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ABSTRACT

In Multiple Object Tracking (MOT), Re-identification (ReID) features are widely
employed as a powerful cue for object association. However, they are often
wielded as a one-size-fits-all hammer, applied uniformly across all videos through
simple similarity metrics. We argue that this overlooks a fundamental truth: MOT
is not a general retrieval problem, but a context-specific task of discriminating tar-
gets within a single video. To this end, we advocate for the adjustment of visual
features based on the context specific to each video sequence for better adapta-
tion. In this paper, we propose a history-aware feature transformation method that
dynamically crafts a more discriminative subspace tailored to each video’s unique
sample distribution. Specifically, we treat the historical features of established
trajectories as context and employ a tailored Fisher Linear Discriminant (FLD)
to project the raw ReID features into a sequence-specific representation space.
Extensive experiments demonstrate that our training-free method dramatically en-
hances the discriminative power of features from diverse ReID backbones, result-
ing in marked and consistent gains in tracking accuracy. Our findings provide
compelling evidence that MOT inherently favors context-specific representation
over the direct application of generic ReID features. We hope our work inspires
the community to move beyond the naive application of ReID features and to-
wards a deeper exploration of their purposeful customization for MOT. Our code
will be released.

1 INTRODUCTION

Multiple Object Tracking (MOT) is a fundamental computer vision task that aims to detect objects
and maintain their identities across video frames. Its primary goal is to generate a distinct trajectory
for each target by associating its corresponding detections over time. As a critical component for
understanding dynamic scenes, MOT serves as an essential prerequisite for a wide range of down-
stream applications, such as autonomous driving, human behavior analysis, trajectory forecasting,
and public surveillance.

The tracking-by-detection paradigm (Bewley et al., 2016; Zhang et al., 2022a; Cao et al., 2022) has
long been the dominant and most widely adopted approach in the field of multiple object tracking.
According to the task definition, it decouples the complex tracking problem into two sequential
subtasks: first, an object detector localizes all targets within each frame, and second, an association
algorithm links these detections across frames to form individual trajectories. As the former step
is well-addressed by powerful detectors (Ge et al., 2021; Varghese & Sambath, 2024), the crux of
this paradigm lies in the association stage. To solve this association problem, most methods (Zhang
et al., 2021; Cao et al., 2022; Dendorfer et al., 2022) model existing trajectories with discriminative
cues and then allocate identities by minimizing the matching cost.

Given that distinct targets often exhibit unique visual characteristics, appearance has emerged as a
powerful and prevalent discriminative feature for trajectory modeling. In practice, visual features
are typically extracted using off-the-shelf Re-Identification (ReID) models (Luo et al., 2019), and
a cost matrix is then formulated by the cosine distance. Despite its demonstrated success (Wojke
et al., 2017; Zhang et al., 2021; Aharon et al., 2022; Yang et al., 2023b), a latent contradiction
persists within this paradigm. According to the definition, the goal of a general ReID model is to
learn a universal feature representation capable of distinguishing any given identity from a large,
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(a) High similarity between the ReID features of different
trajectories can create potential association ambiguity.

(b) ReID features of individual sequences form
compact clusters in the original space.

Figure 1: Visualization of ReID features in the original representation space (Luo et al., 2019).

open set. In contrast, the challenge within MOT is to discriminate only between the limited set of
targets appearing in a specific video, which constitutes a more nuanced, expert-level requirement.
As illustrated in Figure 1a, targets within the same video sequence always exhibit a high degree of
similarity, making them difficult to distinguish in a generic, globally-trained feature space (Luo et al.,
2019). Furthermore, this intra-sequence similarity causes their representations to cluster within a
confined subspace of the original space, leading to redundancy, as shown in Figure 1b. Based on the
foregoing observations, a natural question arises: can we seek a specialized representation subspace
for the MOT task, one that is more focused on distinguishing identities within the constrained set of
a given sequence?

In this paper, we first confirm the significant influence of representation discriminability on track-
ing performance. Accordingly, we posit that an ideal representation space should be structured for
each sequence to minimize intra-trajectory distances while maximizing inter-trajectory distances.
Such a configuration would effectively increase the separability between positive and negative pairs,
thereby enhancing the tracking ability. Coincidentally, this principle is conceptually analogous to
the objective of Fisher Linear Discriminant (FLD) (Fisher, 1938), where trajectories are viewed as
different categories. Since tracking is an online, continuous inference process, the established his-
torical context can be regarded as a dynamic approximation of the data distribution for the current
sequence. Building on these discussions, in practice, we feed the existing trajectories as conditional
input into the FLD algorithm. By computing the closed-form solution, we derive a projection matrix
that maps the original features onto a more discriminative subspace tailored for separating differ-
ent trajectories. The experiment results reveal that this simple yet effective feature transformation
substantially enhances discriminability and boosts overall tracking performance. Nevertheless, we
revisit this process and argue that MOT possesses some task-specific demands that should not be
overlooked. Firstly, since a target’s features gradually change over time in online tracking, we use
a temporally weighted average to construct the trajectory’s center, rather than the naı̈ve averaging.
This makes the resulting representation better suited for the similarity assessment required at the cur-
rent timestep. Secondly, historical trajectories are not always reliable due to occlusions and tracking
errors. Moreover, the tracker need to handle newborn objects, which are not considered in the trans-
formed space. These challenges underscore the importance of retaining the original feature space
with its strong robustness and generalization capabilities. To this end, we combine the similarity
scores from both the general and specialized representations, thereby leveraging the complementary
strengths of each.

To clearly validate the impact of our ReID feature transformation, our experiments are primarily
conducted on trackers that rely solely on appearance (Luo et al., 2019; Li et al., 2024a). This
approach minimizes the complex designs and potential interference introduced by other tracking
cues (Welch et al., 1995; Bewley et al., 2016). In practice, we build a ReID-based tracker upon
the most widely-used ReID model (Luo et al., 2019) in the MOT community (Yang et al., 2023b;
Lv et al., 2024) and validate the effectiveness of our components. Relying solely on the ReID cue,
our method achieves significant performance improvements. Remarkably, in some scenarios (Cui
et al., 2023), our algorithm substantially outperforms methods that combine multiple clues (Aharon
et al., 2022; Cui et al., 2023; Lv et al., 2024), establishing a new state-of-the-art result. This finding
strongly indicates that the full potential of appearance information has been underestimated in past
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research. We also confirm the generalization capability of our proposed method by applying it to Li
et al. (2024a) with various visual encoders (He et al., 2016; Zhou et al., 2022; Kirillov et al., 2023;
Liu et al., 2024), observing stable performance boosts across every case. Additionally, we conduct
experiments on several hybrid-based methods (Cao et al., 2022; Yang et al., 2023b). The results
demonstrate that our approach can be seamlessly integrated into these advanced trackers, achieving
state-of-the-art performance.

To sum up, our main contribution include:

• Following our analysis in Section 2.2, we equip Fisher Linear Discriminant with historical
tracklet supervision to transform ReID features, enhancing their discriminability.

• To address the practical needs of MOT task, we propose two customized components,
temporally-weighted trajectory centroid (Section 3.2) and knowledge integration (Section
3.3), which further improve our tracking performance.

