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Abstract

Continual Learning (CL) methods usually learn from all the available data. However,
this is not the case in human cognition which efficiently focuses on key experiences while
disregarding the redundant information. Similarly, not all data points in a dataset have
equal potential; some can be more informative than others. Especially in CL, such redundant
or low-quality data can be detrimental for learning efficiency and exacerbate catastrophic
forgetting. Drawing inspiration from this, we explore the potential of learning from important
samples and present an empirical study for evaluating coreset selection techniques in the
context of CL to stimulate research in this unexplored area. We train different continual
learners on increasing amounts of selected samples and elucidate the learning-forgetting
dynamics by shedding light on the underlying mechanisms driving their improved stability-
plasticity balance. We present several significant observations: learning from selectively
chosen samples (i) enhances incremental accuracy, (ii) improves knowledge retention of
previous tasks, and (iii) continually refines learned representations. This analysis contributes
to a deeper understanding of selective learning strategies in CL scenarios. The code is
available at https://anonymous.4open.science/r/Data-Diet-CD87.

1 Introduction
Humans exhibit a remarkable capacity to learn a multitude of tasks by progressively accumulating knowledge
and skills over time. Continual Learning (CL) mimics this ability and aims to sequentially learn from a
stream of data while retaining previously acquired knowledge. Class-Incremental Learning (CIL) is the most
challenging scenario where the learner is required to predict outcomes for all encountered classes without
being given task identifiers (Van de Ven & Tolias, 2019). However, catastrophic forgetting (McCloskey &
Cohen, 1989) remains a challenge in this dynamic setting wherein the class-incremental learners tend to lose
acquired knowledge from previous tasks, upon learning new ones. Recent research has brought solutions
through various techniques, including regularization methods (Kirkpatrick et al., 2017; Li & Hoiem, 2017; Lee
et al., 2017), replay strategies (Chaudhry et al., 2018; Lopez-Paz & Ranzato, 2017; Aljundi et al., 2019; Borsos
et al., 2020), architecture expansion (Yan et al., 2021; Wang et al., 2022a; Zhou et al., 2022; Rusu et al.,
2016; Yoon et al., 2019) and prompt learning (Wang et al., 2022c;b; Smith et al., 2023) approaches. However,
these approaches aim to learn from all the available data during training to maximize model performance
and assume that all samples are equally important. This standardized practice may not fully reflect the
efficiency and adaptability observed in human learning since, as humans, we are initially exposed to vast
amounts of information but intuitively filter and prioritize them, focusing on key experiences (e.g. clear and
novel examples) that enrich our understanding while disregarding redundant details (Pagnotta et al., 2022;
Jones et al., 2016; Posner & Petersen, 1990).

We draw inspiration from this human cognitive ability and introduce an empirical study to evaluate the
learning-forgetting dynamics of different CIL models when trained with important samples selected by a
wide range of sample selection approaches (as illustrated in Figure 1). Through a detailed analysis, we
provide insight into how data selection leads to an improved stability-plasticity balance in continual learning.
We believe that this comprehensive study and investigation contributes to a deeper understanding of the
potential benefits of sample selective learning strategies in CIL scenarios and stimulates systematic research
that leverages these insights to take a more holistic and data-centric approach to continual learning.
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Figure 1: Illustration of our evaluation protocol: Existing class-incremental learning methods (left) typically
utilize all available samples indiscriminately during training. In this study (right), we subject class-incremental
learners to a data diet and analyze how the selection of the most important samples with different coreset
selection methods affects the incremental performance.

Our contributions can be summarized as:

I. This paper presents the first explicit empirical analysis of different coreset selection methods in
combination with various continual learners in the class-incremental learning setting.

II. We find that learning from selectively chosen samples with different coreset selection methods
significantly elevates incremental learning performance.

III. We demonstrate that the increase in performance among class-incremental learners trained with
selected samples arises from enhanced retention of previously acquired concepts due to improved
representation and perception of the models.

IV. We show that continual learning can benefit from a data-centric approach, despite the fact that most
existing research has predominantly focused on model-centric enhancements.

2 Background

2.1 Class-Incremental Learning

Class-incremental learning can be broadly categorized into three main approaches (Van de Ven & Tolias,
2019); regularization, replay, architecture-based and prompt-based. Regularization-based methods regularize
the abrupt changes in the learned parameters to prevent catastrophic forgetting (Kirkpatrick et al., 2017; Li
& Hoiem, 2017; Lee et al., 2017). Replay-based methods either retain selected exemplars from prior tasks or
generate a subset of data points from previous tasks to alleviate forgetting (Chaudhry et al., 2018; Lopez-Paz
& Ranzato, 2017; Aljundi et al., 2019; Borsos et al., 2020). Architecture-based methods prevent forgetting
by increasing model size and allocating distinct sets of parameters to individual tasks, ensuring there is no
overlap between them (Yan et al., 2021; Wang et al., 2022a; Zhou et al., 2022; Rusu et al., 2016; Yoon et al.,
2019).Recently, with the growing popularity of large pretrained models with Vision Transformers (ViT),
prompt-based methods also received growing popularity (Wang et al., 2022c;b; Smith et al., 2023).
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Summary of CIL Methods Selected for Analysis

We use 7 well-established CIL models that encompass various approaches including architecture-based,
replay-based, regularization-based, and prompt-based. We deliberately chose these methods to provide a
comprehensive analysis since they all represent different learning strategies.

DER-Architecture. Dynamically expandable representation (Yan et al., 2021) creates a new backbone for
each task and then aggregates the features of all backbones on a single classifier. Each new or expanded
backbone uses an additional auxiliary loss to differentiate better between old and new classes. When facing
new tasks, it freezes the old backbone to maintain former knowledge.

FOSTER-Architecture. Feature boosting and compression for class-incremental learning (Wang et al.,
2022a) frames the learning process as a feature-boosting problem and aims to enhance the learning of new
features. Then, it expands the continual learner on a single classifier by integrating the boosted features with
a compression step to ensure that only relevant features are retained.

MEMO-Architecture. Memory efficient expandable model (Zhou et al., 2022) expands the network in a
more efficient way. It assumes that the initial blocks of the backbone capture the general patterns for any
task and only expands the model in the last or specialized blocks that are designed to be task-specific.

iCaRL-Replay. Incremental Classifier and Representation Learning (Rebuffi et al., 2017) is a replay-based
method that stores samples from each learned task. Upon the arrival of a new task, it uses stored exemplars
together with the new one to capture the distribution at once. Therefore, it refines the features after each
task with additional distillation loss to overcome abrupt shifts in the feature space.

ER-Replay. Experience Replay (Rolnick et al., 2019) is a simple yet strong method that employs reservoir
sampling to store samples from each task and randomly retrieves stored samples with the new task to capture
the distribution all at once.

LwF-Regularization. Learning without Forgetting (Li & Hoiem, 2017) is solely a regularization-based
method without relying on any replay buffer. It utilizes a distillation loss to prevent sudden changes in the
feature space while learning new tasks.

CODA-Prompt. CODA-Prompt (Smith et al., 2023) as the name suggested is a prompt based method
that leverages pretrained Vision Transformers (ViT) without relying on data rehearsal. It introduces a
set of prompt components that are dynamically assembled based on input-conditioned weights, generating
task-specific prompts for the transformer’s attention layers. These generated prompts selectively guide the
model’s attention to relevant features for each task, to enable better stability-plasticity tradeoff.

2.2 Coreset Selection

Coreset selection approximates the distribution of the whole dataset with a small subset and has been
extensively examined in data-efficient supervised batch learning (Toneva et al., 2018; Guo et al., 2022;
Coleman et al., 2019a; Paul et al., 2021; Welling, 2009; Coleman et al., 2019b; Iyer et al., 2021; Mirzasoleiman
et al., 2020) and active learning (Wei et al., 2015; Sener & Savarese, 2017). Coreset selection also holds
promise in continual learning to construct a memory buffer from important samples (Aljundi et al., 2019;
Borsos et al., 2020). Recently, an inspiring study (Yoon et al., 2022) improved the performance in online CL
setup by introducing a coreset selection method to select the most diverse samples while approximating the
mean of a given batch.

However, besides this one method (Yoon et al., 2022), the interplay between coreset selection methods and
continual learning models remains unexplored. This warrants deeper investigation into their interaction
as well as the underlying mechanisms related to the improved performance. Exploring this interaction, by
focusing on the quality of the data itself, could provide novel insight to create more efficient and advanced
continual learners.
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Overview of Coreset Algorithms Selected for Analysis

We employ 4 distinct coreset selection methods as well as a baseline using random selection. Once again,
we carefully chose these distinct methods to offer comprehensive empirical analysis. It is important to note
that these coreset selection methods require a brief initial training or warm-up phase to make informed and
meaningful decisions when selecting coreset samples.

