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Abstract

Temporal Graph Networks (TGNs) are powerful on modeling temporal graph data
based on their increased complexity. Higher complexity carries with it a higher
risk of overfitting, which makes TGNs capture random noise instead of essential
semantic information. To address this issue, our idea is to transform the temporal
graphs using data augmentation (DA) with adaptive magnitudes, so as to effectively
augment the input features and preserve the essential semantic information. Based
on this idea, we present the MeTA (Memory Tower Augmentation) module: a
multi-level module that processes the augmented graphs of different magnitudes on
separate levels, and performs message passing across levels to provide adaptively
augmented inputs for every prediction. MeTA can be flexibly applied to the training
of popular TGNs to improve their effectiveness without increasing their time
complexity. To complement MeTA, we propose three DA strategies to realistically
model noise by modifying both the temporal and topological features. Empirical
results on standard datasets show that MeTA yields significant gains for the popular
TGN models on edge prediction and node classification in an efficient manner.

1 Introduction

Many real-world graphs are not static but evolving, where every edge (or interaction) has a timestamp
to denote its occurrence time. These graphs are called temporal (or dynamic) graphs [39]. Recently,
temporal graph networks (TGNs) [25, 39, 16] have been proposed to support learning on temporal
graphs. Advanced TGNs utilize an RNN based memory module to represent a node’s history as a
compact state (see Fig. 1), which is used to predict the node’s activities [28]. TGNs are capable of
making predictions from complex graph topology and temporal information , thanks to their advanced
representational power. However, the increased representational capacity comes with higher model
complexity, which can induce over-fitting and weaken their generalization ability. In particular, a
trained TGN may capture random noise instead of semantic information, which is not desired [41].

To combat over-fitting, data augmentation (DA) has been demonstrated to be effective [23]. Nev-
ertheless, DA for the temporal graphs remains under-explored, of which the main challenges lie
in highly irregular dynamic topology. DA applies transformations to input features so as to model
realistic noise for enriching the input data. The magnitudes of the transformations, known as DA
magnitudes, are controlled by hyper-parameters, which is positively related to the difference between
the input features before and after DA [5]. Existing work on image and text data devises adaptive DA
methods, which apply higher DA magnitudes to the less informative parts of input features, in order
to effectively augment the input features while preserving the essential semantic information [38].
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In order to design such an adaptive DA method on temporal graphs, we consider the informativeness
of edges to a target node in terms of both time and topology when predicting the activities of the
target node. On the time axis, more recent edges tend to be more informative for predicting the target
node’s states than the earlier ones. For example, when a girl is going to watch a movie in the evening,
the interaction between her and a cinema conductor a few minutes ago is much more informative
to predict her behaviors than the academic discussion between her and a student in the morning.
Similarly, in terms of topology, the edges directly connecting the target node provide more important
information than edges a few hops away. Overall, the edges that are closer to the target node in time
or topology tend to provide more important information, as validated in the existing work [25].

To devise an efficient adaptive DA method for temporal graphs, the central idea of this paper is to
generate a few graphs with different DA magnitudes, and perform the message passing between
these graphs to provide adaptively augmented inputs for every prediction. We encapsulate this idea
in a novel module, called MeTA (Memory Tower Augmentation): MeTA stacks a few levels of
memory modules as a tower with weight sharing, where lower levels process the graphs of lower DA
magnitudes (see Fig. 2). MeTA includes two message passing mechanisms across levels for adaptive
DA. The first one is cross-level propagation, which propagates the features between nodes across
levels, while the second one is memory transition, that transmits memory states of a node from higher
levels to lower ones periodically. This design allows us to achieve the goal of adaptive DA, since for
every prediction, the edges closer to the target node in time or topology are placed on lower levels
corresponding to lower magnitudes, as demonstrated by the theoretical analysis (see Sec. 3.4).

To complement MeTA, we propose three DA strategies augmenting both the temporal and topology
features: (i) perturbing the edge time to simulate time shifts, (ii) removing edges, and (iii) adding
edges to modify the topology. Our strategies effectively enrich the input data by modeling realistic
noise intuitively and theoretically. MeTA is a general module that can be applied for training popular
TGNs to enhance their performance. MeTA improves the effectiveness of TGNs without increasing
their time complexity during training, as analyzed in Sec. 3.4. Note that our methods do not induce
any extra inference cost since DA is not applied during inference.

We evaluate our MeTA on edge prediction and node classification tasks using the standard temporal
graph datasets: Reddit [3], Wikipedia [20], MOOC [16]. We measure its performance through the
metrics: test accuracy, average precision (AP), and the area under the ROC accuracy curve (AUC),
under inductive and transductive settings. Overall, MeTA achieves substantial improvements for
popular TGN models [25, 39] and enhances them to outperform the baseline methods.

