

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 HISTORY-AWARE TRANSFORMATION OF REID FEA- TURES FOR MULTIPLE OBJECT TRACKING

Anonymous authors

Paper under double-blind review

ABSTRACT

In Multiple Object Tracking (MOT), Re-identification (ReID) features are widely employed as a powerful cue for object association. However, they are often wielded as a one-size-fits-all hammer, applied uniformly across all videos through simple similarity metrics. We argue that this overlooks a fundamental truth: MOT is not a general retrieval problem, but a context-specific task of discriminating targets within a single video. To this end, we advocate for the adjustment of visual features based on the context specific to each video sequence for better adaptation. In this paper, we propose a history-aware feature transformation method that dynamically crafts a more discriminative subspace tailored to each video’s unique sample distribution. Specifically, we treat the historical features of established trajectories as context and employ a tailored Fisher Linear Discriminant (FLD) to project the raw ReID features into a sequence-specific representation space. Extensive experiments demonstrate that our training-free method dramatically enhances the discriminative power of features from diverse ReID backbones, resulting in marked and consistent gains in tracking accuracy. Our findings provide compelling evidence that MOT inherently favors context-specific representation over the direct application of generic ReID features. We hope our work inspires the community to move beyond the naive application of ReID features and towards a deeper exploration of their purposeful customization for MOT. Our code will be released.

1 INTRODUCTION

Multiple Object Tracking (MOT) is a fundamental computer vision task that aims to detect objects and maintain their identities across video frames. Its primary goal is to generate a distinct trajectory for each target by associating its corresponding detections over time. As a critical component for understanding dynamic scenes, MOT serves as an essential prerequisite for a wide range of downstream applications, such as autonomous driving, human behavior analysis, trajectory forecasting, and public surveillance.

The tracking-by-detection paradigm (Bewley et al., 2016; Zhang et al., 2022a; Cao et al., 2022) has long been the dominant and most widely adopted approach in the field of multiple object tracking. According to the task definition, it decouples the complex tracking problem into two sequential subtasks: first, an object detector localizes all targets within each frame, and second, an association algorithm links these detections across frames to form individual trajectories. As the former step is well-addressed by powerful detectors (Ge et al., 2021; Varghese & Sambath, 2024), the crux of this paradigm lies in the association stage. To solve this association problem, most methods (Zhang et al., 2021; Cao et al., 2022; Dendorfer et al., 2022) model existing trajectories with discriminative cues and then allocate identities by minimizing the matching cost.

Given that distinct targets often exhibit unique visual characteristics, appearance has emerged as a powerful and prevalent discriminative feature for trajectory modeling. In practice, visual features are typically extracted using off-the-shelf Re-Identification (ReID) models (Luo et al., 2019), and a cost matrix is then formulated by the cosine distance. Despite its demonstrated success (Wojke et al., 2017; Zhang et al., 2021; Aharon et al., 2022; Yang et al., 2023b), a latent contradiction persists within this paradigm. According to the definition, the goal of a general ReID model is to learn a universal feature representation capable of distinguishing any given identity from a large,

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1923
19

108 research. We also confirm the generalization capability of our proposed method by applying it to Li
 109 et al. (2024a) with various visual encoders (He et al., 2016; Zhou et al., 2022; Kirillov et al., 2023;
 110 Liu et al., 2024), observing stable performance boosts across every case. Additionally, we conduct
 111 experiments on several hybrid-based methods (Cao et al., 2022; Yang et al., 2023b). The results
 112 demonstrate that our approach can be seamlessly integrated into these advanced trackers, achieving
 113 state-of-the-art performance.

114 To sum up, our main contribution include:
 115

- 116 • Following our analysis in Section 2.2, we equip Fisher Linear Discriminant with historical
 117 tracklet supervision to transform ReID features, enhancing their discriminability.
- 118 • To address the practical needs of MOT task, we propose two customized components,
 119 *temporally-weighted trajectory centroid* (Section 3.2) and *knowledge integration* (Section
 120 3.3), which further improve our tracking performance.
- 121 • To prove the effectiveness of our method, we conduct extensive experiments on ReID-based
 122 methods, demonstrating consistent performance gains across diverse scenarios (Table 1,
 123 2 and 3). We also validate its versatility by seamlessly integrating it into hybrid-based
 124 trackers, pushing their state-of-the-art performance even further.

126 2 PRELIMINARY

127 2.1 REID-BASED TRACKER

130 The tracking-by-detection paradigm (Bewley et al., 2016; Zhang et al., 2022a; Cao et al., 2022) treats
 131 multiple object tracking as a two-step process. First, an object detector \mathcal{D} is employed to localize all
 132 targets in a given frame I_t . Subsequently, these detections are associated with established trajectories
 133 based on a cost matrix or used to initialize new tracks. Following our discussion in Section 1, we
 134 simplify our experimental scope by concentrating on trackers that use only appearance cues for data
 135 association. Given an object bounding box, $b_{t,i}$, in the t -th frame, a feature extraction network Φ is
 136 applied to obtain the corresponding visual feature $\mathbf{f}_{t,i}$, often referred to as a re-identification (ReID)
 137 feature. It is used to represent the appearance of each detection and to construct the feature of each
 138 trajectory. In practice, while numerous methods (Wojke et al., 2017; Maggiolino et al., 2023; Yang
 139 et al., 2023b) for trajectory modeling exist, we adopt the widely-used Exponential Moving Average
 140 (EMA) update strategy due to its proven efficiency and effectiveness, as formulated below:

$$141 \hat{\mathbf{f}}_{t,\tau_j} = \lambda \mathbf{f}_{t,\tau_j} + (1 - \lambda) \hat{\mathbf{f}}_{t-1,\tau_j}, \quad (1)$$

143 where $\hat{\mathbf{f}}_{t-1,\tau_j}$ represents the appearance feature of track τ_j aggregated up to timestep $t - 1$, \mathbf{f}_{t,τ_j}
 144 is the ReID feature obtained from the extractor Φ at the current frame I_t , and λ is a momentum
 145 coefficient, typically set to a small value close to 0, that controls the update ratio.

146 Once the aforementioned features are prepared, we compute the matching cost for each detection-
 147 trajectory pair using a similarity metric. A common practice is to use the cosine similarity, which is
 148 calculated as follows:

$$151 \text{Cost}(t, i, \tau_j) = 1 - \text{Sim}(t, i, \tau_j) = 1 - \frac{\mathbf{f}_{t,i} \cdot \hat{\mathbf{f}}_{t-1,\tau_j}}{\|\mathbf{f}_{t,i}\| \|\hat{\mathbf{f}}_{t-1,\tau_j}\|}. \quad (2)$$

153 Accordingly, a cost matrix is constructed for the current frame based on all potential assignments.
 154 The Hungarian algorithm is then employed to find the globally optimal matching solution. Following
 155 this, the features of the matched tracks are updated according to Equation 1, in preparation for the
 156 next time step.

158 2.2 DISCRIMINATIVE CAPABILITY ANALYSIS

160 As stated in Section 2.1, since the tracker relies solely on appearance features for discrimination, it
 161 is intuitive to assume that the discriminative power of the ReID features is directly correlated with
 the tracking performance.

(a) Significant and reliable positive correlation between discriminability and tracking performance.

(b) Our transformation improves performance by enhancing feature discriminative capability.

Figure 2: Correlation between ReID feature discriminability δ_{1000} and tracking accuracy AssA on DanceTrack (Sun et al., 2022). Similar analysis on Cui et al. (2023) can be found in Figure 5.

To validate this hypothesis, it is necessary to quantify the discriminative capability of the representation space. Since the tracking process relies on cosine similarity for affinity measurement, as shown in Equation 2, we also adopt it as the cornerstone for evaluating the discriminability. To be more specific, we measure the discriminative power for the i -th detection in frame t using a score, $\delta(t, i)$. This score is defined as the similarity margin between the detection’s positive track and its most confusing negative track. Furthermore, since tracking failures are minority events within a given sequence, we focus on the most challenging cases. Therefore, for each video, we select the 1000 worst scores and compute their average. This metric, termed δ_{1000} , is used to quantify the discriminative ability of the ReID representations for a specific sequence (details in Section B.1). Accordingly, we conduct a statistical analysis on the representative dataset DanceTrack (Sun et al., 2022), as shown in Figure 2a. The results reveal a significant and reliable positive correlation between the discriminative capability (δ_{1000}) of the ReID features and the object association accuracy (AssA (Luiten et al., 2021)). This conclusion provides a clear motivation for our work: to boost tracking performance by explicitly enhancing the discriminability of the representation space, described in Section 3.

