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Abstract

Measurement noise is an integral part while collecting data of physical processes.
Thus, noise removal is necessary to draw conclusions from these data and is
essential to construct dynamic models using these data. This work discusses a
methodology for learning dynamic models using noisy measurements and simul-
taneously obtaining denoised data. In our methodology, the main innovation can
be seen in integrating deep neural networks with a numerical integration method.
Precisely, we aim at learning a neural network that implicitly represents the data
and an additional neural network that models the vector fields of the dependent
variables. We combine these two networks by enforcing the constraint that the data
at the next time-step can be obtained by following a numerical integration scheme.
The proposed framework to identify a model predicting the vector field is effective
under noisy measurements and provides denoised data. We demonstrate the effec-
tiveness of the proposed method to learn models using a differential equation and
present a comparison with the neural ODE approach.

1 Introduction

Uncovering dynamic models explaining physical phenomena and dynamic behaviors has been an
active research area for several decades, see, e.g., [1–3]. When a model describing the underlying
dynamics is available, it can be used for several engineering studies such as process design or
predictions. Conventional approaches based on physical laws and empirical knowledge are often used
to derive dynamical models. With some prior assumptions such as linearity of dynamical systems,
dictionary-based, symbolic regression, many developments have been made possible, see, [4–10].
However, their success depends on the accuracy of the hypotheses. Obtaining suitable hypotheses is
impenetrable for many complex systems, e.g., understanding the Arctic ice pack dynamics, sea ice,
power grids, neuroscience, or finance, to only name a few applications.

Machine learning techniques, particularly deep learning-based, have emerged as powerful methods
capable of expressing any complex function in a black-box manner. Neural network-based approaches
in the context of dynamical systems have been discussed in [11–14] decades ago. Neural-networks
are incorporated in various ways in the course of learning models, e.g., for prediction, see [13, 15–27].
We particularly highlight the recent work on neural ordinary differential equation (ODE) [25] which
has successfully been applied to learn dynamical models. Furthermore, data acquired using imaging
devices or sensors are contaminated with measurement noise. Therefore, systematic approaches
that learn a dynamic model with proper treatment of noise are required. The approaches mentioned
above do not perform any specific noise treatment. The work in [28] proposes a framework that
explicitly incorporates the noise into a numerical time-stepping method. Though the approach has
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shown promising directions, its scalability remains ambiguous as the approach explicitly estimates
noise and aims to decompose the signal explicitly into noise and ground truth.

Our contributions: Our work introduces a framework to learn dynamical models by innovatively
blending deep learning with numerical integration methods from noisy and sparse measurements.
Precisely, we aim at learning two networks; one that implicitly represents given measurement data
and the second one approximates the vector field; we connect these two networks by enforcing a
numerical integration scheme as depicted in Figure 1. The appeal of the approach is that we do
not require an explicit noise estimate to learn a model. Furthermore, the approach is applicable
even if the dependent variables are sampled on different time grids, which can also be irregular. We
illustrate the promises of the proposed approach with an example of a cubic damped differential
equation and present a comparison with the neural ODE approach [25]. Last but not least, the implicit
representation of the time series data by a neural network allows to obtain gradient samples by
backpropagation without the need for numerical approximation.

2 Learning Dynamical Models using Deep Learning Constraint by a
Runge-Kutta Scheme

For methods to learn dynamical models, the quality of measurement data plays a significant role in
ensuring the accuracy of the learned models. Before employing any data-driven method, de-noising
the data is a vital step and is typically done using classical methods, e.g., smothering techniques
or moving averages. Though they perform good in general to remove a large part of the noise, the
result is still contaminated. In this section, we discuss our framework to learn dynamic models using
noisy measurements without explicitly estimating the noise. To that end, we utilize the powerful
approximation capabilities of deep neural networks and its automatic differentiation feature with a
numerical integration scheme. In this work, we focus on the fourth-order Runge-Kutta (RK4) scheme;
however, the framework is flexible to use any other numerical integration scheme or higher-order
Runge-Kutta schemes. In fact, we can also make use of the neural ODE [25] framework to replace
the RK4 scheme. For this, let us consider an autonomous nonlinear differential equation:

d
dtx(t) = g(x(t)), x(0) = x0, (1)