2 Related Work

Although many methods have been proposed for representation learning on static graphs [24, 9, 14,
15, 10, 29, 27, 18, 32, 34, 36], the work on representation learning in temporal graphs is much sparser.
There exist two main classes of temporal graphs: discrete-time dynamic graphs (DTDG) [17] and
continuous-time dynamic graphs (CTDG) [25]. DTDG are sequences of static graph snapshots taken
at intervals in time, while CTDG can be represented as timed lists of events. Representation learning
on CTDG is more flexible, general and challenging, which is the focus of this paper. Early models for
temporal graph learning focus on DTDGs [11, 17, 1, 8, 40]. Some recent work addresses the learning
on CTDGs [16, 28, 25, 39, 30] based on the increased model complexity. For example, [31] proposes
a temporal graph learning model based on causal anonymous walks, which uses RNNs to encode the
temporal information. Our method is orthogonal to these work in the sense that we do not propose a
new TGN model, but acts as a general DA module that can be flexibly incorporated into the training
of popular TGNs to improve their effectiveness.

Data augmentation plays a central role in training neural networks, of which the effectiveness has
been validated on image data [42, 26, 7]. On the data augmentation for the static graph data, [35]
proposes NodeAug to augment and utilize the unlabeled data in semi-supervised learning, and [33]
crops the subgraphs to augment the input features for the static graph classification. In [37], the
authors propose the Mixup methods for static graphs, which interpolate the input features of both
nodes and graphs in the semantic space as data augmentation. Different from them, our work focuses
on the DA for temporal graphs. Our MeTA considers the edge importance related to the temporal and
topology information and adaptively augment temporal graphs in an efficient manner, while our DA
strategies effectively augment both the temporal and topological features.
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Figure 1: TGNs feed edges in time order into an RNN-based memory module, which updates nodes’
states for predictions. Every time an edge connecting the node i happens, the memory module takes
the i’s state, edge feature, and the connected neighbor’s state as the inputs, and update the state of
node i (see Eq. (1)). In this way, the memory state of node i represents i’s history.

3 Methodology

In this section, we propose MeTA (Memory Tower Augmentation), an adaptive data augmentation
(DA) approach for improving the temporal graph learning. A MeTA module can be applied to popular
TGN models, and trains them with DA to improve its inference performance. MeTA includes two
message passing mechanisms: cross-level propagation and memory transition, to provide adaptively
augmented inputs for every prediction, as demonstrated by the theoretical analysis.

To complement MeTA, we propose three DA strategies for augmenting temporal graphs by modifying
the temporal and topological features, which effectively model the realistic noise to enrich the input
data intuitively and theoretically. Using our methods to enhance the popular TGNs does not increase
their time complexity and does not induce any inference cost.

3.1 Preliminaries

In a temporal graph G, an interaction between nodes i and j is denoted as a temporal edge eij(t), t > 0,
where e is the edge attributes [25], and t is the edge time. t = 0 is generally the time of starting
observations.

Advanced TGN models utilize a memory module to store and update the (memory) state si(t) of
node i (see Fig. 1). The state of node i is expected to represent i’s history in a compressed format.
Given the memory updater as mem, when an edge eij(t) connecting node i is observed, node i’s
state is updated as:

si(t) = mem
(
si(t
−), eij(t)‖sj(t−)

)
, (1)

where si(t
−) is the memory state of node i just before time t, ‖ is the concatenation operator, and

node j is i’s neighbor connected by eij(t). si(t) is initialized to 0 values and not changed until the
next edge involving node i happens. Edge feature eij(t) and neighbor state sj(t

−) are concatenated
as the input to update si(t). All edges are fed to the memory modules in time order (see Fig. 1).

The implementation of mem varies slightly for different TGN models, of which a common component
is a recurrent neural network (RNN) such as LSTM [12] or GRU [4]. TGNs make the prediction
for node i at time t using si(t

−), instead of si(t), since when making predictions for time t, the
interactions at time t have not happened and cannot be observed.

The number of hops is used to denote the distance on the topology [22]. From Eq. (1), we observe
that the edges connecting node i directly contributes to i’s state, while the edges, that are multiple
hops away from i, have their features propagated to node i through i’s neighbors’ states.