2.3 FISHER LINEAR DISCRIMINANT

Fisher Linear Discriminant (FLD) (Fisher, 1938), also widely known as Linear Discriminant Analysis (LDA), is a classic supervised method used for both dimensionality reduction and classification. The core principle is to find a linear transformation that projects high-dimensional data onto a lower-dimensional space where the classes are maximally separated. In other words, the projection pulls the means of different classes far apart while keeping the data within each class tightly clustered. Mathematically, this is achieved by defining a within-class scatter matrix, \mathbf{S}_W , and a between-class scatter matrix, \mathbf{S}_B . Given a set of N feature vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_N\} = \mathbf{X} \in \mathbb{R}^{N \times d}$, each feature \mathbf{x} is associated with one of C classes, the scatter matrices can be formulated as:

$$\mathbf{S}_W = \sum_{c=1}^C \sum_{\mathbf{x} \in \mathbf{X}_c} (\mathbf{x} - \bar{\mathbf{x}}_c)(\mathbf{x} - \bar{\mathbf{x}}_c)^T, \quad (3)$$

$$\mathbf{S}_B = \sum_{c=1}^C N_c (\bar{\mathbf{x}}_c - \bar{\mathbf{x}})(\bar{\mathbf{x}}_c - \bar{\mathbf{x}})^T, \quad (4)$$

$$\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i, \quad \bar{\mathbf{x}}_c = \frac{1}{N_c} \sum_{\mathbf{x} \in \mathbf{X}_c} \mathbf{x}, \quad (5)$$

where \mathbf{X}_c represents the subset of \mathbf{X} pertaining to class c . The optimal projection matrix, $\mathbf{W} \in \mathbb{R}^{d \times d'}$, is found by maximizing the Fisher criterion (Fisher, 1938), which is the ratio of the between-class scatter to the within-class scatter in the projected space:

Figure 3: **Overview of our pipeline.** We use different colors to indicate different identities (trajectories). In the original space, some overly similar targets cannot be well distinguished, leading to issues in the matching process. Therefore, we treat the trajectory features as conditions and apply a tailored *Fisher Linear Discriminant* to seek a better subspace for distinguishing different trajectories. Finally, both original and transformed features are used to calculate the similarity matrix, balancing generalization and specialization.

$$J(\mathbf{W}) = \frac{\mathbf{W}^T \mathbf{S}_B \mathbf{W}}{\mathbf{W}^T \mathbf{S}_W \mathbf{W}}. \quad (6)$$

By applying the projection matrix \mathbf{W} derived above, each feature \mathbf{x} is converted into a new d' -dimensional vector with enhanced discriminability, where $d' = \min(C - 1, d)$.

3 METHOD

Based on the analysis in Section 2.2 and the result shown in Figure 2a, a clear positive correlation exists between the discriminative capability of the ReID features and the final tracking performance. Therefore, in this section, our primary goal is to find a more discriminative representation space for distinguishing between different trajectories. To this end, we mainly employ Fisher Linear Discriminant (FLD) (Fisher, 1938) along with several customized techniques, which are detailed in Section 3.1 and Sections 3.2 - 3.3, respectively. The overall illustration is shown in Figure 3.

3.1 HISTORY-AWARE TRANSFORMATION FOR REID FEATURES

As discussed in Section 1, current multi-object tracking (MOT) methods (Maggiolino et al., 2023; Yang et al., 2023b; Lv et al., 2024) largely adopt ReID features directly from traditional re-identification methods (Ristani & Tomasi, 2018; Luo et al., 2019). Since these models are required to distinguish between a vast number of open-set identities, the features they produce are, by design, as general as possible. In contrast, the multiple object tracking task only requires recognizing a closed set of identities within a single video. This creates a dilemma where the generality of traditional ReID features becomes a liability, as they lack the specificity needed to differentiate between these similar targets, as illustrated in Figure 1. Therefore, we are motivated to seek a more specialized representation space to address the aforementioned challenges. Intuitively, this space should pull features belonging to the same trajectory closer, while pushing features from different trajectories further apart. This idea coincides perfectly with the objective of Fisher Linear Discriminant (FLD) (Fisher, 1938) in its mathematical formulation, provided that we treat each *trajectory* as a *class* in the original framework. Specifically, by replacing the feature vector \mathbf{x} in Equation 3 - 5 with our ReID features \mathbf{f} , and substituting the number of classes C with the number of tracks N_τ , we can obtain the projection matrix \mathbf{W} for tracking by maximizing the objective in Equation 6.

However, FLD is a supervised method, which means it requires corresponding labels in addition to the feature vectors. This core prerequisite is unfulfilled in a standard tracking process. Therefore, we propose a history-aware dynamic labeling scheme to compensate for this absence. Practically,

270 since tracking is an online process, at each timestep t , the historical track assignments from previous frames can serve as the supervisory signals for FLD. Although potential tracking errors exist, we believe the overall statistical signal remains reliable. Furthermore, since a target’s appearance gradually evolves during tracking, we only consider its T most recent features for each trajectory. This choice ensures both efficiency and effectiveness.

276 3.2 TEMPORALLY-WEIGHTED TRAJECTORY CENTROID

278 Following the statement in Section 3.1, a naive implementation would be to average all T features
 279 $\{\mathbf{f}_{t-T, \tau_j}, \dots, \mathbf{f}_{t-2, \tau_j}, \mathbf{f}_{t-1, \tau_j}\}$ of the τ_j -th trajectory to serve as its mean feature center. According
 280 to the definition of FLD (Fisher, 1938) and Equation 4, these feature centroids determine the distribution
 281 centers of the vectors after projection. Although this approach yields notable improvements, we still point out that it overlooks the temporal characteristics inherent in the tracking task. In
 282 online tracking, a target’s appearance evolves continuously over time. Even within the same trajectory,
 283 features that are closer temporally tend to have higher similarity. Hence, for identity allocation at
 284 the current moment, more recent ReID features should intuitively play a more significant role. In
 285 practice, we apply a temporal weighting to the mean calculation in Equation 5:

$$287 \bar{\mathbf{f}} = \frac{1}{N_\tau} \sum_{j=1}^{N_\tau} \bar{\mathbf{f}}_{\tau_j}, \quad \bar{\mathbf{f}}_{\tau_j} = \frac{1}{\sum \lambda_{t'}} \sum_{t'=t-T}^{t-1} \lambda_{t'} \mathbf{f}_{t', \tau_j}, \quad \lambda_{t'} = (\lambda_0)^{t-t'}, \quad (7)$$

290 where λ_0 is a temporal decay coefficient with a value between 0 and 1. Using these temporal-
 291 weighted trajectory centroids in the calculation of Equation 4 makes the final projection more at-
 292 tuned to the current temporal context, benefiting the similarity measurement at the time step t .
 293

294 3.3 KNOWLEDGE INTEGRATION

295 Although we have found a more discriminative space conditioned on historical trajectories with the
 296 methods in Section 3.1 and 3.2, it still has some imperfections. First, the historical tracking results
 297 may contain errors, which can lead to a biased or suboptimal projection matrix. Second, because the
 298 transformed space is built only from the features of existing trajectories, it may not be robust enough
 299 for handling newborn targets. Therefore, we revisit the original representation space. Although it is
 300 not optimized for a given scenario, it offers more robust generalization capabilities, especially when
 301 facing unseen targets. This motivates our proposal to integrate it with the specialized subspace for a
 302 trade-off. Due to the disparate dimensionalities of these two spaces, our integration strategy operates
 303 on the similarity matrices rather than the vectors themselves. It can be formulated as follows:

$$305 \text{Cost}^*(t, i, \tau_j) = 1 - \text{Sim}^*(t, i, \tau_j) = 1 - [\alpha \cdot \text{Sim}'(t, i, \tau_j) + (1 - \alpha) \cdot \text{Sim}(t, i, \tau_j)], \quad (8)$$

306 where $\text{Sim}'(\cdot)$ is the similarity computed using the transformed ReID features, and α is a balancing
 307 coefficient. The Hungarian algorithm then finds the optimal assignment using the complete cost
 308 matrix constructed from the fused $\text{Cost}^*(\cdot)$. See Figure 3 for an overview of this pipeline.

311 4 EXPERIMENTS

313 4.1 DATASETS AND METRICS

315 **Datasets.** We select DanceTrack (Sun et al., 2022) and SportsMOT (Cui et al., 2023) as our pri-
 316 mary experimental benchmarks because they both present a key challenge: targets within a single
 317 video often exhibit a high degree of visual similarity. Specifically, DanceTrack features group dance
 318 scenarios, while SportsMOT includes three types of team sports. We also evaluate our approach on
 319 the TAO (Dave et al., 2020) dataset to demonstrate its effectiveness in diverse and general tracking
 320 cases. In addition, we present the results on MOT17 (Milan et al., 2016) in Section C.1.

321 **Metrics.** On traditional MOT benchmarks (Milan et al., 2016; Sun et al., 2022; Cui et al., 2023),
 322 we select the Higher Order Tracking Accuracy (HOTA) (Luiten et al., 2021) as the primary met-
 323 ric, especially its Association Accuracy (AssA) component. We also include MOTA (Bernardin &
 Stiefelhagen, 2008) and IDF1 (Ristani et al., 2016) in some experiments. To better evaluate the

324 multi-category tracking problem, we employ the Tracking Every Thing Accuracy (TETA) (Li et al.,
 325 2022) on the TAO dataset (Dave et al., 2020).

327 4.2 IMPLEMENTATION DETAILS

329 To more clearly illustrate the improvements brought by our method, we focus our experiments on
 330 pure ReID-based trackers, as discussed in Section 2.1. Due to the lack of such publicly available
 331 trackers in the community, we construct a new tracker by combining the widely-used YOLOX (Ge
 332 et al., 2021) detector with the FastReID (Luo et al., 2019) model. For a fair comparison, we use the
 333 well-trained weights from Cao et al. (2022); Yang et al. (2023b); Lv et al. (2024) for all network
 334 modules. To ensure the baseline achieves its best performance, we optimize its hyperparameters on
 335 every benchmark via grid search. The resulting tracker is denoted as *FastReID-MOT*. As for MASA
 336 (Li et al., 2024a), we also bring the model weights from the official repository. For notation, we add
 337 the prefix *HAT*- to methods that use our **H**istory-**A**ware **T**ransformation approach.