• To prove the effectiveness of our method, we conduct extensive experiments on ReID-based
methods, demonstrating consistent performance gains across diverse scenarios (Table 1,
2 and 3). We also validate its versatility by seamlessly integrating it into hybird-based
trackers, pushing their state-of-the-art performance even further.

2 PRELIMINARY

2.1 REID-BASED TRACKER

The tracking-by-detection paradigm (Bewley et al., 2016; Zhang et al., 2022a; Cao et al., 2022) treats
multiple object tracking as a two-step process. First, an object detector D is employed to localize all
targets in a given frame It. Subsequently, these detections are associated with established trajectories
based on a cost matrix or used to initialize new tracks. Following our discussion in Section 1, we
simplify our experimental scope by concentrating on trackers that use only appearance cues for data
association. Given an object bounding box, bt,i, in the t-th frame, a feature extraction network Φ is
applied to obtain the corresponding visual feature ft,i, often referred to as a re-identification (ReID)
feature. It is used to represent the appearance of each detection and to construct the feature of each
trajectory. In practice, while numerous methods (Wojke et al., 2017; Maggiolino et al., 2023; Yang
et al., 2023b) for trajectory modeling exist, we adopt the widely-used Exponential Moving Average
(EMA) update strategy due to its proven efficiency and effectiveness, as formulated below:

f̂ t,τj = λft,τj + (1− λ)f̂ t−1,τj , (1)

where f̂ t−1,τj represents the appearance feature of track τj aggregated up to timestep t − 1, ft,τj

is the ReID feature obtained from the extractor Φ at the current frame It, and λ is a momentum
coefficient, typically set to a small value close to 0, that controls the update ratio.

Once the aforementioned features are prepared, we compute the matching cost for each detection-
trajectory pair using a similarity metric. A common practice is to use the cosine similarity, which is
calculated as follows:

Cost(t, i, τj) = 1− Sim(t, i, τj) = 1−
ft,i · f̂ t−1,τj

∥ft,i∥∥f̂ t−1,τj∥
. (2)

Accordingly, a cost matrix is constructed for the current frame based on all potential assignments.
The Hungarian algorithm is then employed to find the globally optimal matching solution. Following
this, the features of the matched tracks are updated according to Equation 1, in preparation for the
next time step.

2.2 DISCRIMINATIVE CAPABILITY ANALYSIS

As stated in Section 2.1, since the tracker relies solely on appearance features for discrimination, it
is intuitive to assume that the discriminative power of the ReID features is directly correlated with
the tracking performance.
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(a) Significant and reliable positive correlation be-
tween discriminability and tracking performance.

+6.5

(b) Our transformation improves performance by en-
hancing feature discriminative capability.

Figure 2: Correlation between ReID feature discriminability δ1000 and tracking accuracy AssA on
DanceTrack (Sun et al., 2022). Similar analysis on Cui et al. (2023) can be found in Figure 5.

To validate this hypothesis, it is necessary to quantify the discriminative capability of the representa-
tion space. Since the tracking process relies on cosine similarity for affinity measurement, as shown
in Equation 2, we also adopt it as the cornerstone for evaluating the discriminability. To be more
specific, we measure the discriminative power for the i-th detection in frame t using a score, δ(t, i).
This score is defined as the similarity margin between the detection’s positive track and its most
confusing negative track. Furthermore, since tracking failures are minority events within a given se-
quence, we focus on the most challenging cases. Therefore, for each video, we select the 1000 worst
scores and compute their average. This metric, termed δ1000, is used to quantify the discriminative
ability of the ReID representations for a specific sequence (details in Section B.1). Accordingly, we
conduct a statistical analysis on the representative dataset DanceTrack (Sun et al., 2022), as shown in
Figure 2a. The results reveal a significant and reliable positive correlation between the discrimina-
tive capability (δ1000) of the ReID features and the object association accuracy (AssA (Luiten et al.,
2021)). This conclusion provides a clear motivation for our work: to boost tracking performance by
explicitly enhancing the discriminability of the representation space, described in Section 3.

2.3 FISHER LINEAR DISCRIMINANT

Fisher Linear Discriminant (FLD) (Fisher, 1938), also widely known as Linear Discriminant Analy-
sis (LDA), is a classic supervised method used for both dimensionality reduction and classification.
The core principle is to find a linear transformation that projects high-dimensional data onto a lower-
dimensional space where the classes are maximally separated. In other words, the projection pulls
the means of different classes far apart while keeping the data within each class tightly clustered.
Mathematically, this is achieved by defining a within-class scatter matrix, SW , and a between-class
scatter matrix, SB . Given a set of N feature vectors {x1,x2, · · · ,xN} = X ∈ RN×d, each feature
x is associated with one of C classes, the scatter matrices can be formulated as:

SW =

C∑
c=1

∑
x ∈ Xc

(x− x̄c)(x− x̄c)
T
, (3)

SB =

C∑
c=1

Nc(x̄c − x̄)(x̄c − x̄)
T
, (4)

x̄ =
1

N

N∑
i=1

xi, x̄c =
1

Nc

∑
x ∈ Xc

x, (5)

where Xc represents the subset of X pertaining to class c. The optimal projection matrix, W ∈
Rd×d′

, is found by maximizing the Fisher criterion (Fisher, 1938), which is the ratio of the between-
class scatter to the within-class scatter in the projected space:
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history frames

current frame

trajectory features

detection features

Fisher Linear 
Discriminant

original features transformed features

1 − 𝛼 	× 𝛼	×+

similarity calculation

Figure 3: Overview of our pipeline. We use different colors to indicate different identities (trajec-
tories). In the original space, some overly similar targets cannot be well distinguished, leading to
issues in the matching process. Therefore, we treat the trajectory features as conditions and apply
a tailored Fisher Linear Discriminant to seek a better subspace for distinguishing different trajec-
tories. Finally, both original and transformed features are used to calculate the similarity matrix,
balancing generalization and specialization.

J(W ) =
W TSBW

W TSWW
. (6)

By applying the projection matrix W derived above, each feature x is converted into a new d′-
dimensional vector with enhanced discriminability, where d′ = min(C − 1, d).

3 METHOD

Based on the analysis in Section 2.2 and the result shown in Figure 2a, a clear positive correlation
exists between the discriminative capability of the ReID features and the final tracking performance.
Therefore, in this section, our primary goal is to find a more discriminative representation space
for distinguishing between different trajectories. To this end, we mainly employ Fisher Linear Dis-
criminant (FLD) (Fisher, 1938) along with several customized techniques, which are detailed in
Section 3.1 and Sections 3.2 - 3.3, respectively. The overall illustration is shown in Figure 3.

