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Abstract

It is generally accepted that starting neural networks training with large learning
rates (LRs) improves generalization. Following a line of research devoted to
understanding this effect, we conduct an empirical study in a controlled setting
focusing on two questions: 1) how large an initial LR is required for obtaining
optimal quality, and 2) what are the key differences between models trained with
different LRs? We discover that only a narrow range of initial LRs slightly above
the convergence threshold lead to optimal results after fine-tuning with a small
LR or weight averaging. By studying the local geometry of reached minima, we
observe that using LRs from this optimal range allows for the optimization to locate
a basin that only contains high-quality minima. Additionally, we show that these
initial LRs result in a sparse set of learned features, with a clear focus on those
most relevant for the task. In contrast, starting training with too small LRs leads
to unstable minima and attempts to learn all features simultaneously, resulting in
poor generalization. Conversely, using initial LRs that are too large fails to detect a
basin with good solutions and extract meaningful patterns from the data.

1 Introduction

Understanding neural networks (NNs) training is one of the major goals in deep learning for various
reasons, from developing more efficient training protocols to handling the AI safety issues [10].
Unfortunately, the high-dimensionality, non-convexity, and stochasticity of the optimization process
make its comprehensive analysis extremely difficult. Learning rate (LR) is perhaps the most important
hyperparameter in a gradient descent optimizer [11]. LR controls the optimization step size and, due
to extreme non-convexity of the optimized loss function yielding a manifold of qualitatively different
minima in the loss landscape of neural networks, this hyperparameter is primarily responsible for the
type of solution we obtain after training [5, 6, 35, 41, 60, 62, 68].

Using large learning rates, especially at the beginning of training, has become a common practice [23,
38, 69]. Starting with large LR values is known to help avoid poor local minima [13, 34, 40, 48] while
the solutions obtained at the end of training often have favorable properties like good generalization
and flatter loss landscape around the corresponding optima [25, 35, 56, 60]. Prior work has attempted
to explain the benefits of high learning rates from various perspectives, which can be divided into
three main areas: optimization [5, 9, 27–29, 58, 59, 62, 65], model sparsity [2, 6, 12, 51, 55], and
pattern learning [41, 44, 57, 68]. Nevertheless, the following questions still remain very relevant:

1. Large LRs are preferred but how large are we talking about?

2. What are the key characteristics of the models trained with different LRs?
∗Equal contribution.
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Concerning the first question, a general recommendation is to start training with an LR value that
is too high for convergence but too low for divergence [5, 6, 25, 35], with no precise benchmarks
available over this wide range. Concerning the second question, despite the abundance of literature
on the role of the LR hyperparameter in NN training, we still lack a unified picture of how exactly
models trained with small and large LRs differ.

We conduct a detailed empirical analysis on both of the above-mentioned problems in a special setting
that allows for more precise control of the LR value. We structure our analysis around the taxonomy
of Kodryan et al. [35] who classified different LR values into three training regimes: 1) convergence
for small LRs, 2) chaotic equilibrium for medium LRs, and 3) divergence for large LRs. We start with
examining the generalization of the final solutions obtained by either fine-tuning with a small LR or
weight averaging after training in different regimes. We confirm that the best choice is to start training
in the second regime, with moderately high LRs that lead to neither convergence nor divergence,
but only a relatively narrow portion of that range, which we define as subregime 2A, consistently
provides optimal results. To investigate the effectiveness of these learning rates, we examine training
in different regimes from both loss landscape and feature learning perspectives. First, we explore the
local geometry of the reached minima and reveal that training in subregime 2A locates a basin in
the loss landscape containing linearly connected well-generalizing minima. In contrast, using too
small LRs can result in models that become unstable when fine-tuned with larger LRs, while using
too large LRs fails to detect basins of good solutions. Then, to study feature learning in different
regimes, we introduce a synthetic example with interpretable features. We find that as LR increases
up to subregime 2A (including it), models become more specialized in the sense that they rely on
fewer features in the data, while further increase in LR gradually impairs the ability to extract features
from the data. We also show how our findings transfer to a practical image classification setting via
frequency analysis of the input images. In sum, our contributions are as follows:

1. We compare the generalization of the minima reached after training with different initial
LR values and find that the best choice is indeed to take LRs above the convergence
threshold. However, only a relatively narrow part of this range, which we call subregime 2A,
consistently provides optimal final results.

2. We discover that starting training with LRs from subregime 2A locates a convex basin
containing optimal solutions that can be achieved via fine-tuning with a small LR or weight
averaging. Too small initial LRs, in contrast, find unstable local minima, while too large
LRs fail to locate such basins of good solutions.

3. We reveal that NNs tend to learn sparser set of the most relevant features from the data as
the initial LR increases until the end of subregime 2A; after that, the model gradually loses
ability to learn useful features.

4. We show that conclusions obtained in a special setting with accurate control of the LR hold
for conventional neural network training as well.

Our code is available at https://github.com/isadrtdinov/understanding-large-lrs.

1.1 Related Work

A significant amount of theoretical and empirical deep learning research has been dedicated to study-
ing the training dynamics of neural networks. Most of it concerns the role of the LR hyperparameter
in NN optimization and generalization accentuating the favorable effects of large LR training.

A vast line of works attributed these effects to amplifying the magnitude of Stochastic Gradient
Descent (SGD) noise, which effectively does not allow the model to converge to suboptimal local
minima with high local curvature, or sharpness [27–29, 34, 58, 65]. Similar directions highlight
other attributes of (stochastic) gradient descent training, such as implicit regularization [9, 19, 30, 59]
or minima stability [46, 50, 52, 51, 62, 61, 63], enhanced by the use of large learning rates. While
suggesting possible mechanisms for why large LR values lead to good solutions, these works still
lack characterization of these solutions and practical receipts for finding them.

A closer look at training with large learning rates reveals its tendency to favor simpler and sparser
solutions. Specifically, Andriushchenko et al. [6] demonstrated that hovering at some constant loss
level when training with large LRs helps optimization to eventually find modes with sparse activation
patterns in hidden layers of deep neural networks. Similarly, Chen et al. [12] theoretically predicted
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and empirically confirmed an increase in sparsity of neurons of networks trained with larger LRs. A
recent work of Ahn et al. [2] discovered that large LR values are necessary to learn the “threshold
neurons” in networks with ReLU activation, which effectively lead to sparser solutions. Sparsity
bias with increasing LR has also been theoretically studied for linear diagonal [51] and two-layer
ReLU [55] networks. We explore training with different initial LRs from the perspective of input
space feature sparsity. In contrast to previous results that reported a monotonic increase in sparsity
with increasing LR, we found that feature sparsity behaves non-monotonically: the most pronounced
feature sparsity effect is observed at approximately the same initial LR values that provide the best
final solutions in terms of generalization.

Another relevant research direction examines pattern learning with different learning rates. Typically,
in specific artificial settings, these works show that more complex patterns are learned with smaller
LRs, thus, to avoid overfitting, it is beneficial to start training with a large LR and then decay it to
smaller values after learning all the “easy-to-fit” patterns from the data [41, 44, 68]. Recently, Rosen-
feld and Risteski [57] suggested an intriguing idea of “opposing signals” referring to similar patterns
in objects of different classes such as blue background in images of planes and ships. Opposing
signals usually correspond to spurious features, which lead to suboptimal quality if learned by the
model. As suggested by the authors, training with large LR values resolves opposing signals via
filtering out the corresponding unreliable features. We follow this direction and provide further clarity
on what features in the data the model captures after training with different initial LRs.