338 Table 1: Performance comparison with state-of-
 339 the-art methods on the Dancetrack test set.

341 Methods	342	343 HOTA	344 DetA	345 AssA
<i>motion-based:</i>				
346 ByteTrack (Zhang et al., 2022a)	347	47.7	71.0	32.1
348 DiffusionTrack (Luo et al., 2024)	349	52.4	82.2	33.5
350 OC-SORT (Cao et al., 2022)	351	55.1	80.3	38.3
352 C-BIoU (Yang et al., 2023a)	353	60.6	81.3	45.4
<i>ReID-based:</i>				
354 QDTrack (Pang et al., 2021)	355	54.2	80.1	36.8
356 FastReID-MOT (our baseline)	357	50.6	81.1	31.6
358 HAT-FastReID-MOT	359	58.6	81.3	42.3
360 HAT-FastReID-MOT†	361	61.2	81.6	46.0
<i>hybrid-based:</i>				
362 FairMOT (Zhang et al., 2021)	363	39.7	66.7	23.8
364 DeepSORT (Wojke et al., 2017)	365	45.6	71.0	29.7
366 StrongSORT (Du et al., 2023)	367	55.6	80.7	38.6
368 DiffMOT (Lv et al., 2024)	369	62.3	82.5	47.2
370 Hybrid-SORT-ReID (Yang et al., 2023b)	371	65.7	—	—
372 ByteTrack-ReID	373	52.4	71.0	38.7
374 HAT-ByteTrack-ReID	375	56.1	71.4	44.2
376 OC-SORT-ReID	377	60.8	81.0	45.7
378 HAT-OC-SORT-ReID	379	64.6	81.5	51.3
380 HAT-Hybrid-SORT-ReID	381	66.9	81.5	55.0

382 Table 2: Performance on the SportsMOT test
 383 set. Gray results denote joint training involving
 384 the validation set of SportsMOT.

385 Methods	386	387 HOTA	388 DetA	389 AssA
<i>motion-based:</i>				
390 ByteTrack (Zhang et al., 2022a)	391	62.8	77.1	51.2
392 OC-SORT (Cao et al., 2022)	393	71.9	86.4	59.8
394 ByteTrack (Zhang et al., 2022a)	395	64.1	78.5	52.3
396 OC-SORT (Cao et al., 2022)	397	73.7	88.5	61.5
<i>ReID-based:</i>				
398 QDTrack (Pang et al., 2021)	399	60.4	77.5	47.2
400 FastReID-MOT (our baseline)	401	67.3	86.8	52.3
402 HAT-FastReID-MOT	403	78.1	87.3	69.9
404 HAT-FastReID-MOT†	405	78.9	87.4	71.3
406 HAT-FastReID-MOT†	407	80.8	89.4	73.1
<i>hybrid-based:</i>				
408 BoT-SORT (Aharon et al., 2022)	409	68.7	84.4	55.9
410 DiffMOT (Lv et al., 2024)	411	72.1	86.0	60.5
412 ByteTrack-ReID	413	65.1	76.8	55.1
414 HAT-ByteTrack-ReID	415	72.4	77.3	67.8
416 OC-SORT-ReID	417	74.1	86.8	63.3
418 HAT-OC-SORT-ReID	419	81.2	87.2	75.6
420 HAT-OC-SORT-ReID	421	82.4	89.3	76.1

363 4.3 STATE-OF-THE-ART COMPARISON

364 **FastReID-MOT.** We compare our method (HAT-FastReID-MOT) against the baseline (FastReID-
 365 MOT) on DanceTrack (Sun et al., 2022) and SportsMOT (Cui et al., 2023) in Table 1 and 2. † in-
 366 dicates that hyperparameters are fine-tuned on the corresponding dataset to maximize performance;
 367 otherwise, the default settings from our ablation study are used, as stated in Section 4.4. Our
 368 approach yields substantial performance gains over the baseline. On the challenging DanceTrack
 369 dataset, our appearance-only method even achieves results comparable to several recent hybrid and
 370 motion-based trackers (Yang et al., 2023a; Lv et al., 2024). Even more impressively, our ReID-
 371 only tracker establishes a new state-of-the-art, notably outperforming existing methods, including
 372 Lv et al. (2024), which shares the same ReID model. This result both vindicates our approach and
 373 highlights the need to reconsider the true potential of ReID features for target association.

374 **Hybrid-based Tracker.** To further validate the effectiveness of our method, we inserted it into
 375 several recent well-known trackers (Zhang et al., 2022a; Cao et al., 2022; Yang et al., 2023b). The
 376 results in Table 1 and 2 show that our method can consistently bring significant improvements when
 377 applied to hybrid-based trackers. The combination of our method with (Yang et al., 2023b) surpasses

378 Table 3: Evaluating our method with MASA (Li et al., 2024a). All models are trained on a large-
 379 scale image segmentation dataset (Kirillov et al., 2023) with different visual backbones.
 380

Methods	DanceTrack test		SportsMOT test		TAO val	
	HOTA	AssA	HOTA	AssA	TETA	AssocA
<i>MASA (Li et al., 2024a):</i>						
MASA-R50	50.8	31.6	71.6	58.9	45.8	42.7
MASA-Detic	50.6	31.5	72.2	60.1	46.5	44.5
MASA-G-DINO	50.4	31.2	72.8	61.0	46.8	45.0
MASA-SAM-B	49.4	29.9	71.9	59.5	46.2	43.7
<i>Ours:</i>						
HAT-MASA-R50	54.3 (+3.5)	36.1 (+4.5)	73.7 (+2.1)	62.4 (+3.5)	46.4 (+0.6)	44.4 (+1.7)
HAT-MASA-Detic	54.3 (+3.7)	36.2 (+5.7)	74.5 (+2.3)	63.7 (+3.6)	47.2 (+0.7)	46.4 (+1.9)
HAT-MASA-G-DINO	53.9 (+3.5)	35.7 (+4.5)	74.7 (+1.9)	64.1 (+3.1)	47.5 (+0.7)	46.7 (+1.7)
HAT-MASA-SAM-B	52.1 (+2.7)	33.4 (+3.5)	73.4 (+1.5)	61.9 (+2.4)	46.9 (+0.7)	45.6 (+1.9)

388
 389 Table 4: Comparison of different transformation selections. *Oracle* and *YOLOX* denote the sources
 390 of the detection results, while d and d' indicate the original and projected feature dimension, re-
 391 spectively. N_{obj} and N_{id} are the total number of historical samples and trajectories, respectively. If
 392 $d' > d$, the target dimension will be set to d .
 393

#	\mathcal{D}	Method	d'	DanceTrack val			SportsMOT val		
				HOTA	AssA	IDF1	HOTA	AssA	IDF1
# 1	<i>Oracle</i>	—	d	74.9	57.3	72.0	86.2	74.7	84.0
# 2		PCA	$N_{obj} - 1$	75.1 (+0.2)	57.6 (+0.3)	72.2 (+0.2)	85.6 (-0.6)	73.9 (-0.8)	83.6 (-0.4)
# 3		PCA	$N_{id} - 1$	56.3 (-18.6)	32.5 (-24.8)	50.4 (-21.6)	69.4 (-16.8)	49.0 (-25.7)	66.4 (-17.6)
# 4		FLD	$N_{id} - 1$	79.0 (+4.1)	63.8 (+6.5)	77.0 (+5.0)	92.2 (+6.0)	85.4 (+10.7)	90.7 (+6.7)
# 5	<i>YOLOX</i>	—	d	51.1	33.4	51.0	73.7	61.5	76.6
# 6		PCA	$N_{obj} - 1$	45.3 (-5.8)	26.7 (-6.7)	40.0 (-11.0)	70.6 (-3.1)	56.4 (-5.1)	71.5 (-5.1)
# 7		PCA	$N_{id} - 1$	43.5 (-7.6)	24.6 (-8.8)	39.4 (-11.6)	61.3 (-12.4)	42.7 (-18.8)	61.4 (-15.2)
# 8		FLD	$N_{id} - 1$	57.7 (+6.6)	42.7 (+9.3)	56.7 (+5.7)	81.1 (+7.4)	74.1 (+12.6)	85.5 (+8.9)

408
 409 all existing approaches and achieves the state-of-the-art performance (66.9 HOTA). The smaller per-
 410 formance gains on hybrid-based methods can be attributed to both performance saturation and the
 411 inherent design of these trackers, which often prioritizes motion and thus limits the impact of our ap-
 412 pearance enhancements. Moreover, intricate algorithmic designs make inter-module harmonization
 413 challenging.
 414

415 **MASA.** To investigate the generalization of our method across different ReID representation spaces,
 416 we conducted experiments on MASA (Li et al., 2024a). This framework is ideal as it includes a va-
 417 riety of visual backbones (He et al., 2016; Zhou et al., 2022; Liu et al., 2024; Kirillov et al., 2023)
 418 and is pre-trained on a general-purpose segmentation dataset (Kirillov et al., 2023). The TAO (Dave
 419 et al., 2020) benchmark is introduced to serve as a general-purpose tracking scenario. Table 3 shows
 420 that our approach brings consistent and significant boosts across all tested visual backbones. How-
 421 ever, the improvements are more minor compared to Table 1 and 1. We argue that our method’s fun-
 422 damental property is to refine an existing feature space, but since MASA is not trained with tracking
 423 datasets, its representations lack the specific discriminative capability needed for our approach to
 424 distill. Furthermore, the TAO dataset (Dave et al., 2020) contains numerous object categories with
 425 low similarity to one another, which also limits the applicability of our algorithm.
 426

4.4 ABLATION STUDY

427 We verify the effectiveness of each component in this section, using the ReID-based tracker from
 428 Section 2.1 and 4.2 as the baseline. For all experiments, except those in Table 4, we use the detec-
 429 tions from the public YOLOX model (Ge et al., 2021; Cao et al., 2022). The experimental results are
 430 shown incrementally, with each table adding one component at a time. For the hyperparameter ex-
 431 plorations, the gray background indicates the default settings we determined through experiments.
 432

432 **History-Aware Transformation.** As shown in Table 4, applying the FLD-based ReID feature trans-
 433 formation, as described in Section 3.1, significantly improves tracking performance. Following the
 434 correlation analysis in Section 2.2, we visualize the change in the discriminative ability δ_{1000} of
 435 the ReID features under an oracle detection setting, as shown in Figure 2b. This serves as clear evi-
 436 dence that our history-aware transformation boosts the separability of visual representations, thereby
 437 improving tracking capabilities. For comparison, we also evaluate a PCA-based transformation in
 438 Table 4, but it resulted in a performance drop. This is because Principal Component Analysis (PCA)
 439 is designed to maximize global data variance and is oblivious to the trajectory labels, which we
 440 believe are essential for finding an optimal representation for tracking.