3.1 HISTORY-AWARE TRANSFORMATION FOR REID FEATURES

As discussed in Section 1, current multi-object tracking (MOT) methods (Maggiolino et al., 2023;
Yang et al., 2023b; Lv et al., 2024) largely adopt ReID features directly from traditional re-
identification methods (Ristani & Tomasi, 2018; Luo et al., 2019). Since these models are required to
distinguish between a vast number of open-set identities, the features they produce are, by design, as
general as possible. In contrast, the multiple object tracking task only requires recognizing a closed
set of identities within a single video. This creates a dilemma where the generality of traditional
ReID features becomes a liability, as they lack the specificity needed to differentiate between these
similar targets, as illustrated in Figure 1. Therefore, we are motivated to seek a more specialized
representation space to address the aforementioned challenges. Intuitively, this space should pull
features belonging to the same trajectory closer, while pushing features from different trajectories
further apart. This idea coincides perfectly with the objective of Fisher Linear Discriminant (FLD)
(Fisher, 1938) in its mathematical formulation, provided that we treat each trajectory as a class in
the original framework. Specifically, by replacing the feature vector x in Equation 3 - 5 with our
ReID features f , and substituting the number of classes C with the number of tracks Nτ , we can
obtain the projection matrix W for tracking by maximizing the objective in Equation 6.

However, FLD is a supervised method, which means it requires corresponding labels in addition to
the feature vectors. This core prerequisite is unfulfilled in a standard tracking process. Therefore,
we propose a history-aware dynamic labeling scheme to compensate for this absence. Practically,
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since tracking is an online process, at each timestep t, the historical track assignments from previ-
ous frames can serve as the supervisory signals for FLD. Although potential tracking errors exist,
we believe the overall statistical signal remains reliable. Furthermore, since a target’s appearance
gradually evolves during tracking, we only consider its T most recent features for each trajectory.
This choice ensures both efficiency and effectiveness.

3.2 TEMPORALLY-WEIGHTED TRAJECTORY CENTROID

Following the statement in Section 3.1, a naive implementation would be to average all T features
{ft−T,τj , · · · ,ft−2,τj ,ft−1,τj} of the τj-th trajectory to serve as its mean feature center. According
to the definition of FLD (Fisher, 1938) and Equation 4, these feature centroids determine the distri-
bution centers of the vectors after projection. Although this approach yields notable improvements,
we still point out that it overlooks the temporal characteristics inherent in the tracking task. In on-
line tracking, a target’s appearance evolves continuously over time. Even within the same trajectory,
features that are closer temporally tend to have higher similarity. Hence, for identity allocation at
the current moment, more recent ReID features should intuitively play a more significant role. In
practice, we apply a temporal weighting to the mean calculation in Equation 5:

f̄ =
1

Nτ

Nτ∑
j=1

f̄τj , f̄τj =
1∑
λt′

t−1∑
t′=t−T

λt′ft′,τj , λt′ = (λ0)
t−t′ , (7)

where λ0 is a temporal decay coefficient with a value between 0 and 1. Using these temporal-
weighted trajectory centroids in the calculation of Equation 4 makes the final projection more at-
tuned to the current temporal context, benefiting the similarity measurement at the time step t.

3.3 KNOWLEDGE INTEGRATION

Although we have found a more discriminative space conditioned on historical trajectories with the
methods in Section 3.1 and 3.2, it still has some imperfections. First, the historical tracking results
may contain errors, which can lead to a biased or suboptimal projection matrix. Second, because the
transformed space is built only from the features of existing trajectories, it may not be robust enough
for handling newborn targets. Therefore, we revisit the original representation space. Although it is
not optimized for a given scenario, it offers more robust generalization capabilities, especially when
facing unseen targets. This motivates our proposal to integrate it with the specialized subspace for a
trade-off. Due to the disparate dimensionalities of these two spaces, our integration strategy operates
on the similarity matrices rather than the vectors themselves. It can be formulated as follows:

Cost∗(t, i, τj) = 1− Sim∗(t, i, τj) = 1− [α · Sim′(t, i, τj) + (1− α) · Sim(t, i, τj)], (8)

where Sim′(·) is the similarity computed using the transformed ReID features, and α is a balancing
coefficient. The Hungarian algorithm then finds the optimal assignment using the complete cost
matrix constructed from the fused Cost∗(·). See Figure 3 for an overview of this pipeline.

4 EXPERIMENTS

4.1 DATASETS AND METRICS

Datasets. We select DanceTrack (Sun et al., 2022) and SportsMOT (Cui et al., 2023) as our pri-
mary experimental benchmarks because they both present a key challenge: targets within a single
video often exhibit a high degree of visual similarity. Specifically, DanceTrack features group dance
scenarios, while SportsMOT includes three types of team sports. We also evaluate our approach on
the TAO (Dave et al., 2020) dataset to demonstrate its effectiveness in diverse and general tracking
cases. In addition, we present the results on MOT17 (Milan et al., 2016) in Section C.1.

Metrics. On traditional MOT benchmarks (Milan et al., 2016; Sun et al., 2022; Cui et al., 2023),
we select the Higher Order Tracking Accuracy (HOTA) (Luiten et al., 2021) as the primary met-
ric, especially its Association Accuracy (AssA) component. We also include MOTA (Bernardin &
Stiefelhagen, 2008) and IDF1 (Ristani et al., 2016) in some experiments. To better evaluate the
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multi-category tracking problem, we employ the Tracking Every Thing Accuracy (TETA) (Li et al.,
2022) on the TAO dataset (Dave et al., 2020).

4.2 IMPLEMENTATION DETAILS

To more clearly illustrate the improvements brought by our method, we focus our experiments on
pure ReID-based trackers, as discussed in Section 2.1. Due to the lack of such publicly available
trackers in the community, we construct a new tracker by combining the widely-used YOLOX (Ge
et al., 2021) detector with the FastReID (Luo et al., 2019) model. For a fair comparison, we use the
well-trained weights from Cao et al. (2022); Yang et al. (2023b); Lv et al. (2024) for all network
modules. To ensure the baseline achieves its best performance, we optimize its hyperparameters on
every benchmark via grid search. The resulting tracker is denoted as FastReID-MOT. As for MASA
(Li et al., 2024a), we also bring the model weights from the official repository. For notation, we add
the prefix HAT- to methods that use our History-Aware Transformation approach.

Table 1: Performance comparison with state-of-
the-art methods on the Dancetrack test set.

Methods HOTA DetA AssA

motion-based:
ByteTrack (Zhang et al., 2022a) 47.7 71.0 32.1
DiffusionTrack (Luo et al., 2024) 52.4 82.2 33.5
OC-SORT (Cao et al., 2022) 55.1 80.3 38.3
C-BIoU (Yang et al., 2023a) 60.6 81.3 45.4

ReID-based:
QDTrack (Pang et al., 2021) 54.2 80.1 36.8
FastReID-MOT (our baseline) 50.6 81.1 31.6
HAT-FastReID-MOT 58.6 81.3 42.3
HAT-FastReID-MOT† 61.2 81.6 46.0

hybrid-based:
FairMOT (Zhang et al., 2021) 39.7 66.7 23.8
DeepSORT (Wojke et al., 2017) 45.6 71.0 29.7
StrongSORT (Du et al., 2023) 55.6 80.7 38.6
DiffMOT (Lv et al., 2024) 62.3 82.5 47.2
Hybrid-SORT-ReID (Yang et al., 2023b) 65.7 – –
ByteTrack-ReID 52.4 71.0 38.7
HAT-ByteTrack-ReID 56.1 71.4 44.2
OC-SORT-ReID 60.8 81.0 45.7
HAT-OC-SORT-ReID 64.6 81.5 51.3
HAT-Hybrid-SORT-ReID 66.9 81.5 55.0

Table 2: Performance on the SportsMOT test
set. Gray results denote joint training involving
the validation set of SportsMOT.