Random. This selection strategy involves randomly selecting a subset of data points from the entire dataset
without any specific criteria or consideration of their importance or informativeness.

Herding. Herding (Welling, 2009) chooses data points by evaluating the distance between the center of
the original dataset and the center of the coreset within the feature space. This algorithm progressively and
greedily includes one sample at a time into the coreset, aiming to minimize the distance between centers.

Uncertainty. Samples with lower confidence levels might have a stronger influence than those with higher
confidence levels, thus having these samples in the coreset can be useful. Least confidence, entropy, and
margin are the common metrics used to quantify sample uncertainty (Coleman et al., 2019b). In this study,
entropy is used as a selection metric.

Forgetting. Forgetting selects instances which were correctly classified in one epoch and then subsequently
misclassified in the following epoch during training (Toneva et al., 2018). This method provides valuable
insight into the intrinsic characteristics of the training data and removes challenging or forgettable instances.

GraphCut. GraphCut partitions the dataset into subsets based on dissimilarity or information content,
and data points from these subsets are then selected to form the coreset (Iyer et al., 2021). This approach
ensures that the coreset captures the diversity and essential information of the original dataset while reducing
redundancy.

3 Data Diet

We conduct a comprehensive evaluation of existing CIL methods, assessing their performance when trained
on purposefully selected, informative samples, as opposed to the traditional approach of full dataset training.
We refer to this as a ‘Data Diet’. To clarify our approach, we first present the necessary preliminaries and
problem formulation in Section 3.1. Following this, we define our objective and outline the proposed training
strategy in Section 3.2.

3.1 Preliminaries and Problem Formulation

Formally, we define the CIL problem as a sequence of classification tasks T1:t = (T1, T2, ..., Tt). Each task Tt

is drawn from an unknown distribution and consists of input pairs (xi,t, yi,t) ∈ Xt × Yt where xi,t represents
the sample and yi,t indicates the corresponding label. Note that these learning tasks are mutually exclusive,
meaning that the label sets do not overlap, i.e., Yt−1 ∩ Yt = ∅.

From the coreset selection perspective, the aim is to find the most informative subset St from a given task Tt

with a large number of input pairs (xi,t, yi,t). Therefore, model trained with subset St ⊂ Tt with a condition
of |St| < |Tt| should have a similar generalization performance compared to a model trained with Tt.

3.2 Objective and Training Strategy

We structure the training process into two distinct phases: the warm-up phase and the learning phase. This
is necessary because coreset selection methods operate by analysing how models behave and represent new
data. Hence, CL models needs to be at least partially trained during the initial warm-up phase to identify
the most informative samples for a given task correctly. It is important to note that the duration of the
warm-up phase is typically much shorter than that of the learning phase. Upon completion of the warm-up
phase, the learning phase proceeds with the selected subset of samples.
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Algorithm 1 CL on Data Diet
Require: Model fθ, Tasks T1:t with training sets Tt, learning rate η, total epochs e, warm-up fraction α,

coreset selection function ϕ, coreset fraction s
1: for task t = 1 to ⌊T ⌋ do
2: for epoch = 1 to ⌊αe⌋ do ▷ Warm-up Phase
3: for each batch b in Tt do
4: Compute LCE(fθ, b)
5: Update fθ ← θ − η∇θLCE

6: end for
7: end for
8: Use ϕ(fθ, Tt) to select St ⊂ Tt with a fraction of s
9: for epoch = 1 to ⌊(1− α)e⌋ do ▷ Learning Phase

10: for each batch b in St do
11: Compute LCL(fθ, b)
12: Update fθ ← θ − η∇θLCL

13: end for
14: end for
15: end for

Let fθ(·) denote the continual learning model with parameters θ. Then, the training process can then be
expressed as follows:

fθ∗ = arg min
θ
LCL(fθ, St, (1− α)e) ◦ arg min

θ
LCE(fθ, Tt, αe) (1)

Here, the second term (fθ, Tt, αe) represents training the model fθ on the full training samples of task Tt with
a defined time budget of αe where hyperparameter α ∈ (0, 1) and determines the fraction of the total training
budget allocated to the warm-up phase, and e is the total number of epochs available for training. Similarly,
the first term (fθ, St, (1−α)e) represents the training of the model fθ, for the remaining time budget (1−α)e,
on the coreset St which is selected from Tt with a fraction of s ∈ (0, 1) based on a coreset selection function
ϕ(·), so that |St| = s · |Tt|. Note that LCE represents Cross-Entropy loss and LCL represents the loss defined
by continual learning methods given in section 2.1.

To provide a more precise explanation, Algorithm 1 begins with a warm-up phase (lines 2-7) where the model
fθ observes the training samples Tt of the current task for a duration of αe. During this phase, the model
trains each batch b to compute the Cross-Entropy loss LCE(fθ, b). This initial exposure allows the model to
capture a broad understanding of the task’s characteristics.

Following the warm-up (line 8), the algorithm employs the coreset selection function ϕ(·) which requires
training samples for a given task Tt and the model fθ to filter down to a coreset St ⊂ Tt, consisting of only a
fraction s of the current task samples. The criterion for selection, depending on the coreset selection function,
can target samples with high informativeness, uncertainty, or relevance, focusing on key data points.

In the learning phase (lines 9-14), which spans the remaining (1−α)e epochs, the model is trained on batches
from St, using specific loss function of continual learners LCL(fθ, b). This refines the goal of solidifying
task-specific knowledge while minimizing interference from previous tasks to prevent catastrophic forgetting.

4 Experimental Setting

Datasets. We use well-established continual learning datasets, specifically Split-CIFAR10 and Split-
CIFAR100 (Krizhevsky et al., 2009), Split-ImageNet-100 (Russakovsky et al., 2015) in our experiments
to evaluate and posit our findings. Split-CIFAR10 has 5 disjoint tasks and each task has 2 disjoint classes
with 10000 samples for training and 2000 samples for testing. Split-CIFAR100 has 10 disjoint tasks and
each task has 10 disjoint classes with 5000 samples for training and 1000 samples for testing. In addition, we
employ Split-ImageNet100, a subset of the large-scale ImageNet dataset, with images at a higher resolution
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of 224x224 pixels. Similar to Split-CIFAR100, Split-ImageNet100 is divided into 10 tasks, each consisting of
10 disjoint classes. The increased number of classes, fewer images per class combined with longer learning
sessions, and higher resolution bring further challenges and offer a more complex scenario.

Implementation Details. We use Deepcore (Guo et al., 2022) for coreset selection methods and PYCIL
(Zhou et al., 2023) for the CIL. We employ both from scratch (ResNet18) and pretrained (ResNet18 and
ViT) backbones with prior knowledge to provide a more comprehensive analysis, using standard CL metrics
which are discussed more in detail in the Appendix A.1. We set the total training budget e to 100 epochs
where warmup fraction α is set to 0.1 and the remaining is allocated for the learning phase. We set coreset
fraction s to 10%, 20%, 50%, 80% and 90% for each task. We use SGD optimizer with a scheduled learning
rate of 0.1 and momentum of 0.9. We set a weight decay of 5× 10−4 for the initial task and 2× 10−4 for
subsequent tasks. We set the batch size to 128. We employ a fixed memory size: 50 per class for CIFAR10
and 20 per class for CIFAR100 and ImageNet100. For ViT, we only modify the learning rate to 0.001, reduce
the batch size to 32, and train for 20 epochs. We run experiments on A100 GPU with different seeds and
report the average across three runs.

5 Results and Analysis

In Section 5.1, we conduct a thorough analysis across diverse CIL methods and different coreset selection
algorithms with varying coreset sizes. In Section 5.2, we investigate why coreset selection improves incremental
accuracy, offering insight into the stability-plasticity dynamics of each class-incremental learner. In Section 5.3,
we seek to understand how these dynamics are reflected in the learning perception of the model.

Table 1: Accuracy [%] of CIL models across various coreset fractions and selections on Split-CIFAR10.
Learning from coreset samples enhances the performance, except FOSTER and LwF. The best results are
highlighted in bold if coreset selection outperforms training with all samples.

