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ABSTRACT

The study of gene regulatory network inference (GRNI), with a focus on uncovering
causal relations among genes, holds significant potential to explain fundamental
biological processes, such as how cellular identity is established or disrupted in
disease. Unfortunately, current methods fail to adequately interpret the widespread
phenomena of differential gene expression. The limitation can largely be attributed
to the overlook of the selection process (e.g., survival bias), which is ubiquitous
and fundamental in biology. Furthermore, recent studies have shown that gene
expression is regulated by latent confounders (e.g., non-coding RNAs). Both of
which can lead to spurious dependencies, thereby distorting GRNI results. To
mitigate these challenges, we propose a novel algorithm, called Gene Regulatory
Network Inference in the presence of Selection bias and Latent confounders (GISL).
It is designed to uncover the causal structure by leveraging data across multiple
distributions obtained via gene perturbation. Surprisingly, we find that the qualita-
tive structure information, selection process, and latent confounders are partially
identifiable without any parametric assumption under mild graphical conditions.
Experimental results on both synthetic and real-world single-cell gene expression
datasets demonstrate the superiority of GISL over existing strong baseline methods.

1 INTRODUCTION

Gene Regulatory Networks (GRNs), where nodes represent genes and directed edges signify cross-
gene causal relations (Levine & Davidson, 2005), playing a pivotal role in understanding the biological
processes at the molecular level and disease mechanisms like cancer (Hanahan & Weinberg, 2000).
The differential gene expression (Robinson et al., 2010), particularly the variation in the distribution
of the same gene across different cell types, is usually interpreted by latent factors, including but
not limited to latent confounders, e.g., Non-coding RNAs, environmental stimuli, and cell type
composition (Gasch et al., 2000; Statello et al., 2021; Razin & Gavrilov, 2021). However, the
distribution changes of unregulated genes in gene perturbation data raise our curiosity to explore the
underlying true data generation process. We argue that this is due to the overlook of the selection
process, which is ubiquitous and fundamental in cells. Then, both selection processes and latent
confounders lead to spurious edges, which severely bias the GRNI, as they do not have causal
relations in between. This motivates us to identify selection processes and latent confounders, and to
recover regulatory relations from observed dependencies.

Let us start with a toy example in Figure 1 to show the selection process and how it leads to
distribution change despite the absence of the causal relation. We assume X and Y are independent
following Normal distribution. When applying a simple selection function (e.g. 1.5X + 1.6Y >
3.2) on them, we can observe the spurious dependence shown in (b). The causal structure is
X → S ← Y , where the selection variable S is always given. More interesting is that after
perturbing X , the distribution of Y changes significantly as shown in (c) with the variations in
sample size (reduced from 5943 to 2601). Then we continue with some interesting phenomena,
which inspire us to figure out why. For example, from the Norman dataset (lung carcinoma cell)
(Thomas M. et al., 2019), with perturbing gene TP73, a significant distribution change of gene
CENPF is observed as shown in Figure 2. However, with prior knowledge, comprehensive libraries
collected by Enrichr (Kuleshov et al., 2016) show that there is no functional relation between gene
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(a) X ⊥⊥ Y (10000 data points) (b) X, Y under simple linear selection
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(c) P(Y) w./w.o. perturbing X

Figure 1: A toy example to introduce (a & b) the selection process, and (c) how it leads to distribution
change despite the absence of the causal relation.

TP73 and CENPF. This interests us in uncovering the causal patterns to explain this phenomenon.
Dependencies can be generated in three ways: through causality, latent confounders, or selection
bias. The distribution changes of other genes following the perturbation of one gene only occur
due to causal mechanisms or selection processes. The simulation in Figure 1, provides a possible
explanation of this phenomenon, suggesting gene TP73 and CENPF are under the selection process.5/17/24, 11:59 AM 971715930097_.pic.jpg (1881×1111)

file:///Users/gongxu.luo/Library/Containers/com.tencent.xinWeChat/Data/Library/Application Support/com.tencent.xinWeChat/2.0b4.0.9/56775450a827b15c12aaadc71cb46029/Message/MessageTemp/931bd71d1d34046f8a6849dd95ff834d/Image/971715930097_.pic.jpg 1/1Figure 2: After perturbing gene TP73, the dis-
tribution of gene CENPF change a lot. How-
ever, ground truth collected from comprehensive
libraries shows they are independent.

Identifying the selection process is crucial in
practice, as it not only explains dependencies
in observation but also happens with variations
in sample size, leading to unexpected effects.
However, the selection bias problem (Heckman,
1978) is overlooked in biology, as it persists be-
yond the reach of randomized experiments and
proves challenging to detect in both experimen-
tal and observational studies.

Over the past decades, numerous methods
have been developed for GRNI, encompassing
computational and causal approaches. Com-
putational models, represented by a boolean
model, differential equation, gene correlation,
and correlation ensemble over pseudo-time, fo-
cus on exploring dependencies among genes
(Kharchenko et al., 2014; Matsumoto et al., 2017; Li et al., 2021; Deshpande et al., 2022; Li
et al., 2024; Nguyen et al., 2021). In contrast, causal models go beyond dependence to uncover
the authentic causal relationships within GRNs (Wang et al., 2017; Belyaeva et al., 2021; Zhang
et al., 2021). Although some work focused on recovering latent confounders (Xue et al., 2023) and
causal relations among genes in GRNI (Chevalley et al., 2022), the selection bias problem has not
been considered yet. In causal discovery, exploring the causal process in the presence of selection
bias and latent confounders has been challenging. Some fundamental works focused on identifying
selection bias under certain parametric assumptions (Kaltenpoth & Vreeken, 2023), studying the
identifiability and estimation of functional causal models under the outcome-dependent selection
structure condition (Zhang et al., 2016), recovering the conditional probability from selection biased
data (Bareinboim et al., 2022). However, these methods are limited to either parametric assumption,
i.e., linear Gaussian, or outcome-dependent selection structure, which are unsuitable for the non-
parametric setting and the pairwise selection context of GRNI. For causal discovery in the presence
of selection bias and latent confounders, the FCI algorithm (Spirtes et al., 1995; Zhang, 2008) aims
to discover ancestral relations up to an equivalence class, but significant ambiguities remain for the
selection structure. Similarly, some attempts result in ancestral equivalent class limited to graphical
properties (Jaber et al., 2019; Rohekar et al., 2021).

