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A Multifaceted Look at Starlink Performance
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ABSTRACT
In recent years, Low-Earth Orbit (LEO) mega-constellations have
emerged as a promising network technology and have ushered
in a new era for democratizing Internet access. The Starlink net-
work from SpaceX stands out as the only consumer-facing LEO
network with over 2M+ customers and more than 4000 operational
satellites. In this paper, we conduct the first-of-its-kind extensive
multi-faceted analysis of Starlink network performance leveraging
several measurement sources. First, based on 19.2M crowdsourced
M-Lab speed test measurements from 34 countries since 2021, we
analyze Starlink global performance relative to terrestrial cellular
networks. Second, we examine Starlink’s ability to support real-time
web-based latency and bandwidth-critical applications by analyz-
ing the performance of (i) Zoom video conferencing, and (ii) Luna
cloud gaming, comparing it to 5G and terrestrial fiber. Third, we or-
chestrate targeted measurements from Starlink-enabled RIPE Atlas
probes to shed light on the last-mile Starlink access and other factors
affecting its performance globally. Finally, we conduct controlled
experiments from Starlink dishes in two countries and analyze
the impact of globally synchronized “15-second reconfiguration
intervals” of the links that cause substantial latency and through-
put variations. Our unique analysis provides revealing insights on
global Starlink functionality and paints the most comprehensive
picture of the LEO network’s operation to date.

1 INTRODUCTION
Over the past two decades, the Internet’s reach has grown rapidly,
driven by innovations and investments inwireless access [23, 44, 45]
(both cellular and WiFi) and fiber backhaul deployment that has
interconnected the globe [3, 9, 11, 25, 72]. Yet, the emergence of
Low-Earth Orbit (LEO) satellite networking, spearheaded by ven-
tures like Starlink [62], OneWeb [47], and Kuiper [4], is poised to
revolutionize global connectivity. LEO networks consist of mega-
constellations with thousands of satellites orbiting at 300–2000 km
altitudes, offering ubiquitous low latency coverage worldwide. Con-
sequently, these networks are morphing into “global ISPs” capable
of challenging existing Internet monopolies [63], bridging con-
nectivity gaps in remote regions [37, 65], and providing support in
disaster-struck regions with impaired terrestrial infrastructure [22].

Starlink from SpaceX stands out with its expansive fleet of 4000
satellites catering to 2M+ subscribers across 63 countries [56, 71].
The LEO operator plans to further amplify its coverage and quality
of service (QoS) by launching ≈ 42,000 additional satellites in the
coming years [16]. However, despite significant global interest and
the potential to impact the existing Internet ecosystem, only limited
explorations have been made within the research community to
understand Starlink’s performance. The challenge stems from a
lack of global vantage points required to accurately gauge the net-
work’s performance since factors such as orbital coverage, density
of ground infrastructure, etc., can impact connectivity across re-
gions. Initial studies have resorted to measurements from a handful
of geographical locations [26, 36, 37, 41] or extrapolated global per-
formance through simulations [27] and emulations [33]. However,

the community agrees on the limited scope of such studies and has
made open calls to establish a global LEO measurement testbed to
address this challenge [49, 57, 68]. Some researchers have navigated
around this hurdle by exploring alternative measurement methods,
e.g., by targeting exposed services behind user terminals [20] or by
mining speed test reports shared on social media platforms, such
as Reddit [67]. While innovative, we argue that these techniques
are insufficient to uncover the intricacies affecting the network,
specifically its capability to support web applications.

This paper addresses this knowledge gap and provides the first
comprehensive multi-faceted measurement study on Starlink. Our
work is distinct from previous works in several ways. Firstly, we ex-
amine the global evolution of the network since 2021 by analyzing
the M-Lab speed test measurements [14] from 34 countries (largest
so far). We complement our investigation through active measure-
ments over 98 RIPE Atlas [55] probes in 21 countries and conduct
high-resolution experiments over controlled terminals in two Eu-
ropean countries to investigate real-time web application perfor-
mance and factors impacting Starlink’s last-mile access. Specifically,
we make the following contributions.
(1)We present a longitudinal study of global Starlink latency and
throughput performance from M-Lab users in §4. Our analysis,
incorporating ≈ 19.2 M samples, reveals that Starlink performs
competitively to terrestrial cellular networks. However, its perfor-
mance varies globally due to infrastructure deployment differences,
and is dependent on the density and closeness of ground stations
and Point-of-Presence (PoP). We also observe signs of bufferbloating
as Starlink’s latency increases by several factors under traffic load.
(2) We assess and compare the performance of real-time web appli-
cations, specifically Zoom video conferencing and Amazon Luna
cloud gaming, to terrestrial networks (§5). We find that, under opti-
mal conditions, Starlink is capable of supporting such applications,
matching the performance over cellular; however, we do observe
some artifacts due to the network’s periodic reconfigurations.
(3) We perform targeted measurements from Starlink RIPE At-
las [55] probes and leverage their diverse locations to characterize
the satellite last-mile “bent-pipe” performance (§6.1). We find that
the “bent-pipe” latencywithin the dense 53° shell remains consistent
worldwide (≈ 40 ms), and is significantly lower to yet incomplete
70° and 97.6° orbits. We also find evidence of Starlink inter-satellite
links (ISLs) connecting remote regions, showcasing superior per-
formance to terrestrial paths in our case study.
(4) Our high-frequency measurements from terminals in two Euro-
pean countries confirm that Starlink performs network reconfig-
urations every 15s, leading to noticeable latency and throughput
degradations at sub-second granularity. By correlating data from
our terminals, one covered by 53° and the other restricted to 70° and
97.6° connectivity, we find that the reconfigurations are globally
synchronized events and likely independent of satellite handovers.

Leveraging multi-dimensional, global, and controlled high reso-
lution measurements, our findings distinctively advance the state-
of-the-art by illuminating Starlink’s global performance and the
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Figure 1: Orbits of three Starlink inclinations and crowd-
sourced Ground Station (GS) and Point-of-Presence (PoP)
locations [48]. Shaded regions depict Starlink’s service area.

influence of internal network operations on real-time web appli-
cations. To foster reproducibility, we plan to publish our collected
dataset and (measurement and analysis) scripts upon acceptance.

2 BACKGROUND
Starlink is a LEO satellite network operated by SpaceX that aims to
provide global Internet coverage through a fleet of satellites flying
at ≈ 500 km above the Earth’s surface. The majority of Starlink’s
operational 4000 satellites lie within the 53° shell, which only covers
parts of the globe (see Figure 1). The 70° and 97.6° orbits allow
serving regions near the poles. These other shells however have
fewer satellites (see Appendix A, Table 2 for constellation details).