Fraction 10% 20% 50% 80% 90% 100%

DER (Yan et al., 2021)

Random 51.79 ± 4.6 54.28 ± 3.8 55.68 ± 0.3 57.27 ± 2.9 55.61 ± 2.5 56.91 ± 1.3
Herding 41.65 ± 2.2 52.35 ± 2.5 59.79 ± 1.8 63.96 ± 1.1 62.93 ± 1.2 56.91 ± 1.3
Uncertainty 56.02 ± 1.7 59.48 ± 1.7 57.97 ± 0.8 62.01 ± 3.1 59.36 ± 1.5 56.91 ± 1.3
Forgetting 55.68 ± 2.1 60.97 ± 1.0 60.82 ± 0.3 63.46 ± 3.9 61.36 ± 0.4 56.91 ± 1.3
GraphCut 62.06 ± 1.9 64.74 ± 0.5 63.03 ± 2.0 61.17 ± 1.9 62.95 ± 1.5 56.91 ± 1.3

FOSTER (Wang et al., 2022a)

Random 52.44 ± 5.4 52.34 ± 4.3 53.22 ± 2.8 53.93 ± 4.2 53.93 ± 3.0 54.79 ± 2.9
Herding 32.00 ± 2.2 39.91 ± 8.3 46.91 ± 3.3 52.82 ± 2.6 51.34 ± 1.2 54.79 ± 2.9
Uncertainty 45.42 ± 3.6 49.18 ± 4.6 48.94 ± 3.2 50.95 ± 2.6 49.25 ± 2.2 54.79 ± 2.9
Forgetting 45.44 ± 3.2 51.59 ± 4.0 49.37 ± 0.2 48.19 ± 2.6 49.10 ± 1.5 54.79 ± 2.9
GraphCut 50.85 ± 3.1 52.54 ± 3.7 49.94 ± 0.3 49.43 ± 0.9 49.28 ± 1.0 54.79 ± 2.9

MEMO (Zhou et al., 2022)

Random 44.36 ± 4.2 45.41 ± 5.5 47.45 ± 6.4 48.93 ± 7.1 49.58 ± 7.2 49.22 ± 5.5
Herding 39.32 ± 0.2 45.04 ± 0.4 47.90 ± 3.1 49.98 ± 6.1 49.34 ± 6.3 49.22 ± 5.5
Uncertainty 38.27 ± 6.9 41.10 ± 5.0 44.99 ± 6.4 47.75 ± 6.0 47.90 ± 5.4 49.22 ± 5.5
Forgetting 35.04 ± 4.1 45.23 ± 5.4 47.74 ± 5.3 48.66 ± 5.5 47.78 ± 5.9 49.22 ± 5.5
GraphCut 51.37 ± 3.6 52.54 ± 2.3 49.67 ± 4.0 49.97 ± 6.0 48.35 ± 5.7 49.22 ± 5.5

iCaRL (Rebuffi et al., 2017)

Random 47.70 ± 4.3 55.41 ± 5.4 54.56 ± 5.8 57.75 ± 7.5 57.29 ± 6.3 59.54 ± 8.0
Herding 40.32 ± 5.0 42.99 ± 3.3 54.02 ± 4.5 58.60 ± 6.7 59.11 ± 6.3 59.54 ± 8.0
Uncertainty 50.77 ± 1.5 54.41 ± 6.2 56.78 ± 6.3 57.38 ± 6.6 57.82 ± 7.1 59.54 ± 8.0
Forgetting 53.79 ± 4.9 57.86 ± 5.9 58.30 ± 5.9 58.90 ± 6.3 56.90 ± 7.7 59.54 ± 8.0
GraphCut 61.70 ± 2.7 61.07 ± 4.2 60.88 ± 5.6 58.80 ± 7.0 57.68 ± 7.1 59.54 ± 8.0

ER (Rolnick et al., 2019)

Random 51.02 ± 2.7 56.32 ± 6.2 57.79 ± 4.6 57.20 ± 6.0 57.77 ± 6.9 58.51 ± 6.4
Herding 41.06 ± 7.5 47.97 ± 4.0 55.87 ± 4.9 58.93 ± 4.6 58.85 ± 4.9 58.51 ± 6.4
Uncertainty 52.70 ± 2.4 52.99 ± 1.1 56.35 ± 6.3 57.48 ± 6.4 58.09 ± 5.4 58.51 ± 6.4
Forgetting 52.44 ± 3.4 55.05 ± 5.8 57.43 ± 5.7 57.00 ± 5.5 56.73 ± 6.2 58.51 ± 6.4
GraphCut 63.03 ± 3.1 60.53 ± 2.6 60.34 ± 4.4 58.69 ± 5.6 57.61 ± 5.8 58.51 ± 6.4

LwF (Li & Hoiem, 2017)

Random 31.60 ± 0.8 41.46 ± 1.9 45.64 ± 1.5 51.21 ± 4.7 51.83 ± 2.1 51.15 ± 4.3
Herding 15.27 ± 3.8 23.75 ± 3.0 20.72 ± 0.7 27.74 ± 5.2 30.86 ± 4.1 51.15 ± 4.3
Uncertainty 26.89 ± 5.0 24.21 ± 3.3 28.95 ± 5.1 29.58 ± 5.8 30.54 ± 4.2 51.15 ± 4.3
Forgetting 27.10 ± 5.3 25.49 ± 4.0 27.66 ± 5.2 30.24 ± 5.5 30.57 ± 5.0 51.15 ± 4.3
GraphCut 25.34 ± 3.1 26.22 ± 3.5 29.42 ± 5.2 30.54 ± 4.2 30.95 ± 5.4 51.15 ± 4.3
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5.1 Data diet enhances incremental performance

Large number of samples per task. Our analysis reveals a consistent trend of performance enhancement
across various class-incremental learners when utilizing coreset selection strategies (see Table 1). We find
that when the coreset size is large enough, all selection methods tend to exhibit comparable performance.
Conversely, in scenarios where the coreset size is more restricted, a sophisticated method like GraphCut
outperforms others. Moreover, the size of the coreset also plays a role: smaller coresets tend to yield more
significant improvements due to increased distinction between representations which we discuss more in detail
in Section 5.3. This observation is particularly evident in the case of DER which demonstrates a remarkable
enhancement of approximately 7% in performance when trained only with 20% of the samples from each task.
Finally, we observe that the benefit of coreset selection on FOSTER and LwF appears less pronounced.

Small number of samples per task. When the number of samples per task is relatively limited, we still
observe performance enhancements, although they are not as pronounced due to the increased challenge of
selecting informative samples (see in Table 2 and 3). Consequently, in such situations, opting for a larger
coreset is more beneficial since a smaller coreset size would result in an exceptionally small sample size
per task, posing a challenge for class-incremental learners. For instance, in Table 2, iCaRL improves its
performance by around 3% when trained with 80% of the samples from each task, compared to full sample
training. However, its performance stars to degrade when coreset size is less than 50%.

Experiments on pretrained backbone. We further complemented our study with pretrained ResNet18
and ViT backbones where the results align with the findings discussed herein. We observe that pretraining
improves the performance regardless of coreset selection. However, coreset selection provides an additional
performance boost. For more details, please refer to the Appendix A.3.

Table 2: Accuracy [%] of CIL models across various coreset fractions and selections on Split-CIFAR100.
Learning from coreset samples enhances the performance, except FOSTER and LwF. The best results are
highlighted in bold if coreset outperforms training with all samples.

Fraction 10% 20% 50% 80% 90% 100%

DER (Yan et al., 2021)

Random 26.23 ± 0.6 36.35 ± 2.8 47.32 ± 2.6 53.11 ± 1.6 54.07 ± 0.1 53.81 ± 1.0
Herding 17.99 ± 7.5 24.79 ± 6.0 41.11 ± 2.7 52.48 ± 0.4 53.92 ± 0.8 53.81 ± 1.0
Uncertainty 27.54 ± 4.6 38.29 ± 3.0 49.41 ± 1.2 55.71 ± 1.9 54.55 ± 0.4 53.81 ± 1.0
Forgetting 30.32 ± 4.9 41.25 ± 1.8 49.20 ± 2.2 54.10 ± 0.3 53.68 ± 0.1 53.81 ± 1.0
GraphCut 29.61 ± 5.7 39.71 ± 3.4 50.35 ± 1.0 53.08 ± 0.8 54.89 ± 0.7 53.81 ± 1.0

FOSTER (Wang et al., 2022a)

Random 23.21 ± 0.0 32.04 ± 1.3 48.95 ± 0.8 51.71 ± 1.9 53.34 ± 0.8 56.19 ± 2.3
Herding 10.84 ± 0.8 18.38 ± 1.1 35.15 ± 2.7 51.51 ± 0.1 53.72 ± 0.9 56.19 ± 2.3
Uncertainty 16.97 ± 0.1 27.37 ± 0.9 44.29 ± 3.1 55.24 ± 0.1 55.10 ± 1.7 56.19 ± 2.3
Forgetting 21.80 ± 0.4 32.42 ± 0.8 44.97 ± 2.9 54.59 ± 0.4 54.91 ± 1.0 56.19 ± 2.3
GraphCut 22.16 ± 1.6 30.40 ± 1.1 45.91 ± 2.3 53.35 ± 1.9 55.24 ± 0.5 56.19 ± 2.3

MEMO (Zhou et al., 2022)