441
 442 Table 5: Exploration of the history length T . Table 6: Effect of the temporal decay coefficient λ_0 .
 443

T	HOTA	AssA	MOTA	IDF1
10	54.3	37.8	86.7	53.2
20	56.2	40.4	86.5	55.2
40	57.0	41.4	86.5	56.6
60	57.7	42.7	86.3	56.7
80	56.3	40.5	86.2	55.4
∞	55.3	39.2	85.1	52.2

λ_0	HOTA	AssA	MOTA	IDF1
1.00	57.7	42.7	86.3	56.7
0.95	58.5	42.5	86.8	58.2
0.90	59.3	44.8	86.9	59.8
0.80	59.1	44.7	87.0	59.6
0.60	58.1	43.2	87.0	57.9
0.40	57.8	42.8	86.9	57.1

451
 452 **History Length T .** As stated at the end of
 453 Section 3.1, we only consider ReID features
 454 from the T most recent frames. Although us-
 455 ing a too-short temporal length T decreases
 456 the credibility of the reference samples, it still
 457 provides a notable enhancement compared to
 458 the baseline tracker (54.3 vs. 51.1 HOTA), as
 459 shown in Table 5. Conversely, a too large T
 460 would incorporate outdated features, making
 461 the distribution less representative of the cur-
 462 rent state and ultimately harming performance.

463 **Temporally-Weighted Trajectory Centroid.** Following our discussion in Section 3.2 about the
 464 varying temporal importance of features, we introduce the coefficient λ_0 to weight them accordingly.
 465 Experimental results in Table 6 demonstrate that using the temporal-weighted trajectory centroid can
 466 significantly enhance tracking performance. However, it is essential to note that excessively small
 467 values of λ_0 may lead to an overreliance on recent samples, resulting in a decline in robustness.

468 **Knowledge Integration.** In Table 7, we investigate various fusion coefficients α to balance robust-
 469 ness and specialization. These results indicate that this is a trade-off art, prompting us to choose
 470 0.9 as our default setting. In addition, this supports the concept outlined in Section 3.3, valuing the
 471 complementarity of those two spaces can boost the reliability of ReID features.

473 5 CONCLUSION

474
 475 In this paper, we challenge a long-standing practice in multiple object tracking (MOT): *the direct*
 476 *adoption of appearance matching strategies from the re-identification task, an approach we argue is*
 477 *fundamentally inappropriate for tracking.* We contend that visual representations in MOT should be
 478 tailored to discriminate among the finite set in a given video sequence, as opposed to the open-set
 479 challenge. To this end, we proposed an approach that leverages the tracking history to guide an
 480 adaptive transformation of the feature space, thereby boosting its discriminability. Comprehensive
 481 experiments validate the effectiveness and versatility of our proposed approach and establish the
 482 new state-of-the-art performance. These results serve as compelling evidence that the potential of
 483 ReID features in MOT has been significantly underestimated. Therefore, we hope our findings spur
 484 a wave of research into this crucial problem, whether in the form of new training-free components
 485 or as guiding principles for developing learnable modules.

486
487

REPRODUCIBILITY STATEMENT

488
489
490
491
492
493

As stated in Section 4.2, all model weights used in our experiments are directly borrowed from public repositories (Cao et al., 2022; Yang et al., 2023b; Lv et al., 2024). Our dataset organization and evaluation procedures are all conducted using peer-reviewed and publicly available methodologies and code (Milan et al., 2016; Jonathon Luiten, 2020; Sun et al., 2022; Cui et al., 2023; Li et al., 2024a; Gao et al., 2025). To guarantee reproducibility, we will open-source the code for our final experiments and the corresponding tracker results.

494
495

THE USE OF LARGE LANGUAGE MODELS

496
497
498
499

We used Large Language Models (LLMs) for assistance with translating, polishing, and correcting the grammar of the text in this paper, as well as for generating formatted L^AT_EX code. We have also utilized the LLM assistance in some of the visualization code.

500
501

REFERENCES

502
503

Nir Aharon, Roy Orfaig, and Ben-Zion Bobrovsky. Bot-sort: Robust associations multi-pedestrian tracking. *CoRR*, abs/2206.14651, 2022.

504
505
506
507

Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking performance: The CLEAR MOT metrics. *EURASIP J. Image Video Process.*, 2008, 2008. doi: 10.1155/2008/246309.

508
509

Alex Bewley, ZongYuan Ge, Lionel Ott, Fabio Tozeto Ramos, and Ben Upcroft. Simple online and realtime tracking. In *ICIP*, pp. 3464–3468. IEEE, 2016. doi: 10.1109/icip.2016.7533003.

510
511
512
513

Jiarui Cai, Mingze Xu, Wei Li, Yuanjun Xiong, Wei Xia, Zhiwen Tu, and Stefano Soatto. Memot: Multi-object tracking with memory. In *CVPR*, pp. 8080–8090. IEEE, 2022. doi: 10.1109/cvpr52688.2022.00792.

514
515
516

Jinkun Cao, Xinshuo Weng, Rawal Khirodkar, Jiangmiao Pang, and Kris Kitani. Observation-centric SORT: rethinking SORT for robust multi-object tracking. *CoRR*, abs/2203.14360, 2022. doi: 10.1109/cvpr52729.2023.00934.

517
518
519
520
521

Xiaoyan Cao, Yiyao Zheng, Yao Yao, Hua-Peng Qin, Xiaoyu Cao, and Shihui Guo. TOPIC: A parallel association paradigm for multi-object tracking under complex motions and diverse scenes. *IEEE Trans. Image Process.*, 34:743–758, 2025. doi: 10.1109/TIP.2025.3526066. URL <https://doi.org/10.1109/TIP.2025.3526066>.

522
523
524
525

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-end object detection with transformers. In *ECCV (1)*, volume 12346 of *Lecture Notes in Computer Science*, pp. 213–229. Springer, 2020. doi: 10.1007/978-3-030-58452-8_13.

526
527

Sijia Chen, En Yu, Jinyang Li, and Wenbing Tao. Delving into the trajectory long-tail distribution for multi-object tracking. In *CVPR*, pp. 19341–19351. IEEE, 2024.

528
529
530
531

Yutao Cui, Chenkai Zeng, Xiaoyu Zhao, Yichun Yang, Gangshan Wu, and Limin Wang. SportsMOT: A large multi-object tracking dataset in multiple sports scenes. In *ICCV*, 2023. doi: 10.1109/iccv51070.2023.00910.

532
533
534

Achal Dave, Tarasha Khurana, Pavel Tokmakov, Cordelia Schmid, and Deva Ramanan. TAO: A large-scale benchmark for tracking any object. In *ECCV (5)*, volume 12350 of *Lecture Notes in Computer Science*, pp. 436–454. Springer, 2020.

535
536
537
538

Patrick Dendorfer, Hamid Rezatofighi, Anton Milan, Javen Shi, Daniel Cremers, Ian D. Reid, Stefan Roth, Konrad Schindler, and Laura Leal-Taixé. MOT20: A benchmark for multi object tracking in crowded scenes. *CoRR*, abs/2003.09003, 2020.

539

Patrick Dendorfer, Vladimir Yugay, Aljosa Osep, and Laura Leal-Taixé. Quo vadis: Is trajectory forecasting the key towards long-term multi-object tracking? In *NeurIPS*, 2022.