Figure 2 shows the cross-section of Starlink end-to-end connec-
tivity. To access the Internet over the Starlink network, end-users
require a dish, a.k.a. “Dishy”1, that communicates with satellites
visible above 25° of elevation through phased-array antennas using
Ku-band (shown as User Link (UL)). Starlink satellites, equipped
with multiple antennas subdivided into beams, can connect to mul-
tiple terminals simultaneously [19] and relay all connections to
a ground station (GS) on a Ka-band link (shown in green). The
connection forms a direct “bent-pipe” in case the terminal and GS
lie within a single satellite’s coverage cone; otherwise, the satellites
can relay within space to reach far-off GSs via laser inter-satellite
links (ISLs), forming an “extended bent-pipe”. Note that not all
Starlink satellites are ISL-capable and it is difficult to effectively
estimate ISL usage as Starlink satellites have no user visibility at IP
layer and, therefore, do not show up in traceroutes.

Finally, the GSs relay traffic from satellites to Starlink point-of-
presence (PoP) through a wired connection, which routes it to the
destination server via terrestrial Internet [7]. The public availability
of GS deployment information differs across countries. No official
source exists, so we rely on crowdsourced data for the geolocations
of GSs and PoPs [48], which is also shown in Figure 1.

3 MEASUREMENT METHODOLOGY
3.1 Global Measurements
Measurement Lab (M-Lab) M-Lab [14] is an open-source project
that allows users to perform end-to-end throughput and latency
speed tests from their devices to 500+ servers in 60+ metropoli-
tan areas [32]. Google offers M-Lab measurements when a user

1We use “Dishy” and “user terminal” interchangeably in the paper.

Terrestrial
NetworkPoP

Starlink 
Terminal

GS

UL

Bent-Pipe

ISL

Figure 2: Starlink follows “bent-pipe” connectivity as traffic
traverses the client-side terminal, one or more satellites via
inter-sat links (ISLs), nearest ground station (GS), ingressing
with the terrestrial Internet via a point-of-presence (PoP).

searches for "speed test" [31], serving as the primary source of
measurement initiations [14, 21, 51]. At its core, M-Lab uses the
Network Diagnostic Tool (NDT) [40], which measures uplink and
downlink performance using a single 10 s WebSocket TCP connec-
tion. The platform also records fine-grained transport-level metrics
(tcp_info), including goodput, round-trip time (RTT) and losses,
along with IP, Autonomous System Number (ASN), and geoloca-
tion of both the end-user device and the selected M-Lab server.
We identify measurements from the Starlink clients via their ASN
(AS14593). The M-Lab dataset includes samples from 59 out of 63
countries where Starlink is operational. We restrict our analysis
to ndt7 measurements, which use TCP BBR and countries with at
least 1000 measurements, resulting in 19.2 M M-Lab measurement
samples from 34 countries. Our analysis chronicles the global Star-
link operation from its inception, as the first measurement samples
in our dataset are dated to June 2021, which is closely aligned with
the launch of Starlink v1.0 and v1.5 satellites [29]. We find that
the M-Lab server selection algorithm assigns the geographically
closest server to the estimated client location [30], which might not
always be optimal for Starlink, given its PoP-centered architecture.
While we examine such artifacts by contrasting the M-Lab and
RIPE Atlas results (§6.1), we approached our analysis with caution,
particularly when examining fine-grained region-specific insights.
RIPE Atlas. RIPE Atlas is a measurement platform that the net-
working research community commonly employs for conducting
measurements [55]. The platform comprises thousands of hardware
and software probes scattered globally, enabling users to carry out
active network measurements such as ping, traceroute, and DNS
resolution to their chosen endpoints. In our study, we utilized 98
Starlink RIPE Atlas probes across 21 countries (see Figure 3). Our
measurement targets were 145 data centers from seven major cloud
providers – Amazon EC2, Google, Microsoft, Digital Ocean, Al-
ibaba, Amazon Lightsail, and Oracle (see Appendix B). The chosen
operators represent the global cloud market [3, 25, 34, 72] and
ensure that our endpoints are close to Starlink PoPs, which are
usually co-located with Internet eXchange Point (IXP) or data cen-
ter facilities [20, 26]. We perform ICMP traceroutes from Atlas
probes to endpoints situated on the same or neighboring conti-
nent. We extract and track per-hop latencies between Starlink
probe terminal-to-GS (identified by static 100.64.0.1 address),
GS-to-PoP (172.16/12 address) and PoP-to-endpoint at 2 s in-
tervals [49]. Additionally, to improve PoP geolocations, we ex-
tract semantic location embeddings in reverse DNS PTR entry,
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Figure 3: Overview of global Starlink measurements in this
study. Heatmap denotes M-Lab speedtest measurement den-
sities. Starlink RIPE Atlas probes are shown as red circles.

e.g. tata-level3-seattle2.level3.net [35]. Our measurements
over tenmonths (Dec 2022 to Sept 2023) resulted in ≈ 1.8 M samples.

3.2 Real-time Web Application Measurements
ZoomVideo Conferencing We experimented with Zoom videocon-
ferencing [74] due to its popularity in the Internet ecosystem [12] as
well as latency and bandwidth-critical operational requirements.We
set up a call between two parties, one using a server with access to
an unobstructed Starlink dish and high-speed terrestrial fiber over
1 Gbps Ethernet. The other end was on an AWS machine located
close to the assigned Starlink PoP. We set up virtual cameras and
microphones on both machines, which were fed by a pre-recorded
video of a person talking, resulting in bidirectional transmission.
Both machines were time-synchronized to local stratum-1 NTP
servers and we recorded (and analyzed) Zoom QoS leveraging the
open-source toolchain from [42] that yields sub-second metrics.

Cloud Gaming. We also experiment with cloud gaming due to its
demanding high throughput and low delay requirements [43]. We
leverage the automated system by Iqbal et al. [18] to evaluate the
performance of playing the racing game “The Crew” on the Amazon
Luna [2] platform. The measurements are based on a customized
streaming client that records end-to-end information about media
streams, such as frame and bitrate. The system also utilizes a bot
that executes in-game actions at pre-defined intervals that trigger
a predictable and immediate visual response. In post-processing,
their analysis system detects the visual response and computes the
game delay as the time passed since the input action was triggered.
Amazon Luna serves games at a resolution of up to 1920×1080 at
60 FPS and adaptively reduces the resolution to, e.g., 1280×720. We
ran the game streaming client on the same machine as the Zoom
measurements, additionally setting up a 5G modem to compare
Starlink against cellular network. Similar to Zoom, the Luna game
server was on AWS server close to our Starlink PoP (≈ 1 ms RTT).

