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Abstract

Recently, multimodal large language models (MLLMs) have demonstrated strong visual
understanding and decision-making capabilities, enabling the exploration of autonomously
improving MLLMs in unknown environments. However, external feedback like human or
environmental feedback is not always available. To address this challenge, existing methods
primarily focus on enhancing the decision-making capabilities of MLLMs through voting
and scoring mechanisms, while little effort has been paid to improving the environmental
comprehension of MLLMs in unknown environments. To fully unleash the self-learning
potential of MLLMs, we propose a novel actor-critic self-learning paradigm, dubbed SELU,
inspired by the actor-critic paradigm in reinforcement learning. The critic employs self-
asking and hindsight relabeling to extract knowledge from interaction trajectories collected
by the actor, thereby augmenting its environmental comprehension. Simultaneously, the
actor is improved by the self-feedback provided by the critic, enhancing its decision-making.
We evaluate our method in the AI2-THOR and VirtualHome environments, and SELU
achieves critic improvements of approximately 28% and 30%, and actor improvements of
about 20% and 24% via self-learning.

1 Introduction

Multimodal Large Language Models (MLLMs) have demonstrated impressive perceptual and understanding
capabilities across various domains, e.g., , web applications (Ma et al., 2024; Tao et al., 2024; Liu et al.,
2024), robotics (Xiong et al., 2024; Li et al., 2024c), gaming (Li et al., 2024d; Qi et al., 2024; Xu et al., 2024),
and autonomous driving (Wen et al., 2024; Zhang et al., 2024). Thanks to their powerful capabilities, many
works, e.g., , Jarvis-1 (Wang et al., 2023b), STEVE-1 (Lifshitz et al., 2023), and Cradle (Tan et al., 2024b),
directly utilize the pre-trained MLLMs to complete various decision-making tasks in different embodied
environments.

However, the generalization ability of existing pre-trained MLLMs cannot meet the needs of all environ-
ments. For some uncommon environments, embodied MLLMs often exhibit hallucinations and poor visual
understanding (Huang et al., 2024; Jiang et al., 2024a). For example, they cannot distinguish left from
right or fail to recognize where objects are (Tan et al., 2024b). The reason is that MLLMs have not been
further grounded with the environments (Su et al., 2022; Sun et al., 2024b). Grounding can be realized by
fine-tuning on the experiences from interacting with the environments. Based on the evaluation methods,
experience can be categorized into three types: human feedback (Dai et al., 2024; Kirk et al., 2024), environ-
mental feedback (Tan et al., 2024a; Wang et al., 2024b), and self-feedback (Pang et al., 2024; Madaan et al.,
2023). The first two types require additional efforts as illustrated in Figure 1a. Human feedback requires
expert demonstrations and annotations, which can be costly and influenced by individual biases (McAleese
et al., 2024). Environmental feedback assumes we can obtain a dynamics model of the environment or a
well-designed reward model (Fan et al., 2022; Urcelay et al., 2024; Jiang et al., 2024b). Unfortunately, many
environments including the real world do not meet such requirements, so these grounding methods are not
general. Therefore, we are committed to finding a general way to fill in the remaining gaps.
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Figure 1: Comparison of our framework with other frameworks in terms of the feedback type.

When operating in an unknown embodied environment without external feedback, the MLLM must rely
solely on its inherent capabilities. Some work, see Figure 1b, utilizes the evaluation (discriminative) ability
of the pre-trained model itself (Pang et al., 2024) or statistics like voting (Wang et al., 2023a; Huang et al.,
2023) to evaluate its own decision-making, and uses such self-feedback to enhance the model’s decision-
making (generative) capabilities. However, it is evident that this form of self-learning is limited by the
model’s static evaluation capacity, restricting its ability to enhance decision-making. Ideally, we hope that
self-learning can work similarly to the actor-critic paradigm (Konda & Tsitsiklis, 1999) in reinforcement
learning for embodied tasks, where both the actor and critic iteratively refine their performance. If so,
the potential for actor enhancement can be greatly expanded. Unlike reinforcement learning, which relies
on external rewards for training, we do not assume the access to any external feedback. Therefore, we
aim to develop a new actor-critic self-learning paradigm for embodied MLLMs in unknown
environments.

In this paper, we introduce a novel SElf-Learning paradigm in Unknown environments, dubbed SELU, as
illustrated in Figure 1c. Inspired by the actor-critic paradigm in reinforcement learning, our paradigm learns
to simultaneously optimize the MLLM’s ability to understand the environment and to make decisions. For the
actor module, we fine-tune the model based on the self-feedback from the critic. As the actor gets improved,
it can roll-out more successful trajectories to fine-tune the critic. However, without environmental feedback,
the critic may provide inaccurate feedback at the beginning of the training phase, which might mislead
the overall optimization. Therefore, we adopt self-asking to correct self-feedback and leverage hindsight
relabeling to increase sample efficiency by turning the failure trajectory into a successful one for other
tasks. These high-quality and diverse trajectories are deemed to enhance the critic’s comprehension of the
environment. Ultimately, the coupling of these two components mutually promotes the improvement of each
other, unleashing the full self-learning potential of MLLMs.

Our key contributions can be summarized as follows:

• We propose SELU, a self-learning paradigm for embodied MLLMs, inspired by the actor-critic
paradigm in reinforcement learning, which enables MLLMs to improve themselves in unknown
environments without external feedbacks.

• We leverage self-asking and hindsight relabeling to achieve the improvement of the critic, which
greatly increase the sample efficiency of our algorithm and make the self-learning possible.