2 Methodology

To rigorously study the impact of the initial LR on the final solution, we require to fix it at the
beginning of training. However, as most modern architectures use normalization in some form, truly
fixing an LR becomes a nontrivial action. Specifically, scale-invariance induced by normalization
yields two consequences: 1) scale-invariant weights are essentially defined on the sphere, and 2) the
effective learning rate (ELR) of these weights, i.e., learning rate on the unit sphere, is varying even
with a fixed LR due to a varying parameters norm [5, 7, 35, 42, 43, 53]. Therefore, to resolve this
issue, we train our models with a fixed parameters norm in a scale-invariant manner, which helps us
conduct our study more accurately since fixing an LR now leads to a fixed ELR as well. Following
the prior research [5, 35, 42], we make all our models fully scale-invariant (SI) by fixing the last layer
and removing trainable affine parameters of normalization layers, and train them using projected
SGD on a sphere of fixed radius. We return to a more conventional setting in Section 6.

Figure 1: Three regimes of training
with a fixed LR. Mean test accuracy
± standard deviation on the last 20
out of 200 epochs are shown. Dashed
lines denote boundaries between the
training regimes. SI ResNet-18 on
CIFAR-10.

Investigating the training of scale-invariant models on the
sphere, Kodryan et al. [35] discovered that it typically takes
place in one of three regimes depending on the LR value: 1)
convergence, when parameters monotonically converge to a
minimum, 2) chaotic equilibrium, when loss noisily stabilizes
at some level, and 3) divergence, when a model has random
guess accuracy. We adopt the three-regimes taxonomy and
build our analysis around it from here on. In Figure 1, we
show the (smoothed) test accuracy after training with differ-
ent fixed LRs. The three regimes are clearly distinguishable.
Kodryan et al. [35] mostly focus on training with fixed LRs,
however, they point out that starting training in the second
regime and then decreasing LR can often lead to better so-
lutions than training with a constantly fixed LR. Similarly,
other works [5, 6] suggest that training should start in the
second regime and attribute this effect to the benign noise
driven process happening in the “loss stabilization” phase.

Following these results, we wish to analyze the points obtained after initial training with different
LR values from the perspective of their utility for subsequent training with small LRs or weight
averaging. To this end, we divide training into two stages. First, we perform so-called pre-training,
i.e., we train models with different fixed LRs, which we call PLRs, for sufficient amount of epochs to
ensure stabilization of training dynamics. After pre-training, we either 1) change the learning rate and
fine-tune the model, i.e., train it further with a small LR, or 2) continue training with the same LR as
at the pre-training stage and weight-average consequent checkpoints, as is usually done in stochastic
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Figure 2: Test accuracy of the fine-tuned (left) and SWA (right) solutions for SI ResNet-18 on CIFAR-
10. Test accuracy after pre-training is depicted with the black line. Dashed lines denote boundaries
between the pre-training regimes, dotted line divides the second regime into two subregimes.

weight averaging (SWA) [26]. For fine-tuning, we use only first regime LRs, which we call FLRs, to
ensure model convergence. Further detail on the experimental setup are provided in Appendix A.

In the following sections, we present our main results. All results are obtained with a scale-invariant
ResNet-18 [23] trained on CIFAR-10 [37]. We additionally consider a plain convolutional network
ConvNet and ViT small architecture [16] as well as CIFAR-100 and Tiny ImageNet [39] datasets
in the appendix. For ease of presentation, we divide all plots into three parts (using dashed lines)
corresponding to the three previously introduced pre-training regimes. We begin with comparing
the generalization of the fine-tuned/SWA solutions obtained after pre-training with different LRs
(Section 3). We then analyze their local geometry to shed more light on their differences (Section 4).
Next, we shift our attention to studying feature learning in models trained with different initial LRs
and propose a synthetic example with adjustable features (Section 5). Finally, we demonstrate that our
findings remain valid for conventionally trained networks as well (Section 6) and draw conclusions.

3 Finding the best LRs for generalization

To examine the generalization benefits of the pre-training stage, we evaluate the test accuracy of
the fine-tuned/SWA models. Figure 2 depicts the test accuracy after pre-training with different
PLR values (black line) and after fine-tuning/SWA (colored lines). Below we successively analyze
pre-training in each regime from the generalization point of view and highlight the range of initial
LRs providing the best final quality.

Regime 1 In accordance with the results of Kodryan et al. [35], we observe a monotonic dependence
between the PLR value and the test accuracy of the pre-trained model. Both SWA and fine-tuning
with FLR ≤ PLR do not noticeably change the pre-trained accuracy. At the same time, fine-tuning
with FLR > PLR can significantly improve the test accuracy, however, it still cannot provide a
considerably better solution than training with the same FLR from scratch. Therefore, the best
strategy of training in the first regime is to use the maximum constant LR without any schedules.

Regime 2 The second regime is the most promising for pre-training, since most practical LR
schedules start in this regime [5, 6, 35]. We can see that the results strongly depend on the PLR value
and the general advice “pre-train with a large LR to obtain a better solution” is valid, but definitely
not for all PLRs of the second regime. In fact, the second regime can be divided into two subregimes,
which we denote as 2A and 2B. We discovered that pre-training in subregime 2A, i.e., with lower
second regime PLRs, results in significantly better fine-tuning and SWA results compared to regime 1,
while pre-training in subregime 2B, i.e., with higher second regime PLRs, loses this advantage.

Subregime 2A Even though pre-training with lower second regime PLRs does not converge to the
lowest loss values, it locates optimal regions for further fine-tuning or weight averaging. Notably,
fine-tuning a network obtained with a PLR from this range with any FLR results in minima of
the same quality. So, such pre-training allows for fine-tuning even with small FLRs to avoid local
optima with poor generalization, to which training from scratch with these FLRs usually converges.
Moreover, the fine-tuned models are of higher quality than any solutions obtained in the first regime,
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which shows that the best minima may be completely unreachable with small LRs from a standard
initialization, at least in any reasonable training time.3

Subregime 2B However, further increases in PLR reduce the benefits of pre-training in subregime 2A.
Both SWA and fine-tuning quality degrades; in addition, the solutions obtained with different FLRs
begin to differ from each other in the test accuracy. So, such pre-training can be detrimental if we
decrease LR to the first regime right after it. Previously, Andriushchenko et al. [5] also discovered
that high LRs of the second regime can deteriorate final model performance for single-step LR
schedules. However, we find that this effect can be mitigated by gradually decreasing an LR through
subregime 2A (see Appendix D). In sum, obtaining high-quality results in this subregime using SWA
or fine-tuning with a constant FLR is not possible and requires a more complex LR schedule.

Regime 3 Pre-training in the third regime is somewhat similar to random walking in the parameters
space [35, 53], hence it is completely impractical for weight averaging. Despite this, we notice that it
still can be beneficial for fine-tuning with small FLRs. We conjecture that it is due to the fact that
pre-training in the third regime, in contrast to standard random initialization [20, 22], yields a very
uneven distribution of norms of individual scale-invariant parameter groups. Many groups have low
norms implying that their effective learning rate is higher than the total ELR for the whole model,
which promotes convergence to better optima during fine-tuning (see Appendix E).

Takeaway 1 Although pre-training with large first regime PLRs finds points with relatively high
test accuracy, they cannot be improved via fine-tuning or weight averaging; hence, the first regime
is not the best choice for starting training. Pre-training with PLRs of the lower part of the second
regime, just above the boundary between regimes 1 and 2, helps robustly increase the quality to a
level unreachable with a constant LR; however, using higher PLRs loses this advantage and degrades
performance. Despite pre-training in regime 3 does not seem to extract any useful information from
the data, it may help in subsequent fine-tuning by providing better initialization for the optimization.

