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Abstract001

The computational cost of training multimodal002
large language models (MLLMs) rapidly in-003
creases with the number of tokens involved. Ex-004
isting efficiency methods primarily target infer-005
ence and rely on token reduction or merging, of-006
fering limited benefit during training. In this pa-007
per, we propose REGATE (Reference-Guided008
Adaptive Token Elision), an adaptive token009
pruning method for accelerating MLLM train-010
ing. Specifically, REGATE adopts a teacher-011
student framework in which the MLLM being012
trained serves as the student, and a frozen ref-013
erence large language model (LLM) acts as the014
teacher. The teacher computes per-token refer-015
ence losses, which are combined with an expo-016
nential moving average (EMA) of the student’s017
own difficulty scores. This adaptive difficulty-018
based scoring enables the selective processing019
of crucial tokens while bypassing less informa-020
tive ones in the forward pass, significantly re-021
ducing computational overhead. Experiments022
demonstrate that REGATE, when applied to023
VideoLLaMA2, matches the peak accuracy of024
standard training on MVBench up to 2× faster,025
using only 35% of the tokens. With additional026
training, it even surpasses the baseline on sev-027
eral multimodal benchmarks, all while reduc-028
ing the total token count by over 41%. Code029
and models will be released soon.030

1 Introduction031

Multimodal large language models (MLLMs) face032

significant challenges due to the high computa-033

tional cost of training. A key bottleneck is the034

self-attention mechanism, whose complexity grows035

quadratically with input sequence length (Vaswani036

et al., 2017). This problem is amplified in video037

tasks, where frames are tokenized into extremely038

long sequences. Consequently, training MLLMs039

on large-scale instructional datasets demands sub-040

stantial computing resources, limiting accessibility041

and slowing progress in the field.042

2x faster
E

Figure 1: Zero-shot accuracy on MVBench during
fine-tuning of VideoLLaMA2-7B. REGATE (red) con-
sistently outperforms standard fine-tuning (orange) at
the same token count. It reaches the baseline’s peak ac-
curacy twice as fast while using only 35% of the tokens,
and surpasses the baseline with just half the tokens.

Several strategies have been proposed to speed 043

up inference in MLLMs, including static token 044

pruning (Arif et al., 2025) and token merging (Chen 045

et al., 2024). However, reducing the high cost of 046

training remains a more complex and less explored 047

challenge. In the unimodal text domain, recent 048

work such as RHO-1 has introduced learnable to- 049

ken pruning techniques that improve training ef- 050

ficiency (Lin et al., 2024c). Yet, these training- 051

time acceleration methods have not been extended 052

to large multimodal models. Earlier attempts to 053

improve visual processing efficiency, typically tar- 054

geting standard vision transformers (Akbari et al., 055

2021) or early video-language models (Lei et al., 056

2021), have relied on heuristic approaches such as 057

random token dropping. These methods fall short 058

in modern MLLMs, as they fail to capture the sub- 059

tle and often unintuitive cross-modal importance 060

of tokens, particularly in video, where information 061

is both dense and temporally distributed. As a re- 062

sult, such methods risk discarding important visual 063

or semantic content, which can lead to unstable 064

training and weaker multimodal understanding. 065

To address this challenge, we introduce 066
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REGATE (Reference-Guided Adaptive Token067