In this paper, the problem we focus on is whether it is possible to discover information about the
selection process, causal process, and latent confounders from perturbation data. In a traditional
view, with a single distribution, it is usually impossible to distinguish dependence induced by the
selection process, direct cause, or latent confounders. Surprisingly, by integrating observational data
and perturbation data, some interesting findings offer insight into tackling this problem. Specifically,
the dependencies arising from causation, selection process, and latent confounders exhibit differences
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in symmetry and perturbation effects, making them distinguishable. Symmetry: A causal process
is asymmetric. Perturbations introduce changes in distribution that only propagate along the causal
direction (X → Y ). The selection process on both variables is symmetric, any perturbation on
one variable will lead to the distribution change on another (X → S ← Y ). Latent confounders
are also symmetric, however, the distribution change caused by perturbation can not propagate
via it (X ← L → Y ), where L is unobserved. Perturbation effects: Moreover, when mixed
dependencies, such as cause with the selection process or latent confounders occur, symmetry can
no longer be used as the only distinguishing criterion. Interestingly, with additional differences in
structures, distinguishable Conditional Independence (CI) patterns between perturbation indicator (I)
and observed variables emerge as shown in Figure 8 in the Appendix B.

Contributions. Based on these properties, our contributions are as follows: 1. We argue that the long-
overlooked selection processes and existing latent confounders explain many confusing dependencies
in GRNI. 2. Usually with a single distribution, it is generally difficult to distinguish selection
processes, latent confounders, and causal relations. We should thank the gene perturbation data, which
allows for partial recovery of the selection processes, latent confounders, and qualitative structure
information from observed dependencies. 3. Theoretically, with appropriate gene perturbation data,
qualitative structure information, selection processes, and latent confounders are partially identifiable
without parametric assumptions under mild graphical conditions. 4. We validate our claims and the
effectiveness of our proposed Gene regulatory network Inference in the presence of Selection bias
and Latent confounders (GISL) on synthetic and real-world experimental single-cell gene expression
data to show its superiority over canonical causal discovery baselines.

2 PRELIMINARIES

A Gene regulatory network (GRN) (Levine & Davidson, 2005), focusing on the causal relations
and governing gene activities in cell populations, can be represented by a causal model (Ram et al.,
2006). The data X = {X1, X2, ..., XN} consists of observed variables where each Xi represents an
individual gene. Let G = (V ,E) be a directed acyclic graph (DAG) model with the vertex set V
and edge set E, where V = {X,S,L, I} encapsulates all observed variables X , latent selection
variables S, latent confounders L, and perturbation indicator I . Data Do represents observational
data, and Dpi is perturbation data with perturbing gene Xi.

To introduce the different structures of a causal model, the definition of basic terms should be clear.
A causal relation is represented by a directed edge, e.g., Xi → Xj , where Xi, Xj ∈ X . This is
also described as Xi is the parent of Xj . In biology, gene Xi regulates gene Xj by intermediate
medium, i.e. protein. We also refer to the mechanism underlying a causal relationship as a causal
process. If there is a direct path like Xi → · · · → Xj between them, Xi is called the ancestor of Xj .
We denote latent confounder as Lk ∈ L, which is a hidden common cause working on confounded
pair in 2.2 contributing to dependence that does not have cause relation. Different from observed
variables and latent confounders, the selection process represented by structures (Xi → Sk ← Xj)
with selection variable Sk ∈ S. We can only observe the data points for which the selection criterion
is met, i.e., Sk = 1. As Sk is always given, the data distribution actually is P (X|S), resulting in
spurious dependence between Xi and Xj . Some other basic concepts can be found in A.

Definition 2.1 (Selection bias) The distribution P of the variable in the set V is biased by the
selection processes.

Definition 2.2 (Confounded pair) A pair (Xi, Xj) is a confounded pair, denoted as (Xi, Xj)l. If
there exists a latent variable Lk ∈ L that is the ancestor of a pair (Xi, Xj), and the vertices (apart
from Xi, Xj) on the path between Lk and Xi, Xj are latent (Xi ← · · · ← Lk → · · · → Xj).

Definition 2.3 (Selection pair) A pair (Xi, Xj) is a selection pair, denoted as (Xi, Xj)s, if it fol-
lows the structure (Xi → Sk ← Xj).

Definition 2.4 (DAG-inducing path) In a DAG G, if a path p between two observed vertices
(Xi, Xj) relative L, S is called a DAG-inducing path, if it satisfies the following criteria: 1. There
is at least one collider on the path p apart from (Xi, Xj). 2. Every vertex on p is either in L or a
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collider, and every collider is an ancestor of Xi, Xj , or a member of S. 3. If the collider is the parent
of Sk ∈ S, Xi or Xj is also the parent of Sk. Toy examples are shown in 9.

Assumption 2.5 (Faithfulness Spirtes et al. (2000)) Given a DAG G and distribution P over the
variable set V , P implies no CI relations not already entailed by the Markov assumption.

Assumption 2.6 (Markov) Given a DAG G and distribution P over the variable set V , every
variable M in V is probabilistically independent of its non-descendants given its parents in G.

3 IDENTIFIABILITY WITHOUT LATENT CONFOUNDERS

Is the structure identifiable when selection coexists with other dependencies as shown in Figure 10?
To answer this, we establish the identifiability of the causal structure and partial identifiability of the
selection process without any parametric or further structure assumptions.

Theorem 3.1 (Partial identifiability) Not all causal structures can be uniquely determined from the
available data and assumptions. However, it is possible to determine the set of all possibilities.

Theorem 3.2 (Identifiability) The causal structures are uniquely identified.

Theorem 3.3 (Identifiability and partial identifiability of GISB) Let the observed data consist of
a sufficiently large sample generated by the DAG model defined in Section 2. In addition to the
faithfulness2.5 and Markov2.6 assumptions, suppose there are no latent confounders: L = ∅. Then
causal processes are identified, selection pairs (selection processes) are partially identified, and
selection bias is identified in the causal graph.