Random 20.79 ± 0.7 26.74 ± 0.1 29.62 ± 0.5 34.58 ± 0.1 34.58 ± 0.1 34.23 ± 0.4
Herding 13.24 ± 2.0 18.76 ± 1.5 27.26 ± 1.8 33.64 ± 0.3 34.94 ± 0.1 34.23 ± 0.4
Uncertainty 16.07 ± 2.6 23.23 ± 2.9 30.14 ± 1.7 33.41 ± 0.9 34.10 ± 1.0 34.23 ± 0.4
Forgetting 18.44 ± 1.9 23.37 ± 2.0 31.17 ± 0.3 33.10 ± 0.4 32.46 ± 2.2 34.23 ± 0.4
GraphCut 23.21 ± 1.7 27.79 ± 0.6 32.49 ± 0.6 33.61 ± 0.2 34.22 ± 0.7 34.23 ± 0.4

iCaRL (Rebuffi et al., 2017)

Random 25.48 ± 0.2 29.87 ± 3.0 35.37 ± 2.0 37.02 ± 3.1 37.11 ± 3.0 37.45 ± 1.7
Herding 13.02 ± 1.2 17.24 ± 1.5 27.91 ± 1.3 38.24 ± 1.3 37.55 ± 0.8 37.45 ± 1.7
Uncertainty 22.47 ± 1.9 28.05 ± 1.3 35.18 ± 3.3 40.25 ± 0.7 39.26 ± 2.5 37.45 ± 1.7
Forgetting 25.00 ± 0.3 27.80 ± 1.1 33.27 ± 2.0 37.80 ± 1.0 37.44 ± 2.2 37.45 ± 1.7
GraphCut 24.04 ± 0.7 30.45 ± 0.2 33.31 ± 0.3 35.76 ± 3.2 38.03 ± 0.8 37.45 ± 1.7

ER (Rolnick et al., 2019)

Random 25.23 ± 0.3 31.58 ± 3.0 37.64 ± 1.4 39.25 ± 1.3 40.66 ± 2.0 39.53 ± 1.6
Herding 19.13 ± 5.4 24.90 ± 6.3 34.92 ± 4.0 40.18 ± 2.1 41.19 ± 1.2 39.53 ± 1.6
Uncertainty 25.77 ± 4.6 31.63 ± 4.3 36.61 ± 1.5 41.14 ± 0.4 39.69 ± 1.4 39.53 ± 1.6
Forgetting 29.53 ± 4.7 33.97 ± 3.8 36.96 ± 3.4 40.58 ± 0.7 39.92 ± 2.5 39.53 ± 1.6
GraphCut 32.99 ± 8.7 38.22 ± 6.4 39.55 ± 3.5 39.61 ± 2.6 39.97 ± 0.6 39.53 ± 1.6

LwF (Li & Hoiem, 2017)

Random 11.39 ± 1.0 15.38 ± 1.3 20.26 ± 1.3 22.93 ± 2.1 23.91 ± 1.2 22.82 ± 1.4
Herding 3.67 ± 1.3 6.22 ± 0.1 12.43 ± 2.0 17.09 ± 4.6 18.08 ± 4.5 22.82 ± 1.4
Uncertainty 9.55 ± 0.5 12.17 ± 1.8 15.54 ± 2.8 18.72 ± 5.0 18.00 ± 4.2 22.82 ± 1.4
Forgetting 9.93 ± 1.3 12.75 ± 2.7 15.18 ± 2.9 17.99 ± 4.5 18.28 ± 4.4 22.82 ± 1.4
GraphCut 8.17 ± 0.3 10.37 ± 1.4 15.56 ± 3.4 17.26 ± 4.1 18.00 ± 4.9 22.82 ± 1.4
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FOSTER benefits from more samples. FOSTER’s primary objective is to identify critical elements
that were potentially overlooked or misinterpreted by the original model during the learning process. For
instance, in the initial stages of learning, certain features may have been deemed less significant than others.
However, as the model progresses and encounters new concepts, previously redundant features may become
crucial. FOSTER addresses these dynamics by employing a feature-boosting mechanism, which aims to
highlight the evolving importance of features over time. However, this mechanism may necessitate access to
more samples to effectively capture the intricate relationships between features. Consequently, training with
the full dataset enables the model to develop a more comprehensive understanding of the underlying patterns
and correlations among the features.

LwF exhibits abrupt weight changes when trained with a coreset. Sophisticated coreset selection
approaches do not yield performance advantages in LwF. Surprisingly, learning from a random samples
appears to drive improvements instead. To understand this phenomenon, we conduct an in-depth investigation,
focusing on the performance after each task, as illustrated in Figure 2. Our analysis shows that LwF trained
with more advanced coreset selection methods, such as Uncertainty and GraphCut, demonstrate superior
adaptability to the current task. However, this enhanced adaptability comes at a cost of catastrophic
forgetting. To unravel the root cause of this forgetting phenomenon, we examine the changes in model
parameters between consecutive tasks. We found that Uncertainty and GraphCut induce abrupt changes
in the parameters, whereas it is comparatively smaller with randomly selected samples. This suggests that
the traditional regularization methods may not be as effective as replay-based approaches when considering
coreset utilization.

Table 3: Accuracy [%] of CIL models across various coreset fractions and selections on Split-ImageNet100.
Learning from coreset samples enhances the performance, except FOSTER and LwF. The best results are
highlighted in bold if coreset outperforms training with all samples.

Fraction 10% 20% 50% 80% 90% 100%

DER (Yan et al., 2021)

Random 19.89 ± 2.3 32.70 ± 1.5 42.45 ± 0.6 52.61 ± 1.8 53.12 ± 1.0 55.03 ± 1.2
Herding 18.30 ± 1.2 29.83 ± 0.6 44.77 ± 0.8 53.59 ± 0.3 55.52 ± 0.1 55.03 ± 1.2
Uncertainty 27.08 ± 0.5 36.92 ± 0.9 49.84 ± 0.4 55.10 ± 0.2 56.46 ± 0.6 55.03 ± 1.2
Forgetting 32.69 ± 2.1 40.21 ± 1.3 50.27 ± 0.9 55.15 ± 0.7 55.60 ± 0.8 55.03 ± 1.2
GraphCut 32.91 ± 0.7 38.90 ± 0.4 50.12 ± 0.8 54.71 ± 0.3 55.81 ± 0.1 55.03 ± 1.2

FOSTER (Wang et al., 2022a)

Random 17.59 ± 1.3 22.68 ± 0.8 34.20 ± 3.8 46.90 ± 4.1 48.64 ± 4.2 52.06 ± 0.4
Herding 8.67 ± 0.1 13.42 ± 0.2 30.63 ± 1.7 45.85 ± 1.0 48.89 ± 0.1 52.06 ± 0.4
Uncertainty 8.14 ± 0.1 15.91 ± 0.5 35.40 ± 0.5 46.39 ± 0.5 48.37 ± 0.5 52.06 ± 0.4
Forgetting 11.62 ± 0.5 18.71 ± 0.4 35.26 ± 0.3 46.95 ± 0.9 49.45 ± 0.4 52.06 ± 0.4
GraphCut 16.74 ± 0.5 22.99 ± 0.1 37.42 ± 0.4 47.22 ± 0.4 49.95 ± 0.9 52.06 ± 0.4

MEMO (Zhou et al., 2022)

Random 18.79 ± 0.1 27.29 ± 0.2 40.02 ± 1.7 44.48 ± 0.2 47.80 ± 1.9 46.36 ± 1.0
Herding 18.15 ± 1.1 26.08 ± 0.4 37.71 ± 3.1 46.76 ± 2.3 47.94 ± 1.1 46.36 ± 1.0
Uncertainty 20.22 ± 0.8 26.94 ± 2.2 39.39 ± 1.1 45.90 ± 0.4 48.54 ± 0.2 46.36 ± 1.0
Forgetting 24.40 ± 1.5 33.16 ± 1.0 41.86 ± 0.5 45.57 ± 0.5 47.19 ± 0.9 46.36 ± 1.0
GraphCut 29.76 ± 1.8 35.73 ± 1.1 42.80 ± 1.9 45.98 ± 2.8 48.50 ± 1.3 46.36 ± 1.0

iCaRL (Rebuffi et al., 2017)

Random 21.93 ± 0.7 27.29 ± 0.5 30.21 ± 3.7 29.12 ± 1.9 30.30 ± 1.6 33.05 ± 1.8
Herding 20.80 ± 1.8 24.29 ± 2.3 30.92 ± 0.2 33.23 ± 0.9 34.04 ± 0.2 33.05 ± 1.8
Uncertainty 22.52 ± 0.3 22.37 ± 0.9 32.67 ± 1.6 33.03 ± 0.1 34.76 ± 0.9 33.05 ± 1.8
Forgetting 26.38 ± 0.1 28.35 ± 0.8 31.85 ± 0.7 33.80 ± 0.6 34.77 ± 2.7 33.05 ± 1.8
GraphCut 33.04 ± 0.6 35.10 ± 0.6 34.87 ± 1.1 35.19 ± 0.2 31.29 ± 0.3 33.05 ± 1.8