Elision), a framework designed to accelerate the068

training of MLLMs. REGATE adopts a teacher-069

student architecture, where the student is the mul-070

timodal model being trained, and the teacher is a071

frozen, text-only version of the same LLM back-072

bone. This setup enables REGATE to dynami-073

cally identify and retain the most informative to-074

kens during training by combining two complemen-075

tary signals. First, it assesses whether a token re-076

quires visual grounding by checking if the text-only077

teacher can accurately predict it from the prompt078

alone. Second, it evaluates the student model’s079

learning progress using an exponential moving av-080

erage (EMA) of token-wise historical losses. By081

integrating these signals, REGATE allocates com-082

putation to the subset of tokens that are both critical083

for multimodal understanding and remain challeng-084

ing for the model to learn.085

To summarize, our contributions are threefold:086

• We introduce REGATE, an adaptive token087

pruning method for accelerating MLLM train-088

ing. REGATE leverages a text-only reference089

teacher model and the student’s historical to-090

ken difficulty to dynamically identify and re-091

tain visually essential tokens, without intro-092

ducing any additional trainable parameters.093

• We show that the model-agnostic REGATE094

integrates seamlessly into existing MLLMs,095

requiring no architectural changes, making it096

easy to adopt.097

• Extensive experiments on image and video098

benchmarks demonstrate REGATE’s broad099

applicability and efficiency. Notably, on the100

challenging MVBench benchmark, REGATE,101

when applied to VideoLLaMA2, matches the102

baseline’s peak accuracy in just 16.0 hours103

(compared to 32.4 hours for standard fine-104

tuning) while processing only 29.3 million105

tokens, a 65% reduction from the baseline’s106

83.8 million (Figure 1).107

2 Related Work108

2.1 Token Compression for Fast Inference109

Most existing work in the literature focus on accel-110

erating inference, not training. Inference-time spar-111

sity methods have shown that many tokens can be112

removed or merged with minimal impact on accu-113

racy. In vision transformers, Dynamic Token Prun-114

ing(Tang et al., 2023) halts processing of “easy” 115

tokens layer by layer, reducing FLOPs by 20–35% 116

on semantic segmentation tasks without degrading 117

performance. For video LLMs, DyCoke(Tao et al., 118

2025) dynamically compresses spatial-temporal to- 119

kens during inference, achieving up to 2× speed- 120

ups while keeping model weights frozen. Moving 121

from pruning to aggregation, Importance-Based 122

Token Merging (Wu et al., 2025) merges highly 123

similar tokens rather than dropping them, maintain- 124

ing performance on long-video benchmarks while 125

delivering 1.5× faster inference. However, all these 126

methods operate after training is complete. During 127

training, the full token sequence is still processed 128

in every forward and backward pass, leaving the 129

computational cost of training mainly unaddressed. 130

2.2 Token Compression for Fast Training 131

Only a few studies have explored token com- 132

pression during training, rather than just at infer- 133

ence. In text-only language models, RHO-1 (Lin 134

et al., 2024c) ranks tokens with a reference model 135

and backpropagates only through the most dif- 136

ficult subset, reducing pre-training tokens by 137

50% while improving accuracy. For MLLMs, 138

LaVi (Yue et al., 2025) avoids processing long 139

visual sequences by injecting vision-conditioned 140

deltas—small, token-specific offsets derived from 141

the visual input—into layer norms, eliminating 142

most visual tokens, but this requires a special- 143

ized modulation pathway that must be trained from 144

scratch. LLaVA-Meteor (li et al., 2025) introduces 145

a flash-fusion module and a dual-expert scorer that 146

prunes 75–95% visual tokens during instruction 147

tuning but adds extra parameters and targets only 148

vision tokens. In contrast, REGATE uniquely 149

combines two complementary difficulty signals: 150

a static, cross-modal reference loss from a frozen 151

text-only teacher that identifies tokens requiring 152

visual grounding, and a dynamic learning signal 153

based on the student model’s own token-wise loss 154

tracked via an exponential moving average (EMA). 155

This fusion of global and local difficulty enables 156

a highly adaptive, parameter-free sparsity mecha- 157

nism that gates both text and vision tokens, without 158

modifying the underlying model architecture. 159

2.3 Teacher-Student Distillation for MLLMs 160

Most distillation approaches for MLLMs mainly 161

focus on parameter compression. A systematic 162

study (Xu et al., 2024) shows that jointly aligning 163

tokens and logits helps a smaller student model in- 164
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Figure 2: Overview of REGATE. The framework operates in two interconnected stages. 1) Reference Loss
Generation (Left): A frozen, text-only teacher LLM processes the input text (with padding tokens) and computes a
per-token reference loss (ref_loss), which measures how difficult each token is to predict from text alone. Higher
loss values suggest the token likely requires visual grounding (e.g., “white”, “red stripe”). 2) Student Training
(Right): The ref_loss is combined with the student model’s historical learning difficulty to produce a unified
importance score. This score is used to create a binary mask that selects the most informative tokens. During
training, the student LLM receives the full multimodal input but only performs computation (e.g., self-attention and
feed-forward operations) on the selected tokens, while skipping the rest.

herit visual grounding from a larger teacher model.165

Similarly, methods like DIME-FM (Sun et al.,166

2023) show how cross-modal features can be trans-167

ferred even from unpaired data. A more recent168

approach, MaskedKD (Son et al., 2024), improves169

efficiency by masking a portion of the image patch170

tokens fed to the teacher based on the student’s171

attention scores. This strategy saves up to 50% of172

the teacher’s FLOPs without reducing student ac-173

curacy. However, MaskedKD only sparsifies the174

teacher’s computation and still requires backprop-175

agation through all student tokens. In contrast,176

REGATE introduces a fundamentally different ap-177

proach by redefining the teacher’s role in distilla-178

tion. It uses the teacher’s per-token loss to decide179

which tokens the student should process during180

each forward and backward pass. Instead of focus-181

ing on compressing the model itself, REGATE tar-182

gets compressing the computation path. This novel183

paradigm provides on-the-fly, modality-agnostic184

sparsity that optimizes the training process without185

changing the student’s backbone architecture.186

3 ReGATE187

We introduce REGATE, a method that speeds up188

the training of MLLMs by selectively allocating189

computational resources only to tokens that truly190

require visual information. The key insight is that191

not all tokens in a multimodal sequence depend 192

equally on visual context: some can be accurately 193

predicted from text alone, while others need cross- 194

modal grounding. To capture this, REGATE uses a 195

teacher-student framework. The student is the main 196

MLLM being trained. The teacher is a reference 197

model created by taking the student’s LLM back- 198

bone, removing its visual components (the visual 199

encoder and projector), and freezing its weights. 200

This results in a pure text-only LLM that acts as a 201

fixed expert to estimate the degree to which each 202

token depends on visual input. Given a batch of 203

input sequences containing both text and visual to- 204

kens, we generate a binary mask that determines 205

which token positions should be actively computed 206

and which can be skipped. This section explains 207

how we calculate per-token difficulty scores using 208

the frozen text-only teacher combined with the stu- 209

dent’s own training history, how we dynamically 210

adjust the fraction of tokens retained during train- 211

ing, and how we apply the resulting mask within 212

the transformer decoder. 213

3.1 Difficulty Score Formulation 214

Let xb = (xb,1, . . . , xb,T ) denote the token se- 215

quence in sample b, including both text tokens and 216

special visual tokens (e.g., <image> or <video> to- 217

kens representing visual content). To compute the 218

reference loss, we construct a modified sequence 219
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x̂b by replacing the actual visual tokens with place-220