3.3 Targeted Measurements
A significant limitation of our global measurements is their lack
of sub-second visibility, which is essential for understanding the
intricacies of Starlink network behavior. To allow us to obtainmicro-
scopic understanding, we orchestrated a set of precise, tailored, and
controlled experiments, utilizing two Starlink terminals as vantage
points (VPs) situated in two European countries. One connects to
the 53° shell while the other, deployed in a high latitude location, can
be shielded to confine its communication to the 70° and 97.6° orbits

North

97.6° 70° 53°
Barrier

South

Figure 4: Field-of-view experiment setup. Dishy, deployed at
a high latitude location, is obstructed by a metal shielding,
which restricts its connectivity to the 70° and 97.6° orbits.

(see Figure 4). We placed a metal sheeting2 barrier at the South-
facing angle of the terminal, which obstructed its view from the
53° inclinations. We verify with external satellite trackers [28, 54]
that the terminal only received connectivity from satellites in 97°
or 70° inclinations, which resulted in brief connectivity windows
followed by periods of no service. We performed experiments using
the Isochronous Round-Trip Tester (irtt) [52] and iperf [17] tools.
The irtt setup records RTTs at high resolutions (3 ms interval) by
transmitting small UDP packets. The irtt servers were deployed
on cloud VMs in close proximity to the assigned Starlink PoP of
both VPs (within 1 ms) –minimizing the influence of terrestrial path
on our measurements. We used iperf to measure both uplink and
downlink throughput and record performance at 100 ms granularity.
Simultaneously, we polled the gRPC service on each terminal [61]
every second to obtain the connection status information.

4 GLOBAL STARLINK PERFORMANCE
We use the minimum RTT (minRTT) reported during ndt7 tests to
the closest M-Lab server globally to quantify the baseline network
performance. Thismetric is not affected by queuing delays prevalent
during throughput measurements which results in elevated laten-
cies. To put the Starlink latency into context, we select speedtests
originating from terrestrial serving-ISPs to capture mobile network
traffic. We filter measurements from devices connected to the top-3
mobile network operators (MNOs) in each country (see Appendix C
for details). Note that our criterion results in a mix of wired and
wireless access networks since M-Lab does not provide a way to
distinguish between the two. Our endpoint selection remains the
same for both Starlink and terrestrial networks (see §3.1).
Global View. Figure 5 shows that, for a majority of countries,
clients using terrestrial ISPs experience better latencies over Star-
link. While the median latency of Starlink hovers around 40–50 ms
in most countries, this distribution varies significantly across geo-
graphical regions. For instance, in Colombia, Starlink clients report
better latencies than those utilizing established terrestrial networks.
Conversely, in Manila (The Philippines), Starlink’s performance is
notably inferior (Figure 6). The uneven distribution of GSs and PoPs
(Figure 1) may explain the latency differences; the USA, which ex-
periences significantly lower latencies, also boasts a robust ground
infrastructure. Similar trends are seen in Kenya and Mozambique,
where the closest PoP is located in Nigeria.

2Metal sheeting was chosen due to its ability to act as a Faraday shield, blocking
the RF emissions from satellites.
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Figure 5: Median of minimum RTT (in ms) of devices connected via Starlink (left)
and top-3 serving ISPs (right) in the same country to the nearest M-Lab server.
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Figure 6: Starlink latency distribution from
select cities in each continent.
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Figure 7: Distributions of M-Lab minRTTs from select cities
in Europe and South America, respectively.

Well-Provisioned Regions. Even though a significant portion of
global Starlinkmeasurement samples originate from Seattle (≈ 10%),
the region shows consistently low latencies, with the 75th percentile
well below 50 ms (Figure 6). Contributing factors can be dense GS
availability or internal service prioritization for Starlink’s head-
quarters. However, we observe that Starlink performance is fairly
consistent across the USA, confirming that Seattle is not an anomaly
but the norm (see Figure 21a in Appendix D). This result highlights
the LEO network’s potential to bridge Internet access disparities,
which significantly affects the quality of terrestrial Internet in the
USA [38, 50]. Europe is also relatively well covered with GSs but
hosts only three PoPs that are in the UK, Germany, and Spain.
Proximity to the nearest PoP correlates strongly with minRTT per-
formance in Figure 7 – Dublin, London, and Berlin exhibit latencies
comparable to the US, while for Rome and Paris, the 75th percentile
is ≈ 20 ms longer. Unlike US, Starlink in EU has significantly longer
tail latencies, often surpassing 100 ms.
Under-Provisioned Regions. Starlink’s superior performance in
Colombia hints at its potential for connecting under-provisioned
regions. However, Figure 6 shows that Starlink in South America
(SA) trails significantly behind the US and Europe, with the 75th
percentile exceeding 100 ms and tail at 200 ms. We observe similar
performances in Oceania (see Figure 21b in Appendix D). By ex-
tracting the share of satellite vs. terrestrial path (from PoP to M-Lab
servers, see Figure 18 in Appendix D)3, we find that the majority of
SA Starlink latency comes from the bent-pipe. In contrast, latencies
from Mexico and Africa (except Nigeria) show significant terres-
trial influence, which we allude to non-optimal PoP assignments
by Starlink routing policies.

We observed an interesting impact of ground infrastructure de-
ployment in the Philippines, where a local PoP was deployed in
May 2023. Prior to this, Starlink traffic from the Philippines was
directed to the nearest Japanese PoP, traversing long submarine
links to reach the geographically closest M-Lab server in-country
– evident from Figure 19 in Appendix D which shows additional
50–70 ms RTT incurred by Philippine users to reach in-country vs.
Japanese M-Lab servers. However, post-May 2023, the latencies to

