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ABSTRACT

Designing a safe policy for uncertain environments is crucial in real-world con-
trol systems. However, this challenge remains inadequately addressed within the
Markov decision process (MDP) framework. This paper presents the first algo-
rithm guaranteed to identify a near-optimal policy in a robust constrained MDP
(RCMDP), where an optimal policy minimizes cumulative cost while satisfying
constraints in the worst-case scenario across a set of environments. We first prove
that the conventional policy gradient approach to the Lagrangian max-min for-
mulation can become trapped in suboptimal solutions. This occurs when its in-
ner minimization encounters a sum of conflicting gradients from the objective
and constraint functions. To address this, we leverage the epigraph form of the
RCMDP problem, which resolves the conflict by selecting a single gradient from
either the objective or the constraints. Building on the epigraph form, we propose
a binary search algorithm with a policy gradient subroutine and prove that it iden-
tifies an ε-optimal policy in an RCMDP with Õ(ε−4) robust policy evaluations.

1 INTRODUCTION

In real-world decision-making, it is crucial to design policies that satisfy safety constraints even
in uncertain environments. For example, self-driving cars must drive efficiently while maintaining
a safe distance from obstacles, regardless of environmental uncertainties such as road conditions,
weather, or the state of the vehicle’s components. Traditionally, within the Markov decision process
(MDP) framework, constraint satisfaction and environmental uncertainty have been addressed
separately—through constrained MDP (CMDP; e.g., Altman (1999)), which aims to minimize
cumulative cost while satisfying constraints, and robust MDP (RMDP; e.g., Iyengar (2005)), which
aims to minimize the worst-case cumulative cost in an uncertainty set of possible environments.
However, in practice, both robustness and constraint satisfaction are important. The recent robust
constrained MDP (RCMDP) framework addresses this dual need by aiming to minimize the
worst-case cost while robustly satisfying the constraints. Despite the significant theoretical progress
made in CMDPs and RMDPs (see Appendix A), theoretical results on RCMDPs are currently
scarce. Even in the tabular setting, where the state and action spaces are finite, there exists no
algorithm with guarantees to find a near-optimal policy in an RCMDP.

The difficulty of RCMDPs arises from the challenging optimization process, which simultane-
ously considers robustness and constraints. The dynamic programming (DP) approach, popular
in unconstrained RMDPs, is unsuitable for constrained settings where Bellman’s principle of
optimality can be violated (Haviv, 1996; Bellman et al., 1957). Similarly, the linear programming
(LP) approach, commonly used for CMDPs, is inadequate due to the nonconvexity of the robust
formulation (Iyengar, 2005; Grand-Clément & Petrik, 2024). Consequently, the policy gradient
method with the Lagrangian formulation has been studied as the primary remaining option (Russel
et al., 2020; Wang et al., 2022). The Lagrangian formulation approximates the RCMDP problem
minπ{f(π) | h(π) ≤ 0} by maxλ≥0 minπ f(π) + λh(π), where f(π) and h(π) represent the
worst-case cumulative cost—called the (cost) return1—and the worst-case constraint violation of

1We commonly use the term return to refer specifically to the objective cost return. When discussing a
return value in the context of RCMDP’s constraints, we refer to it as the constraint return.
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Approach MDP CMDP RMDP RCMDP
Dynamic Programming ✓

Bellman et al. (1957)
✕ ✓

Iyengar (2005)
✕

Linear Programming ✓
Denardo (1970)

✓
Altman (1999)

✕ ✕

Lagrangian + PG ✓
Agarwal et al. (2021)

✓
Ding et al. (2020)

✓
Wang et al. (2023)

✕

Epigraph + PG (Ours) ✓ ✓ ✓ ✓

Table 1: Summary of approaches and the problem settings. “PG” denotes Policy Gradient. Each cell
displays a “✓” indicating the presence of an algorithm with this approach that guarantees yielding
an ε-optimal policy. Representative works supporting each “✓” are listed below it. Conversely, “✕”
denotes settings where the approach either isn’t suitable or lacks performance guarantees.

a policy π, respectively. There have been a few attempts to provide theoretical guarantees for
the Lagrangian approach (Wang et al., 2022; Zhang et al., 2024); however, no existing studies
offer rigorous and satisfactory guarantees that the max-min problem yields the same solution as
the original RCMDP problem. As a result, existing Lagrangian-based algorithms lack theoretical
performance guarantees. This leaves us with a fundamental question:

How can we identify a near-optimal policy in a tabular RCMDP?

We address this question by presenting three key contributions, which are summarized as follows:

Gradient conflict in the Lagrangian formulation (Section 3). We first show that solving the
Lagrangian formulation is inherently difficult, even when its max-min problem can yield an optimal
policy. Given the limitations of DP and LP approaches as discussed, the policy gradient method
might seem like a viable alternative to solve the max-min. However, our Theorem 1 reveals that
policy gradient methods can get trapped in a local minimum during the inner minimization of the
Lagrangian formulation. This occurs when the gradients, ∇f(π) and ∇h(π), conflict with each
other, causing their sum ∇f(π) + λ∇h(π) to cancel out, even when the policy π is not optimal.
Consequently, the Lagrangian approach for RCMDPs may not reliably lead to a near-optimal policy.

Epigraph form of RCMDP (Section 4). We then demonstrate that the epigraph form, com-
monly used in constrained optimization literature (Boyd & Vandenberghe, 2004; Beyer &
Sendhoff, 2007; Rahimian & Mehrotra, 2019), entirely circumvents the challenges associated
with the Lagrangian formulation. The epigraph form transforms the RCMDP problem into
miny{y |minπ max{f(π)− y, h(π)} ≤ 0}, introducing an auxiliary minimization problem of
minπ max{f(π)− y, h(π)} and minimizing its threshold variable y. Unlike the Lagrangian
approach, which necessitates summing ∇f(π) and ∇h(π), policy gradient methods for the
auxiliary problem update the policy by selecting either ∇f(π) or ∇h(π), thanks to the maximum
operator in the problem. As a result, the epigraph form avoids the problem of conflicting gradient
sums, preventing policy gradient methods from getting stuck in suboptimal minima (Theorem 4).

A new RCMDP algorithm (Section 5). Finally, we propose a tabular RCMDP algorithm called
Epigraph Robust Constrained Policy Gradient Search (EpiRC-PGS, pronounced as “Epic-P-G-
S”). The algorithm employs a double-loop structure: the inner loop verifies the feasibility of the
threshold variable y by performing policy gradients on the auxiliary problem, while the outer loop
employs binary search to determine the minimal feasible y. EpiRC-PGS is guaranteed to find
an ε-optimal policy2 with Õ(ε−4) robust policy evaluations (Corollary 1), where Õ(·) represents
the conventional big-O notation excluding polylogarithmic terms. Since RCMDP generalizes plain
MDP, CMDP, and RMDP, our EpiRC-PGS is applicable to all these types of MDPs, ensuring a
near-optimal policy for each. Table 1 compares existing approaches in various MDP settings. Due
to the page limitation, more related work is provided in Appendix A. We discuss limitations and
potential future directions in Section 7.

2The definition of an ε-optimal policy is provided in Definition 1
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2 PRELIMINARY

We use the shorthand R+ := [0,∞). The set of probability distributions over S is denoted by
P(S). For two integers a ≤ b, we define Ja, bK := {a, . . . , b}. If a > b, Ja, bK := ∅. For
a vector x ∈ RN , its n-th element is denoted by xn or x(n), and we use the convention that
∥x∥2 =

√∑
i x

2
i and ∥x∥∞ = maxi|xi|. For two vectors x, y ∈ RN , we denote ⟨x, y⟩ =

∑
i xiyi.

We let 0 := (0, . . . , 0)⊤ and 1 := (1, . . . , 1)⊤, with their dimensions being clear from the context.
All scalar operations and inequalities should be understood point-wise when applied to vectors and
functions. Given a finite set S, we often treat a function f : S → R as a vector f ∈ RS . Both
notations, f : S → R and f ∈ RS , are used depending on notational convenience. Finally, ∂f(x)
and ∇f(x) denote the (Fréchet) subgradient and gradient of f : X → R at a point x, respectively.
Their formal definitions are deferred to Definition 2.

2.1 CONSTRAINED MARKOV DECISION PROCESS

Let N ∈ Z≥0 be the number of constraints. An infinite-horizon discounted constrained MDP
(CMDP) is defined as a tuple (S,A, γ, P, C, b, µ), where S denotes the finite state space with
size S, A denotes the finite action space with size A, γ ∈ (0, 1) denotes the discount factor, and
µ ∈ P(S) denotes the initial state distribution. For notational brevity, let H := (1− γ)−1 denotes
the effective horizon. Further, b := (b1, . . . , bN ) ∈ [0, H]N denotes the constraint threshold vector,
where bn is the threshold scalar for the n-th constraint, C := {cn}cn∈J0,NK denotes the set of cost
functions, where cn : S × A → [0, 1] denotes the n-th cost function and cn(s, a) denotes the n-th
cost when taking an action a at a state s. c0 is for the objective to optimize and {c1, . . . , cN} are
for the constraints. P : S × A → P(S) denotes the transition probability kernel, which can be
interpreted as the environment with which the agent interacts. P (s′ |s, a) denotes the state transition
probability to a new state s′ from a state s when taking an action a.

2.2 POLICY AND VALUE FUNCTIONS

A (Markovian stationary) policy is defined as π ∈ RS×A such that π(s, ·) ∈ P(A) for any s ∈ S .
π(s, a) denotes the probability of taking an action a at state s. The set of all the policies is denoted as
Π, which corresponds to the direct parameterization policy class presented in Agarwal et al. (2021).
Although non-Markovian policies can yield better performance in general RMDP problems (Wiese-
mann et al., 2013), for simplicity, we focus on Markovian stationary policies in this paper. With an
abuse of notation, for two functions π, g ∈ RS×A, we denote ⟨π, g⟩ =

∑
s,a∈S×A π(s, a)g(s, a).

For a policy π and transition kernel P , let dπP : S → R+ denote the occupancy measure of π
under P . dπP (s) represents the expected discounted number of times π visits state s under P , such
that dπP (s) = (1 − γ)E

[∑∞
h=0 γ

h
1{sh = s}

∣∣ s0 ∼ µ, π, P
]
. Here, the notation means that the

expectation is taken over all possible trajectories, where ah ∼ π(sh, ·) and sh+1 ∼ P (· | sh, ah).
For a π ∈ RS×A and a cost c ∈ RS×A, let Qπ

c,P : S×A → R be the action-value function such that 3

Qπ
c,P (s, a) = c(s, a) + γ

∑
s′∈S

P (s′ | s, a)
∑
a′∈A

π(s′, a′)Qπ
c,P (s

′, a′) ∀(s, a) ∈ S ×A .

Let V π
c,P : S → R be the state-value function such that V π

c,P (s) =
∑

a∈A π(s, a)Qπ
c,P (s, a) for any

s ∈ S. If π ∈ Π, V π
c,P (s) represents the expected cumulative cost of π under P with an initial state

s. We denote the (cost) return function as Jc,P (π) :=
∑

s,a∈S×A µ(s)V π
c,P (s).

Policy gradient method. For a problem minπ∈Π f(π) where f : Π → R is differentiable at
π ∈ Π, policy gradient methods with direct parameterization update π to a new policy π′ as follows:

π′ := ProjΠ(π − α∇f(π))
(a)
= argmin

π′∈Π
⟨∇f(π), π′ − π⟩+ 1

2α
∥π′ − π∥22 , (1)

where α > 0 is the learning rate and ProjΠ denotes the Euclidean projection operator onto Π. The
equality (a) is a standard result (see, e.g., Parikh et al. (2014)). The following lemma provides the
gradient of Jc,P (π) for the direct parameterization policy class Π (e.g., Agarwal et al. (2021)).

3The domain of Qπ
c,P is not restricted to Π to ensure well-defined policy gradients over π ∈ Π.
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Lemma 1 (Policy gradient theorem). For any π ∈ Π, transition kernel P : S × A → P(S), and
cost c ∈ RS×A, the gradient is given by (∇Jc,P (π))(s, a) = HdπP (s)Q

π
c,P (s, a) ∀(s, a) ∈ S×A .

2.3 ROBUST CONSTRAINED MARKOV DECISION PROCESS

An infinite-horizon discounted robust constrained MDP (RCMDP) is defined as a tuple
(S,A, γ,U , C, b, µ), where U is a compact set of transition kernels, called the uncertainty
set, which can be either finite or infinite. The infinite uncertainty set typically requires some
structural assumptions. A common structure is the (s, a)-rectangular set (Iyengar, 2005; Nilim &
El Ghaoui, 2005), defined as U = ×s,a Us,a, where Us,a ⊆ P(S) and ×s,a denotes a Cartesian
product over S × A. We remark that our work is not limited to any specific structural assumption,
but rather considers a general, tractable uncertainty set (see Assumptions 1, 2 and 3). When N = 0,
an RCMDP reduces to an RMDP. When U = {P}, an RCMDP becomes a CMDP.

For a cost c ∈ RS×A, let Jc,U (π) := maxP∈U Jc,P (π) denote the worst-case (cost) return function,
which represents the return of π under the most adversarial environment within U . The goal of an
RCMDP is to find a solution to the following constrained optimization problem:

(RCMDP) J⋆ := min
π∈Π

Jc0,U (π) such that Jcn,U (π) ≤ bn ∀n ∈ J1, NK . (2)

Let ΠF :=
{
π ∈ Π

∣∣maxcn∈J1,NK Jcn,U (π)− bn ≤ 0
}

be the set of all the feasible policies. We
assume that ΠF is non-empty. An optimal policy π⋆ ∈ ΠF is a solution to Equation (2).