3.2 Memory Tower for Adaptive Data Augmentation on Temporal Graphs

Data augmentation (DA) aims at creating novel training data by applying transformation to input
features [38]. The magnitudes of the transformations, known as DA magnitudes, are controlled by
the hyper-parameters, which is positively related to the difference between the input features before
and after DA [5]. To effectively augment the input features while preserving the essential semantic
information, adaptive DA methods apply low DA magnitudes to the informative parts of the input
features and higher magnitudes to the less informative parts [38]. For example, TF-IDF based word
replacement, a DA method for natural language processing, is designed to remove less important
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Figure 2: Our MeTA method with two levels of memory modules. The colors denote the DA
magnitudes, i.e., ‘green’ means lower, and ‘yellow’ means higher. With the memory transition from
level 2 to level 1, for every prediction, the earlier edges hold higher DA magnitudes. By propagating
the neighbors’ states from higher levels, more distant edges on topology hold higher DA magnitudes.

keywords with higher probability [38]. This helps the model to generalize better to changes in the
uninformative features, and effectively encode the essential features into the representations.

In a temporal graph, when predicting the activities of a target node, different edges are of different
informativeness for the target node. For example, an engineer is busy doing a project in the evening,
the interaction between him and his colleague a few minutes ago is much more important for
predicting his working status than the discussion between him and his daughter on a new movie in the
morning. Similarly, the edges directly connecting the target node tend to be more informative than
the ones that are multiple hops distant since the former directly happen on the target node. Overall,
if an edge is more close to the target node in terms of time or topology, it is more informative, as
validated in [25].

Applying adaptive DA magnitudes to edges of different informativeness is not trivial, since an edge’s
informativeness changes with different predictions, i.e., when making predictions for different target
nodes, the distance from an edge to the target node changes. A simple method for adaptive DA is to
separately augment the graph with adaptive magnitudes for every prediction, which leads to different
input graphs for different predictions. Therefore, this method repeats feeding the graph edges to the
model from the beginning time for every prediction, and is named the refeed method.

Existing work [25, 28, 16] trains the memory module in a recursive manner for efficiency, i.e., the
predictions at time t take the former output at time τ (∀τ < t) as inputs, as shown in Fig. 1, since
there is no DA and different predictions share the same input graph. The refeed method is much less
efficient than recursive training, since in the former one, the memory states before the prediction time
have to be recomputed for every prediction, while the number of predictions is generally the same as
the number of edges during training, which is a large value in practice [16].

We propose the Memory Tower Augmentation (MeTA), which offers appropriate DA magnitudes for
every prediction in an efficient manner. MeTA stacks L levels of memory modules as a tower with
weight sharing. For level l (l = 1, . . . , L), we augment the graph G as G(l) with the magnitude pl.
pl increases as l increases, so that the DA magnitude is higher at a higher level. Denote the state of
node i at time t on level l as s(l)(t), and the edge connecting nodes i and j at time t on level l, i.e.,
belonging to G(l), as e(l)ij (t). We feed edges at all levels in time order to the memory module, and

always make the prediction using the memory states at the first level, i.e., s(1)i (t).

MeTA includes two message passing mechanisms across levels to offer adaptive DA for every
prediction: cross-level propagation and memory transition. With cross-level propagation, when
observing an edge e

(l)
ij (t) involving node i at level l, node i’s state at level l is updated as:

s
(l)
i (t) = mem

(
s
(l)
i (t−), e

(l)
ij (t)‖s(min(l+1,L))

j (t−)
)
, (2)

In this way, the edges that are more distant to the target node i in terms of the topology are augmented
at a higher magnitude, since their features are propagated to the target node through the neighbors’
states s(min(l+1,L))

j (t−) that are located on higher levels (see Proposition 1).

In addition to the distances on the topology, the time distances also influence the edge’s informative-
ness. Hence, the second message passing mechanism we design is the memory transition for nodes’
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Algorithm 1 Memory Tower for Adaptive Data Augmentation on Temporal Graphs
Input: Original Temporal Graph G with the node set V and the edge sequence E in time order with
timestamps: t1, . . . , tN (0 ≤ t1 ≤ · · · ≤ tN ), where N is the number of edges, a TGN model with
the memory module mem, hyper-parameters L for the level number , T for the memory transition
period, and the augmented graphs at different levels G(l), l = 1, . . . , L.
Output: The predictions made by the TGN model on time t1, . . . , tN : {p(ti)|i = 1, . . . , N}

1: Initialize states s(l)i (0),∀l = 1, . . . , L, ∀i ∈ V , counter values ci,∀i ∈ V , starting time t0 to 0.
2: for n← 1 to N do
3: eij(tn)← E[n] (the nth element in E)
4: We order the edges from G(l), l = 1, . . . , L between tn−1 (inclusive) and tn as a sequence

En with timestamps τ1, . . . , τNn (tn−1 ≤ τ1 ≤ · · · ≤ τNn < tn).
5: for n′ ← 1 to Nn do
6: e

(l)
km(τn′)← En[n′] (the n′th element in En)

7: s
(l)
k (τn′)← mem

(
s
(l)
k (τ−n′), e

(l)
km(τn′)‖s(min(l+1,L))

m (τ−n′)
)