Motivation and Discussion. We show the identifiability of the causal process and partial identifiabil-
ity of the selection process, and develop Algorithm 1 (detailed procedure 3) to achieve it. Usually
without extra information, it is difficult to identify the selection process in the non-parametric setting.
Both causal and selection processes can generate dependence. FCI can identify certain cases up to
the upper bound of information provided by structure properties. Thanks to the perturbation data,
the differences between the causal and selection processes emerge, making them distinguishable.

𝑋 𝑌

IX I𝑌

𝑋 𝑌

𝑆
IX I𝑌

Figure 3: Differences in symmetry and Conditional
Independence (CI) patterns: Causation vs. Selection

With perturbation and observational data,
differences in symmetry, perturbation ef-
fects, and structure characters among dif-
ferent patterns are reflected in CI patterns
between I and observed genes as shown in
Figure 3, more details are shown in lines
1, 3 and 5 in Figure 8. Step 2 in the Al-
gorithm 1 deletes condition-independent
edges when considering complex cases
(multi-path), which significantly improves
the efficacy of GISB by reducing the size of condition sets. For example, some complex examples,
including both X → N → Y and X → M ← Y , can be identified by conditioning on N . Then
dependencies can be explained by causal process, selection process, or combinations. Considering
the efficacy of the CI test on high-dimensional data, skeleton discovery is not limited to traditional
PC. Parallel PC Le et al. (2016), FGES Ramsey et al. (2017), and even computational methods can
be applied. With the help of perturbation data, following the rules (the correspondences between CI
patterns and structures) shown in Figure 8. Step 3 updates G and the selection set based on the CI
results. Considering multiple paths, Step 4 further corrects the CI patterns with some dependence
hidden by the selection process like (b)-3 in Figure 10. By conditioning on Z, real structure (X and
Y under selection) is identified. Moreover, two cases can distort the CI patterns, e.g., (a)-9 and (b)-8
in Figure 10, resulting in the partial identifiability of the selection process. Where the CI pattern
of (a)-9 is distorted due to the Y-structure formed by X , IY , Y , and S, as S is always given, X
and IY are dependent, which breaks the CI relations. (b)-8 is because of the DAG-inducing path
(X − Z − Y ), which is always d-connected. Thus, whether X and Y or the descendants are directly
under the selection process can not be determined, as they are limited to the true structure of the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 GISB: Gene Regulatory Network Inference in the Presence of Selection Bias.

Input: observational data Do, single gene perturbation data Dp for all genes with Dpi for gene Xi,
perturbation indicator I .

Output: DAG G = (V, E), Selection Pairs S.
1: (Graph Initialization) Initialize G = (V, E) as a fully undirected graph and list S as empty.
2: (Recovery of regulation skeleton over observational data) Run skeleton discovery methods on

Do.
3: (Recovery of the regulation and selection processes over observational and perturbation data)

For each undirected edge of gene pair (X,Y ), test the marginal and conditional independence
between I of one gene and another gene on augmented data Daug (Do +Dpi). Update G and
update S with identified pairs (X,Y )s.

4: (Correct spurious relations) Repeat Step 3 with conditioning on the subsets of genes on the paths
between X and Y in Gaug . Update G and update S with identified pairs.

DAG-inducing path (selection structures are partially identifiable). At the same time, they are under
selection bias. Fortunately, the causal process is still identified, as the form of Y-structure also needs
cause relation, and the DAG-inducing path (undirected edge) does not affect the structure features of
the causal process. The comprehensive proof of GISB is in Appendix G.2

4 PARTIAL IDENTIFIABILITY WITH LATENT CONFOUNDERS

We previously discussed methods for identifying direct causal relationships and selection mechanisms
between genes, assuming no latent confounders. However, in practical scenarios using scRNA-seq
data, latent confounders, such as non-gene regulators, transcription factors, and technical covari-
ates, can indeed exist. This raises the question: What can be definitively identified about causal
relationships when latent confounders are present?

A most generalized model might include latent variables, perturbation indicators, and observed
variables all involved in the selection process (e.g., under some unrecorded experimental conditions,
only cells with certain gene expression patterns can successfully receive some gene knockout).
Nonetheless, such generalized assumptions often render causal relationships too indeterminate, and
thus the results less informative. For example, a direct causal edge X → Y can generally always
be replaced with X → S ← L → Y , where X,Y are observed, L is latent, and S is a selection
indicator, rendering them indistinguishable in terms of all conditional independence constraints, even
with interventional data for IX and IY on both sides.

To address this, we have to adopt a structural assumption: selection processes involve only observed
variables, disallowing any causal edges from latent variables (L) and perturbation indicators (I) to
the selection indicators S. This assumption is partly justified by the typically lower prevalence of
confounders compared to observed variables in scRNA-seq data. Under this framework, what can we
identify? We first notice that even without selection and with interventional data, latent confounders
can still make the direct causal relations unidentifiable. Consider the case X → Z → Y with a latent
confounder L pointing to both Z and Y shown in Figure 9 (b). Adding a direct edge X → Y renders
the scenarios equivalent, even if perturbation data IX , IY are available, as the dependence between
X and Y cannot solely be explained by Z.

This leads us to question whether ancestral causal relationships (X has a direct path to Y ), instead
of direct causal relations, are identifiable with latent confounders. Unfortunately, the answer is still
negative. For instance, in the model S1 ← X ← L→ Y → S2 (Figure 9 (a)), with latent confounder
L and selection indicators S1, S2, whether adding a direct edge X → Y or not, the two scenarios are
unidentifiable, even with interventional data: perturbing X alters P (Y ), and this change cannot be
solely attributed to X; the same happens at the Y side.

Thus, given all the above unidentifiable cases, we conclude that we can only identify the ancestral
causal relations and the absence of selection. If all of the following hold: 1) IX ̸⊥⊥ Y , i.e., the pertur-
bation on X results in a change in P (Y ), 2) IX ⊥⊥ Y |X , i.e., this change is completely explainable
by X , and 3) IY ⊥⊥ X , i.e., the perturbation on Y does not affect P (X), then it can be concluded
that X is an ancestor of Y , and there is no selection for each of X,Y . This is a sufficient condition,
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Algorithm 2 GISL: Gene Regulatory Network Inference in the Presence of Selection Bias and Latent
Confounders.
Input: observational data Do, single gene perturbation data Dp for all genes with Dpi for gene Xi,

perturbation indicator I .
Output: PAG G = (V, E), Confounder pairs L, Selection pairs S.