Definition 1. π ∈ Π is ε-optimal4 if Jc0,U (π)− J⋆ ≤ ε and maxcn∈J1,NK Jcn,U (π)− bn ≤ ε.

3 CHALLENGES OF LAGRANGIAN FORMULATION

To motivate our formulations and algorithms presented in subsequent sections, this section illus-
trates the limitations of using the conventional Lagrangian approach for RCMDPs. By introducing
Lagrangian multipliers λ := (λ1, . . . , λN ) ∈ RN

+ , Equation (2) is equivalent to

J⋆ = min
π∈Π

max
λ∈RN

+

Jc0,U (π) +

N∑
n=1

λn(Jcn,U (π)− bn) .

As this minπ is hard to solve due to the inner maximization, Russel et al. (2020); Mankowitz et al.
(2020); Wang et al. (2022) swap the min-max and consider the following Lagrangian formulation:

(Lagrange) L⋆ := max
λ∈RN

+

min
π∈Π

Lλ(π) where Lλ(π) := Jc0,U (π)+

N∑
n=1

λn(Jcn,U (π)− bn) . (3)

Let λ⋆ be a solution to Equation (3). The Lagrangian approach aims to solve Equation (3) by expect-
ing π⋆ ∈ argminπ∈Π Lλ⋆(π). However, this expectation may not hold, as swapping the min-max is
not necessarily equivalent to the original min-max problem (Boyd & Vandenberghe, 2004). There-
fore, to guarantee the performance of the Lagrange approach, the two questions must be addressed:

(i) Can we ensure π⋆ ∈ argminπ∈Π Lλ⋆(π)? (ii) If so, is it tractable to solve minπ∈Π Lλ(π)?

However, answering these questions affirmatively is challenging due to the following issues:

(i) π⋆ solution challenge. To ensure that π⋆ ∈ argminπ∈Π Lλ⋆(π), the standard approach is to
establish the strong duality, i.e., J⋆ = L⋆ (Boyd & Vandenberghe, 2004). In the CMDP setting,
where U = {P}, strong duality has been proven to hold (Altman, 1999; Paternain et al., 2019;
2022). However, proving strong duality for RCMDPs is highly non-trivial compared to CMDPs.

When U = {P}, a typical proof strategy is to combine the sum of returns Jc0,P , . . . , JcN ,P in
Lλ(π) into a single return function. For example, when N = 1, we have Lλ(π) = Jc′,P (π), where

4Strict constraint satisfaction is straightforward by using a slightly stricter threshold b′ := b− ε.
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(a) RCMDP presented in Example 1, where δ > 0.
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(b) L1(π) and policy gradients.

Figure 1: (a): An RCMDP example illustrating the gradient conflict challenge. Action labels
are omitted when transitions are action-independent. (b): Policy gradients in the example with
(γ, δ, b1) = (0.4, 0.09, 0). Arrows represent the gradient to decrease L1(π). π2 attracts policy
gradients but is a local minimum since L1(π2) > L1(π1), where π1(·, a1) = 1 and π2(·, a2) = 1.

c′ := c0 + λ(c1 − b1/H). Since Jc′,P (π) is linearly represented as Jc′,P (π) = ⟨c′, dπP ⟩5, it is easy
to show minπ maxλ Jc′,P (π) = maxλ minπ Jc′,P (π) by Sion’s minimax theorem (Sion, 1958).

However, applying this return-combining strategy to RCMDPs is difficult. For n ∈ J0, NK, let
Pn ∈ argmaxP∈U Jcn,P (π). When |U| ̸= 1, Lλ(π) has a sum of returns Jc0,P0(π) . . . JcN ,PN

(π),
where P0 ̸= . . . ̸= PN may differ. Thus, Lλ(π) is no longer a form of ⟨c′, dπP ⟩ for some single
environment P , hindering the use of well-established duality proof techniques in CMDP literature.

(ii) Gradient conflict challenge. Unfortunately, even if strong duality holds and π⋆ can be
found by π⋆ ∈ argminπ∈Π Lλ⋆(π), solving this minimization remains challenging. Since the
sum of robust returns in Lλ⋆(π) excludes the use of DP and convex-optimization approaches
(Iyengar, 2005; Altman, 1999; Grand-Clément & Petrik, 2024), the policy gradient method such as
Equation (1) is the primary remaining option to solve minπ∈Π Lλ(π).

In CMDP setting when |U| = 1, the problem minπ∈Π Lλ(π) reduces to solving a standard MDP
and thus the policy gradient method is ensured to solve minπ∈Π Lλ(π) (Agarwal et al., 2021).
However, the following Theorem 1 shows that even when |U| = 2, RCMDP can trap the policy
gradient in a local minimum that does not solve minπ∈Π Lλ(π):
Theorem 1. For any γ ∈ (0, 1), there exist a λ > 0, a policy π ∈ Π and an RCMDP with µ > 0
satisfying the following condition: There exists a positive constant R > 0 such that, for any b1 ∈ R,

Lλ(π) < Lλ(π) ∀π ∈ {π ∈ Π | ∥π − π∥2 ≤ R, π ̸= π} but Lλ(π) ≥ min
π∈Π

Lλ(π) +
3γH

16
. (4)

Moreover, there exists a b1 ∈ (0, H) where λ satisfies λ ∈ argmaxλ∈RN
+
minπ∈Π Lλ(π).

The detailed proof is deferred to Appendix H. Essentially, the proof constructs a simple RCMDP
where the policy gradients for the objective and the constraint are in conflict.
Example 1. Consider the RCMDP with U = {P1, P2} presented in Figure 1a with δ = 0 and set
λ = 1 for simplicity. Let π1 and π2 be policies that select a1 and a2 for all states, respectively. For
both policies, the objective worst-case is P1 and the constraint worst-case is P2 (see Appendix H).
Hence, switching from policy π2 to taking action a1 decreases the objective return in P1 but
increases the constraint return in P2. This conflict causes the gradients of π2 for the objective
(∇Jc0,P1

(π2)) and for the constraint (∇Jc1,P2
(π2)) to sum to a constant vector, i.e.,

(∇L1(π2))(s, ·) = (∇Jc0,P1
(π2) +∇Jc1,P2

(π2))(s, ·) = constant · 1 ∀s ∈ S , (5)
showing that π2 is a stationary point. However, π2 cannot solve minπ∈Π L1(π) because π1 would
clearly result in a smaller L1(π). This stationary point becomes a strict local minimum when δ > 0,
where π2 slightly prefers a2 over a1 (see Appendix H for details).

Figure 1b computationally illustrates this negative result by plotting the landscape of L1(π) in the
RCMDP example across all possible policies for (γ, δ) = (0.4, 0.09). We set b1 = 0 as it does not
influence the landscape of L1(π). In this example, π2 becomes a local minimum that attracts the
policy gradient but fails to solve minπ∈Π L1(π), as π1 achieves Lλ(π1) < Lλ(π2).

5With an abuse of notation, here we denote dπP (s, a) = E
[∑∞

h=0 γ
h
1{sh = s, ah = a}

∣∣ s0 ∼ µ, π, P
]
.
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4 EPIGRAPH FORM OF RCMDP

This section introduces the epigraph form of RCMDP, which overcomes the challenges discussed
in Section 3. For any constrained optimization problem of the form minx{f(x) | h(x) ≤ 0} with
x ∈ Rn and f, h : Rn → R, its epigraph form is defined as:

min
x,y

y such that f(x) ≤ y and h(x) ≤ 0 (6)

with variables x ∈ Rn and y ∈ R. It is well-known that (x, y) is optimal for Equation (6) if and
only if x is optimal for the original problem and y = f(x) (see, e.g., Boyd & Vandenberghe (2004)).

Using Equation (6) and by introducing a new optimization variable b0 ∈ [0, H], an RCMDP becomes
J⋆ = min

b0∈[0,H],π∈Π
b0 such that Jc0,U (π) ≤ b0︸ ︷︷ ︸

constraint to minimize objective

and Jcn,U (π) ≤ bn ∀n ∈ J1, NK︸ ︷︷ ︸
constraints for π∈ΠF

. (7)

Intuitively, Equation (7) seeks the smallest objective threshold value b0 such that there exists a
feasible policy π ∈ ΠF that achieves cumulative objective cost less than b0, i.e., Jc0,U (π) ≤ b0.

We transform Equation (7) into a more convenient form. Define ∆b0(π) : RS×A → R such that
∆b0(π) = max

n∈J0,NK
Jcn,U (π)− bn ∀π ∈ Π , (8)

which denotes the maximum violation of the constraints maxn∈J1,NK Jcn,U (π) − bn ≤ 0 with the
additional constraint Jc0,U (π) − b0 ≤ 0. By moving minπ∈Π in Equation (7) to its constraint and
using ∆b0(π), Equation (7) can be transformed as follows:
Theorem 2. Let ∆⋆

b0
:= minπ∈Π ∆b0(π), where ∆b0(π) is defined in Equation (8). Then,

(Epigraph Form) J⋆ = min
b0∈[0,H]

b0 such that ∆⋆
b0 ≤ 0 . (9)

Furthermore, if b0 = J⋆, any π ∈ argminπ∈Π ∆b0(π) is optimal.

The proof is provided in Appendix I.2. Instead of Equation (7), we call Equation (9) the epigraph
form of RCMDP. Since the epigraph form provides J⋆ and π⋆, it overcomes the π⋆ solution chal-
lenge discussed in Section 3. The remaining task is to develop an algorithm to solve Equation (9).

5 EPIRC-PGS ALGORITHM

According to Theorem 2, we can solve an RCMDP by first identifying the optimal return value
b0 = J⋆ and then solving minπ∈Π ∆b0(π). Our Epigraph Robust Constrained Policy Gradient
Search (EpiRC-PGS) algorithm implements these two steps using a double-loop structure: (i) an
outer loop that determines b0 = J⋆ through a binary search over b0 ∈ [0, H] (Section 5.1), and (ii)
an inner loop that solves minπ∈Π ∆b0(π) using a policy gradient subroutine (Section 5.2).

Note that without any assumptions about the uncertainty set U , solving an RCMDP is NP-hard
(Wiesemann et al., 2013). However, imposing concrete structures on U can restrict the applicability
of EpiRC-PGS. To enable EpiRC-PGS to handle a broader class of U , we consider U where we
can approximate the robust return value Jcn,U (π) and its subgradient ∂Jcn,U (π) as follows:

Assumption 1 (Robust policy evaluator). For each n ∈ J0, NK, we have an algorithm Ĵn : Π → R
such that |Ĵn(π)− Jcn,U (π)| ≤ εest for any π ∈ Π, where εest ≥ 0.
Assumption 2. U is either (i) a finite set or (ii) a compact set such that, for any π ∈ Π, ∇Jcn,P (π)
is continuous with respect to P ∈ U .
Assumption 3 (Subgradient evaluator). For each n ∈ J0, NK, we have an algorithm
Ĵ∂
n : Π → RS×A such that ming∈∂Jcn,U (π)∥Ĵ∂

n (π)− g∥2 ≤ εgrd for any π ∈ Π, where εgrd ≥ 0.

Assumptions 1, 2 and 3 are satisfied for most tractable uncertainty sets, such as finite, ball (Kumar
et al., 2024), R-contamination (Wang & Zou, 2022), L1, χ2, and Kullback–Leibler (KL) sets (Yang
et al., 2022). For these tractable uncertainty sets U , the robust policy evaluator (Ĵn) and subgradient
evaluator (Ĵ∂

n ) can be efficiently implemented using robust DP methods (Iyengar, 2005; Kumar et al.,
2022; 2024; Wang & Zou, 2022). As concrete examples, we provide detailed implementations of Ĵn
and Ĵ∂

n for finite and KL sets in Appendix C. We assumed Assumption 2 because Danskin’s theorem
(Lemmas 9 and 10), together with this assumption, guarantees that ∂Jcn,U (π) is well-defined.
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Algorithm 1 Double-Loop Optimization with minπ∈Π ∆b0(π) Subroutine
(also referred to as EpiRC-PGS when using Algorithm 2 as the subroutine)

1: Input: Iteration length K ∈ N, evaluator Ĵn and subroutine A (see Assumptions 1 and 4)
2: Initialize the search space: i(0) := 0 and j(0) := H
3: for k = 0, · · · ,K − 1 do
4: π(k) := A (b

(k)
0 ) where b

(k)
0 := (i(k) + j(k))/2 // Compute policy by subroutine

5: ∆̂(k) := maxn∈J0,NK Ĵn(π
(k))− bn where b0 = b

(k)
0 // Robust policy evaluation

6: Compute i(k+1) and j(k+1) by Equation (11) using ∆̂(k) // Update search space
7: end for
8: return πret computed by A (j(K))

5.1 BINARY SEARCH WITH minπ∈Π ∆b0(π) SUBROUTINE

0.00 0.25 0.50 0.75 1.00 1.25
b0

0.2

0.0

0.2

0.4

0.6

If ∆b0
0,

decrease b0

If ∆b0
> 0, increase b0

∆b0

b0 = J

Figure 2: Algorithmic idea to
find b0 = J⋆ in Example 1 with
(γ, δ, b1) = (0.1, 0, 2/3).