8: s
(l)
m (τ−n′)← mem

(
s
(l)
m (τ−n′), e

(l)
km(τ−n′)‖s(min(l+1,L))

k (τ−n′)
)

9: end for
10: Make prediction p(tn) related to edge eij(tn) through states on time t−n at level 1.
11: for o in {i, j} do
12: co ← co + 1
13: if co ≥ T then
14: for l← 1 to L− 1 do
15: s

(l)
o (t−n )← s

(l+1)
o (t−n )

16: end for
17: co ← 0
18: end if
19: end for
20: end for

states from higher levels to lower ones, i.e., replacing the level-l states with the level-l + 1 ones:

s
(l)
i (t)← s

(l+1)
i (t),∀l = 1, . . . , L− 1. (3)

The transition is made in the memory tower periodically, so that when we make a prediction at level
1, the more recent edges contributing to the prediction are at lower levels corresponding to lower
DA magnitudes (see Proposition 2). We determine the transition time of node i by implementing a
counter for node i, which is initialized to 0 and increments when the model makes a prediction related
to node i. If the counter reaches T , we reinitialize the counter and perform this memory transition for
node i, where T is a hyper-parameter for the transition period.

Overall, we visualize our MeTA method in Fig. 2 and summarize it in Alg. 1 (see Appendix). How
to obtain the predictions from memory states and calculate the training loss differ slightly for the
specific TGN models and downstream tasks, of which the details can be found in the corresponding
work [16, 28, 25].

3.3 Data Augmentation Strategies

We propose three DA strategies for the temporal graphs: (i) perturbing time; (ii) removing edges;
(iii) adding edges with perturbed time. The first one augments the temporal features; the second is
for the graph topology, while the last augments both the topology and temporal features. The search
space for the hyper-parameters of DA magnitudes is large if we set the parameters separately for
different DA techniques. Hence, for the convenience of setting the hyper-parameters, we use a unified
hyper-parameter p to control the magnitude of all the three DA strategies. A higher value of p implies
a larger magnitude. Next, we introduce our DA strategies in detail.

Perturb Time Each edge has a timestamp to denote its happening time. In practice, these timestamps
may not be precise. For instance, a courier can report delivery time earlier or later than the actual
time. These time shifts are widespread in the real world but do not necessarily affect the semantic
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information. Hence, we perform time perturbation to model this kind of noise as data augmentation.
Denote the average intervals between interactions as t̄, and the time range of training data as [0, Tmax].
We add Gaussian noise following τ ∼ N (0, σ2) [2] to the edge time t as tnew = τ + t, where tnew is
the augmented timestamp. We set the standard deviation of Gaussian noise σ as 10pt̄. When p is 0, all
edges’ time is not changed, and the noise’s standard deviation grows as p increases. The augmented
time tnew can exceed the time range [0, Tmax]. This is not practical since only the observations in the
range [0, Tmax] can be observed. Therefore, we set tnew = t if τ + t > Tmax or τ + t < 0, so that
all the augmented time tnew all in the valid range [0, Tmax]. This design also helps us to retain the
original distribution of edges’ happening time after DA (see Theorem 1).

Remove Edges Removing edges models the realistic noise that some edges may be missing in the
data collection. For example, a researcher can communicate with hundreds of other researchers
one year. Collection of these interactions may have omissions, and it is unnecessary to consider
all interactions to predict the researcher’s state. A satisfactory TGN model is desired to effectively
encode the essential semantic information even in the presence of this noise. We set the probability
of removing an edge as p. With a higher p, edges are more likely to be removed and the augmented
graphs tend to be more incomplete.

Add Edges with Perturbed Time A node can repeat interacting with its neighbor. An engineer,
for example, repeats communicating with his colleague to check the project progress, and he talks
with a waiter several times to order more food during dinner. We add the edges with the perturbed
time to model noise from interaction repetition. Denote the edge set of the original graph G as E .
We uniformly sample the edges from E with replacement with the budget p#E to form Ê and then
perturb the time of edges in Ê as introduced earlier , where #E is the cardinality of E . We add the
edges in Ê for DA. Higher p corresponds to more edges being added.

3.4 Analysis and Discussion

We analyze how our MeTA and DA techniques work for temporal graph learning. Recall that if an
edge is more distant to a target node on either topology or time, it is less important or informative to
predict the target node’s properties and thus we are expected to apply a higher DA magnitude to it.
Next, we provide theoretical analysis to show that our methods meet this expectation. The proof is
provided in Appendix.

Proposition 1 (Effect of topology). If edge e
(l)
km(τ) contributes to the node state s

(1)
i (t), and the

distances from nodes k and m to i are equal to or larger than h hops in graph G, we have the level of
edge e

(l)
km(τ): l ≥ min(h+ 1, L) and the time τ < t, where L is the number of levels.