• We demonstrate the effectiveness of SELU in AI2-THOR and VirtualHome, achieving critic im-
provements of approximately 28% and 30%, and actor improvements of about 20% and 24%,
respectively.

2 Related Work

2.1 MLLMs with External Feedback

In recent years, MLLMs has achieved impressive results across various visual benchmarks (Mathew et al.,
2021; Tang et al., 2024; Lu et al., 2024b), demonstrating remarkable perception and decision-making capa-
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bilities. However, these models still exhibit flaws and often generate unexpected outputs, such as perceptual
hallucinations and unreasonable decisions (Yu et al., 2024; Chen et al., 2024). Inspired by reinforcement
learning, current approaches use external feedback to correct MLLM’s erroneous outputs through a cycle
of interaction, feedback, and correction (Pan et al., 2024; Gero et al., 2023). RL methods such as PPO
(Schulman et al., 2017) and GRPO (Shao et al., 2024) have proven effective (Sun et al., 2024a; Zhai et al.,
2024; Lu et al., 2024a). Generally, there are two sources of external feedback: human preference feedback
and environmental feedback. Human preference data is used to train a reward model aligned with human
preferences (Ouyang et al., 2022). In contrast, environmental feedback typically stems from a rule-based re-
ward function (Tan et al., 2024a; Guo et al., 2025) or a pre-trained large model (Rocamonde et al., 2023; Lee
et al., 2024), which often requires substantial support from expert data. For instance, Konyushkova et al.
(2025) help Gemini 1.5 to understand Dialog Games through a rule-based approach, generate a positive
evaluation function, and construct a high-quality dataset to improve its image understanding capabilities.
Compared to existing studies, we focus on the self-learning potential of MLLMs, as external feedback may
be not professional enough in unknown environments.

2.2 Self-Improvement in LLMs

Self-improvement in Large Language Models (LLMs) has gained significant attention, as researchers strive
to develop models that can learn and adapt from their own outputs, interactions, and internal feedback
mechanisms, without relying on external human-labeled data (Yan et al., 2023; Haluptzok et al., 2023). Early
explorations in this area are based on unsupervised learning techniques, where models learn representations
from vast datasets without explicit human guidance (Winter et al., 2022; Zhao et al., 2019). Expanded to
LLMs, self-improvement goes further by enabling models to critique, refine, and adapt their behavior in a
more autonomous manner (Tan et al., 2023; Choi et al., 2024). There are two common self-improvement
methods: prompt engineering and fine-tuning. The former is an efficient and intuitive approach for large-
scale LLMs, as it allows for the establishment of various chains of thought (CoTs) (Wei et al., 2022) to
address the same problem (Huang et al., 2023; Feng et al., 2023). For instance, Madaan et al. (2023)
demonstrate that LLMs can enhance the rationality of responses by simultaneously inputting a question and
reflecting on previous answers. The latter one is proposed as the prompt engineering is unstable for small-
scale LLMs, and shows limitation to solve long-horizon tasks (Huang et al., 2023; Pang et al., 2024; Wang
et al., 2024a). Wang et al. (2024a) develop a fine-tuning dataset by generating synthetic negative responses
to optimize the LLM evaluator, while other work explores how to improve the instruction-following abilities
of LLMs (Huang et al., 2023; Pang et al., 2024). Based on these studies, we choose to use fine-tuning to
optimize small-scale MLLMs. However, existing methods focus on natural language tasks and overlook the
enhancement of MLLM’s understanding capabilities in embodied environments. Therefore, we employ an
actor-critic framework to facilitate comprehensive self-learning in MLLMs, optimizing both perception and
decision-making abilities.

3 Preliminaries

3.1 Actor-Critic in Reinforcement Learning

Actor-critic (Konda & Tsitsiklis, 1999) is a widely adopted framework in reinforcement learning (Li et al.,
2024a). The agent consists of two learning modules: an actor and a critic, which are optimized iteratively.
The actor selects and executes actions based on current observations. The critic evaluates these observations
(and actions) by estimating their values based on reward signals received from the environment, thereby
guiding the actor to make improved choices in future. This framework takes advantage of both policy-based
learning and value-based learning and is popular nowadays like SAC (Haarnoja et al., 2018).

3.2 Actor-Critic for MLLMs

With the development of MLLMs, the feedback provided to the agent is no longer constrained to scalar
values, like rewards; it can now include diverse modalities, such as natural language (Dong et al., 2024). This
enables the critic gain more specific and informative feedback on the outputs of the actor. Consequently,
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Figure 2: The framework of SELU. (lower) The actor MLLM, represented as a robot, collects trajectories
for the given instructions. (upper) The critic MLLM, denoted as a brain, evaluates these trajectories and
determines whether they complete the tasks, guiding the update of the actor MLLM. In addition, the critic
MLLM implements self-asking and hindsight relabeling to build a dataset for optimizing itself. The whole
framework does not require any external feedback, such as environmental rewards or human annotations.

it can provide more accurate guidance for actor improvement. A prevalent approach in this domain is
incorporating human feedback into the critic and building a static evaluation module that can reflect human
preference (Ouyang et al., 2022; Kirk et al., 2024). Specifically, human annotated data is used to train a
critic model (McAleese et al., 2024) or a reward model (Sontakke et al., 2023; Wang et al., 2024b) to align the
MLLM with human preferences better. More rigorous approaches leverage external evaluation mechanisms,
such as tool-interactive learning (Gou et al., 2024; Chen et al., 2021), or external knowledge sources like
Wikipedia and the Internet (Xu et al., 2023; Li et al., 2024b).