This section describes the outer loop of EpiRC-PGS to identify
b0 = J⋆. The outer-loop utilizes the following properties of ∆⋆

b0
for the identification. The proof is deferred to Appendix I.1:
Lemma 2. ∆⋆

b0
is monotonically decreasing in b0 and ∆⋆

J⋆ = 0.

Thanks to this monotonicity of ∆⋆
b0

, if ∆⋆
b0

can be efficiently
computed, a line search over b0 ∈ [0, H] will readily find
b0 = J⋆. Increase b0 if ∆⋆

b0
> 0, and decrease it if ∆⋆

b0
≤ 0.

Figure 2 summarizes this idea to solve the epigraph form.

To implement this idea, let us assume for now that we have a subroutine algorithm A that computes
∆⋆

b0
= minπ∈Π ∆b0(π) with sufficient accuracy. We will implement A in Section 5.1.

Assumption 4 (Subroutine algorithm). We have an algorithm A : R+ → Π that takes a value
b0 ≥ 0 and returns π ∈ Π such that ∆b0(π) ≤ minπ′∈Π ∆b0(π

′) + εopt, where εopt ≥ 0.

Using this subroutine A , the outer loop conducts a binary search over b0 ∈ [0, H]. Let K ∈ N be
the number of iterations. For each iteration k, let [i(k), j(k)] ⊆ [0, H] be the search space where
i(k) ≤ j(k). Set i(0) = 0 and j(0) = H , and define b

(k)
0 := (i(k) + j(k))/2. Additionally, given b

(k)
0 ,

we denote the returned policy from A as π(k) := A (b
(k)
0 ) and its estimated ∆ value as

∆̂(k) := max
n∈J0,NK

Ĵn(π
(k))− bn where b0 = b

(k)
0 . (10)

Based on Figure 2, our binary search increases b(k)0 if ∆̂(k) > 0; otherwise, it decreases b(k)0 :

i(k+1) :=

{
b
(k)
0 if ∆̂(k) > 0

i(k) otherwise
and j(k+1) :=

{
j(k) if ∆̂(k) > 0

b
(k)
0 otherwise

(11)

We summarize the pseudocode of this binary search in Algorithm 1. The following Theorem 3
ensures that Algorithm 1 returns a near-optimal policy. We provide the proof in Appendix J.1.

Theorem 3. Suppose that Algorithm 1 is run with algorithms Ĵn and A that satisfy Assumptions 1
and 4. Then, Algorithm 1 returns an ε̃-optimal policy, where ε̃ := 2(εopt + εest) + 2−KH .

5.2 SUBROUTINE ALGORITHM TO SOLVE minπ∈Π ∆b0(π)

The remaining task is to implement the subroutine A which satisfies Assumption 4. In other words,
for a given b0, we need to solve the following auxiliary problem:

(Epigraph’s Auxiliary Problem) min
π∈Π

∆b0(π) = min
π∈Π

max
n∈J0,NK

max
P∈U

Jcn,P (π)− bn . (12)

The right-hand side of Equation (12) can be seen as an RMDP with additional robustness over the set
of modified cost functions Cb0 := {cn − bn/H}n∈J0,NK. Note that since Cb0 is not a rectangular set,

7
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Algorithm 2 Projected Policy Gradient Subroutine

1: Input: Threshold parameter b0 ≥ 0, learning rate α > 0, iteration length T ∈ N, evaluator Ĵn
and subgradient evaluator Ĵ∂

n (see Assumptions 1 and 3)
2: Set an arbitrary initial policy π(0) ∈ Π
3: for t = 0, · · · , T − 1 do
4: n(t) ∈ argmaxn∈J0,NK Ĵn(π

(t))− bn. // Select the most violated constraint
5: π(t+1) := ProjΠ(π

(t) − αg(t)) where g(t) := Ĵ∂
n(t)(π

(t)) // Update policy
6: end for
7: return π(t⋆) where t⋆ ∈ argmint∈J0,T−1K ∆̂

(t) and ∆̂(t) := maxn∈J0,NK Ĵn(π
(t))− bn

even if U is rectangular, the combination Cb0 ×U does not retain rectangularity. As a result, existing
RMDP algorithms designed for rectangular sets, such as DP (Iyengar, 2005), natural policy gradient
(Li et al., 2022), and convex optimization (Grand-Clément & Petrik, 2024), are inapplicable.

Due to this non-rectangularity issue, we employ the projected policy gradient method, together with
the following subgradient of ∂∆b0(π). The proof is deferred to Appendix I.3:

Lemma 3. Define Gb0(π) :=
{
∇Jcn,P (π)

∣∣∣ n, P ∈ argmax(n,P )∈J0,NK×U Jcn,P (π)− bn

}
for

any b0 ∈ 0 and π ∈ Π. Let convB denote the convex hull of a set B ⊂ RS×A. Under Assumption 2,
for any π ∈ Π and b0 ∈ R, the subgradient of ∆b0(·) at π is given by ∂∆b0(π) = conv Gb0(π) .

We implement the subroutine A (b0) based on this subgradient lemma. Starting from an arbitrary
policy π(0), let π(1), . . . , π(T ) be the updated policies where T ∈ N is the iteration length. Using the
evaluators Ĵn, Ĵ∂

n , and a learning rate α > 0, for a given b0, our subroutine updates policy as follows:

π(t+1) := ProjΠ(π
(t) − αg(t)) where g(t) := Ĵ∂

n(t)(π
(t)) and n(t) ∈ argmax

n∈J0,NK
Ĵn(π

(t))− bn .

(13)
We summarize the pseudocode of this policy update subroutine in Algorithm 2.
Remark 1 (Comparison to Lagrange). Recall Equation (5) that the subgradient of the Lagrangian’s
auxiliary problem, ∂Lλ(π), involves a summation of policy gradients over different environments.
On the other hand, Equation (13) focuses on the policy gradient of a single worst-case environment
by taking maxn∈J0,NK. Intuitively, our policy update avoids the sum of conflicting policy gradients,
thereby circumventing the gradient conflict challenge discussed in Section 3. Indeed, when the ini-
tial distribution satisfies the following coverage assumption6, there is no local minimum in ∆b0(π):
Assumption 5 (Initial distribution coverage). The initial distribution µ ∈ P(S) satisfies µ > 0.
Theorem 4 (Optimality of stationary points). Under Assumptions 2 and 5, for any (π, b0) ∈ Π×R,

∆b0(π)− min
π′∈Π

∆b0(π
′) ≤ DH max

π′∈Π
⟨π − π′, g⟩ ∀g ∈ ∂∆b0(π) ,

where D := maxn,P∈J0,NK×U

∥∥∥dπ⋆
n,P

P /µ
∥∥∥
∞

with π⋆
n,P ∈ argminπ′∈Π Jcn,P (π

′).

The detailed proof can be found in Appendix I.4. Our proof is similar to Theorem 3.2 in Wang
et al. (2023), but it is more rigorous and corrects a crucial error that can invalidate their result7.
Moreover, while their proof is limited to cases where argmaxP∈U Jc0,P (π) is finite, ours is not.
We leverage Sion’s minimax theorem (Sion, 1958) for this refinement.

Thanks to the optimality of stationary points of ∆b0(π) (Theorem 4), Algorithm 2 is guaranteed to
solve minπ∈Π ∆b0(π) and satisfies the requirement of A (b0) in Assumption 4 as follows:
Theorem 5. Suppose Assumptions 1, 2, 3 and 5 hold. Then, there exist problem-dependent constants
C∂ , CJ , Cα, CT > 0 that do not depend on ε such that, when Algorithm 2 is run with α = Cαε

2

and T = CT ε
−4, if the evaluators are sufficiently accurate such that εgrd = C∂ε

2 and εest = CJε
2,

Algorithm 2 returns a policy π(t⋆) satisfying ∆b0(π
(t⋆))−minπ∈Π ∆b0(π) ≤ ε .

6Such coverage assumption is necessary to ensure the global convergence of policy gradient methods (Mei
et al., 2020). Additionally, note that the Lagrange performs poorly even under Assumption 5 (see Theorem 1).

7For example, their proof around Equation (32) incorrectly bounds a positive value by a negative value.
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Figure 3: Comparison of the algorithms in different settings (a), (b), and (c), defined in Section 6.
The feasible π(k) with the smallest return is marked; if none is feasible, the one with the smallest
violation is marked. In all the settings, EpiRC-PGS quickly identifies a feasible and low-return
policy ( ). Top row: Constraint violation (y-axis: Jc1,U (π

(k)) − b1). Policies in the blue area
satisfy the constraints. Middle row: Objective return relative to the uniform policy (y-axis:
Jc0,U (π

(k)) − Jc0,U (πunif)). Negative values indicate that the policies achieve non-trivial low
cumulative objective cots. Bottom row: Constraint violation vs. relative objective return.

We provide the proof and the concrete values of C∂ , CJ , Cα and CT in Appendix J.2. The proof is
primarily based on the weakly convex function analysis (Beck, 2017; Wang et al., 2022).

5.3 COMBINING BINARY SEARCH WITH THE POLICY GRADIENT SUBROUTINE

Finally, we combine Algorithm 1 with Algorithm 2 subroutine and refer to the combination as
EpiRC-PGS. According to Theorems 3 and 5, EpiRC-PGS is ensured to find an ε-optimal policy:
Corollary 1. Consider the same settings and notations as in Theorem 5. Set Algorithm 2 as the sub-
routine A with parameters (Ĵn, Ĵ∂

n , α, T ), where we set α = Cαε
2/4, T = 16CT ε

−4. Then, given
inputs Ĵn and An, Algorithm 1 returns an ε-optimal policy after K = ⌊log

(
2Hε−1

)
⌋ iteration.

Remark 2 (Computational complexity). EpiRC-PGS outputs an ε-optimal policy by querying Ĵn
and Ĵ∂

n a total of Õ((N + 1)KT ) times. Thus, the computational complexity of EpiRC-PGS can
be expressed as Õ((N + 1)KT × [querying cost]). As a simple example, consider the case where
U is finite, where querying Ĵn(π) and Ĵ∂

n (π) require Õ(S2A|U|) operations Kumar et al. (2024).
Using the concrete value of KT , the computational complexity of EpiRC-PGS for finite U becomes
Õ(D4S5A4H14|U|(N +1)ε−4). Similar analyses can be applied to other types of uncertainty sets.
Remark 3 (Last-iterate convergence). Lagrangian-based algorithms for CMDPs typically require
the average of past policies (e.g., Li et al. (2024); Liu et al. (2021)). However, they encounter difficul-
ties in scenarios where policy averaging is impractical, such as in deep RL applications. In contrast,
Corollary 1 does not require policy averaging and ensures that the final policy output is near-optimal.

6 EXPERIMENTS

To support the theoretical guarantees of EpiRC-PGS and demonstrate the limitations of the
Lagrangian methods in identifying near-optimal policies, this section empirically evaluates
EpiRC-PGS in three settings with five constraints (N = 5):
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(a) RCMDP with U = {P1, . . . , P5}, where each environment P· is randomly generated.
(b) RCMDP with a (s, a)-rectangular KL uncertainty set (Iyengar, 2005), which considers

U = ×s,a{p ∈ P(S) |KL[p ∥P (· | s, a)] ≤ CKL}8 where P is a nominal environment.
(c) CMDP, which is equivalent to RCMDP with U = {P}.

Environment construction. In (a), (b), and (c), we randomly generate environments following the
experimental setup of Dann et al. (2017). For each state-action pair (s, a), the transition probabilities
P (· | s, a) are independently sampled from a Dirichlet(0.1, . . . , 0.1) distribution. This produces
a concentrated yet non-deterministic transition model, resembling the widely used GARNET
benchmark with a branching factor of 1 (Archibald et al., 1995). Cost values cn(s, a) are assigned
as 0 with a probability of 0.1 and 1 otherwise. Initial state probabilities µ(·) are sampled from a
Dirichlet(0.5, . . . , 0.5) distribution. Constraint thresholds b1, . . . , b5 are configured to guarantee
the existence of a feasible policy. Other environmental parameters are described in Appendix D.

Baseline algorithms. We compare EpiRC-PGS to a Lagrangian counterpart, denoted LF, which
abstracts most of the existing Lagrangian-based algorithms for RCMDPs (e.g., (Russel et al., 2020;
Wang et al., 2022)). LF aims to solve the problem maxλ∈RN

+
minπ∈Π Lλ(π) in Equation (3) by

performing gradient ascent on λ while using a policy gradient subroutine to solve minπ∈Π Lλ(π).

We also evaluate the averaged policies generated by LF, defined as 1
k

∑k
j=0 π

(k). Such policy
averaging is employed in Lagrangian methods (Miryoosefi et al., 2019; Zhang et al., 2024), though it
often lacks theoretical guarantees (see Appendix A.4). In the CMDP setting (c), we further evaluate
the averaged occupancy measures, where the k-th policy is derived from 1

k

∑k
j=0 d

π(k)

P . Averaging

dπ
(k)

P is ensured to identify a near-optimal policy (Zahavy et al., 2021), but is well-defined only
when |U| = 1. We refer to these two averagings as LF-π(k)-avg and LF-dπ

(k)

P -avg, respectively.
Moreover, (c) reports the optimal return value computed by an LP method (Altman, 1999). The
detailed implementation of algorithms are provided in Appendix D.