where x(t) ∈ Rn denotes the solution at time t, and the continuous function g(·) : Rn → Rn defines
the vector field. Given (1) and xti , we can predict x(t) at time ti+1 using the RK4 scheme as follows:

x(ti+1) ≈ x(tj) + hi
(
1
6k1 + 1

3k2 + 1
3k3 + 1

6k4

)
, with hi = ti+1 − ti, (2)

where

k1 = g (x(ti)) , k2 = g
(
x(ti) + hi

2 k1

)
, k3 = g

(
x(ti) + hi

2 k2

)
, k4 = g (x(ti) + hik3) .
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In this paper, we use the short-hand notation for (2), x(ti+1) ≈ ΠRK (x(ti)), and we assume that the
state x(t) is fully observed.

Next, we discuss our framework to learn dynamical models from noisy measurements by blending
deep neural networks with the RK4 scheme. The approach involves two networks. The first network
implicitly represents the variable as shown in Figure 1, and the second network approximates the
vector field, or the function g(·). These two networks are connected by attenuating the RK4 con-
straints. That is, the output of the implicit network is not only in the vicinity of the measurement data
but also approximately follows the RK4 scheme as depicted in Figure 1. For clarity, let us denote
noisy measurement data at time ti by y(ti). Furthermore, we consider a feed-forward neural network,
denoted by N I

θ parameterized by θ, that approximates the measurement data, i.e.,

N I
θ(ti) := x(ti) ≈ y(ti), i ∈ {1, . . . ,m}. (3)

Additionally, let us denote another neural network by NDyn
φ parameterized by φ that approximates

g(·) in (1). We connect these two networks by enforcing the output of the network N I
θ to respect the

RK4 scheme, i.e.,

x(ti+1) ≈ ΠRKx(ti), and d
dtx(ti) ≈ NDyn

φ (x(ti)) . (4)

As a result, our goal becomes to determine the network parameters {θ, φ} such that the following
loss is minimized:

L = λMSE · LMSE + λRK · LRK + λGrad · LGrad, (5)

in which LMSE := ‖N I
θ(ti)− y(ti)‖2, where ‖ · ‖ represents the mean squared error. The term LRK

links the two networks by the RK4 scheme. Precisely, the term LRK castigates the mismatch between
x(ti+1) and ΠRKx(ti), i.e., ‖x(ti+1)−ΠRK (x(ti))‖2. Moreover, the vector field at the output of the
implicit network can be computed directly using automatic differentiation, but it also can be computed
using the network NDyn

φ . The term LGrad penalizes the mismatch, i.e., ‖NDyn
φ (x(ti)) − d

dtx(ti)‖2.
λMSE, λRK, and λGrad are the corresponding regularization parameters.

The total loss L can be minimized using a gradient-based optimizer such as Adam [29]. Once the
networks are trained and have found their parameters that minimize the loss, we can generate the
denoised variables using the implicit network N I

θ, and the vector field by the network NDyn
φ . Note

that due to the involvement of the implicit nature of the network, the measurement data can be at
variable time steps; in fact, the dependent variables can be measured at a different time-grid as well,
and we can estimate the solution at any arbitrary time. Moreover, we also obtain the networkNDyn

φ (·)
that approximately provides the vector field for x.

3 Numerical Experiments

We demonstrate the proposed methodology using a cubic damped oscillatory differential equation.
We corrupt the data by adding mean-zero Gaussian white noise of variance {1%, 5%, 10%, 20%}.
We aim to obtain a denoised signal and a model, defining its vector field. Before employing the
method, we perform a pre-processing step to noisy data using a low-pass filter to remove a large
portion of the high-frequency noise. We compare our methodology with the neural ODE framework
[25], which also focuses on learning a neural network, defining the underlying vector field. The
details about the neural architecture and training are given in the appendices.

Having trained both models for approximating the vector field, we compare the learned vector
fields in Figure 2 and plot the mean and median of the vector field errors, see Figure 3 (left). We
observe that the proposed approach with denoising and learning a dynamical model simultaneously
outperforms neural ODE for noisy cases, which is quite apparent for large noise; see the last two
rows of Figure 2. Moreover, in our preliminary experiments, we have observed that the proposed
approach is approximately two times faster on both, CPU and GPU, see Figure 3 (right) and have a
similar type of convergence with respect to the number of epochs. Moreover, we obtain the denoised
data from our implicit network directly, which is compared with the truth data in Figure 5, which is
not possible using neural ODE standalone.
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Figure 2: A comparison of vector fields of the ground-truth and learned models for various noise.
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Figure 3: The left figure shows the mean and median errors between the truth and learned vector
fields. The right figure indicates computational time per epoch on CPU and GPU.