holder tokens (typically the padding token <pad>),221

ensuring the sequence length remains identical to222

the original multimodal input fed to the MLLM’s223

backbone LLM. Our reference model is a pure text-224

only LLM obtained by removing the visual encoder225

and projector from the MLLM backbone, thus inca-226

pable of processing any visual content. By feeding227

the constructed placeholder sequence x̂b to the ref-228

erence model in evaluation mode, we compute the229

per-token negative log-likelihood:230

ℓrefb,i = − log pteacher
(
xb,i | x̂b,<i

)
. (1)231

A low value of ℓrefb,i indicates that the teacher232

can predict xb,i based on the textual context alone,233

whereas a high value signals that multimodal infor-234

mation is needed to predict the token. In parallel,235

we monitor how difficult each token has been for236

the student across training updates. For every train-237

ing sample s and token position i, we maintain238

a running difficulty buffer ms,i updated as an ex-239

ponential moving average (EMA) of the student’s240

cross-entropy loss:241

ms,i ← β ms,i + (1− β) ℓstub,i , β ∈ (0, 1), (2)242

where ℓstub,i is the current cross-entropy loss of the243

student model at token position i, and β controls244

the smoothing of the EMA. A higher value of ms,i245

indicates that token i in sample s has consistently246

posed difficulties during training. We then com-247

bine the reference loss and the student’s historical248

difficulty into a unified difficulty score for each249

token:250

db,i = ms,i + λ ℓrefb,i , (3)251

where λ balances these two signals. Tokens with a252

higher combined difficulty, db,i, either consistently253

challenge the student model or genuinely require254

visual context, and thus are prioritized during the255

training updates. Note that this combined difficulty256

evaluation is performed exclusively on output to-257

kens (labels), as these tokens directly influence the258

training process through backpropagation.259

3.2 Dual-cycle Sparsity Schedule260

We employ a deterministic schedule to determine261

the fraction of tokens kept at each training step.262

Our schedule repeats every C steps. In the first F263

steps of each cycle, we keep all tokens (i.e., p = 1)264

to allow the model to stabilize. In the remaining265

C − F steps, we retain only a fixed proportion266

psparse of the tokens. Formally, if t denotes the 267

global training step, we have: 268

p(t) =

{
1, if t mod C < F,

psparse, otherwise.
(4) 269

3.3 Dynamic Token Gating 270

For each sample b, we identify the indices of 271

valid tokens excluding padding and special mark- 272

ers. Let Ib denote those indices and Nb = |Ib|. 273

We compute the combined difficulty db,i for i ∈ 274

Ib using Equation (3) and select the top kb = 275

max
(
1, ⌊p(t) ·Nb⌋

)
tokens. The resulting binary 276

mask mb ∈ {0, 1}T is set to one for retained to- 277

kens and zero otherwise. We always retain all spe- 278

cial visual tokens (e.g., those corresponding to a 279

frame or image) regardless of their difficulty to 280

preserve multimodal information. 281

Because the difficulty buffer ms,i is updated af- 282

ter every epoch, the set of selected positions adapts 283

throughout training: tokens that become easy for 284

the student are gradually deprioritised, while per- 285

sistently challenging tokens or those requiring vi- 286

sual grounding remain active. This dynamic gating 287

enables the model to allocate its computational bud- 288

get to the most informative parts of the sequence 289

at each epoch, rather than committing to a fixed 290

sparsity pattern. Finally, the per-sample binary 291

masks are concatenated and padded to form a batch 292

mask M ∈ {0, 1}B×T ′
where T ′ is the expanded 293

sequence length accounting for visual tokens. 294

3.4 Adaptive Decoder Sparsity 295

To exploit the binary mask during forward propa- 296

gation, we modify the transformer decoder layer 297

of the backbone LLM. We implement sparse atten- 298

tion by passing the mask directly as the attention 299

mask to flash attention routines and by zeroing 300

out the hidden states of pruned tokens. For the 301

feed-forward network, we gather only the active 302

positions, apply the MLP to them, and scatter the 303

outputs back to their positions. The residual con- 304

nections ensure that skipped tokens retain their 305

previous representations. Algorithm 1 presents 306

the pseudocode for a single forward decoder layer. 307

This implementation requires no additional parame- 308

ters and integrates seamlessly into popular libraries, 309

such as HuggingFace Transformers. Importantly, 310

our modifications do not affect the model architec- 311

ture and thus remain compatible with pre-trained 312

weights. 313
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Algorithm 1 Sparse Decoder Layer Forward