ER (Rolnick et al., 2019)

Random 20.19 ± 0.1 25.84 ± 2.7 30.47 ± 2.0 29.14 ± 1.0 30.81 ± 0.6 34.23 ± 4.2
Herding 20.21 ± 0.1 24.56 ± 0.8 29.81 ± 1.1 31.92 ± 0.4 33.68 ± 0.7 34.23 ± 4.2
Uncertainty 20.82 ± 0.6 23.08 ± 0.6 29.23 ± 0.5 29.35 ± 1.1 30.74 ± 1.4 34.23 ± 4.2
Forgetting 24.85 ± 0.6 28.32 ± 1.4 29.03 ± 0.2 32.85 ± 0.4 31.74 ± 2.1 34.23 ± 4.2
GraphCut 30.13 ± 1.0 30.52 ± 0.2 34.83 ± 0.6 32.05 ± 1.5 32.16 ± 0.5 34.23 ± 4.2

LwF (Li & Hoiem, 2017)

Random 9.25 ± 0.1 11.22 ± 0.7 15.88 ± 0.8 16.27 ± 1.1 16.52 ± 0.5 16.46 ± 1.8
Herding 5.70 ± 0.5 7.65 ± 1.1 10.70 ± 0.1 11.33 ± 0.2 11.64 ± 0.2 16.46 ± 1.8
Uncertainty 7.84 ± 0.1 8.07 ± 0.1 11.27 ± 0.2 11.41 ± 0.1 11.51 ± 0.3 16.46 ± 1.8
Forgetting 7.38 ± 0.2 10.01 ± 0.1 11.60 ± 0.2 12.15 ± 0.1 12.57 ± 0.3 16.46 ± 1.8
GraphCut 7.41 ± 0.2 9.29 ± 0.8 10.77 ± 0.5 12.06 ± 0.2 12.88 ± 0.1 16.46 ± 1.8
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Figure 2: Accuracy [%] after each learning step on LwF (above), reveals that Random selection demonstrates
relatively less forgetting while effectively learning. This is due to the abrupt parameter changes. For example,
on the last layer between consecutive tasks (below), Uncertainty and GraphCut abruptly shift the parameters.

5.2 Incremental performance increases because models forget less

The performance improvements observed in class-incremental learners when trained on coreset samples can
be attributed to several factors:

(i) First, coreset samples are carefully selected to represent the most informative subset of the data, thereby
reducing redundancy and focusing on critical information. This strategy enhances the model’s capacity for
retention of essential information while minimizing the risk of overfitting to less relevant data points. In
other words, this allows more focused exposure to relevant data and develops robust representations that
consolidate the acquired knowledge better, leading to improved performance in class-incremental learning
scenarios.

(ii) Second, sample selection before training is also crucial in enhancing the data quality utilized during
the replay or memory construction phase in continual learning. By filtering out potentially irrelevant or
redundant data points beforehand, it ensures that only the most informative and representative samples
are stored in memory. This contributes to enhanced retention or consolidation of learned knowledge from
previous tasks over time by focusing on key patterns and relationships.

Consequently; DER, iCaRL, and ER demonstrate noticeable improvement in knowledge retention learning
when trained on coreset samples (see Figure 3). These methods leverage the enhanced representativeness
and diversity of coreset samples, reinforcing old knowledge retention while learning new ones. MEMO and
LwF also benefit from training on coreset samples, albeit to a lesser extent. FOSTER still appears to rely
more heavily on learning from the complete dataset, maintaining consistent performance across tasks. This
reaffirms that its learning strategy may be better suited to leveraging the full dataset rather than coreset
samples as we discuss above. In the Appendix A.2, we also provide more details and share the accuracy
per task after each learning session on Split-CIFAR100. Overall, our analysis indicates that the enhanced
incremental performance with coreset selection is primarily attributed to knowledge retention.
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T1 T2 T3 T4 T5

T1
T2

T3
T4

T5

86 0 0 0 0

54 91 0 0 0

44 71 88 0 0

44 69 62 84 0

40 69 60 74 80

Coreset Size (20%), Acc: 64.74% 

T1 T2 T3 T4 T5
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T2
T3

T4
T5

97 0 0 0 0

39 99 0 0 0

29 60 99 0 0

29 46 57 98 0

26 45 48 69 97

Coreset Size (100%), Acc: 56.91% 

(a) DER
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26 43 41 61 98
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Coreset Size (100%), Acc: 54.79% 

(b) FOSTER
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Coreset Size (20%), Acc: 52.54% 
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T1
T2

T3
T4
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Coreset Size (100%), Acc: 49.22% 

(c) MEMO
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T3
T4

T5

98 0 0 0 0
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34 51 99 0 0
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36 52 56 56 98

Coreset Size (100%), Acc: 59.54% 

(d) iCaRL
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98 0 0 0 0

38 99 0 0 0

36 44 99 0 0

39 45 37 98 0

38 55 58 44 98

Coreset Size (100%), Acc: 58.51% 

(e) ER
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T1
T2

T3
T4

T5

97 0 0 0 0
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41 66 87 0 0

29 59 65 70 0

20 50 54 56 80

Coreset Size (90%), Acc: 51.83% 

T1 T2 T3 T4 T5

T1
T2

T3
T4

T5

98 0 0 0 0

62 96 0 0 0

39 71 81 0 0

32 63 62 70 0

19 51 54 55 77

Coreset Size (100%), Acc: 51.15% 

(f) LwF

Figure 3: Accuracy [%] of each task after every learning session on different class-incremental learning methods
with Split-CIFAR10. This comparison includes the performance using all samples vs. the best performing
coreset selection, which may involve different coreset fractions. The underlying reason for the improved
accuracy is attributed to reduced forgetting.

5.3 Models forget less due to preserved representations

Here, we delve deeper into the key factor that drives enhanced knowledge retention. Specifically, we aim
to explore how different class-incremental learners’ perceptions evolved under different coreset methods
and fractions. To achieve this, we generate saliency maps, as illustrated in Figure 4, with the objective of
discerning where the model directed its attention after being trained with a coreset and compare against all
data samples. We find that models trained with the coresets exhibit a greater ability to retain focus on the
object itself, effectively capturing the essence of the image. In contrast, models trained on all data samples
tend to shift their focus to areas outside the main object. This insight sheds light on our earlier discussion
regarding the model’s knowledge retention or not forgetting ability, and highlights that coreset selection gives
more attention to relevant features.
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Figure 4: Saliency maps from the first encountered task after completing all learning sessions. Models trained
with selected coresets exhibit enhanced perception capabilities in capturing the important parts of an input.
Note that we select top performing coreset selection methods across different class-incremental learners.
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8

4

0

4

8
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Figure 5: DER’s representation of all classes on Split-CIFAR10 with varying coresets selected with GraphCut,
compared to the full samples. When it is trained with coresets, it exhibits superior ability to distinct
representations.

Furthermore, we investigate how the model’s representation ability evolves as the coreset size changes,
providing insights on the relationship between coreset composition and class separability. To illustrate this,
in Figure 5, we employ DER to examine its representation of each class after completing all learning sessions.
Notably, when using a smaller coreset, such as 20%, the model demonstrates distinct separations between
classes, effectively preserving boundaries between different categories. This suggests that with fewer, more
concentrated samples, the model can maintain clearer distinctions.

However, as the coreset size increases, we observe a noticeable convergence in class representations, with
boundaries between classes becoming less distinct. This trend suggests that larger coresets, while offering
more data, may introduce redundancy or noise, causing overlap between classes and ultimately increasing the
misclassification during inference. This phenomenon underscores the delicate balance between data quantity
and quality, where more data does not necessarily translate into better generalization in class-incremental
learning.
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6 Conclusion

Existing class-incremental learning approaches predominantly use all available data during training yet not
all samples carry equal informational value and not need to go under the training process. In this study,
we explore the underutilized potential of selective learning from key samples, demonstrating that model
performance is strongly influenced by both the quality and quantity of data. Our empirical analysis yields
three key findings that challenge and extend current CIL methodologies. First, we show that learning from
coreset samples enhances incremental performance. We attribute this improvement to better knowledge
retention across tasks, achieved by reducing redundancy and focusing on high-value information. Further, we
observe that models trained with coresets exhibit a refined perception, capturing essential features of input
data more effectively and maintaining clearer class distinctions by the end of all sessions. These findings
underscore the substantial impact of learning from coreset samples on continual learning, and aims to provide
a foundation for designing more effective CIL models for practical applications. Future studies could extend
this work by examining coreset strategies in online or blurry class-incremental learning contexts, potentially
enhancing adaptability and efficiency in real-world scenarios.