4 Loss landscape perspective

In the previous section, we determined the range of initial LRs leading to the best model quality. We
now aim to clarify the key characteristics that differentiate these LRs from others. In this section, we
take the loss landscape perspective and analyze the local geometry of minima obtained after initial
training in different regimes. To do this, we measure the linear connectivity and the angular distance
between them. Angular distance between two networks with weights θ1 and θ2 is calculated as

∠(θ1, θ2) = arccos

(
⟨θ1, θ2⟩
∥θ1∥ ∥θ2∥

)
.

We choose it as a natural metric on the sphere in the weight space. Linear connectivity is measured
via calculating a linear-path barrier between two networks w.r.t. training or test error, i.e., the highest
difference between the error on the linear path between two points in the weight space and linear
interpolation of the error at each of them [17]:

B(θ1, θ2) = sup
α∈[0,1]

[E(αθ1 + (1− α)θ2)− αE(θ1)− (1− α)E(θ2)] ,

where θ1 and θ2 are weights of the networks, and E is the error measure. The barrier value shows
whether solutions obtained from the same pre-trained point remain in the same low-error region (low
barrier) or head to different optima (high barrier). In Figure 3, we present angular distances and linear
connectivity between three solutions for each PLR: SWA of 5 networks and the points obtained after
fine-tuning with the lowest and the highest considered FLRs.

As was shown previously, for small initial LR values attributed to regime 1 neither SWA, nor fine-
tuning with smaller FLRs improve the pre-trained model. This is because they effectively remain
in the same minimum: the obtained solutions are of similar quality, close to each other in angular
distance and linearly connected. On the other hand, taking FLR ≫ PLR can cause a catapult
effect [40] and subsequent convergence to a better minimum corresponding to the new LR value. This
is clearly observed when fine-tuning with the highest FLR from low PLRs through the improvement

3We discuss this idea in more detail in Appendix C.
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Figure 3: Geometry between the points fine-tuned with the smallest and the largest FLRs and SWA.
SI ResNet-18 on CIFAR-10.

of test accuracy in Figure 2 and high angular distance and error barrier with other solutions in
Figure 3. Thus, pre-training with small LRs leads to minima that have suboptimal generalization and
are unstable in the sense that increasing LR after convergence can knock the model out of the current
minimum and move it to a different one.

Moving to the right along the PLR axis, we encounter subregime 2A that is optimal for further weight
averaging or fine-tuning: the resulting solutions are of high quality regardless of the FLR value.
Geometrical inspection also reveals that the solutions obtained with different FLRs from the same
pre-trained point are very close to each other in angular distance and linearly connected. SWA models
are located farther from the fine-tuned solutions but still are mostly linearly connected to them.4
Hence, we conjecture that pre-training in subregime 2A locates a “bowl” in the loss landscape by
bouncing between its walls [64]; the bottom of this “bowl” is a convex basin of high-quality solutions,
which can be easily reached via fine-tuning or weight averaging.

Pre-training with higher second regime PLRs gets stuck at higher loss levels and is unable to locate
the region of high-quality solutions. With larger PLRs, fine-tuned solutions not only become worse
but also differ from each other: we see a rapidly growing gap in test accuracy and angular distance
between the solutions obtained with low and high FLRs, followed by a separation in the linear
connectivity w.r.t. the training error. Interestingly, linear connectivity w.r.t. the test error is still
preserved for the most part, which may be due to a high test error value at one end. We conclude that
unlike subregime 2A, pre-training in subregime 2B explores a vast area of the loss landscape with a
diverse set of minima.

Even though pre-training in the third regime can help fine-tuning with small FLRs converge to
better minima thanks to the optimization effects, in many ways it still behaves as random walking
with a large step size. Both the angular distances and the error barriers approach their upper limits
(angular distance of π/2, which is a typical angular distance between two independent points in
high-dimensional space, and random-guess error), completing the trend established in subregime 2B.

Takeaway 2 Pre-training with small PLRs attributed to the first regime can end up in unstable
minima, from which the optimization escapes at increased FLRs. Using initial LRs from the optimal
range (subregime 2A) allows for finding a basin that contains only high-quality solutions easily
reachable via fine-tuning or SWA. Larger PLRs lose the ability to locate low-error basins and instead
cover large areas of the loss landscape with diverse not linearly connected minima.

5 Feature learning perspective

Synthetic example We proceed to study the feature learning properties of models trained with
different LRs. With this in mind, we propose a synthetic example with precise control over how
different features affect the target variable. We consider a binary classification setting with the
following three properties: 1) all three training regimes are observed; 2) varying the initial LR leads
to different generalization; 3) the data points contain multiple features, each of which is sufficient
to classify the data correctly. We use 32-dimensional data vectors, where each pair of coordinates

4Linear connectivity with SWA can be lost for more complex datasets like CIFAR-100, but this is expected
since the SWA point is obtained by averaging several subsequent pre-training checkpoints, as opposed to
fine-tuning from the same pre-trained model.
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Figure 4: A single 2D
“tick” feature used in
the synthetic example.

Figure 5: Feature sparsification in the synthetic example for pre-training
(left), and fine-tuning with FLR = 10−4 (right). Colored lines show the
accuracy values on single-feature test samples, sorted independently for
each training run. The accuracy on a regular test sample is depicted with
the black line. The lines are averaged over 50 seeds.

Figure 6: Inverse 2D DFT im-
ages, each containing 1 of 4
components of the spectrum.
For this figure, we rescale each
color channel of low, mid and
high images to 0-1 range.

Figure 7: Accuracy of different frequency bands for pre-training
(left) and fine-tuning with FLR = 10−5 (right). Each line is an
average over 5 last epochs of training. SI ResNet-18 on CIFAR-10.

represents a single 2D “tick” feature (Figure 4), all 16 features are sampled from the same distribution.
We use a 3-layer MLP with ReLU activation and Layer Normalization [8] and make it scale-invariant
similarly to the main setup. We put further detail in Appendix A. The generalization and geometry
properties in this setup are similar to those previously described, see Appendix G.

To quantify how features are learned with different LRs, we generate 16 single-feature test samples,
each having only one of the 16 total features. The values of other features are distributed along the
decision boundary (gray dashed line in Figure 4) to represent missing features. We measure the
accuracy of the trained models on these single-feature test samples and relate the obtained values
to the importance of the respective features for the model: the higher the accuracy value, the more
important the feature. We analyze these values in sorted order for each PLR because models may
favor different features in different training runs due to the randomness in initialization [3].

The results are depicted in Figure 5. For small PLRs, there is no feature selection: we observe
similar accuracy w.r.t. different features resulting in poor overall generalization, since no target-
predicting feature is reliably learned by the model. Closer to the boundary between regimes 1 and 2
we begin to observe a kind of model specialization: the accuracy corresponding to a single feature
is significantly higher than for the rest. Moreover, such feature sparsity persists after fine-tuning,
indicating completely different feature learning behavior than in regime 1: even in the setting of
equally useful features, the model prefers to focus more on some subset of features instead of trying
to learn all features at once. The sparsity peak in subregime 2A coincides with the peak of the
fine-tuning test accuracy (Figure 15), confirming that a sparser set of learned features improves model
generalization. This may also be related to the fact that the basin is determined exactly at this range
of LRs (see discussion in Section 7). When the PLR is increased to subregime 2B, the ability to
extract any useful patterns from the data is reduced, which manifests itself in degraded accuracy on
both regular and single-feature test samples.