Require: H ∈ RB×S×D ▷ hidden states
Require: M ∈ {0, 1}B×S ▷ token mask

1: for b = 1 to B do ▷ B = batch size
2: x← LNin(H[b])
3: mask←M[b] ▷ 1=keep, 0=skip
4: a← SelfAttn(x,mask)
5: H[b]← H[b] + a
6: active← nonzero(mask)
7: h← MLP(LNpost(H[b])[active])
8: H[b][active]← H[b][active] + h
9: end for

10: return H

4 Experiments314

4.1 Implementation Details315

To demonstrate the effectiveness of the proposed316

framework, we apply REGATE to two different317

models (i.e., VideoLLaMA2 and VideoChat2) and318

training strategies. We select VideoChat2 and Vide-319

oLLaMA2 over newer models like Qwen-2.5-VL320

and VideoLLaMA3 because REGATE assumes ac-321

cess to pretrained model weights for fine-tuning.322

However, in many cases, these weights are not pub-323

licly available, making it infeasible to apply meth-324

ods like REGATE directly. Training such models325

from scratch is also impractical, as many recent326

MLLMs rely on proprietary pretraining pipelines327

that require hundreds of GPUs, web-scale datasets,328

and access to private data. Nonetheless, with suf-329

ficient resources and access to pretrained weights330

and training data, REGATE can be seamlessly in-331

tegrated into the training pipeline of any modern332

MLLM.333

VideoLLaMA2. We apply REGATE to334

VideoLLaMA2-7B (Cheng et al., 2024), whose335

language backbone is Qwen2-7B (Yang et al.,336

2024). The model is initially pretrained with337

a frozen language backbone and subsequently338

fine-tuned on multimodal data. We introduce339

token gating during this fine-tuning stage, as the340

language backbone becomes trainable and can thus341

benefit from selective token updates. Specifically,342

the reference teacher model is obtained by343

removing the visual encoder and adapter from344

the VideoLLaMA2 backbone, resulting in a pure345

text-based LLM incapable of processing visual346

inputs. This teacher then computes token-wise347

losses, where all visual tokens have been replaced348

by padding. 349

VideoChat2. To assess REGATE’s effectiveness 350

in parameter-efficient fine-tuning (PEFT) scenarios, 351

we integrate our method into the LoRA-based Stage 352

3 training of VideoChat2-7B (Li et al., 2024c), 353

which uses a Mistral-7B backbone. Our key adap- 354

tation here is to make the LoRA update process 355

itself token-selective. In a conventional setup, the 356

loss used to update the LoRA adapters is aggre- 357

gated over all tokens. In our approach, the gra- 358

dients for the LoRA parameters are computed ex- 359

clusively from the subset of high-importance to- 360

kens identified by REGATE. This ensures that the 361

parameter-efficient updates are concentrated on the 362

most informative signals, while the original lan- 363

guage backbone weights remain frozen. The refer- 364

ence teacher is derived from the text-only Mistral- 365

7B (Jiang et al., 2023) backbone, following the 366

same procedure as described previously. 367

Datasets and sparsity schedule. We fine-tune 368

VideoLLaMA2 with and without REGATE on 369

the VideoChatGPT dataset (Maaz et al., 2024), 370

which is a subset of VideoLLaMA2’s official fine- 371

tuning dataset containing approximately 300,000 372

instruction-response pairs. For VideoChat2, we 373

similarly use a subset of its official fine-tuning data 374

comprising around 2.6 million instruction pairs. 375

Training follows the dual-cycle sparsity schedule 376

described in Section 3.2, with parameters set to 377

C = 128, F = 16, and psparse = 0.5. To ensure 378

stable training at the start, we prepend a global 379

warm-up phase of 100 iterations, during which all 380

tokens are retained. The main hyperparameters for 381

REGATE include an exponential moving average 382

(EMA) decay of β = 0.9 and a teacher loss weight- 383

ing coefficient of λ = 0.5. All experiments are run 384

on 4 H100 GPUs using mixed-precision training. 385

4.2 Evaluation Benchmarks 386

To evaluate REGATE, we use a diverse suite 387

of benchmarks across image, long-video, and 388

short-video domains. All evaluations are conducted 389

under LMMs-Eval’s1 settings. All benchmarks 390

used in our evaluation follow their respective li- 391

censes and are consistent with their intended use. 392

Below, we briefly summarize the key characteris- 393

tics of each benchmark. 394

1https://github.com/EvolvingLMMs-Lab/
lmms-eval
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Table 1: Zero-shot evaluation results on image understanding benchmarks. Previous best results are highlighted
in bold, while REGATE’s best results are underlined. I: SEED benchmark results are reported only for the image
subset. For baseline models, scores are taken from their official publications where available.