1: (Graph Initialization) Initialize G = (V, E) as a fully undirected graph and list L,S as empty.
2: (Recovery of regulation skeleton over observational data) Run skeleton discovery methods on

Do.
3: (Recovery of the regulation, selection processes, and latent confounders from observational

and perturbation data) For each undirected edge of gene pair (X,Y ), test the marginal and
conditional independence between I of one gene and another gene on augmented data Daug

(Do +Dpi). Repeat this with conditioning on the subsets of genes on the paths between X and
Y in Gaug to remove the spurious dependence and update G. Update L,S with identified pairs
and mark pairs needed to be corrected.

4: (Correction) Further correct those undetermined pairs following the correction rules, and update
G,L,S.

and when the condition is not satisfied, it does not necessarily mean that X is not Y ’s causal ancestor.
Formally, we propose the GISL algorithm and give the following partial identifiability results:

Theorem 4.1 Let the observational and perturbation data be sufficient, which are generated by
the DAG model defined in Section 2, In addition to the faithfulness2.5 and Markov2.6 assumptions,
suppose selection processes can not work on latent variables, i.e., latent variables are not the parent
of selection variables. Then the qualitative structure information, selection process, and latent
confounders are partially identified in the causal graph.

Motivation and Discussion We show the partial identifiability of the causal process, se-
lection process, and latent confounders and develop Algorithm 2 (detailed procedure 4)
to elucidate some interesting laws. When considering the general case, graph struc-
ture becomes very complex. Same with Section 3, based on the differences, including
symmetry, perturbation effect, and structure characters, reflected in CI patterns between

𝑋 𝑌

IX I𝑌

𝑋 𝑌

𝑆
IX I𝑌

𝑋 𝑌

𝐿
IX I𝑌

Figure 4: The causal structure
of Latent confounders .

perturbation indicator I and observed genes. The latent structure is
shown in Figure 4, and detailed basic patterns in Figure 8 provide
insight into distinguishing causal processes, selection structures, and
latent confounders from finding unique markers. There are two kinds
of cases providing dependence, which blocks us from approaching
the true causal structures. One is (a) in Figure 9, as S is given, IX
and L are always dependent, another is the DAG-inducing path (b),
(c), and (d) in Figure 9, where dependence occurs as the collider Z
works as a chain in other paths between X,Y . These result in the
spurious causal dependence between I and observed genes, which
can not be d-separated A by conditioning operation. Let’s start with the algorithm to introduce the
interesting laws. Steps 2 and 3 have the same operation as GISB. The correcting rules in Step 4
are as follows: 1. if the CI pattern changes to another one with less dependence in Figure 8, then
change the result to the new one. 2. If more dependence, usually lines 3 and 5 in Figure8 become
a full dependent pattern, which means IX and Y are dependent and IY and X are dependent no
matter given X,Y or not, we keep the previous result. As the collider is given, it results in more
dependence. With the confusing cases, we found that the result with X cause Y indicates X is Y ’s
ancestor without confounding and selection. The result with confounder pairs indicates (X,Y )l or X
and its ancestor on the path between X,Y form a confounder pair. The result with the selection pair
indicates (X,Y )s, or Y form selection pair with the descendants of X on the path between X,Y .
The selection with cause and confounder with cause indicate the same results as the selection and
confounder pair separately. Considering the DAG-inducing path, causal process, selection process,
and latent confounders are partially identified limited to true structures and DAG-inducing path. This
is because the DAG-inducing path (always d-connected) can pretend to be any structure shown in CI
patterns. Selection bias is identifiable. The details of proof can be found in Appendix G.2.
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5 EXPERIMENTS

In this section, we conduct experiments on synthetic and real-world data sets to validate the selection
process claim and verify the effectiveness of our proposed GISL in identifying qualitative structures,
selection bias, and latent confounders, demonstrating that it is not only theoretically sound but also
leads to superior performance in practice.

5.1 SYNTHETIC DATASETS

Parametric setting. We utilize a simple structure (X cause Y under selection bias) as an illustrative
example to elucidate the setting of the parametric model. The synthetic data is generated according
to the structure equation model (SEM) as follows:

X = Ex,

Y = f(X) + Ey,

fs(X) + fs(Y ) + Es > 0.

(1)

where the additive noises, i.e., Ex, Ey as well as Es are assumed to follow Gaussian distribution with
randomly selected means and variances. The causal function f and selection function fs are linear
with randomly chosen parameters. Moreover, gene knockout (CRISPR-Case9) and gene knock-up
(CRISPRa) technologies working as hard and soft intervention separately are simulated, where hard
intervention sets the gene expression value to 0 and soft intervention increases the expression value by
adding a uniformly distributed noise. Ground-truth causal structures are generated by Erdös–Rényi
model (Erdős et al., 1960) with d ∈ {6, 9, 12, 15, 18} nodes and randomly add 1-3 selection pairs
on each causal structure. When considering latent confounders, 1-3 confounder pairs are randomly
added. We randomly sample 20 causal structures with 30000 data points for each before selection.

Non-parametric setting. Unlike a parametric setting, the non-parametric one considers a complex
non-linear causal process. Genes follow the Gaussian distribution with randomly selected means and
variances, the causal function and selection function are randomly chosen from linear, square, sin,
and tanh functions. Considering the computational efficiency, the ground truth causal structures are
generated based on the Erdös–Rényi model with d ∈ {5, 6, 7, 8, 9} nodes and randomly 1-2 selection
pairs. 1-2 confounder pairs are randomly added when considering latent confounders. We sample 20
causal structures with 2000 data points before selection for each setting.