Methods HOTA DetA AssA

motion-based:
ByteTrack (Zhang et al., 2022a) 62.8 77.1 51.2
OC-SORT (Cao et al., 2022) 71.9 86.4 59.8
ByteTrack (Zhang et al., 2022a) 64.1 78.5 52.3
OC-SORT (Cao et al., 2022) 73.7 88.5 61.5

ReID-based:
QDTrack (Pang et al., 2021) 60.4 77.5 47.2
FastReID-MOT (our baseline) 67.3 86.8 52.3
HAT-FastReID-MOT 78.1 87.3 69.9
HAT-FastReID-MOT† 78.9 87.4 71.3
HAT-FastReID-MOT† 80.8 89.4 73.1

hybrid-based:
BoT-SORT (Aharon et al., 2022) 68.7 84.4 55.9
DiffMOT (Lv et al., 2024) 72.1 86.0 60.5
ByteTrack-ReID 65.1 76.8 55.1
HAT-ByteTrack-ReID 72.4 77.3 67.8
OC-SORT-ReID 74.1 86.8 63.3
HAT-OC-SORT-ReID 81.2 87.2 75.6
HAT-OC-SORT-ReID 82.4 89.3 76.1

4.3 STATE-OF-THE-ART COMPARISON

FastReID-MOT. We compare our method (HAT-FastReID-MOT) against the baseline (FastReID-
MOT) on DanceTrack (Sun et al., 2022) and SportsMOT (Cui et al., 2023) in Table 1 and 2. † in-
dicates that hyperparameters are fine-tuned on the corresponding dataset to maximize performance;
otherwise, the default settings from our ablation study are used, as stated in Section 4.4. Our ap-
proach yields substantial performance gains over the baseline. On the challenging DanceTrack
dataset, our appearance-only method even achieves results comparable to several recent hybrid and
motion-based trackers (Yang et al., 2023a; Lv et al., 2024). Even more impressively, our ReID-
only tracker establishes a new state-of-the-art, notably outperforming existing methods, including
Lv et al. (2024), which shares the same ReID model. This result both vindicates our approach and
highlights the need to reconsider the true potential of ReID features for target association.

Hybrid-based Tracker. To further validate the effectiveness of our method, we inserted it into
several recent well-known trackers (Zhang et al., 2022a; Cao et al., 2022; Yang et al., 2023b). The
results in Table 1 and 2 show that our method can consistently bring significant improvements when
applied to hybrid-based trackers. The combination of our method with (Yang et al., 2023b) surpasses
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Table 3: Evaluating our method with MASA (Li et al., 2024a). All models are trained on a large-
scale image segmentation dataset (Kirillov et al., 2023) with different visual backbones.

Methods DanceTrack test SportsMOT test TAO val
HOTA AssA HOTA AssA TETA AssocA

MASA (Li et al., 2024a):
MASA-R50 50.8 31.6 71.6 58.9 45.8 42.7
MASA-Detic 50.6 31.5 72.2 60.1 46.5 44.5
MASA-G-DINO 50.4 31.2 72.8 61.0 46.8 45.0
MASA-SAM-B 49.4 29.9 71.9 59.5 46.2 43.7

Ours:
HAT-MASA-R50 54.3 (+3.5) 36.1 (+4.5) 73.7 (+2.1) 62.4 (+3.5) 46.4 (+0.6) 44.4 (+1.7)
HAT-MASA-Detic 54.3 (+3.7) 36.2 (+5.7) 74.5 (+2.3) 63.7 (+3.6) 47.2 (+0.7) 46.4 (+1.9)
HAT-MASA-G-DINO 53.9 (+3.5) 35.7 (+4.5) 74.7 (+1.9) 64.1 (+3.1) 47.5 (+0.7) 46.7 (+1.7)
HAT-MASA-SAM-B 52.1 (+2.7) 33.4 (+3.5) 73.4 (+1.5) 61.9 (+2.4) 46.9 (+0.7) 45.6 (+1.9)

Table 4: Comparison of different transformation selections. Oracle and YOLOX denote the sources
of the detection results, while d and d′ indicate the original and projected feature dimension, re-
spectively. Nobj and Nid are the total number of historical samples and trajectories, respectively. If
d′ > d, the target dimension will be set to d.

# D Method d′
DanceTrack val SportsMOT val

HOTA AssA IDF1 HOTA AssA IDF1

# 1

Oracle

– d 74.9 57.3 72.0 86.2 74.7 84.0
# 2 PCA Nobj − 1 75.1 (+0.2) 57.6 (+0.3) 72.2 (+0.2) 85.6 (-0.6) 73.9 (-0.8) 83.6 (-0.4)
# 3 PCA Nid − 1 56.3 (-18.6) 32.5 (-24.8) 50.4 (-21.6) 69.4 (-16.8) 49.0 (-25.7) 66.4 (-17.6)
# 4 FLD Nid − 1 79.0 (+4.1) 63.8 (+6.5) 77.0 (+5.0) 92.2 (+6.0) 85.4 (+10.7) 90.7 (+6.7)

# 5

YOLOX

– d 51.1 33.4 51.0 73.7 61.5 76.6
# 6 PCA Nobj − 1 45.3 (-5.8) 26.7 (-6.7) 40.0 (-11.0) 70.6 (-3.1) 56.4 (-5.1) 71.5 (-5.1)
# 7 PCA Nid − 1 43.5 (-7.6) 24.6 (-8.8) 39.4 (-11.6) 61.3 (-12.4) 42.7 (-18.8) 61.4 (-15.2)
# 8 FLD Nid − 1 57.7 (+6.6) 42.7 (+9.3) 56.7 (+5.7) 81.1 (+7.4) 74.1 (+12.6) 85.5 (+8.9)

all existing approaches and achieves the state-of-the-art performance (66.9 HOTA). The smaller per-
formance gains on hybrid-based methods can be attributed to both performance saturation and the
inherent design of these trackers, which often prioritizes motion and thus limits the impact of our ap-
pearance enhancements. Moreover, intricate algorithmic designs make inter-module harmonization
challenging.

MASA. To investigate the generalization of our method across different ReID representation spaces,
we conducted experiments on MASA (Li et al., 2024a). This framework is ideal as it includes a va-
riety of visual backbones (He et al., 2016; Zhou et al., 2022; Liu et al., 2024; Kirillov et al., 2023)
and is pre-trained on a general-purpose segmentation dataset (Kirillov et al., 2023). The TAO (Dave
et al., 2020) benchmark is introduced to serve as a general-purpose tracking scenario. Table 3 shows
that our approach brings consistent and significant boosts across all tested visual backbones. How-
ever, the improvements are more minor compared to Table 1 and 1. We argue that our method’s fun-
damental property is to refine an existing feature space, but since MASA is not trained with tracking
datasets, its representations lack the specific discriminative capability needed for our approach to
distill. Furthermore, the TAO dataset (Dave et al., 2020) contains numerous object categories with
low similarity to one another, which also limits the applicability of our algorithm.