Model LLM Tokens ScienceQA MME VizWiz POPE SEEDI

Open-source Models

InstructBLIP (Dai et al., 2023) Vicuna-7B – 60.5 254.3/1137.1 34.5 86.1 46.4
LLaVA-1.5 (Liu et al., 2024a) Vicuna-7B – 66.8 302.1/1506.2 50.0 85.9 66.1
Qwen-VL-Chat (Bai et al., 2023) Qwen-7B – 68.2 392.1/1467.8 38.9 74.9 58.2
LLaVA-1.6 (Liu et al., 2024a) Vicuna-7B – 70.1 – 57.6 86.5 70.2
VILA1.5 (Lin et al., 2024b) Llama-2-13B – 79.1 288.9/1429.3 60.6 84.2 62.8
LLaVA-Next (Liu et al., 2024b) Mistral-7B – 73.0 308.9/1512.3 – 87.3 72.4
LLaVA-OneVision (Li et al., 2024a) Qwen2-7B – 95.4 415.7/1577.8 53.0 87.4 75.4
Qwen2.5-VL (Bai et al., 2025) Qwen2.5-7B – 89.0 613.9/1698.1 – 85.9 77.0

Proprietary Models

Claude3.7-Sonnet (Anthropic, 2025) – – 90.9 649.6/1189.7 – 82.4 74.3
Gemini-1.5-Flash (Gemini et al., 2024) – – 83.3 488.6/1589.3 – 88.5 75.0
Gemini-1.5-Pro (Gemini et al., 2024) – – 85.7 548.2/1562.4 – 88.2 76.0
GPT-4o (Hurst et al., 2024) – – 90.1 719.3/1609.4 – 85.0 76.4
GPT-4.1 (Hurst et al., 2024) – – 92.8 673.9/1663.6 – 86.4 78.0

Models w/wo REGATE

VideoChat2 Mistral-7B 3.93B 40.8 314.6/1244.0 28.5 86.2 45.9
VideoChat2-REGATE Mistral-7B 2.22B (↓ 43.51%) 46.6+5.8 360.7/1287.8+46.1/+43.8 32.5+4.0 85.1−1.1 47.2+1.3

VideoLLaMA2 Qwen2-7B 83.82M 61.4 376.4/1474.0 46.8 86.7 70.4
VideoLLaMA2-REGATE Qwen2-7B 49.27M (↓ 41.22%) 80.5+19.1 391.1/1507.1+14.7/+33.1 48.0+1.2 87.5+0.8 70.0−0.3

Image understanding. ScienceQA (Lu et al.,395

2022) is a multimodal science exam with 21,208396

multiple-choice questions and accompanying lec-397

tures and explanations; MME (Fu et al., 2024) mea-398

sures perception and cognition across 14 subtasks399

using manually created question–answer pairs;400

VizWiz (Gurari et al., 2018) collects real pho-401

tos taken by blind users and asks questions about402

them and whether they are answerable; POPE (Li403

et al., 2023) is an object hallucination bench-404

mark formulated as a binary-choice task; and405

SEED-Bench (Li et al., 2024b) includes 19 thou-406

sands multiple-choice questions covering both im-407

age and video modalities across 12 dimensions.408

Long-video understanding. Video-MME (Fu409

et al., 2025) spans six primary domains and410

30 subfields with videos ranging from 11 sec-411

onds to 1 hour; it integrates frames, subtitles412

and audio and provides 2,700 expert-annotated413

question–answer pairs for holistic evaluation.414

LongVideoBench (Wu et al., 2024) contains 3,763415

videos (up to an hour) and 6,678 multiple-choice416

questions, many of which require referring to417

specific temporal segments before reasoning.418

MLVU (Zhou et al., 2025) collects long videos419

from diverse genres, including movies, surveil-420

lance, and egocentric recordings, and offers multi-421

ple tasks. Studies show that existing models de-422

grade with longer context. EgoSchema (Man-423

galam et al., 2023) comprises more than 5,000424

three-minute clips from 250 hours of egocentric 425

data, with questions requiring reasoning over much 426

longer temporal windows than previous datasets, 427

and current models perform far below human level. 428

Short-video understanding. MVBench (Li 429

et al., 2024c) converts 20 static image tasks into 430

dynamic video tasks, producing multiple-choice 431

questions that probe temporal understanding. Per- 432

ception Test (Pătrăucean et al., 2023) consists of 433

11,600 real-world videos averaging 23 seconds; it 434

evaluates perception and reasoning across six an- 435

notation types and emphasises skills such as mem- 436

ory, abstraction, and physics. Vinoground (Zhang 437

et al., 2024a) comprises 1,000 short video–caption 438

pairs designed for counterfactual temporal rea- 439

soning, where even large proprietary models 440

struggle to distinguish subtle action differences. 441

NExT-QA (Xiao et al., 2021) offers 5,440 videos 442

and about 52,000 questions targeting causal and 443

temporal action reasoning. 444

4.3 Baseline Models 445

We evaluate REGATE against a comprehensive 446

set of baselines, including the adapted VideoL- 447

LaMA2 (Cheng et al., 2024) and VideoChat2 (Li 448

et al., 2024c) models. Our comparison covers a 449

broad range of state-of-the-art open-source mod- 450

els, primarily drawn from high-performing families 451

such as LLaVA and Qwen. We also report results 452

from proprietary models in the Google Gemini, 453
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Table 2: Zero-shot evaluation results on long video understanding benchmarks. Previous best results are
highlighted in bold, while REGATE’s best results are underlined. † Results on VideoMME are reported without
subtitles. For baseline models, scores are taken from their official publications when available.