3We subtract the latency to the Starlink PoP reported by M-Lab’s reverse
traceroutes from the end-to-end TCP minRTT.
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Figure 8: RTT inflation (maxRTT-minRTT) during M-Lab
speedtests over Starlink: (a) download, (b) upload traffic.
in-country servers were reduced by 90% as the traffic was routed
via the local PoP. Despite such artifacts, Starlink shows an evident
trend towards more consistent sub-50 ms latencies globally over
the past 17 months, specifically evident in Sydney (Figure 23a in
Appendix D). We conclude that while Starlink lags behind terres-
trial networks today, the gap will continue to shrink as the ground
(and satellite) infrastructure expands.
Latency Under Load. Recent findings suggest that Starlink may be
susceptible to bufferbloat [15, 24], wherein latencies during traffic
load can increase significantly due to excessive queue buildups [41].
To explore this globally, we evaluate the RTT inflation, i.e., the dif-
ference between the maximum and minimum RTT observed during
a speed test. Figure 8 reveals significantly increased RTTs under
load within Starlink globally. During active downloads (Figure 8a),
the Starlink-enabled clients can experience ≈ 2–4× increased RTTs,
reaching almost 400–500 ms. While such inflations are consistent
across all Starlink service areas, they are more prominent in re-
gions with subpar baseline performance, e.g., Mexico. Note that the
Starlink latency under load is not symmetric. The 60th percentile of
RTT during uploads increases to ≤ 100 ms globally (see Figure 8(b))
compared to ≈ 200 ms during downloads. We observe similar behav-
ior while conducting iperf over our controlled terminals. Possible
explanations can be queue size differences at the client-side Starlink
router (affecting uploads), the ground station (affecting downloads),
or satellites (impacting both). It is also plausible that Starlink em-
ploys active queue management (AQM) techniques [1] to moderate
uplink latencies under congestion. This approach, however, may
adversely affect the performance of applications that demand both
high bandwidth and low latency – which we explore in §5.
Goodput. Figure 9 shows Starlink download and upload goodputs
from speedtest globally. Unlike latencies (Figure 6), the goodput
distributions appear relatively homogeneous. Most Starlink clients
achieve ≈ 50–100 Mbps download and ≈ 4–12 Mbps upload rates
at the 75th percentile. We do also not find any correlation between
baseline latencies (see Figure 6) and upload/download goodput,
evident from the contrasting cases of Dublin and Manila. However,
we observe an inverse correlation between loss rates and good-
puts; increasing from 4–8% at the 75th-percentile (see Figure 20 in
Appendix D). Seattle, notable for its latency performance, records
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goodput over Starlink from selected cities globally.
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Figure 10: Uplink Zoom video traffic over a terrestrial net-
work (left) and Starlink (right). Vertical dashed lines show
Starlink reconfiguration intervals.
average goodputs. Given its high measurement density at this loca-
tion, this trend might be attributable to Starlink’s internal throttling
or load-balancing policies aimed at preventing congestion on the
shared network infrastructure [64]. We also find that over the past
17 months, Starlink goodputs have stabilized rather than increased,
with almost all geographical regions demonstrating similar perfor-
mance (shown in Figure 23 in Appendix D).

Takeaway #1 — Starlink exhibits competitive performance to ter-
restrial ISPs on a global scale, especially in regions with dense GS
and PoP deployment. However, noticeable degradation is observ-
able in regions with limited ground infrastructure. Our results
further confirm that Starlink is affected by bufferbloat. Over the
past 17 months, Starlink appears to be optimizing for consistent
global performance, albeit with a slight reduction in goodput,
likely due to the increasing subscriber base.

5 REAL-TIME APPLICATION PERFORMANCE
While the global Starlink performance in §4 is promising for sup-
porting web-based applications, it does not accurately capture the
potential impact of minute network changes caused by routing,
satellite switches, bufferbloating, etc., on application performance.
Real-time web applications are known to be sensitive to such fluc-
tuations [8, 18, 41]. In this section, we examine the performance of
Zoom and Amazon Luna cloud gaming over Starlink (see §3.2 for
details). This allows us to assess the suitability of the LEO network
to meet the requirements of the majority of real-time Internet-based
applications, as both applications impose a strict latency control
loop. Cloud gaming necessitates high downlink bandwidth, while
Zoom utilizes uplink and downlink capacity simultaneously.
Zoom Video Conferencing. Figure 10 shows samples from Zoom
calls conducted over a high-speed terrestrial network and over Star-
link. The total uplink throughput over Starlink is slightly higher,
which we trace to FEC (Forward Error Correction) packets that are
frequently sent in addition to raw video data (on average 146±99Kbps
vs. 2±2 Kbps over terrestrial). The frame rate, inferred from the

Terrestrial Cellular Starlink

Idle RTT (ms) 9 46 40
Throughput (Mbps) 1000 150 220

Frames-per-second 59±1.51 59±1.68 59±1.63
Bitrate (Mbps) 23.08±0.38 22.82±4.24 22.81±2.16
Time at 1080p (%) 100 94.11 99.45
Freezes (ms/min) 0±0 0±220.34 0±119.74
Inter-frame (ms) 17±3.65 18±11.1 16±6.76

Game delay (ms) 133.53±19.79 165.82±23.55 167.13±23.12
RTT (ms) 11±13.41 39±17.06 50±16.28
Jitter buffer (ms) 15±3.27 12±1.33 15±3.35

Table 1: The game metrics are aggregated over 150 minutes
of playtime per connection. Values denote median±SD and
the worst performer is highlighted.
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Figure 11: Cloud gaming over 5G (left) and Starlink (right).
Vertical dashed lines show Starlink reconfiguration intervals.
packets received by the Zoom peer, does not meaningfully differ
between the two networks (≈ 27 FPS). Note that, since Zoom does
not saturate the available uplink and downlink capacity, it should
not be impacted by bufferbloating. Yet, we observe a slightly higher
loss rate over LEO, which the application combats by proactively
utilizing FEC. The uplink one-way delay (OWD) over Starlink is
higher and more variable compared to the terrestrial connection
(on average 52±14 ms vs. 27±7 ms). All observations also apply to
the downlink except that Starlink’s downlink latency (35±11 ms) is
similar to the terrestrial connection (32±7 ms). Our analysis broadly
agrees with [73] but our packet-level insight reveals bitrate fluctua-
tions partly caused by FEC. Further, our Starlink connection was
more reliable and we did not experience second-long outages.