Baselines and evaluation. To verify the effectiveness of our proposed GISL, we report the structural
Hamming distance (SHD), F1 score, precision, and recall to measure the quality of the predictions
against ground truth on synthetic data sets compared with canonical baselines. All experiments are
from averaging 20 random graphs with CPUs and 12 GB of memory. Without latent confounders,
PC (Spirtes & Glymour, 1991), GES (Chickering, 2002), and GIES (Hauser & Bühlmann, 2012)
algorithms are set as strong baselines. The GISL outputs a DAG, while the PC, GES, and GIES only
find a completed partially directed acyclic graph (CPDAG). To keep consistency at the data level,
we use the simple orientation rules (Dor & Tarsi, 1992) implemented by Causal-DAG (Chandler
Squires, 2018) to uncover more edges in CPDAG with the help of intervention data. Furthermore,
as our algorithm utilizes both observational and perturbation data, while PC and GES only work on
observational data, we further utilize perturbation data to assist PC and GES in determining more
edges. With latent confounders, the FCI (Spirtes et al., 1995; Zhang, 2008) and ICD (Rohekar et al.,
2021) are set as baselines. We report the metrics on PAG compared with baselines.

Experimental results without latent confounders. We conduct experiments and a comparative
analysis on synthetic data sets to validate our claims about GISB in identifying qualitative structure
information, and selection process. First, the priority of introducing perturbation data is evaluated
on synthetic data without selection bias as shown in Figure11. Experimental results of GISB and
baselines on all evaluation criteria are shown in Figure 5. From Figure 5, we can see that our method
shows its superiority over all baselines in different criteria. The reasons are as follows: First, the
spurious dependence engendered by the selection bias can not be handled by baselines. Second, even
with perturbation data, the causal processes are still not distinguishable under selection bias. This
is because the stronger symmetry property of the selection process covers up the asymmetry of the
causal process, leading to the unidentifiable existence of qualitative information. However, instead of
directly using distribution change, our algorithm models the difference between the asymmetry of
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(a) Linear Gaussian with hard intervention.
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(b) Linear Gaussian with soft intervention.
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(c) General case with hard intervention.
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(d) General case with soft intervention.

Figure 5: Experimental results of GISL and strong canonical causal discovery baselines on synthetic
data sets, where PC inter and GES inter indicate that the results are further refined with perturba-
tion data. By rows, we evaluate different variables d. By columns, we evaluate DAG F1 (↑), DAG
ACC (↑), DAG Recall (↑) and DAG SHD (↓).

causation and symmetry of selection by introducing a perturbation indicator I as a surrogate variable.
The difference can be expressed in conditional independence relations between the surrogate variable
and genes. This design cleverly avoids the drawbacks of baselines and identifies the causal structure
for GRNI. Moreover, the presence of selection bias is partially identified. Following the algorithm 1,
to start with, we try to distinguish different patterns based on CI test results, but there appear spurious
dependencies engendered by selection bias. The reasons are as follows: one is the transitivity of the
selection mechanism such as (a)-8 in Figure 10, if the selection process works on the descendant of
observed ones, the CI test result shows the existence of selection bias. We tackle it by traversing
all subsets of nodes on the paths between X and Y . This leads to another case like (a)-6, if the
adjacent node forms a V structure with X and Y is given, there will form the illusion of selection
bias. Another is the Y structure with the selection variable S as the descendant of the collider, which
will break the conditional independent relations by introducing dependence since S is always given.

To evaluate the effectiveness of our proposed GISB in identifying the presence of selection bias, we
conduct experiments on causal graphs with d=10 nodes in both linear Gaussian and general cases,
considering various numbers of node pairs that are subject to selection processes. We randomly
generate 20 causal structures for each setting. Experimental results on all evaluation criteria are
shown in Table 2. Overall, with the increasing number of selection processes, GISB still keeps
competitive performance even though almost all variables are under selection bias. Due to the partial
identifiability of selection bias, the accuracy of identifying selection structures is around 50% to 70%.
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Table 1: Experimental results on different numbers of selection processes. #S indicates the number of
selection process, SACC denotes the accuracy of identifying selection structures.

#S 1 2 3 4 1 2 3 4

Hard intervention Soft intervention

ACC 88.4±1.1 80.5±0.6 73.6±0.6 65.9±1.4 90.4±0.5 85.3±0.9 80.2±0.7 77.5±1.3
Recall 94.4±0.8 93.3±0.6 90.5±1.0 85.8±1.8 93.8±0.5 91.1±0.6 90.0±0.8 88.9±0.5
F1 91.2±0.9 86.4±0.5 81.1±0.7 74.4±1.5 92.1±0.4 88.1±0.7 84.6±0.6 82.6±0.9
SHD 1.2±1.1 2.1±0.7 2.9±1.0 4.1±2.6 0.9±0.4 1.45±0.9 2.1±0.9 2.4±2.0
SACC 60.8±17.8 65.6±8.2 68.4±3.6 45.4±6.4 70.5±1.6 72.1±4.5 56.9.6±7.7 49.5±14.3
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(b) General case with soft intervention.

Figure 6: Experimental results on PAG F1 (↑), PAG ACC (↑), PAG Recall (↑) and PAG SHD (↓).

Experimental results with latent confounders. Experiments are conducted to validate the ability
of GISL to identify qualitative structure information, selection processes, and latent confounders.
In Figure 6, experimental results on non-parametric settings show the superiorities over FCI and
ICD methods. Moreover, the average accuracy of identifying selection structures is 0.708± 0.194
and 0.910± 0.005 separately for soft intervention and hard intervention. The average accuracy of
identifying latent confounders is 0.841± 0.189 and 0.654± 0.186. The reasons are similar to the
case that does not consider latent confounders. Integrating differences in symmetry and CI patterns,
causal process, selection process, and latent confounders are distinguishable.

5.2 REAL-WORLD EXPERIMENTAL DATASETS

Data availablility With the advent of next-generation sequencing (NGS) techniques, such as single-
cell RNA-sequencing (scRNA-seq), the availability of single-cell data empowers us to conduct more
profound analysis of gene expression in biological systems and complex tissues at unprecedented
resolution of individual cells (Saliba et al., 2014). Moreover, thanks to the advancement and matu-
ration of gene sequencing and perturbation tools, including CRISPR-Cas9 (Doudna & Charpentier,
2014), CRISPRi (Larson et al., 2013), and CRISPRa Cheng et al. (2013), genes are transformed into
viable subjects for causal discovery, providing qualified single-gene observational and perturbation
(interventional) data through systematic technique perturb-seq (Adamson et al., 2016; Thomas M.
et al., 2019; Dixit et al., 2016).