Model LLM Frames Tokens VideoMME† LongVideoBench MLVU EgoSchema

Open-source Models

Video-LLaVA (Lin et al., 2024a) Vicuna-7B 8 – 39.9 39.1 47.3 38.4
LLaMA-VID (Li et al., 2024d) Llama-2-7B 1fps – 25.9 – 33.2 38.5
LLaVA-NeXT-Video (Zhang et al., 2024b) Vicuna-7B 32 – – 43.5 – 43.9
LLaVA-NeXT-Video (Zhang et al., 2024b) Qwen2-32B 32 – 60.2 – 65.5 60.9
VILA1.5 (Lin et al., 2024b) Llama-2-40B 8 – 60.1 – 56.7 58.0
LLaVA-OneVision (Li et al., 2024a) Qwen2-7B 32 – 58.2 56.4 64.7 60.1
Qwen2.5-VL (Bai et al., 2025) Qwen2.5-7B – – 65.1 56.0 70.2 65.0
VideoLLaMA3 (Zhang et al., 2025) Qwen2.5-7B 1fps – 66.2 59.8 73.0 63.3

Proprietary Models

Gemini-1.5-Flash (Gemini et al., 2024) – – – 70.3 61.6 – 65.7
Gemini-1.5-Pro (Gemini et al., 2024) – – – 75.0 64.0 – 71.2
GPT-4o (Hurst et al., 2024) – – – 71.9 66.7 64.6 72.2

Models w/wo REGATE

VideoChat2 Mistral-7B 16 3.93B 26.0 21.8 36.0 55.6
VideoChat2-REGATE Mistral-7B 16 2.22B (↓ 43.51%) 32.7+6.7 24.3+2.5 40.5+4.5 54.8−0.8

VideoLLaMA2 Qwen2-7B 16 83.82M 53.7 47.7 53.2 58.2
VideoLLaMA2-REGATE Qwen2-7B 16 49.27M (↓ 41.22%) 54.5+0.8 47.6−0.1 54.5+1.3 56.4−1.8

Table 3: Zero-shot evaluation results on short video understanding benchmarks. Previous best results are
highlighted in bold, while REGATE’s best results are underlined. ‡ Results reported for Vinoground only for its
video sub-task. For baseline models, scores are taken from their official publications when available.

Model LLM Frames Tokens MVBench Perception Vinoground‡ NeXT-QA

Open-source Models

Video-LLaVA (Lin et al., 2024a) Vicuna-7B 8 – 41.0 44.3 25.8 –
LLaMA-VID (Li et al., 2024d) Llama-2-7B 1fps – 41.9 44.6 – –
LLaVA-NeXT-Video (Zhang et al., 2024b) Vicuna-7B 32 – 46.5 48.8 25.6 –
LLaVA-NeXT-Video (Zhang et al., 2024b) Qwen2-32B 32 – – 59.4 – 77.3
VILA1.5 (Lin et al., 2024b) Llama-2-40B 8 – – 54.0 – 67.9
LLaVA-OneVision (Li et al., 2024a) Qwen2-7B 32 – 56.7 57.1 29.4 79.4
Qwen2.5-VL (Bai et al., 2025) Qwen2.5-7B – – 69.6 70.5 – –
VideoLLaMA3 (Zhang et al., 2025) Qwen2.5-7B 1fps – 69.7 72.8 – 84.5

Proprietary Models

Gemini-1.5-Pro (Gemini et al., 2024) – – – 60.5 – 22.6 –
GPT-4o (Hurst et al., 2024) – – – 64.6 – 38.2 –

Models w/wo REGATE

VideoChat2 Mistral-7B 16 3.93B 55.7 48.4 22.0 75.2
VideoChat2-REGATE Mistral-7B 16 2.22B (↓ 43.51%) 56.6+0.9 50.0+1.6 22.8+0.8 75.5+0.3

VideoLLaMA2 Qwen2-7B 16 83.82M 52.0 53.0 24.6 70.8
VideoLLaMA2-REGATE Qwen2-7B 16 49.27M (↓ 41.22%) 53.6+1.6 54.1+1.1 25.2+0.6 70.0−0.8

OpenAI GPT, and Anthropic Claude series. This454

diverse set of baselines spans multiple LLM back-455

bones and model sizes, ensuring a robust and mean-456

ingful comparison. The specific models evaluated457

across image and video tasks are listed in Tables 1,458

2, and 3.459

4.4 Results460

Learning better: ReGATE’s accuracy gains461

across image and video benchmarks. The com-462

prehensive results presented in Tables 1, 2, and463

3 show how VideoLLaMA2 and VideoChat2 per-464

form, with and without REGATE, across a range465

of image, short video, and long video understand-466

ing benchmarks. REGATE improves performance 467

consistently by focusing computation on the most 468

informative tokens. For example, VideoLLaMA2- 469

REGATE outperforms the baseline VideoLLaMA2 470

on most tasks while using 41.22% fewer tokens. 471

Similarly, VideoChat2-REGATE achieves better 472

results than the baseline VideoChat2 while using 473

43.51% fewer tokens. 474

On image understanding tasks that require mul- 475

timodal reasoning, both models show signifi- 476

cant gains. VideoLLaMA2-REGATE improves by 477

19.1% on ScienceQA and by up to 33.1 points on 478

MME. VideoChat2-REGATE improves by 5.8% 479

and 46.1 points on the same benchmarks. For long 480
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Table 4: Efficiency comparison of different models
with REGATE. All models are trained using 4 H100
GPUs. Performance is measured as zero-shot accuracy
(%) on MVBench.