Fourier features A similar feature selection effect can be observed in scale-invariant ResNet-18
on the CIFAR-10 dataset. Since for the real-world image data it is generally not clear how to define
features [57], we use frequency bands of the 2D Discrete Fourier Transform (DFT) as proxy for
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Figure 8: Practical ResNet-18 on CIFAR-10. Dashed lines denote boundaries between the first and
second pre-training regimes, dotted line divides the second regime into two subregimes. Left: Test
accuracy after fine-tuning with different FLRs (color lines) and after pre-training (black line). Middle:
train error barriers between small FLR, high FLR, and SWA points. Right: Accuracy w.r.t. different
frequency bands for fine-tuning with FLR = 10−4.

features [1]. We divide the full 2D spectrum of an image into 4 components, each consisting of a
range of frequency bands: 0 (constant background color), 1-8 (low), 9-24 (mid), and 25-32 (high). For
each of the 4 components, we zero out the rest of the spectrum and apply the inverse DFT to obtain
images with only one frequency component preserved (Figure 6) by analogy with the single-feature
test samples in the synthetic example. We repeat this procedure with every test image and measure
the accuracy on the resulting 4 new test sets corresponding to the spectrum components. A more
detailed description of the setup can be found in Appendix A. See Appendix H for additional results.

Figure 7 shows the test accuracy w.r.t. each spectrum component after pre-training with different
PLRs. As in the synthetic example, small PLRs of regime 1 tend to treat all features approximately
equally, paying slightly more attention to the background color and low-frequency features, while
increasing PLR introduces feature sparsity, making the mid-frequency features significantly more
important. The peak of the mid-frequency accuracy is achieved in subregime 2A, reaching much
higher absolute values than the 0 and 1-8 components in the first regime. Moreover, after fine-tuning,
the mid-frequency accuracy improves even further, showing the same bias towards a subset of features
as in the synthetic example. However, a further increase in the PLR to subregime 2B reduces the
feature sparsity and the mid-frequencies importance. The mid-frequencies are known to play a
key role in model generalization and robustness in image classification [1, 66], so their apparent
prevalence in subregime 2A indicates that feature selection is not random but is biased towards the
most useful features for the task. Interestingly, prior work assumed that training with large LRs must
prioritize “easy-to-fit hard-to-generalize” features [41, 68] but our results suggest that the model may
favor more complex features if they are more helpful in predicting the target.

Takeaway 3 Using initial LRs from subregime 2A results in sparse feature learning. This effect
allows for the model to focus on the most relevant features for the task (e.g., mid-frequencies in image
classification), resulting in better generalization. Pre-training with other initial LR values does not
show such model specialization.

6 Practical setting

In this section, we demonstrate that our main results can be transferred to a more conventional training
setting with some nuances. We train a common ResNet-18 model without the sphere constraint using
SGD with momentum, weight decay, and data augmentation; the only deviation from the standard
setup is a different LR schedule. Due to unstable behavior of non-scale-invariant weights with large
LRs [35], we can only observe regimes 1 and 2. The boundary between the regimes is also less clear,
mainly due to the presence of augmentations, which make the data harder to learn. Therefore, the
model is unable to converge completely with small LRs, so we have drawn the boundary between the
regimes approximately according to the PLR with maximum quality at the pre-trained point.

As can be seen in Figure 8, left, our first claim that the best quality is achieved with LR drops at
the beginning of the second regime (subregime 2A) is confirmed. It is also clear that fine-tuning in
subregime 2A converges to similar optima regardless of FLR, while at larger PLRs fine-tuning leads
to diverse minima. In the first regime, the behavior is substantially different due to the mentioned
issues with convergence: we see that even fine-tuning with small FLRs can still improve quality. We
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note that at the best points of subregime 2A, fine-tuning reaches a test accuracy of ∼ 95%, which is
no worse than that of a standard LR schedule [49]. Linear connectivity (Figure 8, middle) is preserved
for both regime 1 and subregime 2A and lost in subregime 2B. The small train error barriers at the
beginning of the first regime are due to the catapulting effect of large FLRs. Finally, frequency
bands accuracies in the right plot of Figure 8 depict a similar trend as described in Section 5: in
subregime 2A, the network captures significantly more mid-frequencies from the inputs than other
components, while no similar specification is observed for other initial LR ranges.

In Appendix I, we provide additional practical results including analysis of SWA, angular distances,
test error barriers, etc., as well as ablations on CIFAR-100 and Tiny ImageNet. We also show how
our findings transfer to Vision Transformers (ViT) in Appendix J. To summarize, our main claims
remain valid in the practical setting.

Takeaway 4 Most of the results obtained in a controlled setting are relevant to practice.

7 Discussion and future research directions

Convergence threshold One of the main claims of this work is that the best initial LR values lie
just above the convergence threshold (CT). But what is this threshold and how can it be found and
used in practice?

In general, by the convergence threshold for a given model and training setup we mean a learning
rate value that separates regimes 1 and 2. In other words, training with a constant LR below the CT
leads to convergence to a minimum, while taking a larger constant LR prevents the optimization from
converging. Convergence here is defined in a conventional sense, i.e., the optimized functional value
(training loss) closely approaches its global minimum by the end of training; in a simplified training
setup without advanced data augmentations, it can be tracked by the ability of the model to fit the
training data (i.e., reach ∼ 100% training accuracy). Yet, as we show in Appendix C, CT is better
understood as a small zone within the overall LR range, since the exact threshold may slightly shift
depending, e.g., on the epoch budget.

That said, regimes 1 and 2 can be clearly distinguished by the behavior of the training loss in the
first epochs: whether it decreases to low values or gets stuck at some non-zero level (refer to Fig. 1
in Kodryan et al. [35]). Thus, finding the CT could be done relatively efficiently using, e.g., binary
search by LRs. However, in practice, precisely determining the CT is not necessary. Even though
optimal initial LRs for fine-tuning with a constant small LR or weight averaging (subregime 2A) are
located just above the CT, larger LRs from subregime 2B may lead to similar final quality if a more
advanced LR schedule is used (see Appendix D): decreasing LR in several steps can correct for an
initial value that is too high. Accordingly, most practical LR schedules are designed in that manner:
starting with a large LR and gradually decreasing it as training progresses. Therefore, given a proper
schedule, it is recommended to start training with a reasonably high LR value from regime 2, i.e., not
allowing for convergence but also not leading to a training failure, to achieve a good final solution.