However, regardless of whether preference labels or external tools are used, human intervention remains
inevitable. To overcome this reliance, methods like self-consistency (Wang et al., 2023a; Schick et al., 2023)
employ a voting mechanism to enable the model to evaluate its own behavior without relying on external
information. In addition, LLM-as-a-Judge approaches utilize an LLM as a evaluator to eliminate human
intervention (Bai et al., 2022; Lee et al., 2023). However, both self-consistency and LLM-as-a-Judge lack a
learnable critic module and therefore cannot improve the model’s grounding knowledge of the environment
it interacts with. In contrast to previous work, we propose a novel actor-critic based paradigm aimed at
achieving self-learning for both the actor MLLM and critic MLLM, enabling them to iteratively improve
decision-making and grounding abilities without external human feedback or environmental rewards.

4 Method

The framework of our method is shown in Figure 2. It consists of two components: the actor MLLM and
the critic MLLM. The actor MLLM follows instructions and collects trajectories in the environment. The
critic MLLM evaluates the collected trajectories and acquires bootstrapped data via self-asking and hindsight
relabeling to optimize itself (Section 4.1). Guided by the success detection results from the critic MLLM,
the actor MLLM subsequently improves its decision-making performance in the environment (Section 4.2).
By combining the two processes, we can achieve coupled improvements of the critic MLLM and the actor
MLLM (Section 4.3) without reliance on external feedback.

4.1 Critic: Self-Asking and Hindsight Relabeling

As introduced in Section 1, enhancing the interpretation of environmental grounding information is crucial
for an MLLM to improve its performance. In our framework, we propose to achieve this objective via
self-asking and hindsight relabeling to acquire bootstrapped data for optimizing the critic MLLM.
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Specifically, given an instruction I, the actor MLLM collects a trajectory by following this instruction. The
critic takes the last frame oT of this trajectory as input, using it as the detection frame to determine whether
the task depicted by I is completed,

ld = Mc(I, pd, oT ), (1)
where Mc denotes the critic MLLM, ld ∈ {“yes”, “no”} is the result of the success detection, and pd is a
prompt for the detection. If the detection result is ld = “yes”, it means this trajectory is considered to
be a successful sample by the critic MLLM for the given instruction and store this trajectory directly into
the critic fine-tuning dataset Dcritic in the format (I, pd, oT , ld), as shown by trajectory 1 in Figure 2. This
trajectory includes environmental grounding information that aligns with the knowledge contained in the
critic MLLM.

If the detection result is ld = “no”, it means that the critic MLLM considers the trajectory unsuccessful
in fulfilling instruction I. We first apply self-asking to examine the state of task-related objects, as the
decision made by the critic MLLM might not be precise due to potential hallucinations. The critic MLLM
is used to obtain the object states,

l′
d = Mc(ls, I), ls = Mc(jI , ps, oT ) (2)

where jI is the object name extracted from instruction I by a text-processing function, ps is the prompt for
object state analysis, ls is the analysis result, and Mc provides a new success detection l′

d based on ls and
I. The format is corrected to (I, pd, oT , l′

d) and stored into the critic fine-tuning dataset Dcritic if l′
d = “yes”.

For example, in trajectory 2 of Figure 2, the critic MLLM initially misjudged the completion of the “open
cabinet" task. However, when prompted to focus on the state of the cabinet, it successfully self-corrected its
judgment.

If the critic MLLM still considers the trajectory as failure, we propose to use hindsight relabeling to make
use of this trajectory, since it might be helpful for learning the environmental grounding of other instructions.
Hindsight relabeling is a method that originated in goal-conditioned reinforcement learning (Andrychowicz
et al., 2017). It is based on a simple principle: if a trajectory does not complete the target task, it can be
viewed as having accomplished other tasks or subtasks. For example, as shown in trajectory 3 in Figure 2,
although it does not complete the task “open cabinet", it successfully completes another task “open drawer".
Therefore, we relabel this trajectory with the instruction “open drawer" to help the critic MLLM recognize
the completion of the relabeled instruction. We can write this process as,

I ′ = Mc(lh, aI), lh = Mc(aI , ph, oT ) (3)

where aI is the verb extracted from the instruction I by another text-processing function. ph is the prompt
for hindsight relabeling, and lh is the output, which is usually an object name or None. Mc checks whether
any objects, other than the target object, in the observation oT have completed the task associated with aI .
Mc generates a new instruction I ′ if lh is not None. After that, the data (I ′, pd, oT , “yes”) is stored into the
critic fine-tuning dataset Dcritic. Finally, if a failed trajectory proves meaningless after hindsight relabeling,
it is considered as not helpful for the MLLM to understand the environment and discarded.

By applying self-asking and hindsight relabeling, a critic fine-tuning dataset Dcritic is created by MLLM
itself containing the last frames considered as successful and the last frames relabeled as successful after
self-asking and hindsight relabeling.