540 Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat gans on image synthesis. In
 541 *NeurIPS*, pp. 8780–8794, 2021.
 542

543 Yunhao Du, Zhicheng Zhao, Yang Song, Yanyun Zhao, Fei Su, Tao Gong, and Hongying Meng.
 544 Strongsort: Make deepsort great again. *IEEE Trans. Multim.*, 25:8725–8737, 2023.
 545

546 Ronald A Fisher. The statistical utilization of multiple measurements. *Annals of eugenics*, 8(4):
 547 376–386, 1938.
 548

549 Ruopeng Gao and Limin Wang. MeMOTR: Long-term memory-augmented transformer for multi-
 550 object tracking. In *Proceedings of the IEEE/CVF International Conference on Computer Vision
 (ICCV)*, pp. 9901–9910, October 2023. doi: 10.1109/iccv51070.2023.00908.
 551

552 Ruopeng Gao, Ji Qi, and Limin Wang. Multiple object tracking as id prediction. In *Proceedings of
 the Computer Vision and Pattern Recognition Conference (CVPR)*, pp. 27883–27893, June 2025.
 553

554 Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. YOLOX: exceeding YOLO series in
 555 2021. *CoRR*, abs/2107.08430, 2021.
 556

557 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 558 nition. In *CVPR*, pp. 770–778. IEEE Computer Society, 2016. doi: 10.1109/cvpr.2016.90.
 559

560 Yunzhong Hou, Zhongdao Wang, Shengjin Wang, and Liang Zheng. Adaptive affinity for associa-
 561 tions in multi-target multi-camera tracking. *IEEE Trans. Image Process.*, 31:612–622, 2022.
 562

563 Hsiang-Wei Huang, Cheng-Yen Yang, Wenhao Chai, Zhongyu Jiang, and Jenq-Neng Hwang. Ex-
 564 ploring learning-based motion models in multi-object tracking. *CoRR*, abs/2403.10826, 2024.
 565

566 Arne Hoffhues Jonathon Luiten. Trackeval. [https://github.com/JonathonLuiten/](https://github.com/JonathonLuiten/TrackEval)
 567 TrackEval

568 Tarasha Khurana, Achal Dave, and Deva Ramanan. Detecting invisible people. In *ICCV*, pp. 3154–
 569 3164. IEEE, 2021.
 570

571 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloé Rolland, Laura Gustafson, Tete
 572 Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross B. Girshick.
 573 Segment anything. In *ICCV*, pp. 3992–4003. IEEE, 2023.
 574

575 Siyuan Li, Martin Danelljan, Henghui Ding, Thomas E. Huang, and Fisher Yu. Tracking every thing
 576 in the wild. In *ECCV* (22), volume 13682 of *Lecture Notes in Computer Science*, pp. 498–515.
 577 Springer, 2022.
 578

579 Siyuan Li, Lei Ke, Martin Danelljan, Luigi Piccinelli, Mattia Segù, Luc Van Gool, and Fisher Yu.
 580 Matching anything by segmenting anything. In *CVPR*, pp. 18963–18973. IEEE, 2024a.
 581

582 Yizhe Li, Sanping Zhou, Zheng Qin, Le Wang, Jinjun Wang, and Nanning Zheng. Single-shot and
 583 multi-shot feature learning for multi-object tracking. *IEEE Trans. Multim.*, 26:9515–9526, 2024b.
 584

585 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 586 Li, Jianwei Yang, Hang Su, Jun Zhu, and Lei Zhang. Grounding DINO: marrying DINO with
 587 grounded pre-training for open-set object detection. In *ECCV* (47), volume 15105 of *Lecture
 588 Notes in Computer Science*, pp. 38–55. Springer, 2024.
 589

590 Zelin Liu, Xinggang Wang, Cheng Wang, Wenyu Liu, and Xiang Bai. Sparsetrack: Multi-object
 591 tracking by performing scene decomposition based on pseudo-depth. *CoRR*, abs/2306.05238,
 592 2023.
 593

594 Jonathon Luiten, Aljosa Osep, Patrick Dendorfer, Philip H. S. Torr, Andreas Geiger, Laura Leal-
 595 Taixé, and Bastian Leibe. HOTA: A higher order metric for evaluating multi-object tracking. *Int.
 596 J. Comput. Vis.*, 129(2):548–578, 2021. doi: 10.1007/s11263-020-01375-2.
 597

598 Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei Jiang. Bag of tricks and a strong baseline for
 599 deep person re-identification. In *CVPR Workshops*, pp. 1487–1495. Computer Vision Foundation
 600 / IEEE, 2019.

594 Run Luo, Zikai Song, Lintao Ma, Jinlin Wei, Wei Yang, and Min Yang. Diffusiontrack: Diffusion
 595 model for multi-object tracking. In *AAAI*, pp. 3991–3999. AAAI Press, 2024.

596

597 Weiyi Lv, Yuhang Huang, Ning Zhang, Ruei-Sung Lin, Mei Han, and Dan Zeng. Diffmot: A real-
 598 time diffusion-based multiple object tracker with non-linear prediction. In *CVPR*, pp. 19321–
 599 19330. IEEE, 2024.

600

601 Gerard Maggiolino, Adnan Ahmad, Jinkun Cao, and Kris Kitani. Deep oc-sort: Multi-pedestrian
 602 tracking by adaptive re-identification. *arXiv preprint arXiv:2302.11813*, 2023.

603

604 Gianluca Mancusi, Aniello Panariello, Angelo Porrello, Matteo Fabbri, Simone Calderara, and Rita
 605 Cucchiara. Trackflow: Multi-object tracking with normalizing flows. In *Proceedings of the
 606 IEEE/CVF International Conference on Computer Vision*, pp. 9531–9543, 2023. doi: 10.1109/
 607 iccv51070.2023.00874.

608

609 Tim Meinhardt, Alexander Kirillov, Laura Leal-Taixé, and Christoph Feichtenhofer. Trackformer:
 610 Multi-object tracking with transformers. In *CVPR*, pp. 8834–8844. IEEE, 2022. doi: 10.1109/
 611 cvpr52688.2022.00864.

612

613 Anton Milan, Laura Leal-Taixé, Ian D. Reid, Stefan Roth, and Konrad Schindler. MOT16: A
 614 benchmark for multi-object tracking. *CoRR*, abs/1603.00831, 2016.

615

616 Jiangmiao Pang, Linlu Qiu, Xia Li, Haofeng Chen, Qi Li, Trevor Darrell, and Fisher Yu. Quasi-
 617 dense similarity learning for multiple object tracking. In *CVPR*, pp. 164–173. Computer Vision
 618 Foundation / IEEE, 2021. doi: 10.1109/cvpr46437.2021.00023.

619

620 Pierre-François De Plaen, Nicola Marinello, Marc Proesmans, Tinne Tuytelaars, and Luc Van Gool.
 621 Contrastive learning for multi-object tracking with transformers. In *WACV*, pp. 6853–6863. IEEE,
 622 2024.

623

624 Zheng Qin, Sanping Zhou, Le Wang, Jinghai Duan, Gang Hua, and Wei Tang. Motiontrack: Learn-
 625 ing robust short-term and long-term motions for multi-object tracking. In *CVPR*, pp. 17939–
 626 17948. IEEE, 2023. doi: 10.1109/cvpr52729.2023.01720.

627

628 Ergys Ristani and Carlo Tomasi. Features for multi-target multi-camera tracking and re-
 629 identification. In *CVPR*, pp. 6036–6046. Computer Vision Foundation / IEEE Computer Society,
 630 2018. doi: 10.1109/cvpr.2018.00632.

631

632 Ergys Ristani, Francesco Solera, Roger S. Zou, Rita Cucchiara, and Carlo Tomasi. Performance
 633 measures and a data set for multi-target, multi-camera tracking. In *ECCV Workshops (2)*, volume
 634 9914 of *Lecture Notes in Computer Science*, pp. 17–35, 2016. doi: 10.1007/978-3-319-48881-3-
 635 2.

636

637 Leonardo Saraceni, Ionut Marian Motoi, Daniele Nardi, and Thomas A. Ciarfuglia. Agrisort: A
 638 simple online real-time tracking-by-detection framework for robotics in precision agriculture. In
 639 *ICRA*, pp. 2675–2682. IEEE, 2024.

640

641 Mattia Segù, Luigi Piccinelli, Siyuan Li, Yung-Hsu Yang, Bernt Schiele, and Luc Van Gool. Samba:
 642 Synchronized set-of-sequences modeling for multiple object tracking. *CoRR*, abs/2410.01806,
 643 2024.

644

645 Peize Sun, Jinkun Cao, Yi Jiang, Zehuan Yuan, Song Bai, Kris Kitani, and Ping Luo. Dancetrack:
 646 Multi-object tracking in uniform appearance and diverse motion. In *CVPR*, pp. 20961–20970.
 647 IEEE, 2022. doi: 10.1109/cvpr52688.2022.02032.

648

649 Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Au-
 650 toregressive model beats diffusion: Llama for scalable image generation. *CoRR*, abs/2406.06525,
 651 2024.

652

653 Rejin Varghese and M Sambath. Yolov8: A novel object detection algorithm with enhanced per-
 654 formance and robustness. In *2024 International conference on advances in data engineering and
 655 intelligent computing systems (ADICS)*, pp. 1–6. IEEE, 2024.

648 Yanchao Wang, Dawei Zhang, Run Li, Zhonglong Zheng, and Minglu Li. PD-SORT: occlusion-
 649 robust multi-object tracking using pseudo-depth cues. *IEEE Trans. Consumer Electron.*, 71(1):
 650 165–177, 2025.

651

652 Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and Shengjin Wang. Towards real-time multi-
 653 object tracking. In *ECCV(11)*, volume 12356 of *Lecture Notes in Computer Science*, pp. 107–122.
 654 Springer, 2020.

655

656 Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. Technical report, University
 657 of North Carolina at Chapel Hill, 1995.

658

659 Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple online and realtime tracking with a deep
 660 association metric. In *ICIP*, pp. 3645–3649. IEEE, 2017. doi: 10.1109/icip.2017.8296962.

661

662 Changcheng Xiao, Qiong Cao, Zhigang Luo, and Long Lan. Mambatrack: A simple baseline for
 663 multiple object tracking with state space model. In *ACM Multimedia*, pp. 4082–4091. ACM,
 664 2024.