Interestingly, we observe that the Starlink OWD often notice-
ably shifts at interval points that occur at 15 s increments. Further
investigation reveals the cause to be the Starlink reconfiguration
interval, which, as reported in FCC filings [66], is the time-step at
which the satellite paths are reallocated to the users. Other recent
work also reports periodic link degradations at 15 s boundaries in
their experiments, with RTT spikes and packet losses of several or-
ders [26, 49, 68]. We explore the impact of reconfiguration intervals
and other Starlink-internal actions on network performance in §6.
Amazon Luna Cloud Gaming. Table 1 shows 150 minutes of
cloud gaming performance over terrestrial, 5G cellular, and Starlink
networks. Overall, all networks realized close to 60 FPS playback
rate at consistently high bitrate (≈ 20Mbps). Starlink lies in between
the better-performing terrestrial and cellular in terms of bitrate
fluctuations, frame drops and freezes4. Starlink exhibits the highest

4Freeze is when the inter-frame delay (IFD) is larger than max(3×IFD, IFD+150) .
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Figure 12: Last-mile latencies for different countries. “Star-
link” denotes satellite bent-pipe over RIPE Atlas while “Cel-
lular” wireless access from Speedchecker [11].
game delay, i.e., the delay experienced by the player between issuing
a command andwitnessing its effect. Specifically, the wired network
delivers the visual response about 2 frames (≈ 33 ms) earlier than
both 5G and Starlink. While examining the gaming performance
over time, we observe occasional drops to < 20 FPS over Starlink (see
Figure 11), that coincide with Starlink’s reconfiguration interval.
These fluctuations are only visible at sub-second granularity and,
hence, are not reflected in global performance analysis (§4).

Despite these variations, Starlink’s performance remains com-
petitive with 5G, highlighting its potential to deliver real-time ap-
plication support, especially in regions with less mature cellular
infrastructure. Note, however, that our Starlink terminal was set up
without obstructions and the weather conditions during measure-
ments were favorable to its operation [37]. Different conditions,
especially mobility, may change the relative performance of Starlink
and cellular, which we plan to explore further in the near future.
Takeaway #2 — Starlink is competitive with the current 5G deploy-
ment for supporting demanding real-time applications. We also
observe that Starlink experiences regular performance changes
every 15s linked to its reconfiguration interval period. While
these internal black-box parameters do influence performance
to a certain extent, application-specific corrective measures, like
FEC, are effective in mitigating these artifacts.

6 DISSECTING THE BENT-PIPE
We now attempt to uncover Starlink’s behind-the-scenes operations
and their impact on network performance.We follow a two-pronged
approach to undertake this challenge. Our longitudinal traceroute
measurements over RIPE Atlas accurately isolate the bent-pipe
(terminal-to-PoP) global performance, allowing us to correlate it
with parameters like ground station deployment, satellite availabil-
ity, etc. (§6.1). We then perform high-frequency, high-resolution
experiments over Starlink terminals deployed in two EU countries
to zoom in on bent-pipe operation and highlight traffic engineering
signatures that may impact application performance (§6.2).
6.1 Global Bent-Pipe Performance
Starlink vs. Cellular Last-mile We contrast our end-to-end M-
Lab and real-time application analysis by comparing the Starlink
bent-pipe latencies from RIPE Atlas traceroutes to cellular wire-
less last-mile (device-to-ISP network) access. Given the under-
representation of cellular probes in RIPE Atlas, we augment our
dataset with recent comprehensive measurements from Dang et al.
[11], which leveraged 115,000 cellular devices over the Speedchecker
platform to analyze the performance of cellular networks world-
wide. Figure 12 presents a comparative analysis of both networks

Distance from Dishy to GS [kms]
Figure 13: Correlation between Starlink bent-pipe latency
and Dishy-GS distance. Red line denotes linear regression fit.

across countries common in both datasets. Consistent with our
previous findings, we find that the Starlink bent-pipe latencies fall
within 36–48 ms, with the median hovering around 40 ms for al-
most all countries. Similarly, we find consistent cellular last-mile
latencies across all countries, but almost 1.5× less than Starlink.
Recent investigations [43] report similar access latencies over WiFi
and cellular networks. The bent-pipe latencies also corroborate
our estimations in §4 that the terminal-PoP path is the dominant
contributor to the end-to-end latency. Out of the 21 countries with
Starlink-enabled RIPE Atlas probes, the only exceptions where the
bent-pipe latency is significantly higher (≈ 100 ms) are the Virgin
Islands (US), Reunion Islands (FR), and Falkland Islands (UK). Cor-
relating with Figure 3, we find that Starlink neither has a GS nor a
PoP in these regions, which may result in traffic routing over ISLs
to far-off GS leading to longer bent-pipe latencies.
Impact of Ground Infrastructure. We extend our analysis by
exploring the correlation between the distance from Starlink users
to the GS and bent-pipe latencies. Recall that we rely on crowd-
sourced data [48] for geolocating Starlink ground infrastructure
since these are not officially publicly disclosed. We deduce through
our traceroutes that Starlink directs its subscribers to the nearest
GS relative to the PoP, as the GS-PoP latencies are ≈ 5 ms almost
globally (see Figure 22 in Appendix D – sole exceptions being US
and Canada with 7–8 ms, likely due to abundant availability of GSs
and PoPs resulting in more complex routing). Figure 13 shows the
correlation of reported bent-pipe latency with the terminal-GS dis-
tance. Each point in the plot denotes at least 1000measurements.We
observe a directly proportional relationship as bent-pipe latencies
tend to increase with increasing distance to the GS. Furthermore,
we find that the predominant distance between GS and the user
terminal is ≤ 1200 km, which is also the approximate coverage area
width of a single satellite from 500 km altitude [6] – suggesting that
these connections are likely using direct bent-pipe, either without
or with short ISL paths. Few terminals, specifically in Reunion,
Falkland and the Virgin Islands, connect to GSs significantly farther
away, possible only via long ISL chains, the impact of which we
analyze further as a case study below.
Case Study: Reunion Island. The majority of Starlink satellites
(starting from v1.5 deployed in 2021) are equipped with ISLs [69],
and reports from SpaceX suggest active utilization of these links [70].
Recent studies also agree with the use of ISLs [20], but point out
inefficiencies in space routing [68]. Nonetheless, the invisibility
of satellite hops in traceroutes poses a challenge in accurately
assessing the latency impact of ISLs. As such, we focus on a probe in
Reunion Island (RU), which connects to the Internet via Frankfurt
PoP (≈ 9000 km). Figure 14 segments the bent-pipe RTT between
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Figure 14: Bent-pipe RTT segments from Reunion Island
(yellow) vs. Germany (red) connecting to Germany PoP. Ver-
tical lines show latency over Atlas probes connected via fiber
from both locations to the Frankfurt server (PoP location).