Proposition 1 implies that the edges more distant to the target node on the topology must be on levels
of higher l, and thus of higher DA magnitudes. In addition to the topology, we provide the following
proposition to illustrate the effects of the temporal distances.

Proposition 2 (Effect of time). If edges e(l1)ij (τ1) and e
(l2)
ik (τ2) connect node i and directly contribute

to the node state si(t) as Eq. (2), we have l1 ≥ l2, τ1 < τ2 < t when τ1 < τ2 holds, and
l1 ≤ l2, τ2 < τ1 < t holds with τ1 > τ2.

Proposition 2 shows that the earlier edges tend to be on levels of higher l, and thus of higher DA
magnitudes.

Next, we analyze how our DA strategies retain the original temporal graph characteristics to model
realistic noise. Many social and natural activities follow the Poisson process [19, 13, 6]. Denote the
time range of the training data as [0, Tmax]. Our data augmentation includes the perturbations on the
edge time. If nodes’ interactions follows a Poisson process, we provide the following theorem to
show that our DA techniques do not change the distribution of edge time.

Theorem 1. If the edges before data augmentation follow a homogeneous Poisson process, our data
augmentation does not change the distribution of any edge’s occurrence time.

Theorem 1 illustrates the benefits of our strategies for time perturbation. Otherwise, if the original
distribution is broken, the augmented edges cannot reflect the realistic condition and may degrade the
TGNs’ generalization. In addition to the time distribution, we provide the following proposition to
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show the expected edge number does not change after our DA. Denote the edge set of the original
graph G as E and that of the augmented graph G(l) as E(l).
Proposition 3. After our data augmentation, the expected edge number is the same as that before
data augmentation for any data augmentation magnitude, i.e., E[#E(l)] = #E ,∀pl ∈ [0, 1] holds.

This proposition shows that our data augmentation does not change the density of interactions in
expectation, which meets the realistic condition and does not induce extra computation load.

We analyze the time complexity of training TGNs and MeTA with respect to the input data. Denote the
number of interactions as #E , the node number #V , and the dimensionality of the input features as d.
Since the RNN based memory module updates memory states with every edge and make predictions
in a recursive manner, the time complexity of the memory module is O(d ·#E). The refeed method
introduced in Sec. 3.1 achieves adaptive DA by feeding the input data from the beginning time to the
prediction time into the memory module for every prediction. The corresponding time complexity is:

O(

#E−1∑
e=0

de) = O
(
d((#E)2 −#E)/2

)
= O

(
d(#E)2

)
, (4)

which is much higher than the complexity of original TGNs.

Our MeTA method stacksL levels of memory modules. On level l, the time complexity isO(d·#E(l)),
where E(l) is the edge set of the augmented graph G(l) on level l. Summing the complexity of all
levels up leads to

∑L
l=1 d ·#E(l), of which the expectation is

O
(
E
[ L∑
l=1

d ·#E(l)
])

= O
( L∑

l=1

d · E[#E(l)]
)

= O
( L∑

l=1

d ·#E
)

= O(d#E), (5)

which is same as the original TGNs. The second equation holds because of Proposition 3, while
the last equation holds because L is a small constant value invariant to the input data, and we find
that L = 2 generally exhibits satisfactory performance. Compared to the refeed method, our MeTA
achieves the adaptive DA with much lower complexity during training. During inference, our MeTA
method does not lead to any extra computation load since DA is not applied then.

4 Experiments

In this section, we present the performance of TGN models implemented with our adaptive DA
method. We compare our method against a variety of strong baselines on the task of edge prediction
and node classification on temporal graphs. Our experimental settings closely follow those of the
previous work [25, 39, 30] to ensure fair comparison. To avoid violating temporal constraints, we
make predictions that strictly take place after all observations. As for the evaluation metrics, we
follow [39, 30] to use average precision (AP) and accuracy in the edge prediction tasks and employ
the area under the ROC accuracy curve (AUC) for node classification [16].

We use three standard temporal graph datasets: MOOC [16], Reddit [3], and Wikipedia [16] for
evaluation. The statistics of these datasets are shown in Table 1. We use a chronological train-
validation-test split with a ratio of 70%-15%-15% following [25, 39].

For the hyper-parameters of baseline methods, e.g., the number of hidden units, the optimizer, the
number of sampled neighbors, and the learning rate, we set them as suggested by their authors.
For the hyper-parameters of our MeTA, we set the number of memory levels as L = 2, the data
augmentation magnitudes as p1 = 0.1, p2 = 0.8, and the memory transition period as T = 10, by
default. Note that these settings are fixed for all experiments unless specifically indicated to be
changed. Setting more levels with L > 2 offers higher granularity for DA magnitudes, but we find
that L = 2 generally offers satisfactory performance.