Broader Impact Statement

This paper aims to advance the field of Machine Learning, especially on the subject of Class-Incremental
Learning. Besides the advancements in the field, it shows training with smaller but more representative
samples improves performance, thereby reducing memory and computation concerns.
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A Appendix

In this appendix, we first give more details about our implementation details for the backbones we used and
the metrics that we evaluated. Then we share the accuracy of each task after every learning session for the
Split-CIFAR100 dataset trained with ResNet18, similar to Figure 3. Finally, we provide more results with
pretrained ResNet18 and pretrained ViT on Split-CIFAR10 and Split-CIFAR100.

A.1 Implementation Details

Backbones. To offer a more comprehensive evaluation, we test both from scratch and pretrained models
across two architectures: ResNet18 (He et al., 2016) and Vision Transformer (ViT) (Dosovitskiy et al., 2021).
In ResNet18 trained from scratch, we observe how well it can learn task-specific features directly from the
dataset. In contrast, the pretrained models Pretrained-ResNet18 and Pretrained-ViT are initialized
with ImageNet weights, giving them prior knowledge of visual patterns and structures, which helps them
start with a robust foundation for CL.

Metrics. We utilize average accuracy (ACC) which measures the final accuracy averaged over all tasks
and can be formulated as ACC = 1

T

∑T
i=1 AT,i where AT,i represents the testing accuracy of task T after

learning task i. To observe learning-forgetting dynamics more in detail, we utilize heatmaps that show the
accuracy of each task after every learning session instead of sharing a single numerical value.

A.2 Results for Split-CIFAR100 with ResNet18

Figure A illustrates the accuracy results on the Split-CIFAR100 dataset after each task, comparing various
class-incremental learning methods. For each method, we evaluate performance using both the full dataset and
the best-performing coreset, chosen based on size and selection criteria optimal for each approach. Notably,
the results show a pattern of improved accuracy when coresets are used, which aligns with observations made
in the Split-CIFAR10 experiments. This accuracy boost can primarily be attributed to reduced forgetting, as
training on a selected subset allows the model to retain important task information with less interference
from previous tasks. Minimizing redundancy and focusing on coreset samples, provides a more targeted
training approach and enhances overall model performance in class-incremental scenarios.

A.3 Results for Pretrained Resnet18 and ViT

We also explore the effects of learning from high-value samples when prior knowledge is available through a
pretrained backbone network. Although pretraining often provides a useful foundation, it does not have to
consistently yield performance gains, as pretrained parameters are subject to continual fine-tuning with each
new task. Our experiments on Split-CIFAR10 and Split-CIFAR100 datasets consistently demonstrate that
learning from coreset samples improves incremental performance when using ImageNet pretrained ResNet18
and ViT, aligning with our previous findings (Table A, Table B, and Table C).

In experiments with ViT, we further validate the efficacy of coreset selection by incorporating CODA-
Prompt, a prompt-based technique tailored to transformer architectures. The application of CODA-Prompt
demonstrates that coreset selection remains effective within prompt-based frameworks. Together, these results
suggest that coreset selection is a valuable strategy for enhancing class-incremental learning.
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T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

81 0 0 0 0 0 0 0 0 0
49 84 0 0 0 0 0 0 0 0
44 59 90 0 0 0 0 0 0 0
43 50 77 82 0 0 0 0 0 0
41 46 65 72 86 0 0 0 0 0
39 45 60 62 83 78 0 0 0 0
38 42 56 57 66 80 77 0 0 0
38 39 56 53 59 65 82 71 0 0
37 38 54 50 53 56 69 80 70 0
34 36 51 47 48 52 62 72 84 53

Coreset Size (100%), Acc: 53.81%

(a) DER
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(b) FOSTER

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

75 0 0 0 0 0 0 0 0 0
29 75 0 0 0 0 0 0 0 0
32 29 83 0 0 0 0 0 0 0
32 28 47 74 0 0 0 0 0 0
29 27 38 39 80 0 0 0 0 0
28 29 37 34 50 71 0 0 0 0
28 25 37 29 41 46 69 0 0 0
30 28 37 30 36 36 44 64 0 0
28 24 35 28 34 32 34 48 66 0
28 24 35 26 33 28 32 37 47 59

Coreset Size (90%), Acc: 34.94%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

76 0 0 0 0 0 0 0 0 0
27 76 0 0 0 0 0 0 0 0
28 30 84 0 0 0 0 0 0 0
28 29 48 76 0 0 0 0 0 0
29 25 38 40 80 0 0 0 0 0
27 26 36 34 50 74 0 0 0 0
28 23 35 31 40 48 71 0 0 0
26 23 34 28 35 34 49 68 0 0
25 23 34 27 32 32 37 51 65 0
24 24 33 25 31 29 30 39 52 55

Coreset Size (100%), Acc: 34.23%

(c) MEMO

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

82 0 0 0 0 0 0 0 0 0
50 81 0 0 0 0 0 0 0 0
39 45 88 0 0 0 0 0 0 0
37 34 60 83 0 0 0 0 0 0
35 30 44 54 88 0 0 0 0 0
31 29 41 40 61 83 0 0 0 0
31 23 38 34 45 61 87 0 0 0
28 26 38 31 38 40 57 85 0 0
29 23 35 28 34 36 40 59 87 0
28 22 34 28 33 29 35 45 64 83

Coreset Size (80%), Acc: 40.25%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

80 0 0 0 0 0 0 0 0 0
41 82 0 0 0 0 0 0 0 0
33 41 88 0 0 0 0 0 0 0
31 30 53 83 0 0 0 0 0 0
27 24 40 46 88 0 0 0 0 0
25 25 35 33 56 84 0 0 0 0
27 20 33 27 39 52 87 0 0 0
24 22 32 25 33 31 55 86 0 0
24 21 30 24 28 30 36 56 88 0
25 21 33 26 30 23 32 40 60 84

Coreset Size (100%), Acc: 37.45%

(d) iCaRL

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

82 0 0 0 0 0 0 0 0 0
33 84 0 0 0 0 0 0 0 0
37 37 92 0 0 0 0 0 0 0
38 33 48 86 0 0 0 0 0 0
37 36 43 43 90 0 0 0 0 0
35 34 44 36 47 87 0 0 0 0
37 29 45 35 41 46 90 0 0 0
33 36 42 34 38 32 44 86 0 0
34 30 39 34 34 35 37 48 89 0
31 29 41 34 38 30 38 40 46 86

Coreset Size (90%), Acc: 41.19%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

79 0 0 0 0 0 0 0 0 0
32 84 0 0 0 0 0 0 0 0
37 33 92 0 0 0 0 0 0 0
36 32 46 86 0 0 0 0 0 0
36 32 44 40 91 0 0 0 0 0
33 32 43 36 43 87 0 0 0 0
34 25 43 33 38 43 89 0 0 0
30 28 42 33 36 30 42 88 0 0
32 28 38 31 33 35 34 44 90 0
30 27 40 32 38 28 36 36 45 85

Coreset Size (100%), Acc: 39.53%

(e) ER

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

80 0 0 0 0 0 0 0 0 0
52 73 0 0 0 0 0 0 0 0
36 51 77 0 0 0 0 0 0 0
21 34 53 70 0 0 0 0 0 0
15 25 39 53 74 0 0 0 0 0
8 16 25 30 55 72 0 0 0 0
5 11 21 22 42 57 72 0 0 0
3 6 14 10 29 37 52 74 0 0
1 3 8 6 17 27 38 60 74 0
0 1 6 4 11 15 25 48 59 70

Coreset Size (90%), Acc: 23.91%

T1 T2 T3 T4 T5 T6 T7 T8 T9 T1
0

T1
T2

T3
T4

T5
T6

T7
T8

T9
T1

0

80 0 0 0 0 0 0 0 0 0
48 74 0 0 0 0 0 0 0 0
34 54 79 0 0 0 0 0 0 0
20 37 56 72 0 0 0 0 0 0
12 27 40 54 75 0 0 0 0 0
6 17 24 32 56 75 0 0 0 0
4 11 20 22 41 58 72 0 0 0
2 6 12 10 31 36 53 75 0 0
1 4 7 6 17 26 37 59 75 0
0 1 4 3 10 15 24 43 57 71

Coreset Size (100%), Acc: 22.82%

(f) LwF

Figure A: Accuracy [%] of each task after every learning session on different class-incremental learning
methods with Split-CIFAR100. Its results align with Split-CIFAR10 and again incremental performance
improves due to better knowledge retention.
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Table A: Accuracy [%] on Split-CIFAR10 with an ImageNet pretrained ResNet18 shows that training
with coreset samples improves incremental performance.