4 Discussion

In this work, we have presented a new paradigm for learning dynamical models from noisy measure-
ment data. Our framework blends universal approximation capabilities of deep neural networks with
a numerical integration scheme, namely the fourth-order Runge-Kutta scheme. The proposed scheme
involves two networks to learn an implicit representation of the measurement data and the vector
field. These networks are combined by enforcing that the output of the implicit network respects
the integration scheme. Our aim is to obtain denoised data as the output of the implicit network
in the vicinity of noisy measurement such that a differential equation can define its evolution. The
whole approach can be seen as neural ODE for noisy data if the Runge-Kutta scheme is replaced by
an integral representation. Moreover, we emphasize that the proposed approach is applicable when
the dependent data are not measured in the same time frame due to the involvement of the implicit
network, where the applicability of the standalone neural ODE [25] would not be possible.

The proposed methodology opens various new directions for further research. It would be interesting
to investigate the performance of the approach by replacing the Runge-Kutta scheme with an integral
like done in neural ODE [25], which would allow predicting the trajectory for a longer time horizon
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without committing a large integration error. Moreover, we still need to examine the efficiency of the
proposed method when the measurement of the dependent variable is collected on different time-grids.
In addition to these, in several cases, data are either partially observed or are high-dimensional.
Hence, it would be worthwhile to combine the encoder-decoder idea to identify the latent space to
represent dynamical systems. Last but not least, we need to perform a thorough computational study
of the performance of the approach and assess efficient training under the circumstances mentioned
above.

References
[1] J.-N. Juang, Applied System Identification. Prentice-Hall, 1994.

[2] L. Ljung, System Identification – Theory for the User, 2nd ed. Upper Saddle River, NJ:
Prentice-Hall, 1999.

[3] S. A. Billings, Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and
Spatio-Temporal Domains. John Wiley & Sons, 2013.

[4] B. Ho and R. E. Kálmán, “Effective construction of linear state-variable models from in-
put/output functions,” Automatisierungstechnik, vol. 14, no. 1-12, pp. 545–548, 1966.

[5] J.-N. Juang and R. S. Pappa, “An eigensystem realization algorithm for modal parameter
identification and model reduction,” J. Guidance, Control, and Dyn., vol. 8, no. 5, pp. 620–627,
1985.

[6] M. D. Schmidt, R. R. Vallabhajosyula, J. W. Jenkins, J. E. Hood, A. S. Soni, J. P. Wikswo, and
H. Lipson, “Automated refinement and inference of analytical models for metabolic networks,”
Phy. Biology, vol. 8, no. 5, p. 055011, 2011.

[7] B. C. Daniels and I. Nemenman, “Automated adaptive inference of phenomenological dynamical
models,” Nature Comm., vol. 6, no. 1, pp. 1–8, 2015.

[8] ——, “Efficient inference of parsimonious phenomenological models of cellular dynamics
using S-systems and alternating regression,” PLoS One, vol. 10, no. 3, p. e0119821, 2015.

[9] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification of nonlinear dynamics with
control (SINDYc),” IFAC-PapersOnLine, vol. 49, no. 18, pp. 710–715, 2016.

[10] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Inferring biological networks by
sparse identification of nonlinear dynamics,” IEEE Trans. Molecular, Biological and Multi-Scale
Comm., vol. 2, no. 1, pp. 52–63, 2016.

[11] S. Chen, S. A. Billings, and P. Grant, “Non-linear system identification using neural networks,”
Intern. J. Control, vol. 51, no. 6, pp. 1191–1214, 1990.

[12] R. Rico-Martinez and I. G. Kevrekidis, “Continuous time modeling of nonlinear systems: A
neural network-based approach,” in IEEE Int. Conf. on Neural Networks, 1993, pp. 1522–1525.

[13] R. Gonzalez-Garcia, R. Rico-Martinez, and I. Kevrekidis, “Identification of distributed pa-
rameter systems: A neural net based approach,” Computers & Chemical Engrg., vol. 22, pp.
S965–S968, 1998.