4.2 Actor: Critic-Guided Improvement

Recent work has shown that the discriminative ability of an LLM exceeds its generative ability (Pang
et al., 2024). As MLLMs are typically trained the same way as LLMs, we believe that MLLMs’ evaluation
abilities would also surpass their generation abilities. For instance, we can easily prompt MLLMs to extract
understanding from a given image, but it is challenging to prompt them to choose an appropriate action
based on perceived task-relevant information like distance or direction. Our experiment result in Section 5.2
also supports this conclusion, where the critic module always performs better than the actor. Therefore, we
propose using the critic MLLM to guide the improvement of the actor MLLM in the environment without
external feedback.
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Specifically, the actor MLLM interacts with the environment and collects online trajectories. At each timestep
t, the actor generates an action plan la,t by,

la,t = Ma(I, pa, ot), (4)

where Ma represents the actor MLLM, I is the task instruction, pa is the prompt for action plan and ot is
the current image observation. After collecting a whole trajectory, the critic MLLM determines whether this
trajectory completes the instruction I, as described in Section 4.1. If the answer is yes, the whole trajectory
is put into the actor fine-tuning dataset Dactor with a format of {(I, pa, ot, la,t)}T

t=0. The relabeled successful
trajectories after hindsight relabeling are also added into the actor fine-tuning dataset Dactor. Since this
dataset only contains task completion trajectories, the actor can quickly converge towards completing tasks
in the current environment by fine-tuning on the dataset. Note that the actor fine-tuning dataset Dactor
consists of trajectory data, while the critic fine-tuning dataset Dcritic only contains the last frames of these
trajectories.

4.3 Actor-Critic Coupling Improvement

We employ Supervised Fine-Tuning (SFT) (Devlin et al., 2019; Brown et al., 2020) and Low-Rank Adaptation
(LoRA) (Hu et al., 2022) to update both the actor and critic MLLMs. Initially, the actor MLLM interacts
with the environment to collect online trajectories containing grounding information, as depicted in the lower
part of Figure 2. The critic module then evaluates and classifies these trajectories based on the last frame,
as shown in the upper part of Figure 2. We select successful trajectories identified by the critic MLLM to
create the actor fine-tuning dataset Dactor. Subsequently, we utilize the last frame to construct the critic
fine-tuning dataset Dcritic. The update of the actor and critic can be performed iteratively, and make them
both improve step-by-step. A detailed pseudo-code for our algorithm is available in Appendix A.1.

5 Experiments

5.1 Experimental Setup

Environments. In order to simulate embodied MLLM interactions in unknown environments, we select AI2-
THOR (Kolve et al., 2022) and VirtualHome (Puig et al., 2018) for our experiments. Both environments offer
open-ended tasks, various interactive objects, and selectable camera perspectives, facilitating data collection
for the actor and critic. More details can be seen in Appendix A.2.1.

• AI2-THOR is an interactive simulation environment designed for embodied AI research. The
primary tasks require agents to navigate and interact with household objects. It offers highly
realistic 3D environments that simulate kitchens, living rooms, and other indoor settings.

• VirtualHome is also an embodied simulation platform designed to imitate human activities and
tasks in home environments. This environment focuses on task completion through multi-step
action sequences, making it ideal for testing long-term planning.

Task Selection. The goal of SELU is to enable the MLLM to acquire atomic skills in unknown environments
through self-feedback. Therefore, the instruction list is derived from the robot’s executable actions. In AI2-
THOR, locobot is selected as the agent, as this work does not consider low-level control of robotic arms.
There are three fundamental actions: pick up, open, and break, which serve as the basis for long-horizon task
composition. To ensure task diversity and feasibility, we first prompt the MLLM to explore the environment
and use the discovered objects to initialize the instruction list which serves as the task set. We randomly
sample 2-3 objects for each type of task. Considering the requirements of atomic skills and training costs, we
restrict the maximum step for all tasks to 10. We apply a similar approach in the VirtualHome environment,
selecting "female1" as the agent and primarily testing in grab, open, and sit tasks.

MLLMs. To demonstrate the generalization capability of our framework, we conduct experiments using
two MLLMs: LLaVA (Liu et al., 2023) and Qwen-VL (Bai et al., 2023).
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• LLaVA has gained prominence as one of the most popular MLLMs due to its simple architecture
and lower training data requirements. These features enable LLaVA to generate responses more
swiftly, and suitable for inference to investigate self-learning.

• Qwen-VL is the first model to use a 448x448 resolution image input. Due to its higher resolution,
this model exhibits enhanced visual understanding capabilities. We opt for Qwen-VL with the
aim of better success detection, thereby facilitating more efficient self-learning of MLLMs.

Baselines. We compare SELU with five methods to investigate the feasibility of self-learning of MLLMs in
embodied environments:

• DG refers to the results obtained through direct generation from the initial MLLM without any
fine-tuning.

• SC (Wang et al., 2023a) represents an optimization method of MLLMs through self-consistency.
Specifically, we employ multiple chains of thought (CoT) to prompt an MLLM to answer the same
question, followed by majority voting. In our experiments, we utilize three different CoTs to guide
the MLLM, ultimately voting for the most reasonable action.

• LMSI (Huang et al., 2023) is a self-improvement method based on SC. It generates “high-
confidence" answers for unlabeled questions to build fine-tuning datasets. This approach enables
the LLM to iteratively improve its performance based on the voting mechanism, and we extend
this approach to MLLMs.

• Self-Refine (Madaan et al., 2023) involves multiple rounds of self-reflection, followed by self-
optimization based on the reflection results. This method focuses on prompt optimization and
has been validated for feasibility in large-scale LLMs, such as GPT-4. In our experiments, we
reflect 3 rounds to get the final result.

• LLM-Planner (Song et al., 2023) is a method specifically designed for multimodal embodied
planning with text retrieval-augmented techniques. In experiments, we retrieve 3 trajectories as
memory for the actor module.

• RAP (Kagaya et al., 2024) is a method employing a multimodal retrieval technique for embodied
tasks. In our experiments, 3 retrieved trajectories are used for decision-making.