Loss landscape and feature learning We have shown that the best LRs for pre-training simultane-
ously identify a basin with good solutions and sparsify the learned features, focusing on the most
useful ones. A very intriguing question is how exactly are these observations related? Based on the
results concerning subregime 2A, it can be assumed that learning some subset of features corresponds
to localizing a certain region in the loss landscape, all solutions within which rely to a greater extent
on these learned features. In this regard, what features were learned during the pre-training stage can
determine the quality of the localized basin of solutions. This conjecture gives rise to a number of
very nontrivial but interesting questions. For instance, can we somehow connect the properties of the
learned features with certain characteristics of the basin and minima within it, e.g., some notion of
sharpness? According to Kodryan et al. [35], the solutions obtained with higher PLRs of the first
regime have both better generalization and lower sharpness, however this trend is more complex
for the fine-tuned solutions in regime 2 (see Appendix K). Next, how exactly does feature sparsity
affect the properties of the found basin: does it only pre-define a specific set of shared features or
can it act as some sort of a regularizer for the solutions inside the basin, e.g., by leading to simpler
models [6, 12, 55], which in fact can be represented by smaller networks? The study of the described
issues opens an important direction for future research of neural networks training, as it may draw
links between the optimization process and the final model properties.
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Practical implications Despite a relatively small scale of our experiments, we provide several
important practical implications and possible explanations of generally accepted practices. Firstly,
we confirm that choosing higher LRs not only speeds up training, but also allows the neural network
to find solutions that are inaccessible at low LRs, which was previously shown only in specific
settings [41, 44]. Secondly, we discover that it is important both to choose the initial LR and to
design a full LR schedule. A good choice of the initial LR allows for localizing a region with the best
solutions, as too small LRs tend to converge to the nearest optima with poor generalization. At the
same time, designing a suitable LR schedule is necessary if training is started with a too high LR: in
that case, it is important not to decrease it too quickly, but to gradually go through the optimal values
in order to be able to localize a good basin before convergence.

We also show that the choice of the initial LR can lead to different feature learning behavior. In our
setting, sparse features and mid-frequency bias were associated with optimal generalization. However,
in practice this may not always be the case. For example, some features useful for the training data
classification can be spurious for the test data [33]. Or memorization, in general affecting a very small
subset of data, is less likely to happen when training with large LRs, while some works show that
memorization in neural networks can be useful [18]. Thus, the properties of training with different
LRs in more complex practical scenarios with spurious features/benign memorization may lead to
more complex relationships between LRs and generalization. We believe this direction is significant
for future research to more broadly understand the impact of learning rate on trained models.

8 Conclusion

In this work, we studied the influence of training with different initial LRs on the properties of
the final solution. We discovered that pre-training with moderately large LRs, slightly above the
convergence threshold, provides the best points for subsequent fine-tuning or weight averaging. From
the geometry perspective, training with these LR values locates a basin of well-generalizing solutions
in the loss landscape; from the feature learning perspective, these solutions correspond to a sparse set
of learned features that are most useful for the task. Using other LR values may lead to suboptimal
results: either unstable local minima corresponding to a dense set of learned features with smaller LRs
or vast areas with diverse minima and degraded feature learning with larger LRs. We conduct main
experiments in a special setup allowing for more accurate control of the learning rate and validate our
key results in a practical setting. Our findings can be useful for both practical and theoretical future
work on optimizing LR schedules, loss landscape structure, and feature learning in neural networks.

Limitations We wish to highlight several limitations of our work. First, our study is primarily
empirical in nature; our conclusions do not have direct theoretical support (perhaps only indirect
via related work partly mentioned in Section 1.1). Second, we are limited to a specific setup
involving particular datasets (image or synthetic) and NN architectures (convolutional, MLP, or Vision
Transformer) and, generally speaking, cannot guarantee that all of our findings will consistently
generalize to other settings. Third, although we account for the impact of scale invariance on LR
in our main experiments, we may overlook similar effects of other NN invariances, like rescale
invariance of homogeneous activations (e.g., ReLU) [21, 45]. Addressing these and other possible
limitations is future work.
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Figure 9: Inverse 2D DFT images (top) and corresponding masked spectra (bottom). When visualizing
the low, mid, and high images, we scale each channel to the range 0-1. For the spectra, we plot the
logarithm of the absolute values of the amplitudes (log |Y [k, l]|), summed over 3 color channels.

A Experimental setup details

Code The code for our main experiments can be found in the following repository: https:
//github.com/isadrtdinov/understanding-large-lrs. Our implementation, including the
used scale-invariant architectures and training on the sphere, is based on the open-source code
of Kodryan et al. [35]: https://github.com/tipt0p/three_regimes_on_the_sphere.

Compute resources We use NVIDIA TESLA V100 and A100 GPUs for computations in our
experiments. The total amount of compute spent on all experiments is approximately 1500-2000
GPU hours, while the experiments included in the paper took ∼ 1000 GPU hours.

Datasets and architectures Following Kodryan et al. [35], we conduct most of our experiments
with two network architectures, a simple 3-layer convolutional neural network with Batch Normal-
ization layers [24] (ConvNet) and a ResNet-18, on CIFAR-10 and CIFAR-100 datasets. In the
scale-invariant setup, we use ResNet models with width factor k = 32, and ConvNet models with
width factor k = 32 and 128 for CIFAR-10 and CIFAR-100, respectively. In the practical setup, we
use ResNet with a standard width factor k = 64 and additionally consider the Tiny ImageNet dataset
and Vision Transformer (ViT) architecture.

Pre-training, fine-tuning, and SWA We train all networks using SGD with a batch size of 128.
Both the pre-training and the fine-tuning stages take 200 epochs. This training time is sufficient
to either reach a minimum or stabilize the loss in the pre-training stage and to achieve complete
convergence in the fine-tuning stage even with the smallest FLR. Fine-tuning is always done with
the first regime FLRs to ensure convergence to a minimum. When performing SWA of N models,
we continue training for N − 1 more epochs with the same PLR and average checkpoints from
epochs 200, . . . , 200 +N − 1. In the practical setting in Section 6, we use weight decay of 5 · 10−4,
momentum of 0.9, and standard augmentations: random crops (size: 32 for CIFAR and 64 for Tiny
ImageNet, padding: 4), random horizontal flips, and per-channel normalization.

Synthetic example We use a 3-layer MLP with ReLU activation and Layer Normalization [8] after
the first and the second linear layers to make the network scale-invariant. Additionally, we freeze
the final linear layer and set its norm to 10. The size of hidden layers is 32. The trainable weights
are initialized with the standard normal distribution and projected to the unit sphere. We take 512
training and 2000 testing samples. We use SGD with batch size 32. Pre-training and fine-tuning
stages take 40000 and 20000 iterations, respectively. We consider 10 data sampling seeds and 5
model initialization + SGD batch order seeds, so a total of 50 training runs is done.
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Fourier features We use 2D Discrete Fourier Transform (DFT) and frequency masking to create
images similar to the single-feature samples in the synthetic example. Let X ∈ RN×M denote an
image in the spatial domain (for CIFAR-10/CIFAR-100 we have N = M = 32; for Tiny ImageNet
we have N = M = 64). 2D DFT is defined as:

Y [k, l] =
1

NM

N−1∑
n=0

M−1∑
m=0

X[n,m]e−2πi( kn
N + lm

M ),

{
−⌊N

2 ⌋ ≤ k ≤ ⌈N
2 ⌉ − 1

−⌊M
2 ⌋ ≤ l ≤ ⌈M

2 ⌉ − 1

In the case of CIFAR images, e.g., −16 ≤ k, l ≤ 15. The frequency band b is defined as {(k, l) :
|k|+ |l| = b}, corresponding to a diamond around the spectrum center k = l = 0. This band matches
the Fourier basis vectors, which have b oscillations (b “black and white” stripes) rotated at different
angles. Then, we apply frequency masking, preserving a range of frequency bands, a ≤ b ≤ c:

Ya-c[k, l] =

{
Y [k, l], a ≤ |k|+ |l| ≤ c

0, otherwise

Finally, we use the inverse 2D DFT and obtain the resulting frequency band images:

Xa-c[m,n] =

⌈N/2⌉−1∑
k=−⌊N/2⌋

⌈M/2⌉−1∑
l=−⌊M/2⌋

Ya-c[k, l]e
2πi( kn

N + lm
M )

We use 0-0 (constant background color), 1-8 (low), 9-24 (mid), and 25-32 (high)5 groups of frequency
bands. Each of the RGB color channels is processed independently. An example of the application of
the described procedure is shown in Figure 9. We omit the per-channel image normalization used
during training when evaluating accuracy on low, mid, and high samples (since removing the 0 band
centers the resulting images). However, it is still used for the 0-0 sample.