Results. Figure 3 illustrates the performance of the algorithms averaged over 10 random seeds.
In all the settings, EpiRC-PGS rapidly converges to a feasible policy with a low objective
return, while both LF and LF-π(k)-avg fail to identify feasible policies in certain settings
(e.g., LF-π(k)-avg in (a) and LF in (b)). In the CMDP (c), EpiRC-PGS and LF-dπ

(k)

P -avg
converge to a near-optimal policy, but LF-π(k)-avg does not. These results empirically validate
that EpiRC-PGS yields a near-optimal policy in RCMDPs, contrasting with the conventional
Lagrangian-based algorithm’s inability in robust settings.

7 CONCLUSION AND LIMITATIONS

In this work, we propose EpiRC-PGS, the first algorithm guaranteed to find a near-optimal policy
in an RCMDP (Corollary 1). At the core of EpiRC-PGS is the use of the epigraph form for
RCMDP. Remarkably, the epigraph form produces the optimal policy π⋆ (Section 4) and supports a
policy gradient algorithm to find it (Theorem 4). These features effectively address the optimization
challenges encountered in the conventional Lagrangian formulation (Section 3).

Limitations and future work. A double-loop algorithm like EpiRC-PGS is often inefficient
when the inner problem requires high computational cost (Lin et al., 2024). Developing a single-loop
algorithm is a promising direction for future research, and we discuss the challenges in Appendix B.

Another research avenue is improving the iteration complexity of our Õ(ε−4). This may not be
tight, since for RMDPs with (s, a)-rectangularity, the natural policy gradient method is ensured to
find an ε-optimal policy with Õ(ε−2) iterations Li et al. (2022).

Finally, the coverage assumption on the initial distribution (Assumption 5) is not necessary in
CMDPs (Ding et al., 2024). We leave the removal of Assumption 5 in RCMDPs for future work.

8KL[p ∥ q] =
∑

s∈S p(s) ln p(s)/q(s) represents the KL divergence between two probability distributions
p > 0 and q > 0 defined over S. CKL > 0 is a positive constant.
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A ADDITIONAL RELATED WORK

This section reviews existing approaches for CMDPs (Appendix A.1), RMDPs (Appendix A.2),
and RCMDPs (Appendix A.3). It also highlights their inherent limitations and the challenges they
face when applied to RCMDPs.

A.1 CONSTRAINED MARKOV DECISION PROCESSES

CMDP is a specific subclass of RCMDP where the uncertainty set consists of a single element,
i.e., U = {P}. This section describes the primary approaches to the CMDP problem: the linear
programming (LP) approach, the Lagrangian approach, and the epigraph approach.

Linear programming approach. The LP approach has been extensively studied in the theoretical
literature (Efroni et al., 2020; Liu et al., 2021; Bura et al., 2022; HasanzadeZonuzy et al., 2021;
Zheng & Ratliff, 2020). Although it is a fundamental method in CMDP, it is less popular in practice
due to its difficulty in scaling to high-dimensional problem settings, such as those encountered in
deep RL. Additionally, incorporating environmental uncertainty into the LP approach for CMDPs is
challenging. The LP approach utilizes the fact that the return minimization problem of an MDP can
be formulated as a convex optimization problem with respect to the occupancy measure (Altman,
1999; Nachum & Dai, 2020). However, RMDPs do not permit a convex formulation in terms of
occupancy measures (Iyengar, 2005; Grand-Clément & Petrik, 2024). While Grand-Clément &
Petrik (2024) recently introduced a convex optimization approach for RMDPs, their formulation
is convex for the transformed objective value function, not for the occupancy measure, making it
challenging to incorporate constraints as seen in RCMDPs.

Lagrangian approach. The Lagrangian approach is perhaps the most popular approach to
CMDPs both in theory (Ding et al., 2020; Wei et al., 2021; HasanzadeZonuzy et al., 2021; Kitamura
et al., 2024) and practice (Achiam et al., 2017; Tessler et al., 2018; Wang et al., 2022; Le et al., 2019;
Russel et al., 2020). This popularity stems from its compatibility with policy gradient methods,
making it readily extendable to deep RL. The Lagrangian approach benefits from the strong duality
in CMDPs. When U consists of a single element, it is well established that strong duality holds,
meaning that L⋆ = J⋆ holds, where L⋆ is from Equation (3) and J⋆ is from Equation (2) (Altman,
1999; Paternain et al., 2019; 2022).

The challenge with the Lagrangian method is the identification of an optimal policy. Even if Equa-
tion (3) is solved, there’s no guarantee that the solution to the inner minimization problem will repre-
sent an optimal policy. In some CMDPs, where feasible policies in ΠF must be stochastic (Altman,
1999), the inner minimization may yield a deterministic solution that is infeasible. Zahavy et al.
(2021); Miryoosefi et al. (2019); Chen et al. (2021); Li et al. (2024); Liu et al. (2021) addressed this
challenge by averaging policies (or occupancy measures) obtained during the optimization process.
However, policy averaging can be impractical for large-scale algorithms (e.g., deep RL) because
it necessitates storing all past policies, which is often infeasible. On the other hand, Ying et al.
(2022); Ding et al. (2024); Müller et al. (2024); Kitamura et al. (2024) tackled the issue by introduc-
ing entropy regularization into the objective return. However, the regularization can lead to biased
solutions and result in a policy design that may deviate from what is intended by the cost function.

In contrast, EpiRC-PGS requires neither policy averaging nor regularization, thereby offering
advantageous properties even in CMDP settings.
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Epigraph approach. Few studies have investigated the epigraph form in the CMDP setting. So
& Fan (2023) proposed a deep RL algorithm aimed at system stabilization under constraints, and
So et al. (2024) developed a deep RL algorithm for goal-reaching tasks with risk-avoidance con-
straints. Although these studies empirically demonstrated the effectiveness of the epigraph form in
constrained RL problems, they did not establish theoretical guarantees, such as global convergence.
Moreover, they did not consider robust settings, whereas our EpiRC-PGS accounts for robustness.

On the other hand, this is the first work to provide theoretical guarantees for the epigraph form in
CMDPs. Furthermore, unlike existing constrained RL studies, we consider not only constraints but
also the robustness against the transition kernel.

A.2 ROBUST MARKOV DECISION PROCESSES

RMDP is a specific subclass of RCMDP where there are no constraints, i.e., N = 0. RMDP
is a crucial research area for the practical success of RL applications, where the environmental
mismatch between the training phase and the testing phase is almost unavoidable. Without robust
policy design, even a small mismatch can lead to poor performance of the trained policy in the
testing phase (Li et al., 2022; Jiang, 2018).

Dynamic programming approach. Since the seminal work by Iyengar (2005), numerous
studies have explored dynamic programming (DP) approaches for RMDPs (Nilim & El Ghaoui,
2005; Clavier et al., 2023; Panaganti & Kalathil, 2022; Mai & Jaillet, 2021; Grand-Clément &
Kroer, 2021; Derman et al., 2021; Wang & Zou, 2021; Kumar et al., 2022; Yang et al., 2023).
The DP approach decomposes the original problem into smaller sub-problems using Bellman’s
principle of optimality (Bellman et al., 1957). To apply this principle, DP approaches enforce
rectangularity on the uncertainty set, which assumes independent worst-case transitions at each state
or state-action pair. However, as pointed out by Goyal & Grand-Clement (2023), the rectangularity
assumption can result in a very conservative optimal policy. Moreover, applying DP to constrained
settings is challenging since CMDPs typically do not satisfy the principle of optimality (Haviv,
1996). Although several studies have attempted to apply DP to CMDPs, they face issues such as
excessive memory consumption, due to the use of non-stationary policy classes, or are restricted to
deterministic policy classes (Chang, 2023; Chen & Blankenship, 2004; Chen & Feinberg, 2006).

Epigraph application to DP approach. Chen et al. (2019); Wiesemann et al. (2013); Ho et al.
(2021) employed the epigraph form to implement a robust DP algorithm for the s-rectangular uncer-
tainty set setting. Specifically, they showed that the s-rectangular robust Bellman operator, which
is the s-rectangular counterpart of Equation (19), can be efficiently implemented using the epigraph
form. However, since their algorithms rely on Bellman’s principle of optimality, similar to standard
DP, they are likely to encounter the same challenges in CMDP settings as those discussed above.

Policy gradient approach. Another promising approach for RMDPs is the policy gradient
method. Similar to the DP approach, most existing policy gradient algorithms also work only under
the rectangularity assumption (Kumar et al., 2024; Wang & Zou, 2022; Li et al., 2022), and thus suf-
fer from the same conservativeness issue. It is important to note that robust policy evaluation can be
NP-hard without any structural assumptions on the uncertainty set (Wiesemann et al., 2013), but such
assumptions are potentially not required for the robust policy optimization step. Our policy gradient
algorithm abstracts the evaluation step by Assumption 1 and avoids the need for the rectangularity
assumption during the policy optimization phase, similar to the recent work by Wang et al. (2023).

A.3 ROBUST CONSTRAINED MARKOV DECISION PROCESSES

Russel et al. (2020); Mankowitz et al. (2020) proposed heuristic algorithms for RCMDPs, but their
approaches lack theoretical guarantees for convergence to a near-optimal policy. Wang et al. (2022)
introduced a Lagrangian approach with convergence guarantee to a stationary point. However, they
do not ensure the optimality of this stationary point. Moreover, their method is heavily dependent
on the restrictive R-contamination set assumption (Du et al., 2018; Wang & Zou, 2021; 2022).

Sun et al. (2024) applied a trust-region method to RCMDPs. The policy is updated to remain
sufficiently similar to the previous one, ensuring that performance and constraint adherence do not
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degrade, even in the face of environmental uncertainty. However, while they ensure that each policy
update step maintains performance, convergence to a near-optimal policy is not guaranteed.

Ghosh (2024) employed a penalty approach which considers the optimization problem of the form
minπ f(π) + λmax{h(π), 0}, where f and h are defined in Section 1. While this approach can
yield a near-optimal policy for a sufficiently large value of λ > 0, the author does not provide a
concrete optimization method for the minimization and instead assumes the availability of an oracle
to solve it. As we will demonstrate in Section 3, this minimization is intrinsically difficult, making
the practical implementation of such an oracle challenging.

Finally, Zhang et al. (2024) tackled RCMDPs using the policy-mixing technique (Miryoosefi et al.,
2019; Le et al., 2019). In this technique, a policy is sampled from a finite set of deterministic policies
according to a sampling distribution at the start of each episode, and it remains fixed throughout
the episode. However, even if a good sampling distribution is determined, there is no guarantee that
the resulting expected policy will be optimal due to the non-convexity of the return function with
respect to policies (Agarwal et al., 2021). We discuss the limitations of the policy-mixing technique
in Appendix A.4. Additionally, Zhang et al. (2024) assume an R-contamination uncertainty set,
limiting its applicability similarly to the work of Wang et al. (2022).

Although the RCMDP problem remains unsolved, the control theory community has long studied
the computation of safe controllers under environmental uncertainties. Notable methods include
robust model predictive control (Bemporad & Morari, 2007) and H∞ optimal control (Anderson
et al., 2019; Zames, 1981; Doyle, 1982). These approaches are specifically tailored for a specialized
class of MDPs, known as the linear quadratic regulator (LQR, Du et al. (2021)). However, because
LQR and tabular MDPs operate within distinct frameworks, these control methods are unsuitable
for tabular RCMDPs. Given that most modern reinforcement learning (RL) algorithms, such as
DQN (Mnih et al., 2015), are based on the tabular MDP framework, our results bridge the gap
between the RL and control theory communities, laying the foundation for the development of
reliable RL applications in the future.

A.4 NOTES ON THE POLICY-MIXING TECHNIQUE

This section explains the theoretical limitations of the policy-mixing technique (Zhang et al., 2024;
Miryoosefi et al., 2019; Le et al., 2019) for identifying a near-optimal policy.

Policy-mixing technique. Let Π̃ := {π1, . . . , πm} be a finite set of policies with m ∈ N. Con-
sider a non-robust, single-constraint CMDP (S,A, γ, P, C = {c0, c1}, b, µ). Given a distribution
ρ ∈ P

(
Π̃
)

, define

J̃c0,P (ρ) :=
∑
π∈Π̃

ρ(π)Jc0,P (π) and J̃c1,P (ρ) :=
∑
π∈Π̃

ρ(π)Jc1,P (π) .

The policy-mixing technique considers the following optimization problem:

J̃⋆ := min
ρ∈P(Π̃)

J̃c0,P (ρ) such that J̃c1,P (ρ) ≤ b1 (14)

= min
ρ∈P(Π̃)

max
λ∈R+

∑
π∈Π̃

ρ(π)(Jc0,P (π) + λ(Jc1,P (π)− b1)) =: min
ρ∈P(Π̃)

max
λ∈R+

L̃(ρ, λ) .

Let ρ⋆ be the solution of Equation (14) such that ρ⋆ ∈ argminρ∈P(Π̃) maxλ∈R+
L̃(ρ, λ).

In this setting, a policy is sampled from ρ at the start of each episode and remains fixed throughout
the episode. The term J̃c0,P (ρ) represents the expected return under the distribution ρ. Since
L̃(ρ, λ) is convex in ρ and concave in λ, under some mild assumptions, Equation (14) can be
solved efficiently by the following standard optimization procedure for min-max problems: At each
iteration t = 1, . . . , T , with initial values λ(0) ∈ R+ and ρ(0) ∈ P

(
Π̃
)

,
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1. Update λ(t) using a no-regret algorithm. For example, with gradient ascent and a learning
rate α > 0:

λ(t) := max
{
λ(t−1) + α

(
J̃c1,P (ρ

(t−1))− b1

)
, 0
}
.