• Sel-Ask represents the method that uses grounding guidance prompt engineering techniques from
SELU, to substantiate the necessity of critic optimization.

• SELU-One represents the method of using the same MLLM to simultaneously perform actor
and critic tasks, and fine-tuning with a combination of actor and critic datasets. This approach
aims to investigate the feasibility of utilizing a single MLLM to meet the requirements of our
framework.

Evaluation. For the critic module, we use the MLLM’s detection accuracy of whether the task is completed
to reflect its ability to understand the environment. Specifically, we provide the last frame of the trajectory
during testing and compare whether the MLLM’s judgment is consistent with the environmental feedback.
For the actor module, the MLLM’s decision-making ability is measured by its task success rate. In the
experiment, each task is tested 100 times to get the actor MLLM’s task success rate. The final frames of
these trajectories are then used to evaluate the critic MLLM’s success detection accuracy. All results are
evaluated at the same dataset. More details for implementation are provided in Appendix A.2.

5.2 AI2-THOR

LLaVA. We first demonstrate the effectiveness of SELU in the AI2-THOR environment. After online
interactions with the environment and fine-tuning of LLaVA, the critic exhibits an average performance
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improvement of approximately 27%, while the actor achieves an improvement of around 20% compared to
the original model. Table 1 and Table 2 present the accuracy of task success detection and task success rate
respectively.

Table 1: Accuracy of task success detection in the AI2-THOR environment.

Method Pick up Open Break Avg.
DG 80.67% 36.50% 50.50% 55.89%

Self-Ask 79.67% 41.50% 53.50% 58.22%
SELU-One 68.67% 30.50% 25.50% 41.56%

SELU 94.33% 67.50% 87.50% 83.11%

Table 2: Task success rate in the AI2-THOR environment. SC and Self-Refine use prompt engineering to
realize self-learning, whereas LMSI and SELU utilize fine-tuning. LLM Planner and RAP serve as typical
embodied MLLM baselines, incorporating memory retrieval mechanisms.

Method Pick Up Open Break Avg.
DG 68.33% 65.00% 15.50% 49.61%
SC 65.67% 68.50% 17.50% 50.56%

Self-Refine 69.67% 70.50% 14.50% 51.56%
LMSI 75.67% 52.50% 19.50% 49.22%

LLM-Planner 66.67% 52.00% 11.50% 43.39%
RAP 62.33% 63.50% 14.50% 46.78%

SELU-One 91.33% 85.50% 27.50% 68.11%
SELU 94.67% 83.50% 30.50% 69.56%

In Table 1, it is evidenced that the unified fine-tuning of the actor and the critic (SELU-One) leads to a
decline in success detection, even worse than the original critic. Self-Ask proves that fine-tuning is more
effective than prompt engineering for the critic module. Although SELU-One achieves a task success rate
comparable to that of SELU as shown in Table 2, the compromised critic results in SELU-One incorrectly
analyzing the trajectory in subsequent epochs.

Table 2 demonstrates that baselines are not suitable for the self-learning of embodied MLLMs. Both prompt-
engineering and fine-tuning baselines struggle to improve the decision-making ability of the MLLM. The
reason is that the embodied MLLM cannot give a correct task detection with a lack of environmental
understanding. As we can see in Table 1, the initial judgment of the MLLM (DG) on tasks is only about
55%. In this case, merely optimizing the prompt to create multiple CoTs for repeated reflection does not help
the MLLM gain task achievement details in an unknown environment. Therefore, neither SC nor Self-Refine
can substantially enhance the task success rate. LLM-Planner and RAP also don’t increase MLLM’s ability
to understand the environment. For fine-tuning baselines, relying on statistical voting to validate its own
behavior even leads to worse performance. For instance, in the Open task, for LMSI the task detection
accuracy of 36.5% causes the actor’s performance to drop from 65% to 52.5% after fine-tuning. These results
demonstrate the necessity of the critic module in SELU, and optimizing the critic is crucial for enhancing
the actor’s performance.

Notably, in the Open task, we can observe a low accuracy of success detection for SELU; however, it still
helps the actor improve performance. This highlights the role of hindsight relabeling, which is discussed in
detail in Section 5.4.

Qwen-VL. In order to prove that SELU can help different MLLMs achieve self-learning, we select Qwen-
VL and test it in the AI2-THOR environment under the same setting. The result is shown in Table 3,
which indicates that SELU can help Qwen-VL improve the task evaluation capability by about 24% and the
decision-making performance by approximately 23%.
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Table 3: Self-learning performance of SELU on Qwen-VL in the AI2-THOR environment.

Task Qwen-VL-DG Qwen-VL-SELU
Critic Actor Critic Actor

Pick Up 73.33% 57.67% 95.67% 95.33%
Open 51.00% 46.50% 81.50% 68.00%
Break 63.50% 12.50% 83.50% 21.50%
Avg. 62.61% 38.89% 86.89% 61.61%

5.3 VirtualHome

We then conduct experiments in the VirtualHome environment, which incorporates a greater variety of items
and human agents, thereby enriching the experimental environments to demonstrate the effectiveness of our
method. The experimental results are presented in Tables 4 and 5. In this environment, SELU enhances
LLaVA task evaluation capability by approximately 30% and improves decision-making performance by
around 24%, and it also outperforms baselines. As the environment becomes more complex, the lack of
environmental understanding causes SC and Self-Refine to negatively impact the decision-making of the
original embodied MLLM. As shown in Table 5, the performance of SC and Self-Refine become even lower
than DG.

Table 4: Accuracy of task success detection in the VirtualHome environment.