B Generalization analysis for other datasets and architectures

In Figure 10, we demonstrate the test accuracy after pre-training with different PLR values (black
line) and after fine-tuning with given FLRs or SWA (colored lines) for other dataset-architecture pairs:
SI ConvNet on CIFAR-10/CIFAR-100 and SI ResNet-18 on CIFAR-100. The results are similar to
that of SI ResNet-18 on CIFAR-10, described in the main text and shown in Figure 2.

We again can divide each plot into three parts w.r.t. the three pre-training regimes, and the main
takeaways also hold. Pre-training test accuracy is monotonic in the first regime and both fine-tuning
and SWA are unable to improve it for high PLRs of the first regime. Optimal PLRs for further
fine-tuning/SWA are attributed to the beginning of the second regime, while the quality deteriorates
by the end of the second regime. Fine-tuning with low FLRs in the third regime is better than training
with the corresponding LR from scratch starting at the standard random initialization.

There are, however, two remarks. First, for the ConvNet model the effects of the second regime
are less pronounced: both fine-tuning and SWA show less improvement in subregime 2A and the
deteriorating effect of subregime 2B on fine-tuning is almost leveled out. We suppose that it could be
explained by the simplicity of ConvNet, which allows more robust training with a fixed LR and much
less scope for further quality improvement. Second, due to the periodic behavior [43] of ResNet-18
trained on CIFAR-100 with high first regime LRs, also reported by Kodryan et al. [35], we observe
instabilities for SWA of more than 10 models, since checkpoints from different periods lay in different
low-loss regions in that case.

C Boundary between the first and second regimes

In this section, we motivate our statement in the main text that the best quality obtained after fine-
tuning from the second regime is unattainable by training from scratch with a fixed LR for any
reasonable time. For that purpose, we train our models till convergence (with a maximum of 2 · 104
epochs), i.e., when training loss value reaches 10−3, and track the convergence time and the achieved
test accuracy for different LRs near the boundary between regimes 1 and 2 (see Figure 11).

5This range is for CIFAR-10/CIFAR-100. For Tiny ImageNet, we use 25-64 bands as high frequencies.
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SI ConvNet on CIFAR-10

SI ConvNet on CIFAR-100

SI ResNet-18 on CIFAR-100

Figure 10: Test accuracy of different fine-tuned (left) and SWA (right) solutions. Test accuracy
after pre-training is depicted with the black line. Dashed lines denote boundaries between the
pre-training regimes, dotted line divides the second regime into two subregimes. Results for other
dataset-architecture pairs, similar to Figure 2.

Figure 11: Number of training epochs to convergence (left) and test accuracy (right) for different
PLRs on the boundary between regimes 1 and 2. Red points are obtained after training to convergence
from scratch with a fixed LR value (we run each experiment with three different seeds).
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Figure 12: Test accuracy obtained after fine-tuning with two different FLR values. Blue bar denotes
fine-tuning after pre-training with a PLR from subregime 2B, green bar denotes fine-tuning after
pre-training with a PLR from subregime 2A, and orange bar denotes first fine-tuning with a PLR
from subregime 2A and then with a given FLR after pre-training with a PLR from subregime 2B.
Black lines denote training from scratch with a given FLR.

Figure 13: Histograms of individual scale-invariant weight group norms for standard random ini-
tialization (blue) and pre-training with a third regime PLR (orange). Left plot shows norms right
after initialization/pre-training, middle plot shows norms after fine-tuning with a low FLR, right plot
shows norms after fine-tuning with a high FLR.

We observe that the required training time increases sharply after the threshold separating the regimes
for a 200 epochs budget. The obtained minima have approximately the same test accuracy as the
fine-tuned solutions at the corresponding PLRs, however, they take immensely more epochs to reach.
Based on the training time growth, we hypothesize that the best fine-tuning test accuracy obtained
with PLR ≈ 10−3 is unattainable with any realistic epoch budget. Therefore, we conclude that
training from scratch with a fixed LR from a standard initialization does not allow to find as good
optima as are available after pre-training in subregime 2A.

D Gradual fine-tuning restores the quality for higher second regime PLRs

In this section, we provide additional results on fine-tuning after pre-training in subregime 2B. As
stated in the main text, in that case, immediate LR drop to the first regime leads to suboptimal fine-
tuning quality compared with subregime 2A. However, we found that adding only one additional step
in the LR schedule improves the fine-tuning test accuracy almost to the optimal level. Specifically,
after pre-training with a PLR of subregime 2B, we first drop LR to a lower PLR attributed to
subregime 2A, fine-tune for 200 epochs, then drop LR once again to a given FLR of the first
regime and fine-tune for 200 more epochs until convergence. Such a two-step LR schedule helps
achieve almost the same test accuracy as usual fine-tuning with the same FLR after pre-training in
subregime 2A, which gives the best solution.

Figure 12 shows test accuracies of the fine-tuned solutions obtained after pre-training with a sub-
regime 2B PLR (blue bars), pre-training with a subregime 2A PLR (green bars), and two-step LR
schedule through the subregime 2A PLR (orange bar) for the highest and the lowest FLR values.
Black lines denote the respective test accuracies after training from scratch with the given FLR values.
We can see that indeed gradual fine-tuning through lower second regime LRs restores the quality for
higher second regime PLRs.

18



SI ConvNet on CIFAR-10

SI ConvNet on CIFAR-100

SI ResNet-18 on CIFAR-100

Figure 14: Geometry between the points fine-tuned with the smallest and the largest FLRs and SWA.
Results for other dataset-architecture pairs, similar to Figure 3.

E Pre-training in regime 3: fine-tuning with low FLRs

In this section, we give more detail on reasons for better fine-tuning results with low FLRs after
pre-training in the third regime compared to training from scratch with the same FLRs. When training
with a fixed learning rate η, ELR for a scale-invariant parameter group θ is defined as η/ ∥θ∥2. In
the main text, we suggest that a possible explanation could be the uneven distribution of norms of
individual scale-invariant groups resulting in the corresponding uneven distribution of individual
ELRs after pre-training with very large PLRs. That means, that when fine-tuning from the third
regime, some weight groups are learning faster than the others, which gives them the benefits of large
learning rate training despite the low total LR. In contrast, with a standard initialization all weight
norms are approximately the same, which implies that the whole model is essentially trained with the
same small effective learning rate, resulting in inferior quality.

In Figure 13, we show the histograms of norms of individual scale-invariant weight groups for a
standard initialization (blue) and pre-training with a third regime PLR (orange). We depict three
stages: right after initialization/pre-training (left), after training from scratch/fine-tuning with a low
FLR (middle), and after training from scratch/fine-tuning with a high FLR (right). We see that the
weight norms distribution is more spread after pre-training. Remarkably, this effect persists after
fine-tuning with a low FLR and is almost eliminated after fine-tuning with a high FLR, which does
not have any advantages over training from scratch.
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Figure 15: Syntetic example. Test accuracy of different fine-tuned (left) and SWA (right) solutions.
Test accuracy after pre-training is depicted with the black line. Dashed lines denote boundaries
between the first and second pre-training regimes, dotted line divides the second regime into two
subregimes. Mean and standard deviation over 50 seeds are shown.