2. Update ρ(t) as ρ(t)(π) = 1
{
π = π(t)

}
where

π(t) ∈ argmin
π∈Π̃

Jc0,P (π) + λ(t)(Jc1,P (π)− b1) .

Then, the averaged distribution ρ(T ) := 1
T

∑T
t=0 ρ

(t) converges to ρ⋆ as T → ∞ (Abernethy &
Wang, 2017; Zahavy et al., 2021). When Π̃ is sufficiently large, we can expect that the optimal
value of Equation (14) is equivalent to that of the CMDP problem, i.e., J̃⋆ = J⋆, where J⋆ is
defined in Equation (2) with U = {P}.

Limitation of policy-mixing. Even when J̃⋆ = J⋆, it is crucial to note that, while ρ(T ) converges
to ρ⋆, there is no guarantee that π(T ) := 1

T

∑T
t=0 π

(t) will converge to π⋆.

Let λ
(T )

:= 1
T

∑T
t=0 λ

(t). Zhang et al. (2024); Miryoosefi et al. (2019); Le et al. (2019) argued for
the convergence of π(t) by asserting that the equality (a) in the following equation holds:

1

T

T∑
t=1

L̃
(
ρ(t), λ(t)

)
=

1

T

T∑
t=1

(
Jc0,P (π

(t)) + λ(t)
(
Jc1,P (π

(t))− b1

))
(a)
= Jc0,P (π

(T )) + λ
(T )
(
Jc1,P (π

(T ))− b1

) (15)

(see, for example, Equation (14) in Zhang et al. (2024), Equation (1) in Le et al. (2019), and
around Equation (13) in Miryoosefi et al. (2019)).

However, (a) in Equation (15) does not hold in general because the return function is neither convex
nor concave in policy. Even when T = 2, there is an example where Equation (15) fails (see Proof
of Lemma 3.1 in Agarwal et al. (2021)). This invalidates the results of Miryoosefi et al. (2019); Le
et al. (2019); Zhang et al. (2024), thus illustrating the theoretical limitations of the policy-mixing
approach for near-optimal policy identification.

B DISCUSSION ON SINGLE-LOOP ALGORITHM

Although Algorithm 1 can identify a near-optimal policy, it uses a double-loop structure that
repetitively solves minπ∈Π ∆b0(π) by Algorithm 2. In practice, single-loop algorithms, such as
primal-dual algorithms for CMDPs (e.g., Efroni et al. (2020); Ding et al. (2024)), are typically more
efficient and preferable compared to double-loop algorithms. This section discusses the challenge
of designing a single-loop algorithm for the epigraph form.

Since the epigraph form is a constrained optimization problem, we can further transform it using a
Lagrangian multiplier λ ∈ R+, yielding:

J⋆ = min
b0∈[0,H]

max
λ∈R+

Lepi(b0, λ) where Lepi(b0, λ) := b0 + λ∆⋆
b0 . (16)

Similar to the typical Lagrangian approach, let’s swap the min-max order. We call the resulting
formulation the “epigraph-Lagrange” formulation:

(Epigraph-Lagrange) L⋆
epi = max

λ∈R+

min
b0∈[0,H]

min
π∈Π

b0 + λ∆b0(π) . (17)

Does the strong duality, J⋆ = L⋆
epi, hold? If it does, we could design a single-loop algorithm

similar to primal-dual CMDP algorithms, performing gradient ascent and descent on Equation (17).
Unfortunately, proving the strong duality is challenging.

Essentially, the min-max can be swapped when Lepi(b0, λ) in Equation (16) is quasiconvex-
quasiconcave (Sion, 1958). While Lepi(b0, λ) is clearly concave in λ, the quasiconvexity in b0 is
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Algorithm 3 Evaluators for Finite Uncertainty Set

1: Input: Policy π, uncertainty set U = {P1, . . . , PM}, and index n ∈ J0, NK.
2: for m ∈ J1,MK do
3: Qπ

cn,Pm
:= (I − γPmΠπ)−1cn ∈ RS×A.

4: Jcn,Pm
(π) :=

∑
(s,a)∈S×A µ(s)π(s, a)Qπ

cn,Pm
(s, a)

5: end for
6: Let m⋆ ∈ argmaxm∈J1,MK Jcn,Pm

(π)

7: dπPm⋆
= (1− γ)µ(I − γΠπPm⋆)

−1 ∈ RS

8: return (for Ĵn): Jcn,Pm⋆ (π)

9: return (for Ĵ∂
n ): HdπPm⋆

(s)Qπ
cn,Pm⋆

(s, a) ∀(s, a) ∈ S ×A

not obvious. Although ∆⋆
b0

is decreasing due to Lemma 2 and thus a quasi-convex function, there
is no guarantee on the quasi-convexity of b0 + λ∆⋆

b0
. The situation would be resolved if ∆⋆

b0
were

convex in b0. However, since ∆⋆
b0

= minπ∈Π ∆b0(π) is a pointwise minimum and ∆b0(π) may not
be convex in π (Agarwal et al., 2021), ∆⋆

b0
may not be convex in b0 (Boyd & Vandenberghe, 2004).

Therefore, algorithms for the epigraph-Lagrange formulation face a problem similar to the π⋆

solution challenge of the Lagrangian formulation (Section 3). Proving strong duality or finding
alternative ways to circumvent this challenge is a promising direction for future RCMDP research.

C UNCERTAINTY SETS AND ALGORITHMS FOR ∆b0 AND SUBGRADIENT
EVALUATORS

This section provides examples of uncertainty set structures and algorithms that realize Ĵn in
Assumption 1 and Ĵ∂

n in Assumption 3. Ĵn evaluates Jcn,U (π), and Ĵ∂
n evaluates one of the

elements in ∂Jcn,U (π). In this section, we frequently use the following useful matrix formulations
(Pirotta et al., 2013): for a cost c ∈ RS×A,

Qπ
c,P = (I − γPΠπ)−1c ∈ RS×A

Jc,P (π) =
∑

(s,a)∈S×A

µ(s)π(s, a)Qπ
c,P (s, a) ∈ R

dπP = µ⊤(I − γΠπP )
−1 ∈ RS ,

(18)

where I is an identity matrix and Ππ is a RS×S×A matrix such that Ππ(s, (s, a)) = π(s, a). Due
to Lemma 1, an element in ∂Jcn,U (π) takes the form of:

(∇Jcn,P (π))(s, a) = HdπP (s)Q
π
cn,P (s, a) ∀(s, a) ∈ S ×A .

C.1 FINITE UNCERTAINTY SET

Let U be a finite uncertainty set such that U = {P1, . . . , PM} where M ∈ N. U clearly satisfies
Assumption 2. The implementation of Ĵn is trivial by Equation (18). The implementation of Ĵ∂

n
is also straightforward due to Lemma 10. Specifically, it can be implemented by the following
subgradient representation:

∂Jcn,U = conv

{
∇Jcn,Pm(π)

∣∣∣∣∣m ∈ argmax
m∈J1,MK

Jcn,Pm(π)

}
.

Algorithm 3 summarizes the implementions of Ĵn and Ĵ∂
n . Our experiment (a) in Section 6 uses

Algorithm 3.

C.2 (s, a)-RECTANGULAR KL UNCERTAINTY SET

(s, a)-rectangularity. An uncertainty set U is called (s, a)-rectangular if it satisfies:
U = ×s,a Us,a where Us,a ⊆ P(S) .

19
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Algorithm 4 Evaluators for KL Uncertainty Set

1: Input: Policy π, nominal transition kernel P , regularization parameter C ′
KL > 0, and index

n ∈ J0, NK.
2: Repeat Equation (25) and compute its fixed point Q(∞)

cn .
3: P ⋆

n(· | s, a) ∝ P (· | s, a) exp
(
V

(∞)
cn (·)/C ′

KL

)
// Compute the worst-case environment

4: Qπ
cn,P⋆

n
:= (I − γP ⋆

nΠ
π)−1cn ∈ RS×A.

5: Jcn,P⋆
n
(π) :=

∑
(s,a)∈S×A µ(s)π(s, a)Qπ

cn,P⋆
n
(s, a)

6: dπP⋆
n
:= (1− γ)µ(I − γΠπP ⋆

n)
−1 ∈ RS

7: return (for Ĵn): Jcn,P⋆
n
(π)

8: return (for Ĵ∂
n ): HdπP⋆

n
(s)Qπ

cn,P⋆
n
(s, a) ∀(s, a) ∈ S ×A

For such (s, a)-rectangular uncertainty sets, the following robust DP update is a widely-used
approach to compute the worst-case Q-function:

(Robust DP) Q(t+1)
cn (s, a) = cn(s, a) + γ max

p∈Us,a

∑
s′∈S

p(s′)V (t)
cn (s′)

where V (t)
cn (s′) :=

∑
a′∈A

π(s′, a′)Q(t)
cn (s

′, a′) .
(19)

By repeatedly applying Equation (19), Q
(t)
cn converges linearly to Qπ

cn,P⋆
n

, where
P ⋆
n ∈ argmaxP∈U Jcn,P (π) (see, e.g., Corollary 2 in Iyengar (2005)).

Once we have Qπ
cn,P⋆

n
, thanks to the rectangularity, the worst-case environment can be computed by:

P ⋆
n(· | s, a) = argmax

p∈Us,a

∑
s′∈S

p(s′)V π
cn,P⋆

n
(s′) ∀(s, a) ∈ S ×A . (20)

KL uncertainty set. Both Equation (19) and Equation (20) require an efficient computation of
maxp∈Us,a

⟨p, v⟩ for some vector v ∈ RS . The KL uncertainty set is one of the most popular choices,
as it allows for efficient computation of this maximization (Iyengar, 2005; Yang et al., 2022).

For some positive constant CKL > 0, if Us,a satisfies

Us,a = {p ∈ P(S) |KL[p ∥P (· | s, a)] ≤ CKL} ,

we call U a (s, a)-rectangular KL uncertainty set. Here, KL[p ∥ q] =
∑

s∈S p(s) ln p(s)
q(s) denotes

the KL divergence between p ∈ P(S) and q ∈ P(S). Due to Lemma 1, this U clearly satisfies
Assumption 2.

The following lemma is useful for implementing the robust DP update with a KL uncertainty set.

Lemma 4 (Lemma 4 in Iyengar (2005)). Let v ∈ RS and 0 < q ∈ P(S). The value of the
optimization problem:

min
p∈P(S)

⟨p, v⟩ such that KL[p ∥ q] ≤ CKL (21)

is equal to

−min
θ≥0

θ · CKL + θ ln
〈
q, exp

(
−v

θ

)〉
. (22)

Let θ⋆ be the solution of Equation (22). Then, the solution of Equation (21) is

p ∝ q exp
(
− v

θ⋆

)
.
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Using this lemma, Equation (19) can be implemented by

Q(t+1)
cn (s, a) = cn(s, a) + γ

∑
s′∈S

P ⋆
s,a(s

′)V (t)
cn (s′)

where P ⋆
s,a ∝ P (· | s, a) exp

(
V

(t)
cn (·)
θ⋆s,a

)

and θ⋆s,a := argmin
θ≥0

θ · CKL + θ ln

〈
P (· | s, a), exp

(
V

(t)
cn (·)
θ

)〉
.

(23)

Regularized alternative. While Equation (22) is a convex optimization problem, solving it for
all P (· | s, a) ∀(s, a) ∈ S ×A in Equation (23) is computationally extensive in practice.

Rather than the exact constrained problem of Equation (21), Yang et al. (2023) proposed the
following regularized robust DP update:

Q(t+1)
cn (s, a) = cn(s, a) + γ max

p∈P(S)

(∑
s′∈S

p(s′)V (t)
cn (s′)− C ′

KLKL[p ∥P (· | s, a)]

)
, (24)

where C ′
KL > 0 is a constant. This regularized form has the following efficient analytical solution:

Q(t+1)
cn (s, a) = cn(s, a) + γ

∑
s′∈S

P ⋆
s,a(s

′)V (t)
cn (s′)

where P ⋆
s,a ∝ P (· | s, a) exp

(
V

(t)
cn (·)
C ′

KL

)
.

(25)

While this is a regularized approximation, the following lemma shows that Equation (25) solves
some exact robust DP with a KL uncertainty set:

Lemma 5 (Adaptation of Proposition 3.1 and Theorem 3.1 in Yang et al. (2023)). For any
C ′

KL > 0, there exists CKL > 0 such that Equation (24) converges linearly to the fixed point of
Equation (23).

Algorithm 4 summarizes the regularized DP update to implement the algorithms. Our experiment
(b) in Section 6 uses Algorithm 4.

D EXPERIMENT DETAILS

Environment construction. For the settings with finite uncertainty sets (a), the parameters are
set as S = 7, A = 4, γ = 0.995. We set γ = 0.99 for the CMDP setting (c). For the setting with
KL uncertainty set (b), we set S = 5, A = 3, and γ = 0.99.

EpiRC-PGS implementation. For the policy gradient subroutine (Algorithm 2), we set the iter-
ation length T and the learning rate α to ensure that Assumption 4 is satisfied with a sufficiently
small εopt. Specifically, for (a) and (c), we set the iteration length to T = 104 and the learning rate
to α = 5× 10−5. For (b), we set T = 103 and α = 5× 10−4.