4.4 ABLATION STUDY

We verify the effectiveness of each component in this section, using the ReID-based tracker from
Section 2.1 and 4.2 as the baseline. For all experiments, except those in Table 4, we use the detec-
tions from the public YOLOX model (Ge et al., 2021; Cao et al., 2022). The experimental results are
shown incrementally, with each table adding one component at a time. For the hyperparameter ex-
plorations, the gray background indicates the default settings we determined through experiments.
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History-Aware Transformation. As shown in Table 4, applying the FLD-based ReID feature trans-
formation, as described in Section 3.1, significantly improves tracking performance. Following the
correlation analysis in Section 2.2, we visualize the change in the discriminative ability δ1000 of
the ReID features under an oracle detection setting, as shown in Figure 2b. This serves as clear evi-
dence that our history-aware transformation boosts the separability of visual representations, thereby
improving tracking capabilities. For comparison, we also evaluate a PCA-based transformation in
Table 4, but it resulted in a performance drop. This is because Principal Component Analysis (PCA)
is designed to maximize global data variance and is oblivious to the trajectory labels, which we
believe are essential for finding an optimal representation for tracking.

Table 5: Exploration of the history length T .

T HOTA AssA MOTA IDF1

10 54.3 37.8 86.7 53.2
20 56.2 40.4 86.5 55.2
40 57.0 41.4 86.5 56.6
60 57.7 42.7 86.3 56.7
80 56.3 40.5 86.2 55.4
∞ 55.3 39.2 85.1 52.2

Table 6: Effect of the temporal decay coefficient λ0.

λ0 HOTA AssA MOTA IDF1

1.00 57.7 42.7 86.3 56.7
0.95 58.5 42.5 86.8 58.2
0.90 59.3 44.8 86.9 59.8
0.80 59.1 44.7 87.0 59.6
0.60 58.1 43.2 87.0 57.9
0.40 57.8 42.8 86.9 57.1

Table 7: Analysis of the balancing coefficient α.

α HOTA AssA MOTA IDF1

1.0 59.3 44.8 86.9 59.8
0.9 60.6 46.8 87.1 61.7
0.8 59.3 45.0 87.2 60.4
0.6 59.1 44.7 87.6 60.6

History Length T . As stated at the end of
Section 3.1, we only consider ReID features
from the T most recent frames. Although us-
ing a too-short temporal length T decreases
the credibility of the reference samples, it still
provides a notable enhancement compared to
the baseline tracker (54.3 vs. 51.1 HOTA), as
shown in Table 5. Conversely, a too large T
would incorporate outdated features, making
the distribution less representative of the cur-
rent state and ultimately harming performance.

Temporally-Weighted Trajectory Centroid. Following our discussion in Section 3.2 about the
varying temporal importance of features, we introduce the coefficient λ0 to weight them accordingly.
Experimental results in Table 6 demonstrate that using the temporal-weighted trajectory centroid can
significantly enhance tracking performance. However, it is essential to note that excessively small
values of λ0 may lead to an overreliance on recent samples, resulting in a decline in robustness.

Knowledge Integration. In Table 7, we investigate various fusion coefficients α to balance robust-
ness and specialization. These results indicate that this is a trade-off art, prompting us to choose
0.9 as our default setting. In addition, this supports the concept outlined in Section 3.3, valuing the
complementarity of those two spaces can boost the reliability of ReID features.

5 CONCLUSION

In this paper, we challenge a long-standing practice in multiple object tracking (MOT): the direct
adoption of appearance matching strategies from the re-identification task, an approach we argue is
fundamentally inappropriate for tracking. We contend that visual representations in MOT should be
tailored to discriminate among the finite set in a given video sequence, as opposed to the open-set
challenge. To this end, we proposed an approach that leverages the tracking history to guide an
adaptive transformation of the feature space, thereby boosting its discriminability. Comprehensive
experiments validate the effectiveness and versatility of our proposed approach and establish the
new state-of-the-art performance. These results serve as compelling evidence that the potential of
ReID features in MOT has been significantly underestimated. Therefore, we hope our findings spur
a wave of research into this crucial problem, whether in the form of new training-free components
or as guiding principles for developing learnable modules.
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REPRODUCIBILITY STATEMENT

As stated in Section 4.2, all model weights used in our experiments are directly borrowed from public
repositories (Cao et al., 2022; Yang et al., 2023b; Lv et al., 2024). Our dataset organization and
evaluation procedures are all conducted using peer-reviewed and publicly available methodologies
and code (Milan et al., 2016; Jonathon Luiten, 2020; Sun et al., 2022; Cui et al., 2023; Li et al.,
2024a; Gao et al., 2025). To guarantee reproducibility, we will open-source the code for our final
experiments and the corresponding tracker results.

THE USE OF LARGE LANGUAGE MODELS

We used Large Language Models (LLMs) for assistance with translating, polishing, and correcting
the grammar of the text in this paper, as well as for generating formatted LATEX code. We have also
utilized the LLM assistance in some of the visualization code.
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A RELATED WORK

Tracking-by-Detection methods decouple the multiple object tracking (MOT) task into two sub-
tasks: object detection and data association. While a minority of studies (Khurana et al., 2021) have
explored customized detection methods, the vast majority of research (Zhou et al., 2020; Zhang et al.,
2022a; Mancusi et al., 2023; Liu et al., 2023; Saraceni et al., 2024) has focused on the design of the
target association algorithm. In this process, researchers model trajectories and measure affinities
based on diverse cues. For visual appearance, most methods (Aharon et al., 2022; Maggiolino et al.,
2023; Yang et al., 2023b; Lv et al., 2024) directly utilize off-the-shelf ReID models (Luo et al.,
2019) to extract features. While some approaches (Zhang et al., 2021; Wang et al., 2020; Plaen
et al., 2024) employ custom-designed extractors, they still adhere to the fundamental principles
and supervision methods of traditional ReID methods (Ristani & Tomasi, 2018; Luo et al., 2019).
Regarding location information, the most classic method (Bewley et al., 2016; Zhang et al., 2022a)
is to use the Kalman filter (Welch et al., 1995) for linear estimation of the motion. To handle non-
linear dynamics (Sun et al., 2022; Cui et al., 2023) and other complex cases, recent methods have
introduced many tailored rules (Cao et al., 2022; Du et al., 2023; Yang et al., 2023b; Yi et al.,
2024) or adopted learnable modules for motion prediction (Dendorfer et al., 2022; Qin et al., 2023;
Luo et al., 2024; Lv et al., 2024; Xiao et al., 2024; Huang et al., 2024). Many approaches (Wojke
et al., 2017; Du et al., 2023; Maggiolino et al., 2023; Yang et al., 2023b; Lv et al., 2024) also fuse
the two aforementioned cues together to fully leverage their respective advantages. Furthermore,
some other methods introduce even more information modalities, such as Bird’s-Eye-View (BEV)
perspectives (Dendorfer et al., 2022) and depth information (Aharon et al., 2022; Mancusi et al.,
2023; Wang et al., 2025). Most relevant to our work are several studies that aim to customize the
ReID branch of the MOT task. Hou et al. (2022) seeks to mitigate the mismatch between its global
temporal training and local temporal inference, Chen et al. (2024) performs group-wise similarity
calculation to address the long-tail distribution problem, Li et al. (2024b) helps newborn targets
acquire more robust representations, Cao et al. (2025) sharpens the distinction in similarity. These
methods do not focus on the discriminability of the representation space or leverage the information
difference between intra- and inter-trajectory data. Therefore, they differ from our method in both
core philosophy and primary contribution.