the user terminal (Dishy) to GS (non-terrestrial), and from GS to
the PoP (terrestrial). For comparison, we also plot the RTTs from a
probe within Germany (DE) connecting to the same PoP (≈ 500 km,
in red). The vertical lines represent the median RTT over terrestrial
infrastructure from both probe locations to the PoP. Firstly, we
observe minimal GS-PoP latency for both locations, verifying that
the RU satellite link is using ISLs. Secondly, in RU, Starlink shows
significant latency improvement over fiber (≈ 60 ms). This is be-
cause the island has limited connectivity with two submarine cables
routing traffic 10,000 km away, either in Asia or South America [46].
Starlink provides a better option by avoiding the terrestrial route
altogether, directly connecting RU users to the dense backbone
infrastructure in EU [9]. However, since the bent-pipe incurs at
least 30–40 ms latency in the best-case, Starlink is less attractive in
regions with robust terrestrial network infrastructure (also evident
from the DE probe where fiber achieves better latencies).
Impact of Serving Orbit. Recall that the majority of Starlink satel-
lites are deployed in the 53° inclination (see Table 2 in Appendix A).
Consequently, network performance for clients located outside
this orbit’s range may vary widely as they are serviced by fewer
satellites in 70° and 97.6° orbits. Figure 15 contrasts the bent-pipe
latencies of probe in Alaska (61.5685N, 149.0125W) [“A”] to probes
within 53° orbit. Despite dense GS availability, the bent-pipe laten-
cies for Alaska are significantly higher (≈ 2×). The Swedish probe
[“B”] at 59.6395N is at the boundary of 53° orbit but still exhibits
comparable latency to Canada, UK, and Germany. Furthermore,
the Alaskan probe experiences intermittent connectivity, attributed
to the infrequent passing of satellite clusters within the 70° and
97.6° orbits. These findings indicate substantial discrepancies in
Starlink’s performance across geographical regions, which may
evolve for the better as more satellites are launched in these orbits.
Nevertheless, we leverage the sparse availability of satellites at the
higher latitude to further dissect the bent-pipe operations in §6.2.

Takeaway #3 — The Starlink “bent-pipe” accounts for (on average)
40 ms of latency almost consistently globally. In certain cases
where ISLs are being used, the latencies might escalate yet still
outshine traditional terrestrial networks when bridging remote
regions. The satellite link yields stable latencies, provided that
the client is served by the dense 53° orbit.

6.2 Controlled Experiments
We now investigate the cause of periodic disruptions to real-time
applications (§5). Specifically, we perform high-resolution measure-
ments to gain insights into Starlink network operation.

Figure 15: Bent-pipe latencies for “A” (in Alaska) covered by
the 70° and 97.6° while the rest (Sweden “B”, Canada “C”, UK
“D”, and Germany “E”) are also covered by 53°.

Global Scheduling. We performed simultaneous iRTT measure-
ments from two countries that are sufficiently geographically re-
moved that both cannot be connected to the same serving satellite.
We also verify that both terminals are assigned different PoPs lo-
cated within their country. The resulting RTTs, shown in Figure 16a,
vary in a consistent pattern, being comparatively stable within each
Starlink reconfiguration interval but potentially changing signif-
icantly between intervals. Moreover, the time-wise alignment of
reconfiguration intervals for both vantage points indicates that Star-
link operates on a globally coordinated schedule, rather than on a
per-Dishy or per-satellite basis. These results are in line with other
recent studies [68], which also hint that Starlink utilizes a global
network controller. Previous studies [13] have noticed drops in
downlink throughput every 15s but have not correlated these with
the reconfiguration intervals. We also observe throughput drops
on both downlink and uplink, shown in Figure 16b, that occur at
the reconfiguration interval boundaries. Similar to the RTT, the
throughput typically remains relatively consistent within an inter-
val, but can experience sudden changes between interval transitions.
These also corroborate the periodic performance degradation in
our real-time application experiments.
Disproving Satellite Handoff Hypothesis. Previous works have
suggested satellite or beam changes at reconfiguration interval
boundaries to be the root-cause of network degradation [13, 60, 68].
To investigate this hypothesis, we deliberately obstructed the field-
of-view of our high latitude Dishy to prevent it from connecting to
the dense 53° orbital shell (see §3.3 for details). The restriction cur-
tailed the number of candidate (potentially connectable) satellites
to 13%. This limitation led to intermittent connectivity, character-
ized by brief connectivity windows with long service downtimes.
By synchronizing the timings of each connectivity window with
the overhead positions of candidate satellites (from CelesTrak [28]
and other sources [54]), we identify several windows where the
terminal can be served only by a single satellite. Figure 16c (upper)
shows RTTs from one suchwindow. The fact that there is significant
RTT variance between intervals invalidates the hypothesis that the
changes in RTT are caused by satellite handovers (considering a sin-
gle candidate satellite during the observed period, leaving no room
for hand-off occurrences). Separately, we perform the same experi-
ment but focus on (both uplink and downlink) throughput. Similar
to RTT, we also witness throughput drops at interval boundaries
even when only one candidate satellite is visible.
Scheduling Updates. Figure 16c (lower) shows the distribution
of start and end times of the connectivity windows during our
restricted field-of-view experiments. We observed a strong correla-
tion between connectivity end times and reconfiguration interval
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Figure 16: (left, a) iRTT latencies with Dishys in two countries connected to different ground infrastructure; (middle, b) Maximum
uplink and downlink throughput over a 195-second (13 interval) period; (right, c) (upper) RTTs for a connectivity window
where the Dishy was connected to only a single satellite; (lower) Probability distribution of the time between the connectivity
window start / end and the previous reconfiguration interval (RI). Vertical dashed lines show Starlink reconfiguration intervals.

(RI) boundary, which is not seen with start times5. The result hints
at internal network scheduling changes at reconfiguration interval
boundaries, i.e., Starlink assigns its terminals new satellites (or fre-
quencies) every 15s. We hypothesize that with an obstructed view,
the scheduler cannot find better alternatives in the 70° and 97.6°
orbits, resulting in connectivity loss at the end of the window.
Analysis Summary. Putting together our various observations, we
theorize that Starlink relies on a global scheduler that re-allocates
the user-satellite(s)-GS path every 15s. An FCC filing from Starlink
implies this behavior [60] and recent studies also suggest that the
LEO operator performs periodic load balancing at reconfiguration
boundaries, reconnecting all active clients to satellites [20, 68]. The
theory also explains our observed RTT and throughput changes
when only a single candidate satellite is in view. It is plausible that
Starlink may have rescheduled the terminal to the same satellite but
with reallocated frequency and routing resources. Regardless, these
reconfigurations result in brief sub-second connection disruptions,
which may become more noticeable at the application-layer as the
number of subscribers on the network increases over time.

Takeaway #4 — Starlink uses 15s-long reconfiguration intervals to
globally schedule and manage the network. Such intervals cause
latency/throughput variations at the interval boundaries. Hand-
offs between satellites are not the sole cause of these effects.
Indeed, our findings hint at a scheduling system reallocating
resources for connections once every reconfiguration interval.