Figure 16: Geometry in the synthetic example between the points fine-tuned with the smallest and
the largest FLRs and SWA. Results are aggregated over 50 seeds. For angular distance, mean and
standard deviation are shown; for train and test barriers, median and 0.25− 0.75 quantile range are
plotted.

F Loss landscape analysis for other datasets and architectures

In this section, we ablate the geometric properties of pre-training in different regimes for other
dataset-architecture pairs. Figure 14 exhibits the full panel of results.

As can be seen, as with the generalization ablations in Appendix B, our main claims hold for other
architectures and datasets. In the first regime, high FLRs lead to catapults and convergence to a new
separate minimum, while small FLRs and SWA end up in effectively the same mode. In subregime 2A,
the distances between the fine-tuned and SWA points remain small with almost no barriers between
them. However, we note that closer to the right end of subregime 2A linear connectivity with the
SWA solution can be lost for more complex settings such as training on CIFAR-100. This behavior is
expected as the SWA point is obtained after averaging subsequent pre-trained checkpoints, which
can be located at a considerable distance from each other due to relatively large PLRs, unlike the
fine-tuned solutions, which come from the same pre-trained checkpoint. This is also reflected in
higher angular distance between SWA and each of the fine-tuned points than between the fine-tuned
points. Finally, after subregime 2A the obtained points lose linear connectivity and lie further apart in
angular distance.

G Additional result for the synthetic example

In this section, we provide additional results for the synthetic example. Figure 15 shows the test
accuracy of the fine-tuning with different FLRs and SWA. The overall behavior for different PLRs
is similar to the main experimental setup, all 3 regimes are clearly observed. In regime 1, the pre-
training quality is monotonically increased with PLR. Subsequent fine-tuning with smaller, equal, or
slightly larger FLRs leads to the same quality, while a significantly larger FLR improves test accuracy.
Fine-tuning in subregime 2A gives a slight improvement over training models in regime 1, and all
FLRs have the same optimal quality (except for higher FLRs, which experience overfitting given a
fixed number of fine-tuning iterations). Fine-tuning with different FLRs in subregime 2B leads to
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Figure 17: Feature sparsification in the synthetic example for pre-training (top, left), SWA (over 5
models; top, right), and fine-tuning with low FLR = 3.2·10−5 (bottom, left) and high FLR = 7.5·10−5

(bottom, right). Mean and standard deviation over 50 seeds are shown.

solutions with different accuracy, which is lower compared to 2A. Finally, SWA in subregime 2A
produces models with good performance, while averaging models in subregime 2B does not.

Figure 16 shows angular distances and error barriers for the synthetic example. Similarly to the main
setup, we observe the catapult effect for FLR ≫ PLR. Although both train and test error barriers
emerge in subregime 2A, the barrier values are significantly higher in subregime 2B. It is noteworthy
that the angular distance and the error barriers between SWA and low FLR are much smaller than
those to the high FLR (at least up to the boundary between subregime 2B and regime 3). Overall,
most claims from the Takeaway 2 hold.

Lastly, Figure 17 complements Figure 5 from the main text. We observe that SWA and fine-tuning
with a low FLR preserve feature sparsity obtained from pre-training in subregime 2A. Pre-traning with
other initial LR values does not allow the model to focus on a single feature. However, fine-tuning
with a high FLR restores feature sparsity by either the catapults (when FLR ≫ PLR, regime 1) or
convergence (when FLR < PLR, regimes 2 and 3).

H Additional results on Fourier features

In Figure 18 we present the accuracy of different frequency bands for the rest of scale-invariant setups.
Considering SI ResNet-18 on both datasets, the mid-frequency features have higher absolute accuracy
values in subregime 2A compared to background and low-frequency features (both in regimes 1
and 2). The specialization on mid frequencies is even more pronounced after weight averaging and
fine-tuning. Moreover, the behavior of mid-frequency line after fine-tuning is highly correlated with
the test accuracy of the corresponding FLRs in Figures 2,10.

As for the SI ConvNet architecture, feature specialization is less obvious: we do not observe significant
focus on mid frequencies in subregime 2A, perhaps because a combination of 3 convolutional layers
is not enough to learn fine-grained image details. This lack of sparsity may be also related to less
pronounced effects of the second regime, discussed in Appendix B. Nevertheless, we see a peak
of mid-frequency accuracy in subregime 2A for both CIFAR-10 and CIFAR-100, indicating that
pre-training with larger PLRs is beneficial for this setup too.
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SI ConvNet on CIFAR-10

SI ConvNet on CIFAR-100

SI ResNet-18 on CIFAR-10

SI ResNet-18 on CIFAR-100

Figure 18: Accuracy of different frequency bands for pre-training (column 1), SWA (over 5 models;
column 2), and fine-tuning with low FLR (column 3) and high FLR (column 4). SI ConvNet and SI
ResNet-18 on CIFAR-10/CIFAR-100.

I Additional results for the practical setup

In this section, we provide additional results for the practical setup of our experiments: additional
plots for the ResNet-18 on CIFAR-10 and ablation on the CIFAR-100 and Tiny ImageNet datasets.

Figure 19 depicts the generalization results for the fine-tuned (left plots) and SWA (right plots)
solutions in the practical setup. SWA follows the same trend as fine-tuning, confirming our main
claim: the best solutions are achieved in the lower part of the second regime, i.e., subregime 2A. At
larger PLRs of the second regime SWA quality rapidly deteriorates. In the first regime, both SWA and
fine-tuning are able to improve the accuracy due to incomplete convergence discussed in the main
text. The results on all datasets are similar. Small accuracy drops for pre-training with PLR = 10−3

on Tiny ImageNet and fine-tuning with FLR = 2 · 10−3 from PLR = 10−3 on CIFAR-100 are due
to the periodic behavior [43]: the final epoch occurs at the beginning of a period. Similar effects are
discussed above, at the end of Appendix B, when training SI ResNet-18 on CIFAR-100. That could
be fixed by choosing a different random seed and/or epoch budget.

In Figure 20, we provide the geometrical results for the practical setting. The results are again similar
for all datasets. We measure angular distance in this setup for consistency with the previous results.
However, since we consider only scale-invariant parameters when measuring the angular distance,
its value does not reflect the total distance w.r.t. all the parameters of the model.6 Despite this fact,
it still covers the majority of model parameters and behaves similarly to the controlled setting: the

6Note that L2 distance is also not the best choice due to scale invariance.
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Practical ResNet-18 on CIFAR-10

Practical ResNet-18 on CIFAR-100

Practical ResNet-18 on Tiny ImageNet

Figure 19: Practical setting. Test accuracy of different fine-tuned (left) and SWA (right) solutions.
Test accuracy after pre-training is depicted with the black line. Dashed lines denote boundaries
between the pre-training regimes, dotted line divides the second regime into two subregimes. Full
version of the results for CIFAR-10 complementing Figure 8 and similar results for CIFAR-100 and
Tiny ImageNet.

distances are high between different FLRs in the first regime, decrease in subregime 2A and then
grow again. Both train and test error barriers follow the same trend as the angular distance.

Finally, Figure 21 shows the full panel of results on frequency bands analysis for the practical setting.
The mid-frequency bias in subregime 2A and the induced feature sparsity is especially pronounced
after fine-tuning or SWA, however it still can be clearly seen already after the pre-training stage on
CIFAR-100 and Tiny ImageNet. Other PLR ranges show no such bias towards a particular spectrum
component, however, fine-tuning with a high FLR can help introduce it. Overall, the mid-frequency
bias is more consistent on more complex datasets, indicating a higher usefulness of this band for
image classification.