End-to-End MOT models are emerging forces, bypassing hand-crafted algorithms (Zhang et al.,
2022a; Cao et al., 2022) to formulate multi-object tracking in an end-to-end manner (Zeng et al.,
2022; Gao et al., 2025). A typical form is to expand DETR (Carion et al., 2020; Zhu et al., 2021) into
MOT tasks, representing different trajectories through the propagation of track queries (Zeng et al.,
2022; Meinhardt et al., 2022). Follow-up methods incorporated temporal information (Cai et al.,
2022; Gao & Wang, 2023; Segù et al., 2024) and mitigated the imbalance of supervision signals
(Zhang et al., 2022b; Yan et al., 2025), leading to better tracking performance. Nevertheless, end-
to-end methods still face the challenges of high computational costs and a strong need for training
data, which will require future research.

B EXPERIMENTAL DETAILS

B.1 REID FEATURE DISCRIMINATIVE CAPABILITY

As stated in Section 2.2, we adopt the metric δ1000 to quantify the discriminative capability of the
representation space. This metric is derived from individual discriminative scores that are computed
for each detection. Formally, for the i-th detection at time step t, we calculate the similarities against
all history trajectories, as specified in Equation 2. A discriminative score δ(t, i) for this detection is
then defined as:

δ(t, i) = Sim+(t, i, τj)−max
j

[
Sim−(t, i, τj)

]
, (9)

where Sim+(t, i, τj) denotes the similarity to the corresponding positive sample (the i-th detection
belongs to the j-th trajectory), and Sim−(t, i, τj) denotes the similarity to a negative sample. We
select the most similar negative sample using maxj

[
Sim−(t, i, τj)

]
, because the most confusing

example directly determines whether a misallocation of identities will occur.
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After calculating all valid δ(t, i) within a video sequence, we aggregate them to obtain the overall
discriminative measure. Since tracking errors like ID switches occur in a very small portion of a
long video (thousands of frames), we select the 1000 most challenging cases from all discriminative
scores. In practice, we sort the scores in ascending order and select the smallest 1000 samples
to compute the averaging score δ1000, since these items are the most likely to be misassigned in
tracking.

B.2 REID-BASED TRACKER: FASTREID-MOT

As stated in Section 2.1 and 4.2, our baseline FastReID-MOT relies solely on ReID features for
tracking. To keep the baseline straightforward, we implement a single-stage online tracker with a
minimal set of hyperparameters:

• λ, the feature update ratio in Equation 1.

• θdet, detections with a confidence exceeding this threshold are considered by the tracker.

• θsim, identity assignments with a similarity score exceeding this threshold are considered
as valid choices.

• θnew, unmatched detections with a confidence exceeding this threshold are considered as
newborn targets.

• θmiss, a trajectory is terminated if the number of consecutive missing frames is greater than
this threshold.

All the aforementioned hyperparameters are tuned using a grid search on the corresponding datasets
to maximize the baseline’s performance. In subsequent ablation experiments, we do not adjust these
hyperparameters to ensure that the observed improvements are purely attributable to our proposed
method.

B.3 MASA DETAILS

In the MASA (Li et al., 2024a) inference process, we simplified the original bi-softmax matching
procedure Li et al. (2024a); Pang et al. (2021) to the simple cosine similarity combined with the Hun-
garian algorithm (as we detailed in Section 2.1 and Equation 2), and tuned some hyperparameters,
which resulted in a slight improvement in tracking performance across all datasets. For our hyper-
parameters, we primarily adhered to the default settings outlined in Section 4.4, with the exception
of adjusting α to 0.5 to better accommodate MASA’s feature representation.

B.4 ORACLE SETTING

In Table 4 and Figure 2, we leveage an oracle setting to focus our analysis on tracking performance
without the influence of other factors. In these experiments, we use the bounding boxes’ coordinates
from the ground truth files as the detection results and set all confidence scores to 1.0. Even under
these ideal conditions, the Detection Accuracy (DetA) will not reach 100.0, as a result of the metric’s
calculation method (Luiten et al., 2021).

B.5 ABLATION STUDY

As we stated in Section 4.4, the ablation experiments are conducted incrementally, with each table
adding one component at a time:

• In Table 4, we apply T = 60, λ0 = 1.0 and α = 1.0, which means we do not use the
temporally-weighted trajectory centroid and knowledge integration.

• In Table 5, we apply λ0 = 1.0 and α = 1.0, which means we do not use the temporally-
weighted trajectory centroid and knowledge integration.

• In Table 6, we apply T = 60 and α = 1.0, which means we do not use the knowledge
integration.
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Table 8: Performance comparison with state-of-the-art methods on MOT17 (Milan et al., 2016). The
best and second-best results are denoted in bold and underline, respectively.

Methods HOTA DetA AssA IDF1

motion-based:
ByteTrack (Zhang et al., 2022a) 63.1 64.5 62.0 77.3
OC-SORT (Cao et al., 2022) 63.2 63.2 63.4 77.5
C-BIoU (Yang et al., 2023a) 64.1 64.8 63.7 79.7

reid-based:
QDTrack (Pang et al., 2021) 53.9 55.6 52.7 66.3
ContrasTR (Plaen et al., 2024) 58.9 – – 71.8
FastReID-MOT (baseline) 61.5 63.4 60.0 73.5
HAT-FastReID-MOT† 63.5 64.0 63.2 77.5

hybrid-based:
FairMOT (Zhang et al., 2021) 59.3 60.9 58.0 72.3
DeepSORT (Wojke et al., 2017) 61.2 63.1 59.7 74.5
MixSort-OC (Cui et al., 2023) 63.4 63.8 63.2 77.8
DiffMOT (Lv et al., 2024) 64.5 64.7 64.6 79.3
OC-SORT-ReID 64.1 64.4 64.0 79.0
HAT-OC-SORT-ReID 64.2 64.4 64.1 79.2

Figure 4: Comparison of ReID separability on DanceTrack (Sun et al., 2022), SportsMOT (Cui
et al., 2023), and MOT17 (Milan et al., 2016) based on δ1000.

• In table 7, we apply T = 60 and λ0 = 0.9, which means both proposed components are
used in these experiments.

Together, these settings make up our default configuration (T = 60, λ0 = 0.9, α = 0.9) and are
applied uniformly to all datasets as the default, as mentioned in Section 4.3 and 4.4.

B.6 VISUALIZATION OF REID FEATURES

To qualitatively evaluate the discriminative capability of ReID features, we visualize feature sim-
ilarities both within and across sequences. In Figure 1a, we show the features of objects in 15
consecutive frames of a single video sequence, projected to a two-dimensional space using Principal
Component Analysis (PCA). In Figure 1b, we randomly select 10 sequences from the DanceTrack
dataset (Sun et al., 2022) and visualize features extracted from 40 consecutive frames of each se-
quence, also projected via PCA.
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Table 9: Performance comparison with state-of-the-art methods on the MOT20 validation set. The
best results are denoted in bold.