[14] M. Milano and P. Koumoutsakos, “Neural network modeling for near wall turbulent flow,” J.
Comput. Phys., vol. 182, no. 1, pp. 1–26, 2002.

[15] Z. Lu, B. R. Hunt, and E. Ott, “Attractor reconstruction by machine learning,” Chaos: An
Interdisciplinary Journal of Nonlinear Science, vol. 28, no. 6, p. 061104, 2018.

[16] S. Pan and K. Duraisamy, “Long-time predictive modeling of nonlinear dynamical systems
using neural networks,” Complexity, vol. 2018, 2018.

[17] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, “Using machine learning to replicate
chaotic attractors and calculate Lyapunov exponents from data,” Chaos: An Interdisciplinary J.
Nonlinear Sci., vol. 27, no. 12, p. 121102, 2017.

5



[18] J. Pathak, A. Wikner, R. Fussell, S. Chandra, B. R. Hunt, M. Girvan, and E. Ott, “Hybrid
forecasting of chaotic processes: Using machine learning in conjunction with a knowledge-
based model,” Chaos: An Interdisciplinary J. Nonlinear Sci., vol. 28, no. 4, p. 041101, 2018.

[19] P. R. Vlachas, W. Byeon, Z. Y. Wan, T. P. Sapsis, and P. Koumoutsakos, “Data-driven forecasting
of high-dimensional chaotic systems with long short-term memory networks,” Proc. the Royal
Society A: Mathematical, Physical and Engineering Sciences, vol. 474, no. 2213, p. 20170844,
2018.

[20] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear embeddings of
nonlinear dynamics,” Nature Comm., vol. 9, no. 1, pp. 1–10, 2018.

[21] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning Koopman invariant subspaces for dynamic
mode decomposition,” in Proc. 31st Internat. Conf. Neural Information Processing Sys., 2017,
pp. 1130–1140.

[22] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network representations for Koopman
operators of nonlinear dynamical systems,” in American Control Conference (ACC). IEEE,
2019, pp. 4832–4839.

[23] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of coordinates
and governing equations,” Proc. Nat. Acad. Sci. U.S.A., vol. 116, no. 45, pp. 22 445–22 451,
2019.

[24] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Multistep neural networks for data-driven
discovery of nonlinear dynamical systems,” arXiv preprint arXiv:1801.01236, 2018.

[25] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural ordinary differential
equations,” in Advances Neural Inform. Processing Sys., vol. 31, 2018, pp. 6571–6583.

[26] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations,” J. Comput. Phys., vol. 378, pp. 686–707, 2019.

[27] M. Raissi, A. Yazdani, and G. E. Karniadakis, “Hidden fluid mechanics: Learning velocity and
pressure fields from flow visualizations,” Science, vol. 367, no. 6481, pp. 1026–1030, 2020.

[28] S. H. Rudy, J. N. Kutz, and S. L. Brunton, “Deep learning of dynamics and signal-noise
decomposition with time-stepping constraints,” J. Comput. Phys., vol. 396, pp. 483–506, 2019.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[30] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural represen-
tations with periodic activation functions,” in Adv. in Neural Information Processing Systems,
vol. 33, 2020, pp. 7462–7473.

[31] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learning by
exponential linear units (ELUs),” arXiv preprint arXiv:1511.07289, 2015.

[32] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by
sparse identification of nonlinear dynamical systems,” Proc. Nat. Acad. Sci. U.S.A., vol. 113,
no. 15, pp. 3932–3937, 2016.

[33] P. Goyal and P. Benner, “Discovery of nonlinear dynamical systems using a Runge-Kutta
inspired dictionary-based sparse regression approach,” arXiv preprint arXiv:2105.04869, 2021.

[34] S. Rudy, A. Alla, S. L. Brunton, and J. N. Kutz, “Data-driven identification of parametric partial
differential equations,” SIAM J. Appl. Dyn. Syst., vol. 18, no. 2, pp. 643–660, 2019.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep learning
library,” arXiv preprint arXiv:1912.01703, 2019.