J Additional results for Vision Transformer

In this section, we show that our main findings can be transferred to the transformer architecture.
Specifically, we use a ViT small architecture [16] with patch size 4 and hidden size 512 (ViT-S/4) for
32× 32 images of the CIFAR-10/100 datasets.7 We additionally insert a LayerNorm [8] after each
linear layer in the feed-forward networks. This modification increases the number of scale-invariant
parameters of the transformer and makes the second regime more stable. We pre-train and fine-tune
both for 500 epochs with the same protocol as in the main text and use the RandAugment(2, 14)

7We use an open source implementation by Kentaro Yoshioka [67].
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Practical ResNet-18 on CIFAR-10

Practical ResNet-18 on CIFAR-100

Practical ResNet-18 on Tiny ImageNet

Figure 20: Practical setting. Geometry between the points fine-tuned with the smallest and the largest
FLRs and SWA. Full version of the results for CIFAR-10 complementing Figure 8 and similar results
for CIFAR-100 and Tiny ImageNet.

augmentation strategy [15]. We use the Adam [32] optimizer with weight decay 10−4, batch size
512, and disabled AMP [47].

Figure 22 shows the test accuracy of fine-tuned (left plots) and SWA (right plots) solutions of ViT-S/4
on both datasets. At the same time, Figure 23 depicts the angular distance and the train/test barriers
between solutions fine-tuned with different FLRs and SWA. The general trends are the same as for the
practical ResNet-18, although the advantage of pre-training in subregime 2A is slightly less obvious.

The accuracy of different frequency bands for this setup is presented in Figure 24. Notably, feature
learning in transformers is different from convolutional networks, since they tend to inherently
capture lower frequencies in the data [54]. We can still see that the role of the most important
features (low frequencies in this case) increases towards 2A. Interestingly, however, the importance
of mid-frequency features also peaks in subregime 2A for both datasets, which is consistent with our
intuition that mid-frequencies are essential for natural image classification.

For the sake of ablation, we also consider different partitions into low and mid-frequencies. That
allows to clarify whether ViTs actually rely more on the lower frequency part of the spectrum, or
whether its mid-frequencies simply “start earlier” compared to convolutional models. Figure 25
shows that the latter appears to be the case. That is, if 5-24 or 3-24 bands are selected for the
mid-frequencies, then this spectrum component will dominate the low-frequency bands in terms of
the corresponding test accuracy, which is similar to convolutional models.
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Practical ResNet-18 on CIFAR-10

Practical ResNet-18 on CIFAR-100

Practical ResNet-18 on Tiny ImageNet

Figure 21: Practical setting. Accuracy of different frequency bands for pre-training (column 1), SWA
(over 5 models; column 2), and fine-tuning with low FLR (column 3) and high FLR (column 4). Full
version of the results for CIFAR-10 complementing Figure 8 and similar results for CIFAR-100 and
Tiny ImageNet.

Practical ViT-S/4 on CIFAR-10

Practical ViT-S/4 on CIFAR-100

Figure 22: Practical setting on ViT. Test accuracy of different fine-tuned (left) and SWA (right) solu-
tions. Test accuracy after pre-training is depicted with the black line. Dashed lines denote boundaries
between the pre-training regimes, dotted line divides the second regime into two subregimes.
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Practical ViT-S/4 on CIFAR-10

Practical ViT-S/4 on CIFAR-100

Figure 23: Practical setting on ViT. Geometry between the points fine-tuned with the smallest and the
largest FLRs and SWA.

Practical ViT-S/4 on CIFAR-10

Practical ViT-S/4 on CIFAR-100

Figure 24: Practical setting on ViT. Accuracy of different frequency bands for pre-training (column 1),
SWA (over 5 models; column 2), and fine-tuning with low FLR (column 3) and high FLR (column 4).

26



Practical ViT-S/4, CIFAR-100

Figure 25: Practical setting on ViT. Accuracy of different frequency bands when varying the boundary
between low and mid-frequencies for fine-tuning with small FLR.

K Generalization and sharpness of the fine-tuned solutions

In this section, we test the claim of Kodryan et al. [35] that higher LRs lead to both better generalizing
and less sharp minima. Kodryan et al. [35] empirically confirmed that for the learning rates of the
first regime, and we attempt to verify this result in the second regime.

To this end, we measure test error and sharpness of the fine-tuned solutions obtained after pre-training
in regime 2. We adopt the measure of sharpness used by Kodryan et al. [35], which is the mean
stochastic gradient norm over batches of the data. For fairness of comparison, since lower loss may
naturally lead to lower gradients, we set the training loss of all the fine-tuned solutions to 6 · 10−4.
We do this by taking an appropriate weighted average of the test error and sharpness values measured
at two consecutive checkpoints: just before and right after crossing the set loss threshold.

The results are presented in Figure 26. At first sight, the picture shows an overall positively correlated
trend in the relationship between test error and sharpness. A similar trend is observed in separate
groups of fine-tuned solutions obtained from the same initialization (i.e., pre-trained checkpoint).
However, by comparing fine-tuned solutions obtained from different pre-trained checkpoints, one can
easily break and even reverse this correlation. Compare, e.g., blue (PLR = 7 · 10−4) and light green
(PLR = 2 · 10−3) points of fine-tuned solutions obtained with two different PLRs: with similar test
error, their sharpness values differ on average by almost a factor of two.

In sum, we see no robust correlation between sharpness and generalization across fine-tuning runs
from different pre-trained points, which aligns with recent work in this research area [4, 31].
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SI ResNet-18 on CIFAR-10

Figure 26: Scatter plot of sharpness vs. test error for the fine-tuned solutions at the same level of the
training loss. Groups of points of the same color represent fine-tuned solutions with different FLRs
but with the same pre-trained point. Different colors denote different PLRs of the second regime:
from low (purple) to high (red). Black dots correspond to the pre-trained points of the first regime,
replicating the results of Kodryan et al. [35]. SI ResNet-18 on CIFAR-10.
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paper’s contributions and scope?
Answer: [Yes]
Justification: Our main claims, which concern 1) clarifying the optimal range of initial
LRs for the best generalization and 2) the geometric and feature learning properties of
the solutions obtained with different initial LRs, are clearly stated in both abstract and
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setting for the purity of the study and were validated in practice as well.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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NA answer to this question will not be perceived well by the reviewers.
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are not attained by the paper.

2. Limitations
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Answer: [Yes]
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should reflect on how these assumptions might be violated in practice and what the
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a complete (and correct) proof?
Answer: [NA] .
Justification: Our study is purely empirical and does not include any theoretical assumptions
or results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
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proof sketch to provide intuition.
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Sections 2, 4, 5 and provide further detail for reproducibility in Appendix A.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual
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Justification: To our best knowledge, our work does not have any appreciable societal impact.
The implications of our work are mostly positive as they provide more insight into general
optimization of neural networks and feature learning, which could potentially improve the
interpretability of deep learning models.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: Our work poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all of the used assets in the paper, including code, data, and models. We
train networks on the CIFAR and Tiny ImageNet datasets which are widely used in NeurIPS
papers and are distributed under MIT license; our code is under Apache-2.0 License.

Guidelines:
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: Our paper does not release new assets, except for the code to reproduce the
experiments with appropriate documentation, which is under Apache-2.0 License.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
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Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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