Method Grab Open Sit Avg.
DG 52.67% 35.33% 44.50% 44.17%

Self-Ask 54.33% 36.67% 43.50% 44.83%
SELU-One 45.33% 15.67% 48.50% 36.50%

SELU 93.67% 83.33% 47.50% 74.83%

Table 5: Task success rate in the VirtualHome environment.

Method Grab Open Sit Avg.
DG 65.00% 83.33% 56.50% 68.28%
SC 52.67% 81.67% 61.50% 65.28%

Self-Refine 59.67% 74.33% 60.50% 64.83%
LMSI 35.67% 93.67% 52.50% 60.61%

LLM-Planner 55.33% 78.67% 50.50% 61.50%
RAP 58.67% 79.33% 51.50% 63.17%

SELU-One 83.67% 98.67% 94.50% 92.28%
SELU 93.33% 97.67% 93.50% 94.83%

5.4 Ablation Study

We conduct ablation experiments on the critic module in the AI2-THOR environemnt, and the results are
shown in Table 6. SELU w/o HR means that we do not perform hindsight relabeling to reanalyze the
trajectory when evaluating the task. SELU w/o ALL means that we remove both self-asking and hindsight
relabeling and use the data obtained from environment interaction to directly fine-tune the actor. In this
case, the evaluation result of the critic is derived from the original MLLM.

By comparing SELU and SELU w/o ALL, we can see the importance of whole critic module clearly. Only
by understanding the environment can we achieve the improvement of decision-making in all tasks. By
comparing SELU w/o HR and SELU w/o ALL, we find that self-asking can correct the critic’s comprehension
of the environmental task, but reflection on a single task is not enough. We find that the lack of hinsight
relabeling leads to a decrease in the diversity of the online fine-tuning dataset, and some tasks can not get
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Table 6: Ablation study in the AI2-THOR environment.

Task Critic (Success Detection Accuracy) Actor (Task Success Rate)
SELU w/o HR w/o ALL SELU w/o HR w/o ALL

Pick Up 94.33% 83.67% 80.67% 94.67% 67.33% 56.33%
Open 67.50% 31.50% 36.67% 83.50% 66.50% 72.50%
Break 87.50% 83.50% 50.50% 30.50% 27.50% 17.50%
Avg. 83.11% 66.22% 55.95% 69.56% 57.11% 48.78%
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Figure 3: Hyperparameter study of SELU on picking up tasks in the AI2-THOR environment: (a) explores
the size of the interaction dataset required for embodied MLLMs, (b) illustrates why a single MLLM is not
suitable for SELU from the perspective of learning rare, and (c) demonstrates that the effect of multiple
training iterations.
enough data to perform well. For example, we can observe a declined performance of success detection
and decision-making in Open tasks from SELU w/o ALL to SELU w/o HR. By incorporating hindsight
relabeling, from SELU w/o HR to SELU, we can perform a comprehensive multi-task evaluation for each
trajectory, ensuring that the embodied MLLM achieves self-learning on each task. Consequently, self-asking
and hindsight relabeling are essential components of the critic.

5.5 Hyperparameter Analysis

Online Dataset Size. Since the MLLMs fine-tuning process is sensitive to the dataset size, we explore the
amount of interaction data required to achieve effective learning for embodied tasks. We conduct multiple
tests on this variable based on picking up tasks in the AI2-THOR environment. The results are presented
in Figure 3a.

The size of dataset is described by the number of trajectories collected for a single task. For instance,
dataset-10k indicates that 10k trajectories are collected for a specific task, such as picking up an apple,
during online interactions. We evaluate the performance through the actor in terms of task success rate. We
can see that the performance of dataset-1k is close to that of dataset-10k. For dataset-10k, it takes about
two days to collect one epoch data. To balance experimental performance with sampling efficiency, we opt
to sample 1k trajectories per task in our experiments.

Based on this conclusion, we employ a data augmentation method during the actor training process. Since
MLLMs tend to prioritize text over images when making decisions, they often focus excessively on the text
prompt and overlook image comprehension. To address this issue, we shuffle the action lists in the prompts
of training data to provide multiple prompts for the same image. This approach not only increases the
dataset size, but also strengthens the connection between the MLLM policy and the observations.

Learning Rate. The learning rate is a critical factor, which prevents us from using the same MLLM for
the actor and critic. We test different learning rates for the actor and critic separately on picking up tasks
in the AI2-THOR, and the results are shown in Figure 3b. We find that, due to the varying sizes of the
fine-tuning datasets, using a uniform learning rate inevitably leads to overfitting or underfitting in one of the
components, thereby impacting the overall performance of SELU. Therefore, we ultimately use two MLLMs
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to construct the SELU framework, ensuring effective self-learning. In our experiments, the learning rate for
the critic is set to 2e-6 and for the actor is set to 2e-5.

Training Iterations. The goal of our framework is to achieve multi-iteration self-learning improvement;
therefore, we also evaluate the results of multiple rounds of fine-tuning on picking up tasks in the AI2-
THOR environment. To ensure the effectiveness of fine-tuning, we retain 30% of the last fine-tuning dataset
each time and obtain the remaining 70% of the data through online interaction. The results are presented
in Figure 3c. The solid line represents the performance under an optimized critic, while the dashed line
indicates the results under a static critic.