665

666 Feng Yan, Weixin Luo, Yujie Zhong, Yiyang Gan, and Lin Ma. CO-MOT: boosting end-to-end
 667 transformer-based multi-object tracking via coopetition label assignment and shadow sets. In
 668 *ICLR*. OpenReview.net, 2025.

669

670 Fan Yang, Shigeyuki Odashima, Shoichi Masui, and Shan Jiang. Hard to track objects with irregular
 671 motions and similar appearances? make it easier by buffering the matching space. In *WACV*, pp.
 672 4788–4797. IEEE, 2023a. doi: 10.1109/wacv56688.2023.00478.

673

674 Mingzhan Yang, Guangxin Han, Bin Yan, Wenhua Zhang, Jinqing Qi, Huchuan Lu, and Dong Wang.
 675 Hybrid-sort: Weak cues matter for online multi-object tracking. *CoRR*, abs/2308.00783, 2023b.

676

677 Kefu Yi, Kai Luo, Xiaolei Luo, Jiangui Huang, Hao Wu, Rongdong Hu, and Wei Hao. Ucmctrack:
 678 Multi-object tracking with uniform camera motion compensation. In *AAAI*, pp. 6702–6710. AAAI
 679 Press, 2024.

680

681 Fangao Zeng, Bin Dong, Yuang Zhang, Tiancai Wang, Xiangyu Zhang, and Yichen Wei. MOTR:
 682 end-to-end multiple-object tracking with transformer. In *ECCV (27)*, volume 13687 of *Lecture
 683 Notes in Computer Science*, pp. 659–675. Springer, 2022. doi: 10.1007/978-3-031-19812-0_38.

684

685 Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng, and Wenyu Liu. Fairmot: On the
 686 fairness of detection and re-identification in multiple object tracking. *Int. J. Comput. Vis.*, 129
 687 (11):3069–3087, 2021. doi: 10.1007/s11263-021-01513-4.

688

689 Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Fucheng Weng, Zehuan Yuan, Ping Luo, Wenyu
 690 Liu, and Xinggang Wang. Bytetrack: Multi-object tracking by associating every detection box.
 691 In *ECCV (22)*, volume 13682 of *Lecture Notes in Computer Science*, pp. 1–21. Springer, 2022a.
 692 doi: 10.1007/978-3-031-20047-2_1.

693

694 Yuang Zhang, Tiancai Wang, and Xiangyu Zhang. Motrv2: Bootstrapping end-to-end multi-object
 695 tracking by pretrained object detectors, 2022b.

696

697 Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Tracking objects as points. In *ECCV (4)*,
 698 volume 12349 of *Lecture Notes in Computer Science*, pp. 474–490. Springer, 2020.

699

700 Xingyi Zhou, Rohit Girdhar, Armand Joulin, Philipp Krähenbühl, and Ishan Misra. Detecting
 701 twenty-thousand classes using image-level supervision. In *ECCV (9)*, volume 13669 of *Lecture
 702 Notes in Computer Science*, pp. 350–368. Springer, 2022.

703

704 Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable DETR:
 705 deformable transformers for end-to-end object detection. In *ICLR*. OpenReview.net, 2021.

702 A RELATED WORK
703

704 **Tracking-by-Detection** methods decouple the multiple object tracking (MOT) task into two sub-
705 tasks: object detection and data association. While a minority of studies (Khurana et al., 2021) have
706 explored customized detection methods, the vast majority of research (Zhou et al., 2020; Zhang et al.,
707 2022a; Mancusi et al., 2023; Liu et al., 2023; Saraceni et al., 2024) has focused on the design of the
708 target association algorithm. In this process, researchers model trajectories and measure affinities
709 based on diverse cues. For visual appearance, most methods (Aharon et al., 2022; Maggiolino et al.,
710 2023; Yang et al., 2023b; Lv et al., 2024) directly utilize off-the-shelf ReID models (Luo et al.,
711 2019) to extract features. While some approaches (Zhang et al., 2021; Wang et al., 2020; Plaen
712 et al., 2024) employ custom-designed extractors, they still adhere to the fundamental principles
713 and supervision methods of traditional ReID methods (Ristani & Tomasi, 2018; Luo et al., 2019).
714 Regarding location information, the most classic method (Bewley et al., 2016; Zhang et al., 2022a)
715 is to use the Kalman filter (Welch et al., 1995) for linear estimation of the motion. To handle non-
716 linear dynamics (Sun et al., 2022; Cui et al., 2023) and other complex cases, recent methods have
717 introduced many tailored rules (Cao et al., 2022; Du et al., 2023; Yang et al., 2023b; Yi et al.,
718 2024) or adopted learnable modules for motion prediction (Dendorfer et al., 2022; Qin et al., 2023;
719 Luo et al., 2024; Lv et al., 2024; Xiao et al., 2024; Huang et al., 2024). Many approaches (Wojke
720 et al., 2017; Du et al., 2023; Maggiolino et al., 2023; Yang et al., 2023b; Lv et al., 2024) also fuse
721 the two aforementioned cues together to fully leverage their respective advantages. Furthermore,
722 some other methods introduce even more information modalities, such as Bird’s-Eye-View (BEV)
723 perspectives (Dendorfer et al., 2022) and depth information (Aharon et al., 2022; Mancusi et al.,
724 2023; Wang et al., 2025). Most relevant to our work are several studies that aim to customize the
725 ReID branch of the MOT task. Hou et al. (2022) seeks to mitigate the mismatch between its global
726 temporal training and local temporal inference, Chen et al. (2024) performs group-wise similarity
727 calculation to address the long-tail distribution problem, Li et al. (2024b) helps newborn targets
728 acquire more robust representations, Cao et al. (2025) sharpens the distinction in similarity. These
729 methods do not focus on the discriminability of the representation space or leverage the information
730 difference between intra- and inter-trajectory data. Therefore, they differ from our method in both
731 core philosophy and primary contribution.

732 **End-to-End MOT** models are emerging forces, bypassing hand-crafted algorithms (Zhang et al.,
733 2022a; Cao et al., 2022) to formulate multi-object tracking in an end-to-end manner (Zeng et al.,
734 2022; Gao et al., 2025). A typical form is to expand DETR (Carion et al., 2020; Zhu et al., 2021) into
735 MOT tasks, representing different trajectories through the propagation of track queries (Zeng et al.,
736 2022; Meinhardt et al., 2022). Follow-up methods incorporated temporal information (Cai et al.,
737 2022; Gao & Wang, 2023; Segù et al., 2024) and mitigated the imbalance of supervision signals
738 (Zhang et al., 2022b; Yan et al., 2025), leading to better tracking performance. Nevertheless, end-
739 to-end methods still face the challenges of high computational costs and a strong need for training
740 data, which will require future research.

741 B EXPERIMENTAL DETAILS
742

743 B.1 REID FEATURE DISCRIMINATIVE CAPABILITY

744 As stated in Section 2.2, we adopt the metric δ_{1000} to quantify the discriminative capability of the
745 representation space. This metric is derived from individual discriminative scores that are computed
746 for each detection. Formally, for the i -th detection at time step t , we calculate the similarities against
747 all history trajectories, as specified in Equation 2. A discriminative score $\delta(t, i)$ for this detection is
748 then defined as:

$$750 \quad \delta(t, i) = \text{Sim}^+(t, i, \tau_j) - \max_j [\text{Sim}^-(t, i, \tau_j)], \quad (9)$$

751 where $\text{Sim}^+(t, i, \tau_j)$ denotes the similarity to the corresponding positive sample (the i -th detection
752 belongs to the j -th trajectory), and $\text{Sim}^-(t, i, \tau_j)$ denotes the similarity to a negative sample. We
753 select the most similar negative sample using $\max_j [\text{Sim}^-(t, i, \tau_j)]$, because the most confusing
754 example directly determines whether a misallocation of identities will occur.

756 After calculating all valid $\delta(t, i)$ within a video sequence, we aggregate them to obtain the overall
 757 discriminative measure. Since tracking errors like ID switches occur in a very small portion of a
 758 long video (thousands of frames), we select the 1000 most challenging cases from all discriminative
 759 scores. In practice, we sort the scores in ascending order and select the smallest 1000 samples
 760 to compute the averaging score δ_{1000} , since these items are the most likely to be misassigned in
 761 tracking.

762 B.2 REID-BASED TRACKER: FASTREID-MOT

763 As stated in Section 2.1 and 4.2, our baseline FastReID-MOT relies solely on ReID features for
 764 tracking. To keep the baseline straightforward, we implement a single-stage online tracker with a
 765 minimal set of hyperparameters:

- 766 • λ , the feature update ratio in Equation 1.
- 767 • θ_{det} , detections with a confidence exceeding this threshold are considered by the tracker.
- 768 • θ_{sim} , identity assignments with a similarity score exceeding this threshold are considered
 769 as valid choices.
- 770 • θ_{new} , unmatched detections with a confidence exceeding this threshold are considered as
 771 newborn targets.
- 772 • θ_{miss} , a trajectory is terminated if the number of consecutive missing frames is greater than
 773 this threshold.

774 All the aforementioned hyperparameters are tuned using a grid search on the corresponding datasets
 775 to maximize the baseline’s performance. In subsequent ablation experiments, we do not adjust these
 776 hyperparameters to ensure that the observed improvements are purely attributable to our proposed
 777 method.