Notably, parameter tuning for EpiRC-PGS is straightforward, as any sufficiently large T and small
α should meet the conditions of Assumption 4. Since the initial policy in Algorithm 2 can be chosen
arbitrarily, the (k − 1)-th policy from the outer loop is used as the initial policy for the k-th policy
computation.

For the finite uncertainty set settings (a) and (c), we implement the evaluators Ĵn and Ĵ∂
n using

Algorithm 3. For the KL uncertainty set setting (b), we implement Ĵn and Ĵ∂
n using Algorithm 4

with C ′
KL = 2.0.
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Algorithm 5 Lagrangian Formulation Policy Gradient Search (LF)

1: Input: Outer iteration length K ∈ N, inner iteration length T ∈ N, learning rate for Lagrangian
multipliers αλ > 0, learning rate for policy απ > 0

2: Initialize the Lagrangian multipliers λ(0) = 0 ∈ RN

3: Set an arbitrary initial policy π(0) ∈ Π
4: for k = 0, · · · ,K − 1 do
5: Set the initial policy π(k,0) := π(k) for the inner loop
6: for t = 0, · · · , T − 1 do
7: g(k,t) ∈ ∂Lλ(k)(π(k,t)) // Compute policy gradient
8: π(k,t+1) := ProjΠ(π

(k,t) − απg
(k,t)) // Policy update

9: end for
10: Set the new policy: π(k+1) := π(k,t⋆) where t⋆ ∈ argmint∈J0,T−1K Lλ(k)(π(k,t))

11: Update Lagrangian multipliers: λ
(k+1)
n := max

{
λ
(k)
n + αλ

(
Jn,U (π

(k+1))− bn
)
, 0
}

for all
n ∈ J1, NK

12: end for

LF implementation. The pseudocode for LF is shown in Algorithm 5. We set the iteration length
and learning rate for the inner policy optimization to T = 104 and απ = 5 × 10−5 in (a, c), and
T = 103 and απ = 5 × 10−4 in (b). Similar to EpiRC-PGS, these values are chosen to expect
sufficient optimization in the inner loop. We choose αλ = 0.01 from {0.1, 0.01, 0.001} for the outer
updates, balancing between the convergence speed and performance.

E ADDITIONAL DEFINITIONS

Throughout this section, let X denote a set such that X ⊂ Rd with d ∈ N.

Definition 2 (Subgradient (Kruger, 2003)). Let X ⊂ Rd be an open set where d ∈ N. The (Fréchet)
subgradient of a function f : X → R at a point x ∈ X is defined as the set

∂f(x) :=

{
u ∈ X

∣∣∣∣ lim inf
x′→x,x′ ̸=x

f(x′)− f(x)− ⟨u, x′ − x⟩
∥x′ − x∥2

≥ 0

}
.

Furthermore, if ∂f(x) is a singleton, its element is denoted as ∇f(x) and called the (Fréchet)
gradient of f at x.

Definition 3 (Lipschitz continuity). Let ℓ ≥ 0. A function f : X → R is ℓ-Lipschitz if for any
x1, x2 ∈ X , we have that

∥f(x1)− f(x2)∥2 ≤ ℓ∥x1 − x2∥2 .

Definition 4 (Smoothness). Let ℓ ≥ 0. A function f : X → R is ℓ-smooth if for any x1, x2 ∈ X ,
we have that

∥∇f(x1)−∇f(x2)∥2 ≤ ℓ∥x1 − x2∥2 .

Definition 5 (Weak convexity). Let ℓ > 0. A function f : X → R is ℓ-weakly convex if for any
g ∈ ∂f(x) and x, x′ ∈ X ,

f(x′)− f(x) ≥ ⟨g, x′ − x⟩ − ℓ

2
∥x′ − x∥22 .

Note that f(x) + ℓ
2∥x∥

2
2 is convex in X if and only if f is ℓ-weakly convex.

Definition 6 (Moreau envelope of a weakly convex function). Given a ℓ-weakly convex function
f : X → R and a parameter 0 < τ < ℓ−1, the Moreau envelope function of f is given by
Mτ ◦ f : Rd → R such that

(Mτ ◦ f)(x) = min
x′∈X

{
f(x′) +

1

2τ
∥x− x′∥22

}
.
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F USEFUL LEMMAS

Throughout this section, X denotes a compact set such that X ⊂ Rd, where d ∈ N.

Lemma 6 (Lemma D.2. in Wang et al. (2023)). Let ℓ ≥ 0 and h : X → R be an ℓ-smooth function.
Then, h is a ℓ-weakly convex function.

Lemma 7 (e.g., Proposition 13.37 in Rockafellar & Wets (2009)). Let f : X → R be an
ℓ-weakly convex function, and let 0 < τ < ℓ be a parameter. The Moreau envelope function
Mτ ◦ f : Rd → R is differentiable, and its gradient is given by

∇(Mτ ◦ f)(x) =
1

τ

(
x− argmin

x′∈X

(
f(x′) +

1

2τ
∥x− x′∥22

))
.

Lemma 8 (Sion’s minimax theorem (Sion, 1958)). Let n,m ∈ N. Let X ⊂ Rn be a compact convex
set and Y ⊂ Rm a convex set. Suppose that f : X × Y → R satisfies the following two properties:

• f(x, ·) is upper semicontinuous and quasi-concave on Y for any x ∈ X .

• f(·, y) is lower semicontinuous and quasi-convex on X for any y ∈ Y .

Then, minx∈X supy∈Y f(x, y) = supy∈Y minx∈X f(x, y).

Lemma 9 (e.g., Problem 9.13, Page 99 in Clarke et al. (2008)). Let Y ⊂ Rm be a compact set
and f : Rd × Y → R be a continuous function of two arguments. Consider a point x̄ ∈ Rd and let
Ω(x̄) ⊂ Rd be its neighborhood. For any (x, y) ∈ Ω(x̄)× Y , suppose that the gradient ∇xf(x, y)
exists and is jointly continuous.

Let h(x̄) := maxy∈Y f(x̄, y). Then, the subgradient of h at x̄ is given by

∂h(x̄) = conv

{
∇xf(x̄, y)

∣∣∣∣ y ∈ argmax
y∈Y

f(x̄, y)

}
.

Lemma 10. Let N ∈ N. Let fi : X → R for i ∈ J1, NK be ℓ-weakly convex functions for some
ℓ ≥ 0. Define the pointwise maximum function f : X → R as

f(x) = max{f1(x), · · · , fN (x)} ∀x ∈ X .

Then, for any x ∈ X ,

∂f(x) = conv
{
g ∈ Rd

∣∣ g ∈ ∂fi(x), fi(x) = f(x)
}
.

Proof. The claim directly follows from Theorem 1.3 and Theorem 1.5 in Mikhalevich et al.
(2024).

Lemma 11 (Maximum difference inequality). Let N ∈ N. For two sets of real numbers {xi}i∈J1,NK
and {yi}i∈J1,NK, where xi, yi ∈ R,∣∣∣∣ max

i∈J1,NK
xi − max

i′∈J1,NK
yi′

∣∣∣∣ ≤ max
i∈J1,NK

|xi − yi| .

Proof. For any i ∈ J1, NK,

max
i∈J1,NK

xi = max
i∈J1,NK

xi − yi + yi ≤ max
i∈J1,NK

(xi − yi) + max
i′∈J1,NK

yi′

=⇒ max
i∈J1,NK

xi − max
i′∈J1,NK

yi′ ≤ max
i∈J1,NK

xi − yi .

By the symmetry of xi and yi, we have maxi∈J1,NK yi − maxi′∈J1,NK xi′ ≤ maxi∈J1,NK yi − xi.
Therefore, ∣∣∣∣ max

i∈J1,NK
xi − max

i′∈J1,NK
yi′

∣∣∣∣ ≤ max
i∈J1,NK

|xi − yi| .
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Lemma 12 (Point-wise maximum preserves weak convexity). Let h : X → R and f : X →
R be ℓh- and ℓf -weakly convex functions, respectively. Then, g : X → R defined by g(x) =
max{h(x), f(x)} for any x ∈ X is ℓ-weakly convex, where ℓ := max{ℓh, ℓf}.

Proof. By the definition of weak convexity, for any θ ∈ [0, 1] and x, y ∈ X ,

h(θx+ (1− θ)y) +
ℓh
2
∥θx+ (1− θ)y∥22 ≤ θ

(
h(x) +

ℓh
2
∥x∥22

)
+ (1− θ)

(
h(y) +

ℓh
2
∥y∥22

)
.

A similar inequality holds for f . Then,

g(θx+ (1− θ)y) +
ℓ

2
∥θx+ (1− θ)y∥22

=max{h(θx+ (1− θ)y), f(θx+ (1− θ)y)}+ ℓ

2
∥θx+ (1− θ)y∥22

=max

{
h(θx+ (1− θ)y) +

ℓ

2
∥θx+ (1− θ)y∥22, f(θx+ (1− θ)y) +

ℓ

2
∥θx+ (1− θ)y∥22

}
≤max

{
θh(x) + (1− θ)h(y) +

ℓ

2

(
θ∥x∥22 + (1− θ)∥y∥22

)
, θf(x) + (1− θ)f(y) +

ℓ

2

(
θ∥x∥22 + (1− θ)∥y∥22

)}
=max{θh(x) + (1− θ)h(y), θf(x) + (1− θ)f(y)}+ ℓ

2

(
θ∥x∥22 + (1− θ)∥y∥22

)
≤θ

(
max{h(x), f(x)}+ ℓ

2
∥x∥22

)
+ (1− θ)

(
max{h(y), f(y)}+ ℓ

2
∥y∥22

)
=θ

(
g(x) +

ℓ

2
∥x∥22

)
+ (1− θ)

(
g(y) +

ℓ

2
∥y∥22

)
.

Therefore, g is ℓ-weakly convex.

Lemma 13. Let NX (x) be the normal cone of X at x ∈ X , defined as

NX (x) :=
{
g ∈ Rd

∣∣ ⟨g, y⟩ ≤ ⟨g, x⟩ ∀y ∈ X
}
.

Define the indicator function IX : Rd → R such that

IX (x) =

{
0 if x ∈ X
∞ otherwise

.

Then, ∂IX (x) = NX (x) for any x ∈ X .

Proof. Note that any g ∈ ∂IX (x) satisfies

IX (y) ≥ IX (x) + ⟨g, y − x⟩ ∀y ∈ Rd . (26)

Suppose that g /∈ NX (x). Then, there exists y′ ∈ X such that ⟨g, x⟩ < ⟨g, y′⟩, which contradicts
Equation (26). Therefore, g ∈ NX (x) for any g ∈ ∂IX (x) and thus ∂IX (x) ⊆ NX (x).

Consider g ∈ NX (x). It satisfies 0 ≥ ⟨g, y − x⟩ for any y ∈ X . Since x ∈ X and by the definition
of IX , Equation (26) holds for any y ∈ Rd. Therefore, NX (x) ⊆ ∂IX (x). This concludes the
proof.

Lemma 14. Let h : X → R be an ℓ-weakly convex function. For 0 < τ < 1/ℓ, define

xτ ∈ argmin
x′∈X

h(x′) +
1

2τ
∥x− x′∥22 .

Then, there exists a subgradient g ∈ ∂h(xτ ) such that, for any y ∈ X ,

⟨g, xτ − y⟩ ≤ ⟨∇(Mτ ◦ h)(x), xτ − y⟩
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Proof. Let f : Rd → R be a function such that f(x) = h(x) + IX (x).

The Moreau envelope function of f satisfies that, for any x ∈ Rd,

(Mτ ◦ f)(x) = min
x′∈Rd

{
h(x′) + IX (x′) +

1

2τ
∥x− x′∥22

}
= min

x′∈X

{
h(x′) +

1

2τ
∥x− x′∥22

}
.

It holds that ∇(Mτ ◦ f)(x) = 1
τ (x− xτ ) due to Lemma 7.

Note that

xτ ∈ argmin
x′∈X

h(x′) +
1

2τ
∥x− x′∥22 = argmin

x′∈Rd

h(x′) + IX (x′) +
1

2τ
∥x− x′∥22 .

It is clear that xτ is a minimizer of the function ϕx(x
′) := h(x′) + IX (x′) + 1

2τ ∥x− x′∥22.
Therefore, it holds that 0 ∈ ∂ϕx(xτ ). Accordingly,

0 ∈ ∂

(
h(y) + IX (y) +

1

2τ
∥x− y∥22

)∣∣∣∣
y=xτ

=⇒ −1

τ
(xτ − x) ∈ ∂(h(y) + IX (y))|y=xτ

.

Due to Lemma 13, ∂IX (x) = NX (x). Therefore, there exists a subgradient g ∈ ∂h(xτ ) such that

−g − 1

τ
(xτ − x) ∈ NX (xτ ) .

Since any z ∈ NX (xτ ) satisfies ⟨z, y − xτ ⟩ ≤ 0 for any y ∈ X , it holds that

⟨−g, y − xτ ⟩ ≤
〈
1

τ
(xτ − x) , y − xτ

〉
, ∀y ∈ X .

Then the claim follows from the fact that 1
τ (x− xτ ) = ∇(Mτ ◦ h)(x) due to Lemma 7.