Fraction 10% 20% 50% 80% 90% 100%

DER

Random 40.18 ± 5.28 53.93 ± 3.36 61.35 ± 2.37 66.66 ± 2.36 67.07 ± 2.51 67.85 ± 3.30
Herding 57.35 ± 0.45 61.48 ± 1.32 65.84 ± 2.66 68.68 ± 3.74 71.36 ± 1.48 67.85 ± 3.30
Uncertainty 61.23 ± 0.14 63.38 ± 0.40 67.63 ± 1.37 70.75 ± 2.71 70.92 ± 2.08 67.85 ± 3.30
Forgetting 61.00 ± 0.23 65.02 ± 0.66 67.86 ± 1.84 71.72 ± 2.08 69.67 ± 2.78 67.85 ± 3.30
GraphCut 62.00 ± 2.03 64.87 ± 1.92 68.39 ± 0.98 71.72 ± 1.65 71.19 ± 2.77 67.85 ± 3.30

FOSTER

Random 42.82 ± 7.84 46.24 ± 2.57 60.15 ± 2.88 57.89 ± 4.07 58.32 ± 5.71 57.85 ± 3.09
Herding 48.72 ± 4.27 50.35 ± 2.35 54.76 ± 4.46 56.71 ± 2.53 57.06 ± 3.39 57.85 ± 3.09
Uncertainty 54.51 ± 1.48 58.51 ± 2.97 58.34 ± 3.54 56.85 ± 4.81 56.35 ± 3.38 57.85 ± 3.09
Forgetting 52.26 ± 0.45 55.52 ± 5.48 57.61 ± 3.53 57.65 ± 2.90 55.98 ± 2.98 57.85 ± 3.09
GraphCut 53.84 ± 3.70 59.27 ± 3.28 58.04 ± 3.86 57.57 ± 3.71 56.09 ± 2.59 57.85 ± 3.09

MEMO

Random 37.49 ± 4.08 43.77 ± 10.63 48.74 ± 7.63 53.90 ± 2.21 59.34 ± 4.88 55.65 ± 8.06
Herding 34.50 ± 7.48 44.94 ± 12.11 55.14 ± 7.53 62.84 ± 5.82 61.34 ± 5.19 55.65 ± 8.06
Uncertainty 43.02 ± 5.27 50.06 ± 6.13 54.55 ± 6.44 61.21 ± 5.79 62.00 ± 5.72 55.65 ± 8.06
Forgetting 37.64 ± 4.28 49.77 ± 8.80 54.98 ± 6.70 62.84 ± 5.78 61.84 ± 6.93 55.65 ± 8.06
GraphCut 47.23 ± 3.19 52.04 ± 8.08 55.96 ± 6.87 61.57 ± 5.18 61.37 ± 5.61 55.65 ± 8.06

iCaRL

Random 38.85 ± 0.13 47.22 ± 7.77 48.32 ± 3.87 48.97 ± 3.02 52.03 ± 5.62 53.37 ± 5.94
Herding 53.52 ± 2.71 55.21 ± 1.45 53.68 ± 6.33 55.42 ± 5.13 55.38 ± 4.59 53.37 ± 5.94
Uncertainty 53.72 ± 3.14 56.03 ± 1.67 52.81 ± 5.12 56.82 ± 6.18 54.73 ± 5.88 53.37 ± 5.94
Forgetting 53.20 ± 0.90 56.00 ± 4.88 54.76 ± 5.06 55.62 ± 5.33 54.98 ± 6.39 53.37 ± 5.94
GraphCut 57.99 ± 2.41 57.98 ± 3.45 57.03 ± 3.85 55.63 ± 4.50 57.79 ± 5.47 53.37 ± 5.94

ER

Random 41.21 ± 2.43 43.55 ± 6.68 43.21 ± 5.02 44.16 ± 6.60 44.56 ± 6.71 45.01 ± 5.56
Herding 38.28 ± 4.17 41.91 ± 3.25 47.91 ± 2.85 44.76 ± 7.06 43.17 ± 6.39 45.01 ± 5.56
Uncertainty 36.23 ± 3.22 40.28 ± 7.42 42.19 ± 6.85 44.01 ± 8.18 43.81 ± 5.51 45.01 ± 5.56
Forgetting 34.70 ± 3.03 42.90 ± 5.67 44.66 ± 6.07 44.41 ± 6.35 43.95 ± 6.01 45.01 ± 5.56
GraphCut 52.26 ± 3.93 50.82 ± 4.91 46.33 ± 5.23 44.35 ± 7.20 45.11 ± 7.77 45.01 ± 5.56

LwF

Random 30.80 ± 1.42 41.67 ± 1.89 45.95 ± 3.11 51.04 ± 0.38 54.74 ± 0.44 53.94 ± 0.79
Herding 17.65 ± 0.23 21.74 ± 3.19 26.41 ± 3.72 29.85 ± 6.65 31.53 ± 6.01 53.94 ± 0.79
Uncertainty 25.21 ± 5.02 26.38 ± 6.01 27.76 ± 6.16 30.68 ± 6.37 32.13 ± 6.92 53.94 ± 0.79
Forgetting 23.68 ± 1.81 26.99 ± 5.19 27.60 ± 5.33 30.74 ± 5.98 30.82 ± 6.81 53.94 ± 0.79
GraphCut 26.45 ± 5.28 25.23 ± 4.16 27.79 ± 5.35 31.05 ± 5.38 31.78 ± 5.26 53.94 ± 0.79
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Table B: Accuracy [%] on Split-CIFAR100 with ImageNet pretrained ResNet18. Training with coreset
samples improves the incremental performance also with a pretrained backbone.

Fraction 10% 20% 50% 80% 90% 100%

DER

Random 20.38 ± 3.27 30.82 ± 0.76 44.96 ± 0.28 53.41 ± 1.96 52.23 ± 0.84 55.85 ± 0.38
Herding 16.33 ± 4.78 22.13 ± 8.92 47.52 ± 2.47 55.51 ± 0.89 56.74 ± 1.09 55.85 ± 0.38
Uncertainty 30.03 ± 0.62 40.53 ± 0.98 52.21 ± 0.78 56.94 ± 0.97 57.22 ± 0.59 55.85 ± 0.38
Forgetting 30.08 ± 4.11 37.48 ± 5.50 51.88 ± 0.81 56.18 ± 1.53 56.16 ± 1.08 55.85 ± 0.38
GraphCut 28.20 ± 1.64 38.79 ± 1.66 50.94 ± 1.59 55.76 ± 0.68 56.95 ± 1.77 55.85 ± 0.38

FOSTER

Random 16.25 ± 0.27 19.71 ± 0.45 34.21 ± 3.55 50.80 ± 0.07 50.65 ± 1.36 56.63 ± 1.11
Herding 12.51 ± 0.03 17.86 ± 1.39 37.88 ± 1.58 54.25 ± 2.37 55.40 ± 2.13 56.63 ± 1.11
Uncertainty 14.87 ± 1.03 23.91 ± 0.86 45.93 ± 1.50 55.21 ± 2.26 56.65 ± 2.27 56.63 ± 1.11
Forgetting 18.44 ± 0.72 24.46 ± 1.84 44.04 ± 0.33 55.45 ± 2.08 56.30 ± 1.21 56.63 ± 1.11
GraphCut 17.87 ± 2.30 22.10 ± 3.81 44.94 ± 0.94 55.51 ± 1.93 56.60 ± 2.16 56.63 ± 1.11

MEMO

Random 17.21 ± 1.91 25.29 ± 0.42 38.54 ± 3.05 43.16 ± 2.88 46.32 ± 3.75 46.70 ± 3.64
Herding 10.94 ± 0.72 20.13 ± 0.21 36.26 ± 0.94 44.29 ± 0.75 46.87 ± 0.24 46.70 ± 3.64
Uncertainty 17.85 ± 1.05 24.54 ± 0.15 37.92 ± 0.73 44.87 ± 0.30 46.10 ± 0.57 46.70 ± 3.64
Forgetting 21.56 ± 0.52 28.20 ± 0.51 38.59 ± 1.06 44.49 ± 0.88 45.86 ± 0.58 46.70 ± 3.64
GraphCut 27.60 ± 5.53 33.44 ± 4.45 40.38 ± 0.13 44.54 ± 0.29 45.60 ± 0.08 46.70 ± 3.64

iCaRL

Random 20.09 ± 0.72 22.25 ± 0.93 30.08 ± 0.04 30.40 ± 1.16 33.60 ± 0.66 32.90 ± 0.80
Herding 18.46 ± 0.72 24.80 ± 1.56 32.74 ± 2.12 34.70 ± 2.10 34.74 ± 2.08 32.90 ± 0.80
Uncertainty 22.70 ± 0.23 27.82 ± 0.88 32.68 ± 1.42 33.44 ± 1.26 34.04 ± 1.65 32.90 ± 0.80
Forgetting 24.22 ± 0.69 30.00 ± 1.38 33.85 ± 2.05 34.16 ± 2.72 35.21 ± 2.10 32.90 ± 0.80
GraphCut 28.88 ± 0.34 30.93 ± 2.39 35.40 ± 1.56 34.17 ± 0.96 34.02 ± 1.47 32.90 ± 0.80