783 B.3 MASA DETAILS

784 In the MASA (Li et al., 2024a) inference process, we simplified the original bi-softmax matching
 785 procedure Li et al. (2024a); Pang et al. (2021) to the simple cosine similarity combined with the Hun-
 786 garian algorithm (as we detailed in Section 2.1 and Equation 2), and tuned some hyperparameters,
 787 which resulted in a slight improvement in tracking performance across all datasets. For our hyper-
 788 parameters, we primarily adhered to the default settings outlined in Section 4.4, with the exception
 789 of adjusting α to 0.5 to better accommodate MASA’s feature representation.

792 B.4 ORACLE SETTING

793 In Table 4 and Figure 2, we leverage an *oracle setting* to focus our analysis on tracking performance
 794 without the influence of other factors. In these experiments, we use the bounding boxes’ coordinates
 795 from the ground truth files as the detection results and set all confidence scores to 1.0. Even under
 796 these ideal conditions, the Detection Accuracy (DetA) will not reach 100.0, as a result of the metric’s
 797 calculation method (Luiten et al., 2021).

799 B.5 ABLATION STUDY

800 As we stated in Section 4.4, the ablation experiments are conducted incrementally, with each table
 801 adding one component at a time:

- 802 • In Table 4, we apply $T = 60$, $\lambda_0 = 1.0$ and $\alpha = 1.0$, which means we do not use the
 803 *temporally-weighted trajectory centroid* and *knowledge integration*.
- 804 • In Table 5, we apply $\lambda_0 = 1.0$ and $\alpha = 1.0$, which means we do not use the *temporally-*
 805 *weighted trajectory centroid* and *knowledge integration*.
- 806 • In Table 6, we apply $T = 60$ and $\alpha = 1.0$, which means we do not use the *knowledge*
 807 *integration*.

810
811 Table 8: Performance comparison with state-of-the-art methods on MOT17 (Milan et al., 2016). The
812 best and second-best results are denoted in **bold** and underline, respectively.
813

Methods	HOTA	DetA	AssA	IDF1
<i>motion-based:</i>				
ByteTrack (Zhang et al., 2022a)	63.1	64.5	62.0	77.3
OC-SORT (Cao et al., 2022)	63.2	63.2	63.4	77.5
C-BIoU (Yang et al., 2023a)	64.1	64.8	63.7	79.7
<i>reid-based:</i>				
QDTrack (Pang et al., 2021)	53.9	55.6	52.7	66.3
ContrasTR (Plaen et al., 2024)	58.9	—	—	71.8
FastReID-MOT (baseline)	61.5	63.4	60.0	73.5
HAT-FastReID-MOT \dagger	63.5	64.0	63.2	77.5
<i>hybrid-based:</i>				
FairMOT (Zhang et al., 2021)	59.3	60.9	58.0	72.3
DeepSORT (Wojke et al., 2017)	61.2	63.1	59.7	74.5
MixSort-OC (Cui et al., 2023)	63.4	63.8	63.2	77.8
DiffMOT (Lv et al., 2024)	64.5	64.7	64.6	79.3
OC-SORT-ReID	64.1	64.4	64.0	79.0
HAT-OC-SORT-ReID	64.2	64.4	64.1	79.2

815
816 Figure 4: Comparison of ReID separability on DanceTrack (Sun et al., 2022), SportsMOT (Cui
817 et al., 2023), and MOT17 (Milan et al., 2016) based on δ_{1000} .
818

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

- In table 7, we apply $T = 60$ and $\lambda_0 = 0.9$, which means both proposed components are used in these experiments.

Together, these settings make up our default configuration ($T = 60$, $\lambda_0 = 0.9$, $\alpha = 0.9$) and are applied uniformly to all datasets as the default, as mentioned in Section 4.3 and 4.4.

B.6 VISUALIZATION OF REID FEATURES

To qualitatively evaluate the discriminative capability of ReID features, we visualize feature similarities both within and across sequences. In Figure 1a, we show the features of objects in 15 consecutive frames of a single video sequence, projected to a two-dimensional space using Principal Component Analysis (PCA). In Figure 1b, we randomly select 10 sequences from the DanceTrack dataset (Sun et al., 2022) and visualize features extracted from 40 consecutive frames of each sequence, also projected via PCA.

864 Table 9: Performance comparison with state-of-the-art methods on the MOT20 validation set. The
 865 best results are denoted in **bold**.

Methods	HOTA	DetA	AssA	MOTA	IDF1
Deep OC-SORT (Maggiolini et al., 2023)	59.5	–	58.2	–	76.3
Hybrid-SORT-ReID (Yang et al., 2023b)	60.7	61.6	60.0	74.0	78.4
FastReID-MOT	57.7	61.7	54.1	74.5	72.4
HAT-FastReID-MOT	61.2	62.3	60.4	75.0	78.8

874 C MORE RESULTS

875 C.1 MOT17

878 In Table 8, we present our experimental results on the MOT17 (Milan et al., 2016) dataset. Due to
 879 the submission limits of the MOT17 evaluation server, we built our hybrid-based tracking using only
 880 the classic OC-SORT (Cao et al., 2022) algorithm. Compared to our baseline (FastReID-MOT), our
 881 method yields a significant performance gain (2.0 HOTA and 3.2 AssA), though the margin is not
 882 as large as on other benchmarks (Sun et al., 2022; Cui et al., 2023). We attribute this to the fact
 883 that the MOT17 dataset, consisting solely of pedestrians, has high inherent target discriminability
 884 (*e.g.*, distinct clothing colors and styles), which limits the room for our method to make a greater
 885 impact. In the hybrid-based experiments, we do not achieve a highly satisfactory performance. On
 886 the one hand, prior studies (Zhang et al., 2022a; Yang et al., 2023a) have shown that the simple
 887 motion patterns within MOT17 allow the motion prediction module to take a dominant role, thereby
 888 constraining the influence of the ReID branch. Our observations in Figure 4, based on δ_{1000} , also
 889 confirm this. The ReID features of MOT17 targets show significantly greater separability, despite
 890 the dataset containing up to ten times more targets per frame compared to DanceTrack (Sun et al.,
 891 2022) and SportsMOT (Cui et al., 2023). On the other hand, the overly engineered fusion of multiple
 892 modules and the unreliable validation set split further increased the difficulty of optimizing the entire
 893 method. Despite these challenges, we still outperform MixSort-OC (Cui et al., 2023) that also uses
 894 OC-SORT as the framework, and are slightly behind Lv et al. (2024), which is based on learnable
 895 motion estimation.

896 To summarize, although our method does not achieve flawless results on MOT17, the consistent
 897 performance gains across experiments robustly demonstrate its effectiveness and applicability in
 898 diverse scenarios. Coupled with its outstanding performance across various other scenarios (Sun
 899 et al., 2022; Cui et al., 2023; Dave et al., 2020) in Table 1, 2 and 3, our method still holds enough
 900 promise and is attractive for future exploration.

901 C.2 MOT20

903 We also evaluate our method on MOT20 (Dendorfer et al., 2020). To ensure fairness, all algo-
 904 rithms are implemented using the same public FastReID (Luo et al., 2019) weight. As reported in
 905 Table 9, our proposed method consistently outperforms both advanced trackers and our FastReID-
 906 MOT baseline. These results demonstrate the effectiveness of the proposed history-aware feature
 907 transformation under crowded scenes, and further validate the generalization ability of our method.

909 C.3 EXTENDED EVALUATION WITH ADDITIONAL METRICS

911 To provide a more comprehensive and fine-grained evaluation of tracking performance, we report
 912 an extended set of metrics in Table 10. These complementary metrics allow a more thorough assess-
 913 ment of detection accuracy, association robustness, and identity consistency.

915 C.4 COMPARISON WITH END-TO-END METHODS

917 End-to-end (E2E) trackers and heuristic tracking-by-detection methods follow fundamentally dif-
 918 ferent paradigms, which makes direct comparisons inherently unfair and scenario-dependent. To

918
 919 Table 10: Detailed performance comparison with state-of-the-art methods on the Dancetrack test
 920 set. By default, higher values indicate better performance, while metrics marked with \downarrow denote that
 921 lower values are better.

Methods	HOTA	DetA	AssA	LocA	MOTA	IDF1	IDR	IDP	IDTP	IDFN \downarrow	IDFP \downarrow
<i>motion-based:</i>											
ByteTrack (Zhang et al., 2022a)	47.7	71.0	32.1	-	89.6	53.9	-	-	-	-	-
DiffusionTrack (Luo et al., 2024)	52.4	82.2	33.5	-	89.3	47.5	-	-	-	-	-
OC-SORT (Cao et al., 2022)	55.1	80.3	38.3	-	92.0	54.6	-	-	-	-	-
C-BIoU (Yang et al., 2023a)	60.6	81.3	45.4	-	91.6	61.6	-	-	-	-	-
<i>ReID-based:</i>											
QDTrack (Pang et al., 2021)	54.2	80.1	36.8	-	87.7	50.4	-	-	-	-	-
FastReID-MOT (our baseline)	50.6	81.1	31.6	92.5	90.3	50.4	48.6	52.4	140635	148531	127941
HAT-FastReID-MOT	58.6	81.3	42.3	92.6	89.6	57.9	55.7	60.4	161074	128092	105783
HAT-FastReID-MOT \dagger	61.2	81.6	46.0	92.7	89.7	61.1	58.7	63.7	169663	119503	96884
<i>hybrid-based:</i>											
FairMOT (Zhang et al., 2021)	39.7	66.7	23.8	-	82.2	40.8	-	-	-	-	-
DeepSORT (Wojke et al., 2017)	45.6	71.0	29.7	-	87.8	47.9	-	-	-	-	-
StrongSORT (Du et al., 2023)	55.6	80.7	38.6	-	91.1	55.2	-	-	-	-	-
DiffMOT (Lv et al., 2024)	62.3	82.5	47.2	-	92.8	63.0	-	-	-	-	-
Hybrid-SORT-ReID (Yang et al., 2023b)	65.7	-	-	-	91.8	67.4	-	-	-	-	-
ByteTrack-ReID	52.4	71.0	38.7	85.1	87.9	60.4	58.2	62.7	168175	120991	99897
HAT-ByteTrack-ReID	56.1	71.4	44.2	85.1	88.5	65.7	63.6	68.0	183838	105328	86371
OC-SORT-ReID	60.8	81.0	45.7	92.4	90.6	63.5	61.2	65.9	177073	112093	91589
HAT-OC-SORT-ReID	64.6	81.5	51.3	92.6	90.3	67.7	65.1	70.4	188348	100818	79266
HAT-Hybrid-SORT-ReID	66.9	81.5	55.0	92.6	90.5	71.3	68.7	74.2	198722	90444	69211

944
 945 Table 11: Performance comparison with end-to-
 946 end methods on the Dancetrack test set.