4.1 Edge Prediction

Following [39, 25], we conduct experiments for edge prediction under both transductive and inductive
settings for a comprehensive evaluation. In the former one, we predict edges connecting the nodes
observed during training, and in the latter we predict edges for the unseen nodes [25].
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Table 1: Statistics of the datasets used in our experiments. Edges refer to temporal edges.

Dataset #Nodes #Edges #Nodes in val./test. #Edges in val./test. Nodes’ label type

MOOC 7,144 411,749 2,599/2,412 61,762/61,763 course dropout
Reddit 10,984 672,447 9,839/9,615 100,867/100,867 posting ban
Wikipedia 9,227 157,474 3,256/3,564 23,621/23,621 editing ban

Table 2: Test accuracy and average precision (AP) of transductive edge prediction. We conduct 100
trials with random weight initialization. Mean (%) and standard deviations are reported. The best
results in each column are highlighted in bold font.

Method MOOC Reddit Wikipedia
Accuracy AP Accuracy AP Accuracy AP

CTDNE [21] 65.34 ± 0.7 74.29 ± 0.6 73.76 ± 0.5 91.41 ± 0.3 79.42 ± 0.4 92.17 ± 0.5
JODIE [16] 76.45 ± 0.6 83.87 ± 0.4 90.91 ± 0.3 97.11 ± 0.3 87.04 ± 0.4 94.62 ± 0.5
TGAT [39] 75.20 ± 0.5 82.66 ± 0.4 92.92 ± 0.3 98.12 ± 0.2 88.14 ± 0.2 95.34 ± 0.1
DyRep [28] 73.36 ± 0.4 81.75 ± 0.3 92.11 ± 0.2 97.98 ± 0.1 87.77 ± 0.2 94.59 ± 0.2
TGN [25] 81.38 ± 0.6 89.79 ± 0.5 92.56 ± 0.2 98.70 ± 0.1 89.51 ± 0.4 98.46 ± 0.1

DyRep + MeTA (Ours) 76.21 ± 0.4 84.18 ± 0.3 93.04 ± 0.3 98.62 ± 0.1 88.92 ± 0.2 95.63 ± 0.2
TGN + MeTA (Ours) 83.84 ± 0.5 92.03 ± 0.3 94.19 ± 0.2 99.08 ± 0.1 91.34 ± 0.3 98.87 ± 0.1

Table 3: Test accuracy and average precision (AP) of inductive edge prediction. We conduct 100
trials with random weight initialization. Mean (%) and standard deviations are reported. The best
results in each column are highlighted in bold font.

Method MOOC Reddit Wikipedia
Accuracy AP Accuracy AP Accuracy AP

JODIE [16] 75.79 ± 0.5 83.44 ± 0.6 88.34 ± 0.9 94.36 ± 1.1 84.32 ± 0.4 93.11 ± 0.4
TGAT [39] 74.02 ± 0.3 80.84 ± 0.5 90.73 ± 0.2 96.62 ± 0.3 85.35 ± 0.2 93.99 ± 0.3
DyRep [28] 72.92 ± 0.4 80.36 ± 0.4 89.60 ± 0.2 95.68 ± 0.2 83.46 ± 0.3 92.05 ± 0.3
TGN [25] 80.73 ± 0.2 89.21 ± 0.3 91.62 ± 0.1 97.55 ± 0.1 88.60 ± 0.2 97.81 ± 0.1

DyRep + MeTA (Ours) 75.89 ± 0.4 82.56 ± 0.3 90.52 ± 0.2 96.59 ± 0.2 85.67 ± 0.3 94.13 ± 0.2
TGN + MeTA (Ours) 83.47 ± 0.2 90.85 ± 0.2 92.96 ± 0.1 98.17 ± 0.1 90.82 ± 0.2 98.26 ± 0.1

For transductive edge prediction , we take the state-of-the-art approaches for representation learning
on temporal graphs: CTDNE [21], JODIE [16], DyRep [28], TGAT [39], and TGN [25] as the
baselines for comparison [39]. We conduct the experiments for 100 trials with random weight
initialization. We implement MeTA with the TGN models DyRep and TGN. Table 2 reports the
results. Our MeTA improves the test accuracy of DyRep by 3.9% on MOOC, 1.0% on Reddit, 1.3%
on Wikipedia, and TGN by 3.0% on MOOC, 1.8% on Reddit, 2.0% on Wikipedia. As a result, our
MeTA achieves substantial improvements for DyRep and TGN.