To examine the efficacy of GISL and validate our claim of the overlooked selection process
in a real-world setting, we apply our method to gene expression data collected by Pertrub-
seq (Thomas M. et al., 2019). The data are collected from lung carcinoma cells (A-549)
with 5045 observable genes and 7353 cells in total. Furthermore, the gene knock-up tech-
nique CRISPRa is utilized on cultured cells to enhance the expression value for 105 genes sep-
arately, resulting in gene perturbation data. Considering the computational efficiency of CI
test methods (general case) and the sparse connect among perturbed genes, we evaluate our
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method on a subset of perturbed genes compared with prior knowledge provided by Enrichr
(Kuleshov et al., 2016; Chen et al., 2013; Xie et al., 2021) which collects comprehensive li-
braries. For more detailed information about the real-world setting, please refer to the Appendix H.

POU3F2

JUN

S0 FOXA1S1

NCLFEV

Figure 7: Experimental results on a
subset of genes with perturbation
data. Red edges are returned by
Enrichr (Chen et al., 2013) but not
by GISL. Black edges are returned
by GISL backed by Enrichr.

In addition, to verify the presence of selection bias, we argue
that for each pair of genes, if they are in the presence of selec-
tion bias, the number of survived cells varies over perturbing
different genes on the premise of culturing the same number of
cells. Fortunately, with the CRISPR experimental records orga-
nized by DepMap (DepMap, 2023), a cell population dynamics
model was proposed for cell proliferation dynamics, where the
z-score was designed to show the differences in growth rate
between normal cells and perturbed ones. The higher value in-
dicates a significant change in the number of surviving cells fol-
lowing gene perturbation (Dempster et al., 2019; 2021; Pacini
et al., 2021). Experimental results of our GISL on a subset of
genes with perturbation data as shown in Figure 7. From the
figure, one can see that the GISL introduces numerous edges
and selection processes that are backed by prior knowledge. For
example, Gene pairs (JUN NCL) and (JUN POU3F2) are
under a selection process with z-scores -0.339, -1.217, 0.252
for JUN ,NCL, and POU3F2 respectively. The distribution
of the z-score of these genes is shown in Figure 13. Moreover,
all edges are collected from Enrichr, black ones are returned
by GISL backed by prior knowledge. Besides the efficacy of
our method, another superiority of our method is that GISL
is not limited to perturbing all genes. In experimental conditions, we only perturb genes that we
want to discover the relationship instead of perturbing genes without guidance, which is time and
source-saving.

6 CONCLUSION AND DISCUSSION

Rethinking differential gene expression and the observed distributional changes in unregulated genes
from gene perturbation data, we argue that the overlooked selection process and the presence of
latent confounders significantly bias the performance of gene regulatory network inference (GRNI)
in single-cell gene expression data. Many confusing dependent patterns observed from data can be
explained by the selection inclusion and latent confounders. Although with a single distribution, it is
generally difficult to identify the causal process, selection process, and latent confounders, thanks to
gene perturbation data, which provides observations of the differences in symmetry and perturbation
effect among them, resulting in distinguishable conditional independent patterns. This motivates us
to establish a set of theoretical results demonstrating the partial identifiability of qualitative structure
information, latent confounders, and selection processes without any parametric and graphical
assumptions. At the same time, we propose a novel GISL algorithm to recover the selection process
and latent confounders from causal relations in confusing dependencies among genes. The validity
of the presence of the selection process, theoretical claims, and the algorithm’s efficacy have been
rigorously evaluated on synthetic and real-world data.

Discussion and Limitations. In cells, we argue the different intracellular environments, acting as
selection mechanisms, constrain the expression of genes. When the environment remains, a selection
mechanism is always present. Genes stay in cells with the remaining environment, showing the
reasonability of our setting. However, at the algorithmic level, if selection does not occur consistently,
whether the intervention happens before or after the selection process will lead to different phenomena.
A toy example is designed to introduce this as shown in Figure 14 in Appendix. This interesting
discussion is a kind reminder to readers when they apply this algorithm to some specific data, like
patients in hospitals. When they recovered, they were still the sample in the dataset. At this time
the selection mechanism disappears. Some limitations are listed that are willing to be improved
in the future. In our setting, we assume the gene regulatory network is DAG dealing with acyclic
relations. The selection process may also work on latent confounders. We focus on the selection
process determined by measured genes. Moreover, we focus on the soundness and efficacy of our
algorithm and do not pay much attention to the efficiency of the CI test.
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Appendix
A CONCEPTS

Definition A.1 (Marginal independence test) Check whether two variables X and Y are indepen-
dent of each other without considering any other variables. Mathematically: X ⊥⊥ Y , meaning X
and Y are independent in the overall data distribution.

Definition A.2 (Conditional independence test) Evaluate whether two variables X and Y are
independent given a third variable or set of variables Z. Mathematically: X ⊥⊥ Y |Z, meaning X
and Y are independent conditioned on Z.

Definition A.3 (d-separation) If every path from a node in X to a node in Y is d-separated by Z,
then X and Y are always conditionally independent given Z.

B EXAMPLE OF DISTINGUISHABLE CI PATTERNS

We list some examples in Figure 8 to show our insight into distinguishing causal process, selection
process, and latent confounders given CI patterns. These samples are not complete. Some cases
as shown in Figure 9 are unidentifiable in discovering causal processes, as the causal dependencies
engendered by the inducing path shown in the second and third cases can not be distinguished from
the causal process. Moreover, the first case can be seen as a selection on latent confounders case,
where the Y-structure formed by IX , X, L, S introduces the dependence that can not be d-separated
between IX and L, resulting in the spurious CI patterns challenging our algorithm in the identifiability
of causal process.

C EXAMPLES TO SHOW THE IDENTIFIABILITY OF GISB

Some examples in Figure 10 show insight into identifying different patterns based on CI patterns in
the case without latent confounders. Specifically, the causal processes are identifiable, the dotted ones
show partial identifiability in the selection process. As the inducing path and Y-structure like (b)-8
and (a)-9, this results in the d-connected path leading to the phenomenon that distribution change can
propagate along this path. Then we can not identify the selection structure, at the same time, we can
identify the presence of selection bias.