7 RELATEDWORK
LEO satellites have become a subject of extensive research in re-
cent years, with a particular focus on advancing the performance
of various systems and technologies. Starlink, the posterchild of
LEO networks, continues to grow in its maturity and reach with
> 2M subscribers as of September 2023 [56]. Despite its growing
popularity, there has been limited exploration into measuring Star-
link’s performance so far. Existing studies either have a narrow
scope, employing only a few vantage points [13, 36, 41] or focus
on broad application-level operation [26, 73] without investigating
root-causes. Ma et al. [37] embarked on a journey across Canada

5The fact that many appear to end 1s after the boundary is an artifact of the limited
(per-second) granularity of the gRPC data and that the gRPC timestamps originate
from the client making the gRPC requests rather than the user terminal.

with four dishes to scrutinize various factors, such as temperature
and weather, that might influence Starlink’s performance.

A few endeavors have attempted to unveil the operations of
Starlink’s black-box network. Pan et al. [49] revealed the operator’s
internal network topology from traceroutes, whereas Tanveer
et al. [68] spotlighted a potential global network controller. The ab-
sence of global measurement sites poses a predominant challenge
hampering a comprehensive understanding of Starlink’s perfor-
mance. As we show in this work, Starlink’s performance varies
geographically due to differing internal configurations and ground
infrastructure availability. Some researchers have devised innova-
tive methods to combat this. For example, Izhikevich et al. [20]
conducted measurements towards exposed services behind the
Starlink user terminal, while Taneja et al. [67] mined social media
platforms like Reddit to gauge the LEO network’s performance. Our
study not only corroborates and extends existing findings but also
stands as the most extensive examination to date. Our approach
– anchored in detailed insights from 34 countries, leveraging 19.2
million crowdsourced M-Lab measurements, 2.9 million active RIPE
Atlas measurements, and two controlled terminals connecting to
different Starlink orbits – provides a deeper understanding of the
Starlink “bent-pipe” and overall performance.

8 CONCLUSIONS
Despite its potential as a “global ISP” capable of challenging the
state of global Internet connectivity, there have been limited per-
formance evaluations of Starlink to date. We conducted a multi-
faceted investigation of Starlink, providing insights from a global
perspective down to internal network operations. Globally, our anal-
ysis showed that Starlink is comparable to cellular for supporting
real-time applications (in our case Zoom and Luna cloud gaming),
though this varies based on proximity to ground infrastructure. Our
case study shows Starlink inter-satellite connections helping re-
mote users achieve better Internet service than terrestrial networks.
However, at sub-second granularity, Starlink exhibits performance
variations, likely due to periodic internal network reconfigurations
at 15s intervals. We find that the reconfigurations are synchronized
globally and are not caused only by satellite handovers. As such,
this first-of-its-kind study is a step towards a clearer understanding
of Starlink’s operations and performance as it continues to evolve.
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A STARLINK ORBITAL INFORMATION

Inclination
angle # Planes Altitude

[km]
# Satellites

In
Position Launched Filed [58, 59]

53° 72 550 1401 1665 1584
53.2° 72 540 1542 1637 1584
70° 36 570 301 408 720
97.6° 10 560 230 230 508

Table 2: Starlink orbital shell design and number of opera-
tional satellites as of early October 2023 [39].

Starlink and other emerging satellite constellations, such as
OneWeb and Kuiper [4, 47], are called megaconstellations due to
combining multiple orbital shells. Early satellite constellations for
telephone services only consisted of a single shell [53]. Table 2
shows the parameters of Starlink’s orbital shells. The eccentricity
parameters of Starlink orbits are negligible due to the satellites’
positions in Low Earth Orbit (LEO). While discussing Starlink’s
constellation design, we simplify the orbit into circular orbits.

B DATA CENTER ENDPOINTS
Table 3 shows the distribution of the data centers in our dataset
by cloud provider and deployed continent. Each endpoint is a VM
established in a compute-capable cloud data center location. Our
selection is influenced by previous studies that have found that
significant end-to-end performance differences may appear while
measuring different cloud networks due to private WANs, peering
agreements, etc. [10, 11]. We believe that our resulting endpoint
selection reduces such biases in Internet traffic steering/routing
that may affect our aggregated analysis.

C TOP-3 MNOS PER COUNTRY
Table 4 lists the top-3 Mobile Network Operators (MNOs) of the
countries that are part of our M-Lab dataset. The selection is based
on a combination of each AS’s rank and the number of M-Lab
measurements originating from that AS.

D GLOBAL STARLINK PERFORMANCE
This section of the appendix provides supporting material for the
global Starlink performance analysis presented in §4. Figure 23
provides an overview over Starlink’s performance over a period of
one year in different cities. The plot gives an insight into the evolu-
tion of Starlink over time from a global perspective. We observe a
decreasing goodput rate over time which can be attributed to an
increase of Starlink users. The RTT values remain relatively stable,
but high for countries which are not part of the major operational
areas of Starlink. A notable exception is Sydney (AU) where the
RTT decreases over time.

Figure 19 depicts the median minRTT from the Philippine tests,
depending on the destination server’s location. The implications
are discussed in §4.

Figure 20 shows the loss rates during M-Lab download tests
which are discussed in §4.

Data centers per continent

EU NA SA AS AF OC

Amazon EC2 (AMZN) 6 6 1 6 1 1
Google Cloud (GCP) 6 10 1 8 - 1
Microsoft Azure (MSFT) 14 9 1 10 2 3
Digital Ocean (DO) 4 6 - 1 - -
Alibaba (BABA) 2 1 - 2 - 1
Amazon Lightsail (LTSL) 3 2 - 2 - 1
Oracle (ORCL) 4 4 1 7 - 2

Total 39 38 4 36 3 9

Table 3: Global density of data center endpoints of different
cloud providers.

<30 ms
30-40 ms
40-50 ms
50-60 ms
60-70 ms
>80 ms

Figure 17: Median last-mile latency of M-lab measurement.
By subtracting traceroute latency from the M-lab server to
the PoP and the overallmeasuredminRTT,we get the latency
depicted in this figure

36%

52%

67%

83%

99%

Figure 18: Fraction of the latency, that is estimated to be over
the satellite link by dividing the latency of figure 17 with its
overall latency.
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Figure 19: Comparing median minRTT from tests originat-
ing in Manila that targeted M-Lab servers in the Philippines
and in Japan. The results are discussed in §4.
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Figure 20: The TCP packet loss rates during M-Lab download
tests of selected global cities. The results are set into context
in §4.
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Figure 21: The distribution of the minimum RTT (minRTT)
during M-Lab measurements from selected cities in North
America (a) and Oceania (b).

