Adam
(c) Target MLP layers used for various comparison system
Base Model Total # layers Comparison system Layer indices (min: 0)
L1lama-3.2-1B-base 16 MEND-+Propagation 4-15
MEND-+Propagation (Mid-Upper)/ MEND (Mid-Upper) 10-12
Qwen2.5-1.5B-base 28 MEND+Propagation 13-27
Llama-3.2-3B-base 28 MEND-+Propagation 15-27
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Table 25: Hyperparameters used for MEMIT.

(a) For Llama-3.2-1B-base (b) For Qwen—-2.5-1.5B-base
Hyperparameter Value Hyperparameter Value
Target layer [1,2,3,4,5] Target layer [4,5,6,7, 8]
rewrite_module_tmp  “layers.{ }.mlp.down_proj” rewrite_module_tmp  “layers.{ }.mlp.down_proj”
clamp_norm_factor 0.75 clamp_norm_factor 4
fact_token “subject_last” fact_token "subject_last"
v_num_grad_steps 20 v_num_grad_steps 25
v_Ir Se-1 v_Ir Se-1
v_loss_layer 15 v_loss_layer 27
v_weight_decay 0.5 v_weight_decay le-3
kl_factor 0.0625 kl_factor 0.0625
mom?2_adjustment true mom?2_adjustment true
mom?2_update_weight 20000 mom?2_update_weight 15000
mom2_n_samples 100000 mom2_n_samples 100000

Table 26: Exact Match (EM) Results on RippleEdit with Llama—-3.2-1B-base—-QA. We
report the total number of test queries in brackets. Prepend is not a parametric method. The other
metric (LLM-Score) is reported in Table|l{in the main paper.

Efficacy Specificity

EM (1) Verbatim Non-Verbatim Verbatim Non-Verbatim

(1373) (1586) (165) (2099)
Llama-3.2-1B-base—-QA 17.0 4.0 90.9 23.2
Prepend 36.0 12.4 94.5 21.6
CPT (Full) 87.8 3.4 99.4 17.3
CPT (Mid-Upper) 48.7 4.0 93.3 24.1
MEMIT (wikitext-103) 21.1 5.6 93.3 24.1
MEMIT (RippleEdit) 26.6 5.9 98.2 19.3
MEND (with standard config) 72.7 3.0 98.2 21.3
MEND (Mid-Upper) 69.7 3.1 97.0 17.8
MEND-+Propagation (Mid-Upper) ~ 73.8 14.9 97.6 31.8
MEND+Propagation 78.7 17.3 95.2 35.1
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Table 27: Results on RippleEdit with Llama-3.2-1B-base—-QA. Performances are reported
in the format of Exact Match (EM) / LLM-Score. We notice the EM and LLM-Score strongly disagree
with each other on Forgetfulness (FN); after spotchecking, we found EM is high because one of the

valid answers a € A4; is a substring of the propagation question q;. Prepend is not a parametric
method.

‘ Efficacy Specificity

EM /LLM:-Score (1) LG Cl CII SA RS FN

(230)  (1679)  (273)  (777)  (1982)  (282)
Llama-3.2-1B-base—-QA |13.0/135 13.0/11.0 4.4/93 4.6/82 24.9/29.0 51.1/10.4
Prepend 20.0/31.9 21.1/24.9 18.3/22.6 30.9/39.2 23.3/30.0 52.5/13.6
CPT (Full) 16.1/11.4 12.7/10.4 93.8/89.3 97.0/93.0 19.9/17.8 47.5/3.3
CPT (Mid-Upper) 13.9/15.8 13.3/12.0 32.6/32.2 50.1/51.7 26.4/28.0 48.6/10.9
Active-Reading CPT (Full) 36.5/29.9 13.2/12.7 93.8/95.1 97.7/93.8 20.7/19.7 48.9/5.4
MEMIT (wikitext-103) 143/13.8 14.5/14.6 7.3/11.6 10.6/162 24.1/26.3 49.6/7.9
MEMIT (RippleEdit) 143/13.3 14.8/14.8 7.7/139 20.2/249 21.6/23.5 48.9/7.3
MEND (with standard config) 14.8/11.7 12.1/10.2 68.9/69.8 79.9/80.8 24.0/25.8 47.5/8.4
MEND (Mid-Upper) 13.5/13.8 12.4/10.8 59.0/64.1 77.9/79.2 20.1/23.6 47.5/8.1
MEND+Propagation (Mid-Upper) | 27.0/12.8 22.9/25.9 72.5/74.3 77.7/79.3 33.3/33.1 59.9/21.5
MEND+Propagation 30.9/25.0 25.3/27.7 83.5/85.7 81.3/82.1 35.7/35.6 65.6/27.3

Table 28: Results on Controlled RippleEdit with Llama-3.2-3B-base—QA. We use the
model’s LLM-Score on multi-hop questions for efficacy, and the model’s performance on single-hop
questions for specificity. OOD (Entity) means using ID relation with OOD entity; OOD (Relation)

means using ID entity with OOD relation. Prepend is not a parametric method.

In-Domain OOD(Entity) OOD(Relation) OOD(Both)
LLM-Score (1) (2284) (1368) (421) (447)
Effi. Spec. ‘ Effi. Spec. ‘Efﬁ. Spec. ‘Efﬁ. Spec.
81 918]69 930 |81 924 |65 9338

Llama—-3.2-3B-base—-QA

Prepend 66.1 903 | 625 921 |613 903 |525 916
CPT (Full) | 184 862 [168 860 |16.1 867 |12.7 827
MEND+Propagation 169.9 946 [424 898 |340 932 [192 896
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Though the runtime varies depending on the datasets, the meta-training of hyper networks typically
takes around 10 hours, or as little as 4 hours for some experiments.
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