In the inductive setting, we keep the baselines which support inductive learning for comparison. We
conduct the experiments for 100 trials with random weight initialization. The results are reported in
Table 3. We implement our MeTA with DyRep and TGN to study whether MeTA can improve the
performance of TGNs under the inductive setting. We observe that MeTA improves the test accuracy
of DyRep by 4.1% on MOOC, 1.0% on Reddit, 2.6% on Wikipedia, and TGN by 3.4% on MOOC,
1.5% on Reddit, 2.5% on Wikipedia. As a result, our MeTA method enhances DyRep and TGN to
outperform the baseline methods in the inductive task.

Given the TGN models DyRep and TGN, our MeTA achieves consistent and substantial improvements
on all datasets, thanks to the adaptive data augmentation offered by our MeTA method. MeTA
effectively augments the input features while preserving the essential semantic information, which
reduces the noise on more informative parts of the input features and increase the diversity of data
augmentation on less informative parts with adaptive data augmentation magnitudes. Overall, the
results above indicate that our methods are effective in improving the effectiveness of the popular
TGN models in both transductive and inductive settings.
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4.2 Node Classification

Table 4: ROC AUC (%) on the test set for temporal node classifi-
cation. We conduct 100 trials with random weight initialization.
Mean (%) and standard deviations are reported.

Method MOOC Reddit Wikipedia

CTDNE [21] 67.54 ± 0.7 59.43 ± 0.6 75.89 ± 0.5
JODIE [16] 76.31 ± 1.6 61.83 ± 2.7 84.84 ± 1.2
TGAT [39] 74.25 ± 0.9 65.56 ± 0.7 83.69 ± 0.7
DyRep [28] 75.32 ± 1.3 62.91 ± 2.4 84.59 ± 2.2
TGN [25] 77.73 ± 0.7 67.06 ± 0.9 87.81 ± 0.3

DyRep + MeTA (Ours) 76.88 ± 1.1 64.36 ± 2.0 86.65 ± 1.9
TGN + MeTA (Ours) 79.41 ± 0.8 68.37 ± 0.9 90.03 ± 0.3

The task of node classification on
temporal graphs is to predict the
time-varying labels of nodes [16].
Table 4 reports the test ROC AUC.
We observe that MeTA improves
ROC AUC of DyRep by 2.1% on
MOOC, 2.3% on Reddit, 2.4% on
Wikipedia, and TGN by 2.2% on
MOOC, 2.0% on Reddit, 2.5% on
Wikipedia. As a result, our MeTA
method enhances DyRep and TGN
to outperform the baseline meth-
ods in the temporal node classifica-
tion. This validates the importance
of adaptive data augmentation and our DA strategies on enriching the input data for temporal graph
learning. Our MeTA adaptively augments the input features with appropriate magnitudes, and thus
effectively enhance TGNs on node classification.

4.3 Efficiency and Effectiveness with MeTA

As analyzed in Sec. 3.4 , MeTA enhance TGNs without increasing their time complexity. We
evaluate the efficiency and effectiveness of TGN with MeTA using the Reddit dataset, which holds
the largest number of nodes and second largest number of edges among the used datasets. We follow
the experimental setting of the transductive edge prediction in Sec. 4.1.

The methods we evaluate include: TGN, our MeTA method of the level number L = 1, 2, and the
refeed method to achieve adaptive DA introduced in Sec. 3.2. The number of memory updates (#
Memory Updates) processed per epoch by different methods and the performance is reported in
Table 5, where ‘Time’ is the training time until convergence using a Linux Server with an Intel(R)
Xeon(R) E5-1650 v4 @ 3.60GHz CPU and a GeForce GTX 1080 Ti GPU. We notice that, compared
with the refeed method, our MeTA significantly reduces the number of memory updates per epoch.

Table 5: Training time and test accuracy of TGN and TGN
with DA on the Reddit dataset. The task is transductive
edge prediction. We denote the refeed method for DA (see
Sec. 3.2) as refeed. L is the level number of our MeTA
method. We report mean values over 100 trials with random
weight initialization.

Method # Memory Updates Time Accuracy (%)

TGN [25] 4.7× 105 4625s 92.56
TGN + refeed 1.1× 1011 N.A. N.A.
TGN + MeTA (L = 1) 4.7× 105 4513s 93.07
TGN + MeTA (L = 2) 9.4× 105 7241s 94.19

As a result, our MeTA method takes
much less training time and memory
updates than the refeed method, and ex-
hibits similar efficiency to the original
TGNs without DA, while the running
time and test accuracy of refeed are
unavailable (denoted as N.A.), since it
takes too much time to converge. This
agrees with the theoretical results in
Sec. 3.4, since TGNs’ time complex-
ity is O(d ·#E), which is the same as
that of TGN with MeTA, while the time
complexity of refeed is O(d(#E)2),
much higher than our MeTA. Here, #E
is the number of edges, which is gener-
ally a large value in practice.