Lemma 15 (Linear optimization on convex hull). Given c ∈ Rd and a compact set X ⊂ Rd, it
holds that

min
x∈X

⟨c, x⟩ = min
x∈conv{X}

⟨c, x⟩ .

Proof. Let x⋆ ∈ argminx∈conv{X}⟨c, x⟩. The claim holds for x⋆ ∈ X . Suppose that x⋆ /∈ X .
Then, by the definition of the convex hull, there exist y, z ∈ X and θ ∈ (0, 1) such that y ̸= z and

x⋆ = θy + (1− θ)z .

Since x⋆ is a minimizer, we have

⟨c, x⋆⟩ ≤ ⟨c, y⟩ and ⟨c, x⋆⟩ ≤ ⟨c, z⟩ .

Accordingly,

⟨c, x⋆⟩ = θ⟨c, x⋆⟩+ (1− θ)⟨c, x⋆⟩ ≤ θ⟨c, y⟩+ (1− θ)⟨c, z⟩ = ⟨c, x⋆⟩ .

The inequality must be an equality, and thus

θ (⟨c, y⟩ − ⟨c, x⋆⟩)︸ ︷︷ ︸
≥0

+(1− θ) (⟨c, z⟩ − ⟨c, x⋆⟩)︸ ︷︷ ︸
≥0

= 0 .

Since θ ∈ (0, 1), it holds that
⟨c, y⟩ = ⟨c, z⟩ = ⟨c, x⋆⟩ .

The above equality means that both y and z ∈ X satisfy ⟨c, y⟩ = ⟨c, z⟩ = minx∈conv{X}⟨c, x⟩.
Therefore, minx∈X ⟨c, x⟩ = minx∈conv{X}⟨c, x⟩.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

G USEFUL LEMMAS FOR MDPS

Lemma 16 (Lemma 3.1 in Wang et al. (2023)). Let

ℓLp := H2
√
A and ℓsm := 2γAH3 .

For any π, π′ ∈ Π, P : S ×A → P(S), µ ∈ P(S), and c ∈ [0, 1]S×A,

|Jc,P (π)− Jc,P (π
′)| ≤ ℓLp∥π − π′∥2 , ∥∇Jc,P (π)−∇Jc,P (π)∥2 ≤ ℓsm∥π − π′∥2 ,

and |Jc,U (π)− Jc,U (π)| ≤ ℓLp∥π − π′∥2 .

Furthermore, Jc,P (π) is ℓsm-weakly convex in Π, as follows directly from Lemma 6.
Lemma 17 (e.g., Lemma 4.1 in Agarwal et al. (2021) and Lemma E.2 in Wang et al. (2023)). Let
µ ∈ P(S) such that mins∈S µ(s) > 0. For any π ∈ Π, P : S ×A → P(S), and c ∈ [0, 1]S×A,

Jc,P (π)− Jc,P (π
⋆
c,P ) ≤ H

∥∥∥∥∥d
π⋆
c,P

P

µ

∥∥∥∥∥
∞

max
π′∈Π

⟨π − π′,∇Jc,P (π)⟩ ,

where π⋆
c,P ∈ argminπ′∈Π Jc,P (π

′).

H PROOF OF THEOREM 1

Proof of Theorem 1. Consider the deterministic RCMDP shown in Figure 1a with N = 1,
U = {P1, P2}, S = {s1, s2, s3, s4}, and A = {a1, a2}. Set the initial distribution such that
µ(s1) = µ(s2) = µ(s3) = µ(s4) = 1/4.

First part of Theorem 1. We set λ = 1. The threshold b1 can be arbitrary.

Let π1 and π2 be two policies such that π1 always chooses a1 and π2 always chooses a2 in any
state. For any δ > 0, we will show two results:

• Equation (28): Lλ(π2)−minπ∈Π Lλ(π) ≥ Hγ
4 − 3Hδ

4 .

• Equation (30): (∇Lλ(π2))(·, a1) > (∇Lλ(π2))(·, a2).

The former shows the suboptimality of π2, and the latter indicates that π2 is a local minimum.

According to the RCMDP construction, for any π ∈ Π, we have

µ(s3)V
π
c0,P1

(s3) + µ(s4)V
π
c0,P1

(s4) =
H

4
(1 + γ) ,

µ(s3)V
π
c0,P2

(s3) + µ(s4)V
π
c0,P2

(s4) =
H

4
(1− γ) ,

µ(s3)V
π
c1,P1

(s3) + µ(s4)V
π
c1,P1

(s4) =
H

4
(1− γ) ,

µ(s3)V
π
c1,P2

(s3) + µ(s4)V
π
c1,P2

(s4) =
H

4
(1 + γ) .

For π1 and π2, it is easy to verify that

µ(s1)V
π1

c0,P1
(s1) + µ(s2)V

π1

c0,P1
(s2) =

1

4

(
δ + γ + γ2δ + · · ·

)
+

1

4

(
1 + γδ + γ2 + · · ·

)
=

H

4
(1 + δ) ,

µ(s1)V
π1

c0,P2
(s1) + µ(s2)V

π1

c0,P2
(s2) =

1

4

(
δ + γ + γ2 + · · ·

)
+

1

4

(
1 + γ + γ2 + · · ·

)
=

H

4
(1 + γ) +

δ

4
,

µ(s1)V
π1

c1,P1
(s1) + µ(s2)V

π1

c1,P1
(s2) =

H

2
, µ(s1)V

π1

c1,P2
(s1) + µ(s2)V

π1

c1,P2
(s2) =

H

2
,

µ(s1)V
π2

c0,P1
(s1) + µ(s2)V

π2

c0,P1
(s2) =

H

2
, µ(s1)V

π2

c0,P2
(s1) + µ(s2)V

π2

c0,P2
(s2) =

H

2
,

µ(s1)V
π2

c1,P1
(s1) + µ(s2)V

π2

c1,P1
(s2) =

H

4
(1 + γ − 2δ) ,

µ(s1)V
π2

c1,P2
(s1) + µ(s2)V

π2

c1,P2
(s2) =

H

4
(1 + γ − 2δ) .
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Therefore,

Jc0,P1(π1) =
H

2
+

H

4
(γ + δ) , Jc0,P2(π1) =

H

2
+

δ

4
,

Jc1,P1
(π1) =

H

4
(3− γ) , Jc1,P2

(π1) =
H

4
(3 + γ) ,

Jc0,P1(π2) =
H

4
(3 + γ) , Jc0,P2(π2) =

H

4
(3− γ) ,

Jc1,P1
(π2) =

H

2
− Hδ

2
, Jc1,P2

(π2) =
H

2
+

Hγ

2
− Hδ

2
,

(27)

Hence,

Jc0,U (π1) = Jc0,P1
(π1) =

H

2
+

Hγ

4
+

Hδ

4
, Jc1,U (π1) = Jc1,P2

(π1) =
H

4
(3 + γ) ,

Jc0,U (π2) = Jc0,P1
(π2) =

H

4
(3 + γ) , Jc1,U (π2) = Jc1,P2

(π2) =
H

2
+

Hγ

2
− Hδ

2
.

Accordingly, since λ = 1, we have

Lλ(π2)−min
π∈Π

Lλ(π) ≥ Lλ(π2)− Lλ(π1) ≥
Hγ

4
− 3Hδ

4
. (28)

The next task is to show that (∇Lλ(π2))(·, a1) > (∇Lλ(π2))(·, a2).
By using Lemma 10, it is easy to show that

∇Lλ(π2) = ∇Jc0,P1
(π2) +∇Jc1,P2

(π2) .

Since dπ2

P1
(s) = dπ2

P2
(s) = 0.251 and due to Lemma 1, we have

4

H
∇Lλ(π2) = Qπ2

c0,P1
+Qπ2

c1,P2
.

Note that
4

H
(∇Lλ(π2))(s1, a1) = Qπ2

c0,P1
(s1, a1) +Qπ2

c1,P2
(s1, a1) = (δ +Hγ) + (H −Hγδ) ,

4

H
(∇Lλ(π2))(s1, a2) = Qπ2

c0,P1
(s1, a2) +Qπ2

c1,P2
(s1, a2) = H +H(γ − δ) ,

4

H
(∇Lλ(π2))(s2, a1) = Qπ2

c0,P1
(s2, a1) +Qπ2

c1,P2
(s2, a1) = 2H ,

4

H
(∇Lλ(π2))(s2, a2) = Qπ2

c0,P1
(s2, a2) +Qπ2

c1,P2
(s2, a2) = 2H(1− δ) .

(29)

Therefore, since δ > 0,
4

H
((∇Lλ(π2))(s1, a1)− (∇Lλ(π2))(s1, a2)) = δ −Hγδ +Hδ = 2δ > 0 ,

4

H
((∇Lλ(π2))(s2, a1)− (∇Lλ(π2))(s2, a2)) = 2Hδ > 0 .

(30)

Now, with a sufficiently small R > 0, let Π̃2 := {π ∈ Π | ∥π − π2∥2 ≤ R, π ̸= π2} be policies
near π2. When R is sufficiently small, due to the Lipshictz continuity of Jcn,P (π) by Lemma 16,
Equation (27) indicates that

Jc0,U (π) = Jc0,P1
(π) and Jc1,U (π) = Jc1,P2

(π) ∀π ∈ Π̃2 . (31)

Similarly, due to Equation (31) with the Lipshictz continuity of ∇Jn,P (π) by Lemma 16,
Equation (29) and Equation (30) indicate that,

(∇Lλ(π))(·, a1) > (∇Lλ(π))(·, a2) ∀π ∈ Π̃2 .

Therefore, since π2 always chooses a2, we have Lλ(π2) < Lλ(π) ∀π ∈ Π̃2 for a sufficiently small
R > 0. The first part of the claim holds by setting δ = γ/4 with Equation (28).
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Second part of Theorem 1. Consider again the deterministic RCMDP given in the previous part
of the proof with δ = γ/4. For a value b1 ∈ R, define a function Ψb1 : R → R such that

Ψb1(λ) = min
π∈Π

Jc0,U (π) + λJc1,U (π)− λb1 = min
π∈Π

Lλ(π) .

We first show that, when b1 ranges from 0 to H , the arg supλ∈R+
Ψb1(λ) ranges from ∞ to 0.

Since U = {P1, P2}, Lemma 10 and Lemma 1 indicates that, for any λ ∈ R and b1 ∈ R,

∂λΨb1(λ) ⊆ conv{Jc1,P (π)− b1 | π ∈ Π, P ∈ {P1, P2}} . (32)

Since µ = 1
4 · 1 and due to the construction of the RCMDP in Figure 1a, it is easy to verify that,

min
π∈Π

min
P∈U

Jc1,P (π) ≥ min
π∈Π

min
P∈U

min
s∈{s3,s4}

1

4
V π
c1,P (s) =

1

4
,

max
π∈Π

max
P∈U

Jc1,P (π) ≤
H

2
+ max

π∈Π
max
P∈U

1

4

(
V π
c1,P (s3) + V π

c1,P (s4)
)
= H − 1

4
.

By inserting this to Equation (32), for any λ ∈ R and b1 ∈ R, we have

1

4
− b1 ≤ g ≤ H − 1

4
− b1 ∀g ∈ ∂λΨb1(λ) . (33)

Therefore,

• When b1 ∈ [0, 1/4), g ∈ ∂λΨ0(λ) must satisfy g > 0 for any λ. Thus,
{∞} = arg supλ∈R+

Ψb1(λ) for any b1 ∈ [0, 1/4). Moreover, supλ∈R+
Ψb1(λ) = ∞.

• When b1 ∈ (H − 1/4, H], g ∈ ∂λΨb1(λ) must satisfy g < 0 for any λ. Thus, {0} =
argmaxλ∈R+

Ψb1(λ) for any b1 ∈ (H − 1/4, H]. Moreover, maxλ∈R+ Ψb1(λ) ≤ H .

Next, we will show that there exists b1 such that 1 ∈ argmaxλ∈R+
Ψb1(λ). From now, we only

consider sufficiently large b1 such that the value of argmaxλ∈R+
Ψb1(λ) becomes finite.

Let Ψ⋆
b1

:= maxλ∈R+
Ψb1(λ) and f(b1) :=

Ψ⋆
b1

−Ψ⋆
H

b1−H . Since f(H − 1/5) = 0, f(0) = −∞, and
f(b1) is continuous in b1, the intermediate value theorem ensures that there exists b′1 ∈ [0, H] such
that f(b′1) = −1. Moreover, the generalized mean value theorem (Theorem 2.3.7 in Clarke (1990))
states that there exists b⋆1 ∈ [b′1, H] such that −1 = f(b′1) ∈ ∂b1Ψ

⋆
b⋆1

.

Let Λb1 be the set that provides maximums of Ψb1 , i.e., Λb1 := argmaxλ∈R+ Ψb1(λ). Using
Lemma 9,

−1 ∈ ∂b1Ψ
⋆
b⋆1

= conv
{
∇b1Ψb⋆1

(λ)
∣∣ λ ∈ Λb⋆1

}
= conv

{
−λ

∣∣ λ ∈ Λb⋆1

}
= [−maxΛb⋆1

,−minΛb⋆1
] .

Since Ψb1(λ) is concave in λ, any λ ∈ [minΛb1 ,maxΛb1 ] provides maxλ∈R+ Ψb1(λ). Thus, 1 ∈
argmaxλ∈R+

Ψb⋆1
(λ). This proves the existence of b1 such that 1 ∈ argmaxλ∈R+

minπ∈Π Lλ(π).