The unstable improvement of the actor under a static critic highlights the necessity of fine-tuning the critic.
What’s more, our results indicate that multiple iterations of fine-tuning do not consistently improve SELU’s
performance in every iteration. Both the actor and critic exhibit significant performance improvements during
the first iteration of fine-tuning, but show fluctuations and minimal growth in the subsequent iterations. We
attribute this limitation to the performance of the critic. The critic performs the success detection based on
the last frame, making it difficult to compare the quality of different successful trajectories. Once the actor
reaches a level to roughly complete the task, we lack the nuanced supervisory signals to guide the actor for
further improvement. Consequently, while there is a notable improvement after the first iteration, subsequent
enhancements are limited. We also attempt to increase the number of frames for success detection. However,
the performance of the small-scale MLLM does not meet our needs.

6 Conclusion and Limitation

In this paper, we introduce SELU, a method for MLLMs to achieve self-learning in unknown environments.
SELU facilitates interaction with the environment, analyzes interaction trajectories, builds an online dataset,
and performs coupled optimization of the actor and critic. We employ self-asking and hindsight relabeling to
enhance the critic task evaluation capabilities. Ablation experiments demonstrate that relabeling significantly
expands the critic task judgment range. By leveraging the principle that MLLMs possess stronger perceptual
abilities than decision-making abilities, we improve the performance of the actor policy. We test SELU in the
AI2-THOR and VirtualHome environments, achieving critic improvements of approximately 28% and 30%,
and policy improvements of about 20% and 24%, respectively. Additionally, to validate the applicability of
SELU across different MLLMs, we evaluate it on Qwen-VL, resulting in a 23% performance enhancement.

One limitation of SELU is the lack of detailed assessment of successful trajectories. SELU can help embod-
ied MLLM to self-learn how to accomplish tasks in unknown environments. How to complete tasks more
efficiently is the next problem to solve. In future work, we will explore finer-grained critic signals to perform
more accurate quality assessments of trajectories, guiding embodied MLLMs to tackle more complex tasks,
such as long-horizon combination tasks.
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A Appendix/Supplementary Material

A.1 Pseudocode of SELU

algorithm 1 SELU
Input: critic MLLM Mc, actor MLLM Ma, critic fine-tuning dataset Dcritic, actor fine-tuning dataset Dactor,

maximum timestep T , initial instruction list L, success detection prompt pd and action plan prompt pa

Output: critic MLLM Mc, actor MLLM Ma

1: Dcritic, Dactor ← {}
2: function "SELU"
3: for instruct I in L do
4: while data collecting not done do
5: for timestep t = 1 to T do
6: get observation ot from env
7: la,t = Ma(I, pa, ot)
8: use la,t to interact with env
9: end for

10: ld = Mc(I, pd, oT )
11: if ld = “yes” then
12: store (I, pd, oT , ld) into Dcritic
13: store (I, pa, ot, la,t), t = 1, ...T into Dactor
14: else
15: get l′

d through self-asking
16: if l′

d = “yes” then
17: store (I, pd, oT , l′

d) into Dcritic
18: store (I, pa, ot, la,t), t = 1, ...T into Dactor
19: else
20: get I ′ through hindsight relabeling
21: if I ′ ̸= “None” then
22: store (I ′, pd, oT , yes) into Dcritic
23: store (I ′, pa, ot, la,t), t = 1, ...T into Dactor
24: end if
25: end if
26: end if
27: end while
28: end for
29: optimization Mc and Ma by Dcritic and Dactor
30: return critic MLLM Mc, actor MLLM Ma

31: end function

A.2 Implementation Details

A.2.1 Environments

Figure 4 shows our experiment environments. Both environments restrict agents to only interact with visible
items, limiting their operational range to guarantee behavior plans realistic. Therefore, the actor MLLM
makes decisions based on first-person perspective input to ensure accuracy as Figure 4a and Figure 4c show.
Given the limitations of the first-person view, the critic MLLM uses a third-person perspective to evaluate
the trajectory, reducing hallucinations and obtaining accurate scene information as Figure 4b and Figure 4d
show.

The positioning of the third-person camera is crucial, as it should accurately capture the agent’s position
and the objects it interacts with. Any occlusion or interference can impair the MLLM’s understanding of
the image, thereby affecting the results of critic success detection and hindsight relabeling.
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(a) AI2-THOR 1 (b) AI2-THOR 2

(c) VirtualHome 1 (d) VirtualHome 2

Figure 4: The diagram of experimental environments. We utilize the first-person perspective for decision-
making and a third-person perspective for trajectory evaluation.

A.2.2 Hyperparameters

The specific MLLMs we use are LLaVA-V1.6-Mistral-7B and Qwen-VL. We use LoRA to fine-tune them,
the hyperparameters are as follows.

Table 7: Hyperparameters of LLaVA fine-tuning by LoRA

Hyperparameters Value

Train_batch_size 16
Eval_batch_size 4
Gradient_accumulation_steps 1
Learning_rate_actor 2e-5
Learning_rate_critic 2e-6
Warmup_ratio 0.03
Weight_decay 0.0
Model_max_length 2048
Lr_scheduler_type cosine
Tf32 True
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Table 8: Hyperparameters of Qwen-VL fine-tuning by LoRA

Hyperparameters Value

Train_batch_size 2
Eval_batch_size 1
Gradient_accumulation_steps 8
Learning_rate_actor 1e-5
Learning_rate_critic 1e-6
Warmup_ratio 0.01
Weight_decay 0.1
Adam_beta2 0.95
Model_max_length 2048
Lr_scheduler_type cosine
Bf16 True
Lazy_preprocess True

Both models are configured with a temperature of 0 and a maximum token length of 2048 for response
generation. The maximum number of environment steps is set to 10. The multiple chains of thought for
self-consistency (Wang et al., 2023a) , and the multiple rounds of reflection in self-refine (Madaan et al.,
2023) are set to 3, following the settings reported in their papers. For LLM-Planner (Song et al., 2023) and
RAP (Kagaya et al., 2024), retrieval parameters follow the official implementation to ensure consistency.
The number of retrieved trajectories is fixed at the minimum value of 3, as adopted in RAP. The list of
hyperparameters is provided in Table 9.