Methods HOTA DetA AssA MOTA IDF1

Deep OC-SORT (Maggiolino et al., 2023) 59.5 – 58.2 – 76.3
Hybrid-SORT-ReID (Yang et al., 2023b) 60.7 61.6 60.0 74.0 78.4
FastReID-MOT 57.7 61.7 54.1 74.5 72.4
HAT-FastReID-MOT 61.2 62.3 60.4 75.0 78.8

C MORE RESULTS

C.1 MOT17

In Table 8, we present our experimental results on the MOT17 (Milan et al., 2016) dataset. Due to
the submission limits of the MOT17 evaluation server, we built our hybrid-based tracking using only
the classic OC-SORT (Cao et al., 2022) algorithm. Compared to our baseline (FastReID-MOT), our
method yields a significant performance gain (2.0 HOTA and 3.2 AssA), though the margin is not
as large as on other benchmarks (Sun et al., 2022; Cui et al., 2023). We attribute this to the fact
that the MOT17 dataset, consisting solely of pedestrians, has high inherent target discriminability
(e.g., distinct clothing colors and styles), which limits the room for our method to make a greater
impact. In the hybrid-based experiments, we do not achieve a highly satisfactory performance. On
the one hand, prior studies (Zhang et al., 2022a; Yang et al., 2023a) have shown that the simple
motion patterns within MOT17 allow the motion prediction module to take a dominant role, thereby
constraining the influence of the ReID branch. Our observations in Figure 4, based on δ1000, also
confirm this. The ReID features of MOT17 targets show significantly greater separability, despite
the dataset containing up to ten times more targets per frame compared to DanceTrack (Sun et al.,
2022) and SportsMOT (Cui et al., 2023). On the other hand, the overly engineered fusion of multiple
modules and the unreliable validation set split further increased the difficulty of optimizing the entire
method. Despite these challenges, we still outperform MixSort-OC (Cui et al., 2023) that also uses
OC-SORT as the framework, and are slightly behind Lv et al. (2024), which is based on learnable
motion estimation.

To summarize, although our method does not achieve flawless results on MOT17, the consistent
performance gains across experiments robustly demonstrate its effectiveness and applicability in
diverse scenarios. Coupled with its outstanding performance across various other scenarios (Sun
et al., 2022; Cui et al., 2023; Dave et al., 2020) in Table 1, 2 and 3, our method still holds enough
promise and is attractive for future exploration.

C.2 MOT20

We also evaluate our method on MOT20 (Dendorfer et al., 2020). To ensure fairness, all algo-
rithms are implemented using the same public FastReID (Luo et al., 2019) weight. As reported in
Table 9, our proposed method consistently outperforms both advanced trackers and our FastReID-
MOT baseline. These results demonstrate the effectiveness of the proposed history-aware feature
transformation under crowded scenes, and further validate the generalization ability of our method.

C.3 EXTENDED EVALUATION WITH ADDITIONAL METRICS

To provide a more comprehensive and fine-grained evaluation of tracking performance, we report
an extended set of metrics in Table 10. These complementary metrics allow a more thorough assess-
ment of detection accuracy, association robustness, and identity consistency.

C.4 COMPARISON WITH END-TO-END METHODS

End-to-end (E2E) trackers and heuristic tracking-by-detection methods follow fundamentally dif-
ferent paradigms, which makes direct comparisons inherently unfair and scenario-dependent. To
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Table 10: Detailed performance comparison with state-of-the-art methods on the Dancetrack test
set. By default, higher values indicate better performance, while metrics marked with ↓ denote that
lower values are better.

Methods HOTA DetA AssA LocA MOTA IDF1 IDR IDP IDTP IDFN↓ IDFP↓

motion-based:
ByteTrack (Zhang et al., 2022a) 47.7 71.0 32.1 - 89.6 53.9 - - - - -
DiffusionTrack (Luo et al., 2024) 52.4 82.2 33.5 - 89.3 47.5 - - - - -
OC-SORT (Cao et al., 2022) 55.1 80.3 38.3 - 92.0 54.6 - - - - -
C-BIoU (Yang et al., 2023a) 60.6 81.3 45.4 - 91.6 61.6 - - - - -

ReID-based:
QDTrack (Pang et al., 2021) 54.2 80.1 36.8 - 87.7 50.4 - - - - -
FastReID-MOT (our baseline) 50.6 81.1 31.6 92.5 90.3 50.4 48.6 52.4 140635 148531 127941
HAT-FastReID-MOT 58.6 81.3 42.3 92.6 89.6 57.9 55.7 60.4 161074 128092 105783
HAT-FastReID-MOT† 61.2 81.6 46.0 92.7 89.7 61.1 58.7 63.7 169663 119503 96884

hybrid-based:
FairMOT (Zhang et al., 2021) 39.7 66.7 23.8 - 82.2 40.8 - - - - -
DeepSORT (Wojke et al., 2017) 45.6 71.0 29.7 - 87.8 47.9 - - - - -
StrongSORT (Du et al., 2023) 55.6 80.7 38.6 - 91.1 55.2 - - - - -
DiffMOT (Lv et al., 2024) 62.3 82.5 47.2 - 92.8 63.0 - - - - -
Hybrid-SORT-ReID (Yang et al., 2023b) 65.7 - - - 91.8 67.4 - - - - -
ByteTrack-ReID 52.4 71.0 38.7 85.1 87.9 60.4 58.2 62.7 168175 120991 99897
HAT-ByteTrack-ReID 56.1 71.4 44.2 85.1 88.5 65.7 63.6 68.0 183838 105328 86371
OC-SORT-ReID 60.8 81.0 45.7 92.4 90.6 63.5 61.2 65.9 177073 112093 91589
HAT-OC-SORT-ReID 64.6 81.5 51.3 92.6 90.3 67.7 65.1 70.4 188348 100818 79266
HAT-Hybrid-SORT-ReID 66.9 81.5 55.0 92.6 90.5 71.3 68.7 74.2 198722 90444 69211

Table 11: Performance comparison with end-to-
end methods on the Dancetrack test set.

Methods HOTA DetA AssA

end-to-end:
MOTR (Zeng et al., 2022) 54.2 73.5 40.2
MeMOTR (Gao & Wang, 2023) 63.4 77.0 52.3
CO-MOT (Yan et al., 2025) 65.3 80.1 53.5
SambaMOTR (Segù et al., 2024) 67.2 78.8 57.5
MOTIP (Gao et al., 2025) 69.6 80.4 60.4

heuristic:
HAT-ByteTrack-ReID 56.1 71.4 44.2
HAT-FastReID-MOT 58.6 81.3 42.3
HAT-FastReID-MOT† 61.2 81.6 46.0
HAT-OC-SORT-ReID 64.6 81.5 51.3
HAT-Hybrid-SORT-ReID 66.9 81.5 55.0

Table 12: Performance on the SportsMOT test
set. Gray results denote joint training involving
the validation set of SportsMOT.