ER

Random 16.6 ± 3.59 22.35 ± 0.04 26.09 ± 0.34 25.42 ± 0.10 24.91 ± 0.16 24.58 ± 0.46
Herding 15.2 ± 0.8 19.9 ± 0.32 25.16 ± 0.97 25.94 ± 1.52 25.30 ± 0.83 24.58 ± 0.46
Uncertainty 14.4 ± 0.46 17.56 ± 0.62 22.78 ± 0.24 24.04 ± 0.14 25.58 ± 0.61 24.58 ± 0.46
Forgetting 19.01 ± 0.63 21.72 ± 0.14 25.57 ± 0.69 25.69 ± 0.89 26.26 ± 1.55 24.58 ± 0.46
GraphCut 27.01 ± 0.34 28.99 ± 1.63 27.52 ± 0.57 26.03 ± 1.43 25.43 ± 0.86 24.58 ± 0.46

LwF

Random 10.39 ± 0.36 12.63 ± 1.40 20.69 ± 0.70 22.78 ± 0.38 25.01 ± 0.46 24.31 ± 0.57
Herding 4.15 ± 0.11 5.44 ± 0.10 9.47 ± 0.84 13.11 ± 1.53 13.77 ± 0.96 24.31 ± 0.57
Uncertainty 7.42 ± 0.01 9.15 ± 0.22 11.00 ± 0.58 13.29 ± 1.18 14.46 ± 0.99 24.31 ± 0.57
Forgetting 7.26 ± 0.24 8.22 ± 0.17 10.89 ± 0.86 13.06 ± 1.14 14.04 ± 0.94 24.31 ± 0.57
GraphCut 6.59 ± 0.32 7.23 ± 0.32 11.13 ± 0.67 13.21 ± 1.21 13.65 ± 1.13 24.31 ± 0.57
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Table C: Accuracy [%] on Split-CIFAR100 with ImageNet pretrained ViT. Training with coreset samples
improves the incremental performance also with a pretrained backbone.

Fraction 10% 20% 50% 80% 90% 100%

DER

Random 61.51 ± 0.36 61.88 ± 1.00 64.39 ± 0.78 63.12 ± 0.02 64.10 ± 1.22 60.83 ± 1.93
Herding 68.25 ± 1.44 69.26 ± 1.15 70.07 ± 0.15 68.58 ± 1.03 68.88 ± 1.92 60.83 ± 1.93
Uncertainty 74.44 ± 0.37 71.30 ± 0.42 69.68 ± 0.16 68.92 ± 0.37 70.28 ± 0.18 60.83 ± 1.93
Forgetting 70.70 ± 2.70 73.10 ± 0.55 69.92 ± 1.23 68.15 ± 0.63 68.05 ± 0.09 60.83 ± 1.93
GraphCut 72.58 ± 0.27 72.29 ± 0.03 69.70 ± 1.58 68.88 ± 1.47 68.37 ± 2.21 60.83 ± 1.93

FOSTER

Random 72.51 ± 2.67 81.41 ± 0.67 84.97 ± 0.56 85.91 ± 0.28 86.35 ± 0.42 86.74 ± 0.30
Herding 68.84 ± 0.01 78.87 ± 0.34 83.68 ± 0.23 85.41 ± 0.34 85.58 ± 0.27 86.74 ± 0.30
Uncertainty 77.10 ± 0.59 82.68 ± 0.26 85.17 ± 0.23 86.03 ± 0.12 85.83 ± 0.19 86.74 ± 0.30
Forgetting 77.00 ± 1.53 82.61 ± 0.30 84.90 ± 0.39 85.74 ± 0.33 86.03 ± 0.24 86.74 ± 0.30
GraphCut 74.64 ± 0.79 79.72 ± 0.42 84.14 ± 0.08 85.09 ± 0.13 85.68 ± 0.41 86.74 ± 0.30

MEMO

Random 14.84 ± 0.20 17.87 ± 0.90 23.74 ± 5.85 27.24 ± 5.37 30.07 ± 7.65 36.12 ± 0.16
Herding 27.79 ± 1.15 24.68 ± 1.79 28.22 ± 2.03 31.02 ± 0.66 30.07 ± 0.45 36.12 ± 0.16
Uncertainty 29.21 ± 1.47 29.34 ± 1.07 32.13 ± 0.76 31.88 ± 2.99 30.95 ± 0.10 36.12 ± 0.16
Forgetting 35.14 ± 1.79 31.72 ± 0.71 29.29 ± 1.46 31.47 ± 2.11 31.00 ± 2.94 36.12 ± 0.16
GraphCut 33.74 ± 1.66 32.46 ± 2.07 33.45 ± 3.05 30.67 ± 3.23 28.38 ± 2.63 36.12 ± 0.16

iCaRL

Random 71.24 ± 1.50 71.79 ± 2.62 70.62 ± 1.56 68.30 ± 1.72 68.79 ± 2.38 66.03 ± 0.61
Herding 68.34 ± 0.21 69.85 ± 0.25 71.11 ± 0.48 70.72 ± 0.41 69.09 ± 0.59 66.03 ± 0.61
Uncertainty 74.88 ± 0.41 74.11 ± 0.14 70.61 ± 0.13 70.99 ± 0.34 69.20 ± 0.45 66.03 ± 0.61
Forgetting 73.21 ± 0.58 73.51 ± 0.40 71.91 ± 0.76 70.74 ± 0.23 70.61 ± 1.03 66.03 ± 0.61
GraphCut 72.74 ± 4.08 73.68 ± 1.78 71.72 ± 0.52 73.05 ± 2.42 73.59 ± 2.28 66.03 ± 0.61

ER

Random 69.52 ± 2.83 73.54 ± 1.81 73.59 ± 0.10 73.36 ± 0.16 72.39 ± 0.52 67.95 ± 0.86
Herding 67.47 ± 1.53 70.57 ± 0.20 71.43 ± 1.43 72.65 ± 0.60 72.24 ± 0.16 67.95 ± 0.86
Uncertainty 73.97 ± 0.25 72.71 ± 1.94 71.68 ± 0.38 72.68 ± 0.84 70.31 ± 0.37 67.95 ± 0.86
Forgetting 71.32 ± 0.73 71.31 ± 0.24 71.50 ± 1.06 72.00 ± 0.45 72.09 ± 0.27 67.95 ± 0.86
GraphCut 76.59 ± 0.35 76.39 ± 1.68 74.87 ± 0.46 70.09 ± 0.25 70.69 ± 0.66 67.95 ± 0.86

LwF

Random 52.76 ± 2.27 60.26 ± 2.62 64.73 ± 1.56 65.71 ± 0.70 65.35 ± 0.85 66.63 ± 1.41
Herding 22.99 ± 0.13 24.44 ± 0.13 27.57 ± 0.49 29.46 ± 0.67 31.10 ± 0.40 66.63 ± 1.41
Uncertainty 25.17 ± 0.60 26.27 ± 0.31 28.78 ± 0.26 30.19 ± 0.64 30.31 ± 0.04 66.63 ± 1.41
Forgetting 24.99 ± 0.29 26.50 ± 0.18 27.63 ± 0.74 31.22 ± 0.77 30.52 ± 0.44 66.63 ± 1.41
GraphCut 23.32 ± 1.24 25.84 ± 0.98 29.53 ±1.47 29.66 ± 0.45 31.82 ± 0.75 66.63 ± 1.41

CODA-Prompt

Random 78.99 ± 1.42 81.62 ± 1.89 84.01 ± 0.11 84.64 ± 0.38 85.45 ± 0.44 85.37 ± 0.79
Herding 73.21 ± 1.23 74.31 ± 1.19 83.21 ± 0.72 85.51 ± 0.65 85.73 ± 0.01 85.37 ± 0.79
Uncertainty 78.48 ± 1.02 82.32 ± 1.01 85.20 ± 0.16 85.64 ± 0.37 85.57 ± 0.92 85.37 ± 0.79
Forgetting 78.30 ± 1.81 82.48 ± 1.19 84.73 ± 0.33 85.73 ± 0.98 86.33 ± 0.81 85.37 ± 0.79
GraphCut 80.55 ± 1.28 83.33 ± 1.16 84.31 ± 0.35 85.26 ± 0.38 86.34 ± 0.26 85.37 ± 0.79
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