D THE PROCEDURE OF ALGORITHM 1

The details of GISB are shown in Algorithm 3. Every step including how to utilize the observational
and perturbation data is introduced.

E THE PROCEDURE OF ALGORITHM 2

The details of GISL are shown in Algorithm 4. We detail all the steps of the algorithm, similar to
how they are listed in GISB.

F EXPERIMENTAL RESULTS ON SYNTHETIC DATASET

The experimental results of GISL and baselines on data without selection bias are shown in Figure 11.
This shows the superiority of utilizing interventional data to recover causal relations. The distribution
change engendered by intervention provides more information in identifying the causal structure.
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Figure 8: Examples of distinguishable CI patterns, where S is the selection variable indicating the
selection process, L is the latent confounder, X and Y are observed variables.
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Figure 9: Non-identifiable cases (DAG-inducing path) correspond to the criteria in 2.4, where the
variables Z variables that are colliders in (b), (c), and (d) follow the criteria 2 and 3.

G PROOF

G.1 THEOREM 3.1

Proof. 1. The unique CI patterns of causal relation are X ⊥⊥ IY and Y ⊥̸⊥ IX |S. where Y ⊥̸⊥ IX |S
needs X and Y are d-connected and no nodes beside IX point to X. However, X ⊥⊥ IY can only
be satisfied when X − Y − IY forms a V-structure, which means there is an edge point to Y shown
in Figure 12 (a). All in all, between X and Y , besides the causal process, if other paths satisfy the
previous requirement, there must exist a V-structure, i.e. X → Z ← Y , and Z is given, as there is an
edge point to Y , it will form a loop, which conflicts with DAG assumption. However, the V-structure
can not point to Y conflicts with the necessary conditions. 2. Identify the selection process. The
selection process needs X ⊥⊥ IY |Y, S, and Y ⊥⊥ IX |X,S as shown in Figure 12 (b). Any paths
between X,Y (point to X,Y ) apart from the V-structure will conflict with the CI pattern. However,
the V-structure is independent given ∅, which can be distinguished. 3. Selection with cause. The
required structure is shown in Figure 12 (c). X and IY are always conditional dependent. It forms a
unique Y-structure, i.e., X → Y ← IY , Y → S. As S is always given, it is mandatory. The proof
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Figure 10: Illustration on all possible cases of causal graphs with three observable variables. The
graphs in the dotted box share the same conditional independence relations, and all the other graphs
outside the dotted box have different conditional independence relations.

of the causal process is the same as in the previous part. However, the selection process can not be
determined between X,Y , or the descendant of X and Y . Proof done.

G.2 THEOREM 4.1

Proof. Causal process: The conditional independence (CI) pattern of the causal process is illustrated
in Figure 8, where it demonstrates that the structure IX → X → Y forms a chain, and X → Y ← IY
represents a collider. If other d-separated paths exist between X and Y, the causal process can still
be identified by blocking these paths, which can be achieved by conditioning the vertices on the
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Algorithm 3 Concrete procedure of GISB

Input: observational data Do, single gene perturbation data Dp for perturbed genes with Dpi for
gene i.
Output: DAG G = (V, E), selection pair S.
Initialize G = (V, E) as fully-connected graph. List S selection pairs as empty.
All s ∈ S is given.
for any pair of genes (x, y) in V do

if x ⊥⊥ y| any subset of V-{x, y} on Do then
remove the edge between x and y from E , update G.

end if
end for
Introduce surrogate variable (perturbation indicator) I = 0 for Do and I = 1 for Dp.
for edge between genes (x, y) in E do

Construct Dx by concatenating Do with IX = 0 and Dpx with IX = 1. Similarly, construct
Dy .
if x ⊥⊥ IY |s on Dy then

x cause y, update G.
else if y ⊥⊥ Cx|s on Dx then
y cause x, update G.

else if x⊥̸⊥ Cy|s; x ⊥⊥ Cy|y, s on Dy and y ⊥̸⊥ Cx|s; y ⊥⊥ Cx|x, s on Dx then
x and y under selection without cause, update S with (x, y).

else
for subsets t of nodes on the paths form x to y do

if x ⊥⊥ Cy|t, s on Dy then
x cause y, update G.

else if y ⊥⊥ Cx|t, s on Dx then
y cause x, update G.

else if x⊥̸⊥ Cy|t, s; x ⊥⊥ Cy|t, y, s on Dy and y ⊥̸⊥ Cx|t, s; y ⊥⊥ Cx|t, x, son Dx then
x and y are under selection without cause, update S with (x, y).

else if x⊥̸⊥ Cy|t, s and x⊥̸⊥ Cy|t, y, s on Dy then
x cause y under selection, update G, update S with (x, y).

else if y ⊥̸⊥ Cx|t, s and y ⊥̸⊥ Cx|t, x, son Dx then
y cause x under selection, update G, update S with (x, y).

end if
end for

end if
end for
return DAG G = (V, E), selection pairs S.
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Figure 11: Experimental results of GISB and baselines on synthetic dataset without selection bias.

paths. However, cases involving DAG-inducing paths, such as those shown in Figure 9 (b), result in d-
connected paths between X and Y, which is the same as the causal process in CI patterns but is different
in structures. Moreover, structures shown in Figure 9 (a) break the collider IX → X ← L → Y ,
working like a causal process as well, leading to partial identification of the causal process.