In terms of effectiveness, both MeTA (L = 1) and MeTA (L = 2) lead to substantial improvements
over TGNs. Our DA techniques without MeTA enhances TGN to perform better than the original
TGN without DA, since it enriches the input data with diverse DA strategies. Furthermore, our MeTA
(L = 2) leads to more significant improvements than only the DA techniques with MeTA of L = 1,
which validates the importance of adaptive DA achieved by MeTA. Our MeTA applies higher DA
magnitudes to less important features, so as to effectively augment the input features and preserve the
essential semantic information. Our DA strategies enhance the generalization of TGNs by applying
diverse DA strategies to enrich the input data, while our META improves TGNs further by effectively
augmenting the input features and preserving the essential semantic information with adaptive DA
magnitudes.
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4.4 Ablation Study

Table 6: Effects of our different DA strategies on the
inductive edge prediction of MOOC.

Technique Accuracy (%) ∆ Cumu ∆

DyRep 72.92 0 0
+ Remove Edges 73.64 +0.72 +0.72
+ Perturb Time 74.68 +1.04 +1.76
+ Add Edges 75.89 +1.21 +2.97

We investigate the contributions of our data
augmentation strategies. We apply different
DA strategies sequentially with our MeTA on
the DyRep model. The results are presented
in Table. 6. Our data augmentation strategies
improve the effectiveness of DyRep by mod-
eling the realistic noise to enrich the training
data. Among different DA strategies, adding
edges with time perturbation leads the largest
benefits, since it augments both the temporal and topology features. Perturbing time gives higher
improvements than removing edges, because augmenting the temporal information meets the charac-
teristics of the temporal graph data better.

Table 7: Effects of our different message passing mecha-
nisms on the transductive edge prediction of MOOC.

Mechanism Accuracy (%) ∆ Cumu ∆

DyRep 73.36 0 0
+ DA Strategies 73.67 +0.31 +0.31
+ Cross-level Propagation 74.76 +1.09 +1.40
+ Memory Transition 76.21 +1.45 +2.85

Next, we evaluate the contributions of
two message passing mechanisms in
our MeTA module. We apply the cross-
level propagation and memory transi-
tion mechanisms in our MeTA sequen-
tially on the DyRep model. The results
are presented in Table. 7. The row
(+DA Strategies) means that we apply
our DA strategies without the adaptive
DA magnitudes provided by MeTA. Our message passing mechanisms improve the effectiveness
of DyRep by providing the augmented data adaptive to topology and time. In our two mechanisms,
memory transitions provide more improvements than the cross-level propagation. Recall that memory
transitions adapt the DA magnitudes with respect to the time distances. This result shows that the
time distances matter more than the topology distances on the adaptive DA for the temporal data,
possibly because the time information meets the characteristics of the temporal graph data better.

Figure 3: The ROC AUC (% in z-axis)
of TGN with MeTA on node classifi-
cation of Reddit with different hyper-
parameters p1 and p2.

Finally, we analyze the sensitivity of MeTA to the
hyper-parameter: p1, p2 to control the DA magni-
tudes. The result is visualized in Fig. 3. We al-
ter p1 among {0, 0.1, 0.2, 0.3, 0.4, 0.5} and p2 among
{0.5, 0.6, 0.7, 0.8, 0.9, 1}. The performance of TGN with
MeTA is relatively smooth when parameters are within
certain ranges. However, extremely large values of p1
and small p2 results in poor performances. Too large DA
magnitudes on level 1 with large p1 increase the risks of
breaking the essential semantic information, while too
small magnitudes on level 2 with small p2 cannot augment
the input features sufficiently. Moreover, only a poorly set
hyper-parameter does not lead to significant performance
degradation, which demonstrates that our MeTA frame-
work is able to provide appropriate DA magnitudes for
different parts of input features. We provide additional
experiments about the hyper-parameter T to control the memory transitions in Appendix.

5 Conclusion

In this paper, we study the problem of exploring data augmentation to strengthen the TGN models.
We propose a novel methodology named MeTA, which provides adaptively augmented inputs for
temporal graph learning. MeTA is a generic framework that can use any DA strategies to enhance
popular TGN models. In our work, considering the characteristics of temporal graph data, we propose
three DA strategies to augment the temporal graphs by modifying both temporal and topology features.
Our experimental results show that MeTA, with our DA strategies, yields significant gains for both
edge prediction and node classification in an efficient manner. One limitation of our methods is that
our DA strategies cannot model all realistic noise on temporal graphs in practice. Therefore, future
work could explore other advanced DA strategies to enhance our approach.
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