Methods HOTA DetA AssA

end-to-end:
TrackFormer (Meinhardt et al., 2022) 63.3 66.0 61.1
MeMOTR (Gao & Wang, 2023) 68.8 82.0 57.8
MOTIP (Gao et al., 2025) 72.6 83.5 63.2

heuristic:
HAT-ByteTrack-ReID 72.4 77.3 67.8
HAT-FastReID-MOT 78.1 87.3 69.9
HAT-FastReID-MOT† 78.9 87.4 71.3
HAT-OC-SORT-ReID 81.2 87.2 75.6
HAT-FastReID-MOT† 80.8 89.4 73.1
HAT-OC-SORT-ReID 82.4 89.3 76.1

provide a complete perspective, we nevertheless report comparisons with representative E2E meth-
ods on both DanceTrack and SportsMOT.

On DanceTrack, our method achieves a HOTA score of 66.9, which is competitive with recent E2E
approaches, exceeding CO-MOT(Yan et al., 2025) and being comparable to SambaMOTR(Segù
et al., 2024). On SportsMOT, our method significantly outperforms all existing published E2E
trackers, e.g., 81.2 versus 72.6 of MOTIP(Gao et al., 2025), demonstrating a clear advantage. These
results indicate that neither E2E nor heuristic method uniformly dominate across all datasets. In-
stead, their relative effectiveness is highly scenario-dependent. Our method demonstrates strong
competitiveness against state-of-the-art E2E models on DanceTrack and achieves decisive superior-
ity on SportsMOT, further validating the practical value and versatility of the proposed framework.
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(a) Significant and reliable positive correlation be-
tween discriminability and tracking performance.

+10.7

(b) Our transformation improves performance by en-
hancing feature discriminative capability.

Figure 5: Correlation between ReID feature discriminability δ1000 and tracking accuracy AssA on
SportsMOT (Cui et al., 2023).

C.5 INFERENCE SPEED

Given the detection results (without the latency of detectors), our method (including the ReID model
(Luo et al., 2019)) achieves an inference speed of 22.7 FPS, compared to 46.5 FPS for the baseline,
on DanceTrack (Sun et al., 2022) using an NVIDIA RTX A5000 GPU and an AMD Ryzen 9 5900X
CPU. Although this meets the requirements for near real-time tracking, we must point out two main
challenges that remain for achieving faster inference.

Based on our experiments, nearly all of the additional latency originates from the computation of
eigenvalues and eigenvectors, as this operation is on the CPU (with scipy.linalg.eigh(S B,
S W)), which is inherently inefficient for matrix calculations. We explored some alternative GPU-
based packages like PyTorch, JAX, and CuPy. These packages offer CUDA acceleration for eigen-
vector computations (eigh() function). However, they lack an interface for generalized eigenvalue
solving in eigh() (e.g., discussed in #5461 issue1 in the official repository of JAX, it only accepts
one matrix for the eigenvalue calculation), which is a feature provided by SciPy and used for FLD
solution. Transforming the input into a format acceptable for these functions incurs additional com-
putational overhead and results in a loss of precision. If the same interface can be used, we estimate,
based on experience, that it would result in a 4× to 10× speedup.

Moreover, the redundancy in feature dimensions further exacerbates this issue (2048 from FastReID
(Luo et al., 2019) vs. 256 from MASA (Li et al., 2024a)), since latency increases with dimension
count. This issue could be mitigated by either employing other dimensionality reduction methods
or by reducing the output dimension of the ReID feature head during the training phase.

In summary, we consider that addressing this operator issue falls beyond the scope of this paper as
it pertains to a complicated engineering problem.

C.6 VISUALIZATIONS

C.6.1 DISCRIMINATIVE CAPABILITY ANALYSIS ON SPORTSMOT

As stated in Section 2.2, we observe a significant and reliable positive correlation between the dis-
criminative capability (δ1000) of ReID features and the object association accuracy (AssA (Luiten
et al., 2021)) on DanceTrack (Sun et al., 2022). To further examine the generality of this relation-
ship, we extend the analysis to the SportsMOT dataset (Cui et al., 2023). As shown in Figure 5a, the
visualizations on SportsMOT also demonstrate a consistently positive and statistically meaningful
correlation between δ1000 and AssA, in agreement with the findings on DanceTrack in Figure 2a. It
strongly supports our direction: improving discriminative capability to boost tracking performance.

1https://github.com/jax-ml/jax/issues/5461
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Original Features PCA Transformed Features FLD Transformed Features

Figure 6: Visualization of ReID features. • represents the historical features and é indicates
the current features. Compared to the other two spaces, the FLD-projected space shows better
differentiation of trajectories.

Figure 5b validates that our transformation can enhance feature discriminability to improve tracking
performance on SportsMOT (Cui et al., 2023). This result, echoing the findings in Figure 2b, further
substantiates our core hypothesis.

C.7 VISUALIZATION OF REID FEATURES

To further assess the impact of feature transformation on ReID discriminability, we visualize the fea-
tures in different linear projection spaces in Figure 6. Features transformed by FLD exhibit clearer
inter-trajectory separation than those produced by PCA or the original space. Taken together, the
quantitative gains reported in Table 4 and the qualitative improvements observed in the visualizations
indicate that incorporating historical trajectory information into the projection step is a principled
and effective strategy for improving multiple object tracking: historical trajectories constitute an
invaluable supervisory signal for representation selection and should therefore be exploited in the
reasoning pipeline rather than disregarded.

D LIMITATIONS

While our method has yielded encouraging results, there are some limitations and concerns that need
to be pointed out.

Hybrid-based Tracker. While our method demonstrates significant improvements for ReID-based
trackers, its gains on hybrid-based methods are somewhat limited. Besides the saturated metrics and
overly complex algorithmic design discussed in Section 4.3, a deeper, more fundamental bias lies
at the core: current hybrid-based trackers prioritize location information. For instance, in existing
hybrid-based methods (Maggiolino et al., 2023; Yang et al., 2023b; Lv et al., 2024), the assignment
stage often relies entirely or heavily on the IoU metric. This leads to the ReID information being
either overlooked or not sufficiently trusted, thereby creating a disconnect between the ReID branch
and performance improvement. Our method enhances the trustworthiness of ReID features, which
may inspire future hybrid-based methods to develop ReID-first or more ReID-reliant trackers. We
believe this could significantly alter the algorithmic logic of existing trackers, which we leave for
future work to explore.
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End-to-End Method. A potential concern is that our method cannot be applied to state-of-the-art
end-to-end models (Segù et al., 2024; Yan et al., 2025; Gao et al., 2025). First, we argue that heuristic
and end-to-end methods represent two distinct paths to the same goal, with no inherent superiority
of one over the other, a common phenomenon in computer vision (Carion et al., 2020; Ge et al.,
2021; Dhariwal & Nichol, 2021; Sun et al., 2024). Therefore, our proposed method does not need to
compete directly with end-to-end approaches, and its inability to serve them is acceptable. This does
not diminish the value of our method. Second, while our proposed history-aware transformation
cannot be directly applied to end-to-end methods (e.g., track queries), we believe it offers a valuable
philosophical insight. Specifically, the observation that the information disparity between intra- and
inter-trajectory features in historical tracklets can help a model better distinguish different tracks
and thus improve tracking performance. This insightful conclusion might help guide the design of
trainable or end-to-end models, which could potentially enable our ideas to extend beyond the realm
of heuristic algorithms.
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