Table 9: Hyperparameters List for Baselines.

Hyperparameters Value

Response generation temperature 0
Maximum token length 2048
Maximum environment steps 10
Number of CoTs (Wang et al., 2023a) 3
Number of reflection rounds (Madaan et al., 2023) 3
Retrieve buffer 20
KNN retrieves (LLM Planner (Song et al., 2023)) 9
Multimodal retrieves (RAP (Kagaya et al., 2024)) 5
Retrieve trajectories input 3

A.3 Visualization of Actor and Critic on LLaVA in AI2-THOR

The embodied actor MLLM is used to interact with the unknown environment, and collect trajectories from
the evaluation of the critic MLLM. An example for ’pick up the lettuce’ is shown in figure 5.

The embodied critic MLLM is used to perform success detection on each trajectory and use self-asking and
hindsight relabeling techniques to build bootstrapped dataset. An example for ’break the mug’ is shown in
figure 6.
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ACTOR Prompt:
This is the current observation from a robot. 
Now the robot needs to finish the task 
{instruction}, you can only choose the 
following action to interact with the 
environment, which are {action_list}. If you 
choose Pick up Object, OpenObject, 
SliceObject, or DirtyObject, you should give a 
specific object name. Now the objects you 
can interact with are {visible_objs_str}. 
What's your next action to implement the 
command to {instruction}? You should output 
your action and the reasoning. The output 
format should be:

Action:...
Object:...
Reasoning:...

ACTOR

ACTOR MLLM Response:
Based on the image provided, the robot should perform the following acLon to pick up the leMuce:
 Ac9on: 'MoveAhead’
 Object: None
 Reasoning: The robot is currently posiLoned at the edge of the counter, and to reach the 
leMuce, it needs to move forward. Once the robot is closer to the leMuce, it can then perform the 
'PickupObject' acLon to pick up the leMuce.

Figure 5: A visualization of the actor MLLM interacting with the AI2-THOR environment. The agent is
instructed to pick up the lettuce. As the lettuce is far away, the agent needs to move closer before attempting
to pick it up.

CRITIC

CRITIC Success Detection Prompt:
The image shows a third-person view from the robot‘s 
perspective in a kitchen environment. Please check 
whether the {instruction.objects} in the image is 
{instruction.verb} or not? You should output yes or no, 
and the reasoning. The output format should be:  

Result:...
Reasoning:...

CRITIC MLLM Response:
 Result: Yes
 Reasoning: The image shows a robot with a camera, and the camera is posiLoned in such a way 
that it is capturing a view of a kitchen counter. On the counter, there is a mug that appears to be in a 
broken state, with pieces missing or scaMered around. This is evident from the visible gaps and the 
overall appearance of the mug, which suggests it has been damaged or shaMered.

Figure 6: A visualization of the critic MLLM conducting success detection on a trajectory. Since the
trajectory has completed the ’break the mug’ task, it can be added to the fine-tuning dataset.

A.4 Prompts for SELU

The specific prompts we use for SELU are:
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Actor-Interaction with Env

This is the current observation from a {agent} in a {AI2-THOR/VirtualHome} environment. Now the
{agent} needs to finish the task {instruction}, you can only choose the following action to interact with
the environment, which are {action_list}. If you choose {PickupObject/GrabObject}, OpenObject,
{BreakObject/SitObject}, you should give a specific object name. Now the objects you can interact
with are {visible_objs_str}. What’s your next action to implement the command to {instruction}?
You should output your action and the reasoning. The output format should be:
Action:...
Object:...
Reasoning:...

Critic-Success Detection

The image shows a third-person view from the {agent}’s perspective in a {AI2-THOR/VirtualHome}
environment. Please check whether the {instruction.objects} in the image is {instruction.verb →
adj.} or not? You should output yes or no, and the reasoning. The output format should be:
Result:...
Reasoning:...

Critic-Self Asking 1

The image shows a third-person view from the {agent}’s perspective in a {AI2-THOR/VirtualHome}
environment. Please check the state of the {instruction.objects} in the image. You should output the
state and the reasoning. The output format should be:
State:...
Reasoning:...

Critic-Self Asking 2

The image shows a third-person view from the {agent}’s perspective in a {AI2-THOR/VirtualHome}
environment. The {instruction.objects} in the observation is in {objects.state} state, please determine
whether the {instruction} has been completed or not. You should output yes or no, and the reasoning.
The output format should be:
Result:...
Reasoning:...

Critic-hindsight relabeling 1

The image shows a third-person view from the {agent}’s perspective in a {AI2-THOR/VirtualHome}
environment. Please see the image carefully. Determine whether there is any object that is {instruc-
tion.verb→ adj.} by the {agent}? You should output the object name and the reasoning. The output
format should be:
Object:...
Reasoning:...
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Critic-hindsight relabeling 2

The image shows a third-person view from the {agent}’s perspective in a {AI2-THOR/VirtualHome}
environment. The {relabeling.object} in the observation is {instruction.verb→ adj.}, you should give
a new instruction based on it. The original instruction is {instruction}, what’s the new instruction?
The output format should be:
New instruction:...
Reasoning:...
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