6



Multi-layer perceptron

t x(t)

Residual network (fully connected)

In
p
u
t

L
in
ea
r

R
es
id
u
a
l
b
lo
ck

R
es
id
u
a
l
b
lo
ck

R
es
id
u
a
l
b
lo
ck

L
in
ea
r

O
u
tp
u
t

L
in
ea
r

E
L
U

L
in
ea
r

+

E
L
U

n × 1 k × 1 k×1 k×1 k×1 k×1 n×1

(a)

(b)

Figure 4: The figure shows two potential simple architectures that can be used to learn either implicit
representation or to approximate the underlying vector field. Diagram (a) is a simple multi-layer
perceptron, and (b) is a residual-type network but fully connected.

A Suitable Neural Networks Architectures

Here, we briefly discuss neural network architectures suitable for our proposed approach. We require
two neural networks for our framework, one for learning the implicit representation N I

θ and the
second one NDyn

θ is to learn the vector field. For implicit representation, we use a fully connected
multi-layer perceptron (MLP) as depicted in Figure 4(a) with periodic activation functions (e.g.,
sin) [30] which has shown its ability to capture finely detailed features as well as the gradients of a
function. To approximate the vector field, we consider a simple residual-type network as illustrated in
Figure 4(b) with exponential linear unit (ELU) as an activation function [31]. We choose ELU as the
activation function since it is continuous and differentiable and resembles a widely used activation
function, namely rectified linear unit (ReLU).

B Cubic damped model

We consider a damped cubic system, which is described by

ẋ(t) = −0.1x(t)3 + 2.0y(t)3,

ẏ(t) = −2.0x(t)3 − 0.1y(t)3.
(6)

It has been one of the benchmark examples in discovering models using data, see, e.g., [32, 33] but
there, it is assumed that the dynamics can be given sparsely in a high-dimensional feature dictionary.
Here, we do not make any such assumption and instead learn the vector field using a neural network
along the lines of [25, 34]. This example has been considered in [25] as well for learning neural ODE.
Experiments are performed on Intel® Xeon®Silver 4110 CPU @ 2.10GHz for CPU computations,
and on P100 Nvidia® for GPU computations.

For this example, we take 2 500 data points in the time interval [0, 25] with dt = 10−2 by simulating
the model using the initial condition [2, 0] as done in [25]. We add various levels of noise in the clean
data to have noisy measurements synthetically – we corrupt data using mean-zero Gaussian white
noise of standard deviation Σ%. For preprocessing, we employ a low-pass filter of order 3 from the
scipy library.

We construct neural networks for implicit representation and the vector field with the parameters
given in Table 1. We train the networks using ADAM [29] and the PyTorch library [35] for 15, 000
epochs. For training neural ODE, we have used the torchdiffeq library [25], and have created
2498 sequences and integrating them into the time-span dt to be in accordance with our one-time
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Example Networks Neurons Layers or
residual blocks Learning rates

Cubic oscillator For implicit representation 20 4 5 · 10−4

For approximating vector field 20 4 10−3

Table 1: The table shows the information about network architectures and learning rates.
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Figure 5: The figure shows the clean data, noisy, preprocessed, and denoised data from trained
implicit network for various noise level.

ahead prediction in the Runge-Kutta scheme. We have also employed a scheduler that reduces the
learning by one-tenth after each 5, 000 epochs.

For our approach as well, we have taken all data in the dataloader and train networks with parameters
λMSE = 100.0, λDyn = 1.0 and λGrad = 1.0 in the loss function (5) for noise {1%, 5%}, and for
{10%, 20%}, we reduced λMSE to 10.0 to avoid over-fitting of noisy measurement data. Having
trained networks, we have an implicit network to obtain denoised signal and a neural network
approximating the vector field.

We plot the results in Figure 5, where we show noisy, preprocessed, and denoised data. We plot the
streamlines of the vector field, obtained using the trained neural networks (our approach and neural
ODE) in Figure 2 in the domain [−2, 2]× [−2, 2] by taking 25 points in each direction. It indicates
a better performance of our approach compared to neural ODE for the more noisy case. Moreover,
we plot the progress of the losses in (5) with respect to epochs in Figure 6 for different noise levels.
We empirically find that the data fidelity loss is more for higher noise as one can anticipate, whereas
the other two losses are more or less of the same order for various noise. Therefore, we have seen
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Figure 6: The figures indicate the losses LMSE,LRK and LGrad in (5) with respect to epoch training
and different level of noise.

a better performance of our approach as the trained implicit network aims at generated data whose
trajectory can be explained by the neural ODE.
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