Methods	HOTA	DetA	AssA
<i>end-to-end:</i>			
MOTR (Zeng et al., 2022)	54.2	73.5	40.2
MeMOTR (Gao & Wang, 2023)	63.4	77.0	52.3
CO-MOT (Yan et al., 2025)	65.3	80.1	53.5
SambaMOTR (Segù et al., 2024)	67.2	78.8	57.5
MOTIP (Gao et al., 2025)	69.6	80.4	60.4
<i>heuristic:</i>			
HAT-ByteTrack-ReID	56.1	71.4	44.2
HAT-FastReID-MOT	58.6	81.3	42.3
HAT-FastReID-MOT \dagger	61.2	81.6	46.0
HAT-OC-SORT-ReID	64.6	81.5	51.3
HAT-Hybrid-SORT-ReID	66.9	81.5	55.0

963
 964 provide a complete perspective, we nevertheless report comparisons with representative E2E meth-
 965 ods on both DanceTrack and SportsMOT.

966
 967 On DanceTrack, our method achieves a HOTA score of 66.9, which is competitive with recent E2E
 968 approaches, exceeding CO-MOT(Yan et al., 2025) and being comparable to SambaMOTR(Segù
 969 et al., 2024). On SportsMOT, our method significantly outperforms all existing published E2E
 970 trackers, e.g., 81.2 versus 72.6 of MOTIP(Gao et al., 2025), demonstrating a clear advantage. These
 971 results indicate that neither E2E nor heuristic method uniformly dominate across all datasets. In-
 972 stead, their relative effectiveness is highly scenario-dependent. Our method demonstrates strong
 973 competitiveness against state-of-the-art E2E models on DanceTrack and achieves decisive superiority
 974 on SportsMOT, further validating the practical value and versatility of the proposed framework.

Table 12: Performance on the SportsMOT test set. Gray results denote joint training involving the validation set of SportsMOT.

Methods	HOTA	DetA	AssA
<i>end-to-end:</i>			
TrackFormer (Meinhardt et al., 2022)	63.3	66.0	61.1
MeMOTR (Gao & Wang, 2023)	68.8	82.0	57.8
MOTIP (Gao et al., 2025)	72.6	83.5	63.2
<i>heuristic:</i>			
HAT-ByteTrack-ReID	72.4	77.3	67.8
HAT-FastReID-MOT	78.1	87.3	69.9
HAT-FastReID-MOT \dagger	78.9	87.4	71.3
HAT-OC-SORT-ReID	81.2	87.2	75.6
HAT-FastReID-MOT \dagger	80.8	89.4	73.1
HAT-OC-SORT-ReID	82.4	89.3	76.1

(a) Significant and reliable positive correlation between discriminability and tracking performance.

(b) Our transformation improves performance by enhancing feature discriminative capability.

Figure 5: Correlation between ReID feature discriminability δ_{1000} and tracking accuracy AssA on SportsMOT (Cui et al., 2023).

C.5 INFERENCE SPEED

Given the detection results (without the latency of detectors), our method (including the ReID model (Luo et al., 2019)) achieves an inference speed of 22.7 FPS, compared to 46.5 FPS for the baseline, on DanceTrack (Sun et al., 2022) using an NVIDIA RTX A5000 GPU and an AMD Ryzen 9 5900X CPU. Although this meets the requirements for near real-time tracking, we must point out two main challenges that remain for achieving faster inference.

Based on our experiments, nearly all of the additional latency originates from the computation of eigenvalues and eigenvectors, as this operation is on the CPU (with `scipy.linalg.eigh` (`S_B`, `S_W`)), which is inherently inefficient for matrix calculations. We explored some alternative GPU-based packages like PyTorch, JAX, and CuPy. These packages offer CUDA acceleration for eigenvector computations (`eigh()` function). However, they lack an interface for generalized eigenvalue solving in `eigh()` (e.g., discussed in #5461 issue¹ in the official repository of JAX, it only accepts one matrix for the eigenvalue calculation), which is a feature provided by SciPy and used for FLD solution. Transforming the input into a format acceptable for these functions incurs additional computational overhead and results in a loss of precision. If the same interface can be used, we estimate, based on experience, that it would result in a $4\times$ to $10\times$ speedup.

Moreover, the redundancy in feature dimensions further exacerbates this issue (2048 from FastReID (Luo et al., 2019) vs. 256 from MASA (Li et al., 2024a)), since latency increases with dimension count. This issue could be mitigated by either employing other dimensionality reduction methods or by reducing the output dimension of the ReID feature head during the training phase.

In summary, we consider that addressing this operator issue falls beyond the scope of this paper as it pertains to a complicated engineering problem.

C.6 VISUALIZATIONS

C.6.1 DISCRIMINATIVE CAPABILITY ANALYSIS ON SPORTSMOT

As stated in Section 2.2, we observe a significant and reliable positive correlation between the discriminative capability (δ_{1000}) of ReID features and the object association accuracy (AssA) (Luiten et al., 2021) on DanceTrack (Sun et al., 2022). To further examine the generality of this relationship, we extend the analysis to the SportsMOT dataset (Cui et al., 2023). As shown in Figure 5a, the visualizations on SportsMOT also demonstrate a consistently positive and statistically meaningful correlation between δ_{1000} and AssA, in agreement with the findings on DanceTrack in Figure 2a. It strongly supports our direction: improving discriminative capability to boost tracking performance.

¹<https://github.com/jax-ml/jax/issues/5461>

Figure 6: **Visualization of ReID features.** \bullet represents the historical features and \times indicates the current features. Compared to the other two spaces, the FLD-projected space shows better differentiation of trajectories.

Figure 5b validates that our transformation can enhance feature discriminability to improve tracking performance on SportsMOT (Cui et al., 2023). This result, echoing the findings in Figure 2b, further substantiates our core hypothesis.

C.7 VISUALIZATION OF REID FEATURES

To further assess the impact of feature transformation on ReID discriminability, we visualize the features in different linear projection spaces in Figure 6. Features transformed by FLD exhibit clearer inter-trajectory separation than those produced by PCA or the original space. Taken together, the quantitative gains reported in Table 4 and the qualitative improvements observed in the visualizations indicate that incorporating historical trajectory information into the projection step is a principled and effective strategy for improving multiple object tracking: historical trajectories constitute an invaluable supervisory signal for representation selection and should therefore be exploited in the reasoning pipeline rather than disregarded.

D LIMITATIONS

While our method has yielded encouraging results, there are some limitations and concerns that need to be pointed out.

Hybrid-based Tracker. While our method demonstrates significant improvements for ReID-based trackers, its gains on hybrid-based methods are somewhat limited. Besides the saturated metrics and overly complex algorithmic design discussed in Section 4.3, a deeper, more fundamental bias lies at the core: current hybrid-based trackers prioritize location information. For instance, in existing hybrid-based methods (Maggiolino et al., 2023; Yang et al., 2023b; Lv et al., 2024), the assignment stage often relies entirely or heavily on the IoU metric. This leads to the ReID information being either overlooked or not sufficiently trusted, thereby creating a disconnect between the ReID branch and performance improvement. Our method enhances the trustworthiness of ReID features, which may inspire future hybrid-based methods to develop ReID-first or more ReID-reliant trackers. We believe this could significantly alter the algorithmic logic of existing trackers, which we leave for future work to explore.

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

End-to-End Method. A potential concern is that our method cannot be applied to state-of-the-art end-to-end models (Segù et al., 2024; Yan et al., 2025; Gao et al., 2025). First, we argue that heuristic and end-to-end methods represent two distinct paths to the same goal, with no inherent superiority of one over the other, a common phenomenon in computer vision (Carion et al., 2020; Ge et al., 2021; Dhariwal & Nichol, 2021; Sun et al., 2024). Therefore, our proposed method does not need to compete directly with end-to-end approaches, and its inability to serve them is acceptable. This does not diminish the value of our method. Second, while our proposed history-aware transformation cannot be directly applied to end-to-end methods (*e.g.*, track queries), we believe it offers a valuable philosophical insight. Specifically, the observation that the information disparity between intra- and inter-trajectory features in historical tracklets can help a model better distinguish different tracks and thus improve tracking performance. This insightful conclusion might help guide the design of trainable or end-to-end models, which could potentially enable our ideas to extend beyond the realm of heuristic algorithms.