Latent confounders: The unique structure involving latent confounders is represented by the collider
configuration IX → X ← L→ Y ← IY . If there are d-separated paths between X and Y, the latent
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Algorithm 4 Concrete procedure of GISL

Input: observational data Do, single gene perturbation data Dp for perturbed genes with Dpi for
gene i.
Output: PAG G = (V, E), latent pairs L, selection pairs S.
Initialize G = (V, E) as fully-connected graph.
correct-set = []
condition-set = []
for any pair of genes (x, y) in V do

if x ⊥⊥ y| any subset of V- {x, y} on Do then
remove the edge between x and y from E , update G.

end if
end for
Introduce surrogate variable (perturbation indicator) I = 0 for Do and I = 1 for Dp.
for edge between genes (x, y) in E do

Construct Dx by concatenating Do with IX = 0 and Dpx with IX = 1. Similarly, construct
Dy .
if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
x cause y, update G.

else if x⊥̸⊥ IY |s; x ⊥⊥ IY |y, s; on Dy , y ⊥⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
y cause x, update G.

else if x⊥̸⊥ IY |s; x ⊥⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
x and y under selection without cause, update S with (x, y).

else if x⊥̸⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
x cause y under selection bias, update S with (x, y), correct-set add (x, y), condition-set add
(’S-C’).

else if x⊥̸⊥ IY |s; x ⊥⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
y cause x under selection bias, update S with (x, y), correct-set add (y, x), condition-set add
(’S-C’).

else if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
x cause y under latent confoudner, update L with (x, y), correct-set add (x, y), condition-set
add (’S-L’).

else if x⊥̸⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
y cause x under latent confoudner, update L with (x, y), correct-set add (y, x), condition-set
add (’S-L’).

else if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
x and y under latent confounder without cause, update L with (x, y).

else
correct-set add (y, x), condition-set add (’C-D’). correct-set add (x, y), condition-set add
(’C-D’).

end if
end for

Figure 12: Required structure for causal relation, latent confounders, and selection process, Where *
means the always d-connected node.

confounders can be identified, as the CI pattern remains unaffected when these d-separated paths are
blocked. However, cases with DAG-inducing paths, such as the scenario depicted in Figure 9 (d),
cannot be identified. This is because the d-connected paths between X and Y mimic the same unique
structures associated with latent confounders. Nonetheless, latent confounders must exist within the
d-connected paths, leading to partial identifiability of these confounders.
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for index pair in enumerate correct-set do
x, y = pair[0], pair[1]
for all subsets sa of nodes on the paths from x to y on the path from x to y do

Given subset sa
if condition-set[index] is ’S-C’ then

if x⊥̸⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
continue

else if x⊥̸⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
continue

else if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
x cause y, update G, continue

else
remove edge between x and y, update G
break

end if
else if condition-set[index] is ’S-L’ then

if x⊥̸⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
continue

else if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
continue

else if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
x cause y, update G, continue

else
remove edge between x and y, update G
break

end if
else if condition-set[index] is ’C-D’ then

if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
x cause y, update G.

else if x⊥̸⊥ IY |s; x ⊥⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
x and y under selection without cause, update S with (x, y).

else if x⊥̸⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥⊥ IX |x, s on Dx then
x cause y under selection bias, update S with (x, y),.

else if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥̸⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
x cause y under latent confoudner, update L with (x, y),.

else if x ⊥⊥ IY |s; x⊥̸⊥ IY |y, s; on Dy , y ⊥⊥ IX |s; y ⊥̸⊥ IX |x, s on Dx then
x and y under latent confounder without cause, update L with (x, y),.

end if
end if

end for
end for
return PAG G = (V, E), selection pairs S, latent confounders L.
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Figure 13: An example of the distribution of z-scores of genes among all cell lines.

Table 2: Experimental results of GISB and computational baselines on synthetic data

Methods Acc Recall F1 SHD

GISB 94.7±0.01 95.1±0.01 94.9±0.01 1.0±0.54
PIDC Chan et al.
(2017)

5.5±0 1.0±0 10.5±0 153±0

PPCOR Kim (2015) 5.5±0 1.0±0 10.5±0 153±0

Selection process: The unique structure of the selection process, characterized by the paths IX →
X → S and IY → Y → S, leads to distinguishable CI patterns, as illustrated in Figure 8. Similarly,
cases involving d-separated paths can be identified. However, in scenarios with DAG-inducing paths,
such as the one shown in Figure 9 (c), the d-connected paths between X and Y exhibit the same
structures, i.e., IX → X → and IY → Y →. Furthermore, the d-connected property in these cases is
identical to that of the selection process, leading to the partial identifiability of the selection process.
Consequently, the selection process is only partially identified.

H EXPERIMENTAL SETTING OF REAL-WORLD DATASET

In the real-world dataset, not all the perturbed genes are reported in the Enrichr, as some genes can
not be perturbed or processed by biological tools like ChIP-Seq. This leads to the sparse connection
among perturbed genes. To illustrate the regulatory relationships in a graphical format, we randomly
select a subset of genes that effectively highlight the key interactions. Then GISL is applied to recover
qualitative structure information and selection processes. For evaluating the selection process, a
z-score is utilized to verify the existence of the selection process. Z-score represents the ratio of
the growth ratio between perturbed genes and normal ones. The changes in growth rate indicate the
variation in sample size, which is aligned with the property of the selection process. Then, it can
be used as an evaluation tool. Some distributions of z-score of the genes we reported are shown in
Figure 13. From the figure, we can see that these genes exhibit differences in growth rates between
the perturbed one and the normal one, which means under the selection process. In some cell lines, it
does not change, which gene is not under selection in this cell. This is consistent with the reason why
we explained about the differential gene expression.

I COMPARED WITH COMPUTATIONAL METHODS

We rethink the gene regulatory network inference from a causal view and focus on identifying the
causal process, latent confounders, and selection process. The setting and the output are different
from computational methods, which can not handle the dependence engendered by latent confounders
and selection bias. Experimental results of GISB and computational methods on synthetic data
are good examples to illustrate this as shown in 2. From the table, we can see that with selection
bias, computational methods fail to identify causal relations. This is because the selection process
influences not only the variables it directly targets but also those connected along the same path.
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J DISCUSSION

From Figure 14, we can see that in the left figure, X1 ⊥⊥ X2. When intervention is done after
selection, and selection does not work anymore, this results in the scatter plot of the middle one.
The distribution of P(Y|X) changes. The last one shows that selection remains. It looks like P(Y|X)
changes from the scatter plot. However, the CI test pattern keeps, i.e., Y ⊥̸⊥ IX |S and Y ⊥⊥ IX |X,S,
this is because the increased value range of X is only related to intervention operation (IX = 1)
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Figure 14: Consistent selection vs. one-time selection.
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