Model Tokens ↓ Train Time ↓ Acc. (%) ↑

VideoLLaMA2 83.82M 32.4h 52.0
VideoLLaMA2-REGATE 49.27M 26.9h 53.6
VideoLLaMA2-REGATE 29.32M 16.0h 51.9

VideoChat2 3.93B 37.2h 55.7
VideoChat2-REGATE 2.22B 32.5h 56.6
VideoChat2-REGATE 1.51B 21.6h 55.5

video understanding, VideoChat2-REGATE shows481

strong improvements of 6.7% on VideoMME and482

4.5% on MLVU. VideoLLaMA2-REGATE also483

improves, though more modestly, with gains of484

0.8% and 1.3% on the same tasks. Short video485

tasks benefit as well. VideoLLaMA2-REGATE486

improves by 1.6% on MVBench and 1.1% on Per-487

ception, while VideoChat2-REGATE gains 0.9%488

and 1.6%, respectively.489

Overall, these results demonstrate REGATE’s490

ability to adapt across diverse tasks by efficiently491

directing computational resources to the most im-492

portant visual and semantic content.493

Learning faster: ReGATE’s efficiency gains.494

Table 4 presents detailed efficiency gains in to-495

ken usage, training time, and accuracy on the496

MVBench benchmark.497

For VideoLLaMA2, REGATE closely matches498

the baseline accuracy (51.9% vs. 52%) in just 16.0499

hours, which is less than half the time required for500

standard fine-tuning (32.4 hours). It does so us-501

ing only 29.32 million tokens, approximately 35%502

of the 83.82 million tokens used by the baseline.503

When training is extended to 26.9 hours (still 5.5504

hours less than the baseline), REGATE processes505

41.51% fewer tokens and achieves a higher accu-506

racy of 53.6%.507

For VideoChat2, which uses parameter-efficient508

LoRA fine-tuning, the improvements in training509

time are more modest. Specifically, REGATE510

closely matches the baseline accuracy (55.5% vs.511

55.7%) in 21.6 hours, compared to 37.2 hours for512

the baseline. Furthermore, when training time in-513

creases to 32.5 hours (still 4.7 hours less than the514

baseline), REGATE processes 43.51% fewer to-515

kens (2.22 billion vs. 3.93 billion) and achieves an516

improved accuracy of 56.6%.517

This speed-up difference between VideoL-518

LaMA2 and VideoChat2 arises from the contrast519

between full and LoRA fine-tuning strategies. In520

full fine-tuning, as used in VideoLLaMA2, both 521

forward and backward passes through the model 522

are computationally expensive. By pruning tokens, 523

REGATE speeds up both passes, especially the 524

backward pass where gradients are computed for 525

all model parameters. In LoRA fine-tuning, as used 526

in VideoChat2, most parameters are frozen, and the 527

backward pass is already efficient since gradients 528

are only computed for a small number of adapter 529

parameters. While REGATE still accelerates the 530

forward pass through the frozen backbone, the total 531

time savings are smaller because the backward pass 532

is not a bottleneck. Overall, REGATE delivers sig- 533

nificant gains in both token efficiency and training 534

time across different training strategies, making it 535

a flexible and effective solution for reducing com- 536

putation without compromising performance. 537

5 Conclusion and Future Work 538

We introduced REGATE, a reference-guided token 539

gating framework that accelerates the training of 540

multimodal large language models. By combining 541

a student model’s learning difficulty with reference 542

losses from a frozen text-only teacher, REGATE 543

dynamically focuses computation on the most in- 544

formative tokens while skipping those less relevant 545

for multimodal understanding. The method is sim- 546

ple to implement, requires no architectural changes, 547

and substantially improves training efficiency. Ex- 548

periments show that REGATE achieves compara- 549

ble or better accuracy than standard full fine-tuning, 550

using only a fraction of the tokens and significantly 551

less training time. These gains come without com- 552

promising model quality. In fact, REGATE consis- 553

tently outperforms baselines across a wide range of 554

image and video benchmarks, demonstrating strong 555

data efficiency and generalization. Future work 556

will explore adaptive scheduling for token spar- 557

sity by dynamically adjusting the retained token 558

ratio based on task complexity, model stability, and 559

training progress (e.g., starting with higher spar- 560

sity early and relaxing it as fine-tuning progresses). 561

We will also investigate fine-grained sparsity con- 562

trol across layers or attention heads for more ef- 563

ficient resource allocation. Moreover, we aim to 564

generalize the notion of “reference” beyond frozen 565

text-only teachers. Using stronger or multimodal 566

teacher models (e.g., vision/video-language) could 567

provide richer supervision for gating, improving 568

cross-modal alignment and enhancing performance 569

on complex spatial and temporal tasks. 570
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Limitations571