Figure 21 shows the distribution of the minimum RTT (minRTT)
during M-Lab measurements from selected cities in North America
and Oceania. It complements Figure 7 that depicts selected cities
in Europe and South America. Starlink’s performance in North
America varies only little between different cities and the latencies
are low when compared globally. In Oceania, tests from Auckland
and Perth exhibit a similarly low minRTT – a PoP and GSs are
nearby both cities. Sydney’s minRTT performance has recently
(2023/06) improved, as shown in Figure 23a.

E GLOBAL VIEW OF BENT-PIPE OPERATION
Figure 22 provides additional information about the Starlink last-
mile performance analysis presented in §6.1. The figure shows
the latency between Starlink ground stations (GSs) and Points of
Presences (PoPs) on a world map grouped by country. It is apparent
that the latencies are similar all over the world (≤ 6 ms) except in
North America (≥ 6 ms). The anomaly correlates with the dense
deployment of GSs and PoPs.

<4 ms
4-5 ms
5-6 ms
6-7 ms
7-8 ms

Figure 22: Global latencies from GSs to PoPs as measured
from RIPE Atlas probes.

F TARGETED MEASUREMENT CHALLENGES
Some of the measurements required for Section 6.2 required col-
lection of data during time when Dishy received only patchy con-
nectivity. We discovered that both irtt and iperf did not handle
the interrupted nature of the connection well: iperf in particular
relies on a separate TCP connection to act as the control plane. Both
behaved unpredictably and unreliably on a link that has connectiv-
ity only for brief windows. Accordingly, for these experiments, we
replaced irtt with ping which we set to send only a single ICMP
packet with a 200 ms timeout. We then ran it in a loop.

We were unable to find a suitable replacement for iperf, and
therefore relied upon a manual approach. When we detected the
start of a connectivity window iperfwas started. Once the connec-
tivity window had passed, we stopped the experiment and restarted
the iperf server. Restarting the iperf server was necessary to
ensure that subsequent iperf tests could connect (iperf3 permits
only a single active connection to a server, and a loss of connec-
tivity mid-way through an experiment can leave the server in a
state where it believes an experiment is ongoing when it has in
fact concluded). Automatically restarting the iperf server at the
end of each connectivity window was not possible because the
Starlink-connected computer, now without an Internet connection,
could not signal to the remote iperf server.

An additional challenge caused by the interrupted nature of the
connectionwas not discovered until towards the end of the targetted
measurement period. The unstable connection prevented the clock
on the computer connected to the Dishy from synchronising over
NTP, resulting in it drifting by several seconds duration of the
experiment setup. Accordingly, when the absolute timestamps of
the recorded data have been analysed, they have first been adjusted
to account for the time slip. The gRPC data was collected by a
separate computer that did not suffer from clock drift.
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Figure 23: Evolution of Starlink aggregate goodput ((a), (b)) and minimum RTT (c) during download measurements from cities
in South America, North America, Europe, and Australia in the last 12 months.
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Country Mobile Operator ASN AS Rank [5]

Australia
Telstra AS1221 63
Optus AS4804 4514

Vodafone AS133612 7242

Austria
A1 Telekom Austria AS8447 152
T-Mobile Austria AS8412 511
Magenta Telekom AS25255 512

Belgium
Proximus AS5432 975
Telenet AS6848 1231
Orange AS47377 3458

Brazil
TIM AS26615 90
Claro AS28573 7178
Vivo AS18881 11754

Canada
Bell AS577 89
Telus AS852 200
Rogers AS812 241

Chile
Movistar AS7418 3893
Claro AS27995 7275
Entel AS27651 11848

Colombia
Tigo Colombia AS13489 1353

Claro AS10620 11770
Colombia Móvil AS27831 11775

Czechia
Vodafone AS16019 272

O2 Czech Republic AS5610 828
T-Mobile AS5588 2308

Dominican Republic
Claro AS6400 2636

Altice Dominicana AS28118 3118
Tricom AS27887 3539

France
Orange AS3215 204
SFR AS15557 413

Bouygues Telecom AS5410 1316

Germany
Deutsche Telekom AS3320 20

Vodafone AS3209 237
O2 AS6805 1917

Greece
Vodafone Greece AS3329 719
Forthnet GR AS1241 915
Cosmote AS29247 11995

Guadeloupe Dauphin Telecom AS33392 6315

Ireland
Eir AS5466 1747

Vodafone AS15502 3471
Three AS13280 7364

Italy
TIM AS3269 244

Wind Tre AS1267 434
Vodafone AS30722 1049

Japan
KDDI AS2516 91

SoftBank AS17676 111
NTT Docomo AS9605 11764

Country Mobile Operator ASN AS Rank [5]

Kenya
Safaricom AS33771 841

Airtel Kenya AS36926 976
Telkom Kenya AS12455 4566

Martinique Digicel AS48252 3508

Mexico AT&T AS28469 5558
Telcel AS28403 15443

Mozambique Movitel AS37342 12294
mCel AS36945 21048

Netherlands
KPN AS1136 747

T-Mobile AS50266 1268
Tele2 AS13127 1413

New Zealand
2degrees AS9790 250
Vodafone AS9500 1924
Spark AS4771 3913

Nigeria
MTN AS29465 885
Airtel AS36873 1167
Glo AS328309 23694

Norway
Telenor AS2119 255

NextGenTel AS AS15659 4570
TELIA NORGE AS AS12929 7314

Peru
Movistar AS6147 1735
Claro AS12252 1741
Entel AS21575 2276

Philippines Globe Telecom AS132199 11910
Smart Communications AS10139 12101

Poland Orange Polska AS5617 136
T-Mobile Poland AS12912 175

Portugal
NOS AS2860 809
MEO AS15525 1329

Vodafone AS12353 1592

Puerto Rico
Claro AS10396 1088
Liberty AS14638 1242
T-Mobile AS21928 5435

Saint Barthélemy Digicel AS3215 204

Spain
Orange AS12479 332
Vodafone AS12430 358
Movistar AS3352 382

Sweden
Tele2 Sweden AS1257 195
Telia Company AS3301 387
Telenor Sweden AS8642 65529

United Kingdom
O2 AS5089 505

Vodafone AS5378 5443
EE AS12576 11745

United States
T-Mobile AS21928 5435

AT&T Mobility LLC AS20057 7191
Verizon AS22394 11784

Table 4: The selection of top-3 terrestrial MNOs (mobile network operators) for countries with Starlink M-Lab measurements.
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