Due to computational resource constraints, we vali-572

date REGATE on 7B-parameter models, VideoL-573

LaMA2 and VideoChat2, demonstrating clear ef-574

fectiveness and efficiency gains at this scale. How-575

ever, the full potential of REGATE likely emerges576

with larger models (e.g., 30B or 70B+ parame-577

ters) and massive, web-scale datasets, where time578

and cost savings become more significant. Future579

work should focus on evaluating REGATE’s per-580

formance and scalability in such high-resource set-581

tings.582
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Appendix842

A Ablation Study843

How does each signal in our scoring mechanism844

affect performance? To validate the contribu-845

tions of the individual components within our dual-846

signal token scoring mechanism, we conduct an847

ablation study on the hyperparameter λ. This coeffi-848

cient balances the two core signals in our difficulty849

score formulation: db,i = ms,i+λ ℓrefb,i , where ms,i850

is the student’s dynamic EMA difficulty and ℓrefb,i851

is the static reference loss from the teacher model.852

By varying λ, we can isolate the impact of each853

signal.854

We evaluate three values for λ: 0.0, 0.5, and 1.0.855

The experiments use our VideoLLaMA2-REGATE856

setup with all other hyperparameters fixed for a fair857

comparison. As shown in Table 5, λ = 0.5, which858

balances the reference loss and the student’s EMA-859

based difficulty, results in the best performance.860

Table 5: Ablation study on the weighting factor λ.
This parameter balances the student’s EMA-based diffi-
culty and the teacher’s reference loss. Performance is
reported as zero-shot accuracy (%) on MVBench.

λ Description Acc. (%)

λ = 0.0 Student EMA Only 51.3
λ = 1.0 Reference Loss Only 51.1
λ = 0.5 Combined Signals 53.6

B Qualitative Analysis of Reference Loss861

To validate the core mechanism of REGATE, we862

qualitatively analyze the reference loss signal that863

guides its token selection. We assume that a high864

loss score from the text-only teacher indicates that865

a token requires visual information to be under-866

stood. Figure 3 shows two video Q&A examples,867

visualizing the loss for each word in the answer868

as calculated by a Mistral-7B (Jiang et al., 2023)869

teacher model.870

The results strongly support our assumption. As871

illustrated in the figure, tokens for visual details872

that are hard to guess from text alone, like the873

action “mixing” or the attribute “reflective”, get874

high loss scores. In contrast, simple grammatical875

words like “The” and “is”, or terms repeated from876

the question like “bartender”, get low scores. This877

difference confirms that reference loss is a reliable878

indicator of visual importance, enabling REGATE879

to focus its computation on the most critical tokens880

for more efficient training.881

C Additional Benchmarks Details 882

Table 6 lists the evaluation prompts corresponding 883

to each benchmark used in the experiments. 884
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Question: What is the material of the floor in the bumper car area?

The floor in the bumper car area is of a reflective and glossy material.Answer:

Reference Loss: “The”      “floor”     “in”      “the”      “bumper”      “car”      “area”      “is”      “of”

1.96

“a”      “reflective”      “and”      “glossy”      “material”      “.”

5.34 1.79 0.08 5.03 1.15 2.70 0.33

0.34 12.37 2.01 7.40 6.41 1.45

4.78

Question: What is the bartender doing in the video?

The bartender is mixing a drink behind the counter in a bar setting.Answer:

Reference Loss: “The”      “bartender”     “is”      “mixing”      “a”      “drink”      “behind”      “the”

3.20

“counter”      “in”      “a”      “bar”      “setting”      “.”

0.03 0.04 8.50 4.18 8.31 10.13 0.56

10.87 6.75 2.70 7.94 6.38 2.00

Figure 3: Qualitative examples illustrating the effectiveness of the reference loss signal. For two video Q&A
pairs, we show the per-token reference loss computed by a text-only teacher model (Mistral-7B). Tokens colored in
red have the highest losses and represent the top 50% most difficult tokens to predict from text alone. These are
precisely the tokens that REGATE prioritizes for computation.

Table 6: Summary of the evaluation benchmarks. Prompts are mostly borrowed from LMMs-Eval.

Benchmark Response formatting prompts

POPE –
MME Answer the question using a single word or phrase.

VisWiz Answer the question using a single word or phrase. When the pro-
vided information is insufficient, respond with “Unanswerable”.

ScienceQA Answer with the option’s letter from the given choices directly.
SEED-Bench Answer with the option’s letter from the given choices directly.

MLVU –
MVBench Only give the best option.
VideoMME Answer with the option’s letter from the given choices directly.
EgoSchema Answer with the option’s letter from the given choices directly.
NeXT-QA –
Perception Answer with the option’s letter from the given choices directly.
Vinoground Please only output one English character.
LongVideoBench Answer with the option’s letter from the given choices directly.
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