I MISSING PROOFS IN SECTION 5

I.1 PROOF OF LEMMA 2

Proof of Lemma 2. We prove the first claim. Recall the definition of ∆⋆
b0

:

∆⋆
b0 = min

π∈Π
∆b0(π) = min

π∈Π
max

n∈J0,NK
Jcn,U (π)− bn . (34)

It is easy to see that ∆b0(π) is monotonically decreasing in b0. Consider two real numbers x ≤ y
and let πx ∈ argminπ∈Π ∆x(π). Then,

∆⋆
y = min

π∈Π
∆y(π) ≤ ∆y(π

x) ≤ ∆x(π
x) = min

π∈Π
∆x(π) = ∆⋆

x .
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Therefore, ∆⋆
b0

is monotonically decreasing in b0.

Next, we prove the second claim. Suppose that ∆⋆
J⋆ < 0. Then, there exists a feasible policy

π ∈ ΠF such that Jc0,U (π) < J⋆ = Jc0,U (π
⋆). This contradicts the definition of the optimal policy.

Therefore, ∆⋆
J⋆ ≥ 0.

Suppose that ∆⋆
J⋆ > 0. Since minπ∈Π ∆J⋆(π) > 0, no feasible policy achieves the objective return

J⋆. This also contradicts the existence of the optimal policy. Therefore, ∆⋆
J⋆ = 0.

I.2 PROOF OF THEOREM 2

Proof of Theorem 2. We first prove Equation (9) by contradiction. Let x :=
min

{
b0 ∈ [0, H]

∣∣∆⋆
b0

≤ 0
}

and suppose that x < J⋆. Since ∆⋆
J⋆ = 0 by Lemma 2, there

exists a feasible policy π ∈ ΠF such that Jc0,U (π) ≤ x < J⋆ = Jc0,U (π
⋆). This contradicts the

definition of the optimal policy.

We then show that Equation (9) provides π⋆. Since ∆⋆
J⋆ = 0 by Lemma 2, any policy

π ∈ argminπ∈Π ∆b0(π) is feasible and satisfies Jc0,U (π) = J⋆. The claim directly follows from
the definition of an optimal policy.

I.3 PROOF OF LEMMA 3

Instead of Lemma 3, we prove the following lemma that includes Lemma 3.

Lemma 18 (Properties of ∆b0 ). The following properties hold for any b0 ∈ R.

1. (Lipschitz continuity): For any π, π′ ∈ Π, |∆b0(π)−∆b0(π
′)| ≤ ℓLp∥π − π′∥2 with

ℓLp := H2
√
A.

2. (Weak convexity): ∆b0(π) +
ℓsm
2 ∥π∥22 is convex in π with ℓsm := 2γAH3.

3. (Subdifferentiability): For any π ∈ Π, the subgradient of ∆b0 at π is given by

∂∆b0(π) = conv{∇πJcn,P (π) | n, P ∈ W} ,

where convB represents the convex hull of a set B ⊂ RS×A.

Proof of Lipschitz continuity.

|∆b0(π)−∆b0(π
′)| ≤

∣∣∣∣ max
n∈J0,NK

{Jcn,U (π)− bn} − max
m∈J0,NK

{Jm,U (π
′)− bm}

∣∣∣∣
(a)

≤ max
n∈J0,NK

|Jcn,U (π)− bn − (Jcn,U (π
′)− bn)|

(b)

≤ ℓLp∥π − π′∥2

where (a) uses Lemma 11 and (b) is due to Lemma 16. This concludes the proof of the Lipschitz
continuity.

Proof of weak convexity. The weak convexity of ∆b0(π) = maxn∈J0,NK Jcn,U (π)−bn immediately
follows from the weak convexity of Jcn,U (π) due to Lemma 16 with Lemma 12.

Proof of subdifferentiability. Suppose that U is a finite set. The claim directly follows from
Lemma 10 with the weak convexity of Jcn,P (π) due to Lemma 16.

Suppose that U is a compact set such that, for any π ∈ Π, ∇Jcn,P (π) is continuous with respect to
P ∈ U . Danskin’s theorem (Lemma 9) indicates that, for any n ∈ J0, NK,

∂Jcn,U (π) = conv

{
∇Jcn,P (π)

∣∣∣∣ P ∈ argmax
P∈U

Jcn,P (π)− bn

}
.
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Then, using Lemma 10 with the weak convexity of Jcn,U (π) due to Lemma 18, we have

∂∆b0(π) = conv

{
g

∣∣∣∣∣ g ∈ ∂Jcn,U (π) where n ∈ argmax
n∈J0,NK

Jcn,U (π)− bn

}

= conv

{
∇Jcn,P (π)

∣∣∣∣∣ n, P ∈ argmax
(n,P )∈J0,NK×U

Jcn,P (π)− bn

}
.

I.4 PROOF OF THEOREM 4

Proof of Theorem 4. We introduce shorthands G and W such that

G = {∇Jcn,P (π) | n, P ∈ Wb0(π)} and W = argmax
(n,P )∈J0,NK×U

Jcn,P (π)− bn . (35)

Let π⋆
b0

∈ argminπ∈Π ∆b0(π). For any π ∈ Π and b0 ∈ R, we have

∆b0(π)−∆b0(π
⋆
b0)

=

(
max

n∈J0,NK
max
P∈U

Jcn,P (π)− bn

)
−
(

max
n∈J0,NK

max
P∈U

Jcn,P (π
⋆
b0)− bn

)
=

(
min

n,P∈W
Jcn,P (π)− bn

)
−
(

max
n∈J0,NK

max
P∈U

Jcn,P (π
⋆
b0)− bn

)
≤ min

n,P∈W
(Jcn,P (π)− bn)−

(
Jcn,P (π

⋆
b0)− bn

)
= min

n,P∈W
Jcn,P (π)− Jcn,P (π

⋆
b0)

≤ min
n,P∈W

Jcn,P (π)− min
π′∈Π

Jcn,P (π
′)

(a)

≤ H min
n,P∈W

∥∥∥∥∥d
π⋆
n,P

P

µ

∥∥∥∥∥
∞

max
π′∈Π

⟨π − π′,∇πJcn,P (π)⟩︸ ︷︷ ︸
≥0 when π′ is greedy to ∇πJcn,P (π)

≤ DH min
n,P∈W

max
π′∈Π

⟨π − π′,∇πJcn,P (π)⟩

= DHmin
g∈G

max
π′∈Π

⟨π − π′, g⟩ ,

(36)

where (a) uses Lemma 17.

The claim holds by showing that

min
g∈G

max
π′∈Π

⟨π − π′, g⟩ = min
g∈∂∆b0

(π)
max
π′∈Π

⟨π − π′, g⟩ . (37)

Since conv{G} = ∂∆b0(π) due to Lemma 18, Equation (37) holds when there exists a
g⋆ ∈ argming∈conv{G} maxπ′∈Π⟨π − π′, g⟩ such that g⋆ ∈ G.

Let z⋆ ∈ argmaxπ′∈Π ming∈conv{G}⟨π − π′, g⟩. For any g⋆ ∈ argming∈conv{G} maxπ′∈Π⟨π −
π′, g⟩, it holds that

max
π′∈Π

⟨π − π′, g⋆⟩ = min
g∈conv{G}

max
π′∈Π

⟨π − π′, g⟩

(a)
= max

π′∈Π
min

g∈conv{G}
⟨π − π′, g⟩

= min
g∈conv{G}

⟨π − z⋆, g⟩

(b)
= min

g∈G
⟨π − z⋆, g⟩

(38)

where (a) uses Sion’s minimax theorem (Lemma 8) with the convexity of Π and conv{G}, and (b)
uses Lemma 15.
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Note that

⟨π − z⋆, g⋆⟩ ≤ max
π′∈Π

⟨π − π′, g⋆⟩ (a)
= min

g∈conv{G}
⟨π − z⋆, g⟩ ≤ ⟨π − z⋆, g⋆⟩ , (39)

where (a) is due to the third line of Equation (38). The inequality must be equality. Accordingly,

⟨π − z⋆, g⋆⟩ (a)
= max

π′∈Π
⟨π − π′, g⋆⟩ (b)

= min
g∈G

⟨π − z⋆, g⟩ ,

where (a) uses Equation (39) and (b) uses Equation (38). Therefore, g⋆ ∈ G and thus Equation (37)
holds. This concludes the proof.

J MISSING PROOFS IN SECTION 5

J.1 PROOF OF THEOREM 3

To facilitate the analysis with estimation error, we present a slightly modified version of the epigraph
form. Let ε ∈ R be an admissible violation parameter. We introduce the following formulation:

(Epigraphε) J⋆
ε := min

b0∈[0,H]
b0 such that ∆⋆

b0 ≤ ε . (40)

Note that J⋆
ε is monotonically decreasing in ε.

Additionally, we introduce a slightly generalized version of Theorem 2:
Lemma 19. For any ε1, ε2 ≥ 0, if b0 and a policy π ∈ Π satisfy b0 ≤ J⋆ + ε2 and ∆b0(π) ≤ ε1,
then π is an (ε1 + ε2)-optimal policy.

Proof. Note that Jc0,U (π) ≤ J⋆ + ε1 + ε2 and Jn,U (π) ≤ bn + ε1 for any n ∈ J1, NK. The claim
directly follows from Definition 1 and the fact that J⋆ = Jc0,U (π

⋆).

For any b0 ∈ [J⋆
ε1 , J

⋆ + ε2] with some ε1, ε2 ≥ 0, the subroutine returns a policy π = A (b0) such
that

∆b0
(π)

(a)

≤ min
π′∈Π

∆b0
(π′) + εopt

(b)

≤ min
π′∈Π

∆J⋆
ε1
(π′) + εopt

(c)

≤ ε1 + εopt,

where (a) is due to Assumption 4, (b) holds since ∆b0(π) is monotonically decreasing in b0, and (c)
follows from Equation (40). Consequently, by applying Lemma 19, π is (ε1 + ε2 + εopt)-optimal.

The following intermediate lemma guarantees that the search space of Algorithm 1 always contains
such b0 with ε1 = εest and ε2 = εest + εopt.

Lemma 20. Suppose that Algorithm 1 is run with algorithms Ĵn and A that satisfy Assumptions 1
and 4. For any k ∈ J0,KK, [i(k), j(k)] ∩ [J⋆

εest , J
⋆ + εest + εopt] ̸= ∅.

Proof. The claim holds for k = 0. Suppose that the claim holds for a fixed k. Recall ∆̂(k) defined
in Equation (10). If ∆̂(k) > 0, it holds that

−εest−εopt
(a)

< ∆̂(k)−
∣∣∣∆̂(k) −∆

b
(k)
0

(π(k))
∣∣∣−εopt ≤ ∆

b
(k)
0

(π(k))−εopt
(b)

≤ ∆
b
(k)
0

(π⋆)
(c)
= J⋆−b

(k)
0

(41)
where (a) is due to Assumption 1 with ∆̂(k) > 0, (b) is due to Assumption 4, and (c) holds
since π⋆ is a feasible policy. Combining this with the induction assumption and the update
rule of Equation (11), we have i(k+1) = b

(k)
0 ≤ J⋆ + εest + εopt and J⋆

εest ≤ j(k+1). Hence,
[i(k+1), j(k+1)] ∩ [J⋆

εest , J
⋆ + εest + εopt] ̸= ∅ when ∆̂(k) > 0.

On the other hand, if ∆̂(k) ≤ 0, we have

min
π

∆
b
(k)
0

(π) ≤ ∆
b
(k)
0

(π(k)) ≤ ∆̂(k) + εest ≤ εest . (42)

Since b(k)0 is the feasible solution to Equation (40), it holds that J⋆
εest ≤ b

(k)
0 = j(k+1). Accordingly,

we have [i(k+1), j(k+1)] ∩ [J⋆
εest , J

⋆ + εest + εopt] ̸= ∅. Therefore, the claim holds for any
k ∈ J0,KK.
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We are now ready to prove Theorem 3.

Proof of Theorem 3. Note that j(k) − i(k) ≤
(
j(0) − i(0)

)
2−k = H2−k due to the update rule of

Equation (11). According to Lemma 20, we have J⋆
εest ≤ j(K) ≤ J⋆ + εest + εopt + H2−K .

Additionally, the returned policy πret satisfies

∆j(K)(πret)
(a)

≤ min
π∈Π

∆j(K)(π) + εopt
(b)

≤ min
π∈Π

∆J⋆
εest

(π) + εopt ≤ εest + εopt ,

where (a) uses Assumption 4 and (b) is due to J⋆
εest ≤ j(K) and the fact that minπ ∆b0(π) is

monotonically decreasing in b0. Applying this to Lemma 19 with j(K) ≤ J⋆+ εest+ εopt+H2−K

concludes the proof.

J.2 PROOF OF THEOREM 5

We prove the following restatement of Theorem 5 with concrete values.
Theorem 6 (Restatement of Theorem 5). Suppose Assumptions 2 and 5 hold. Suppose that Algo-
rithm 2 is run with algorithms Ĵn and Ĵ∂ that satisfy Assumption 1 and Assumption 3. Let

C :=
ℓLp
2ℓsm

+ 2DH
√
S =

1

2γH
√
A

+ 2DH
√
S =︸︷︷︸

when γ ≈ 1

Õ(DH
√
S) ,

where ℓLp and ℓsm are defined in Lemma 18 and D is defined in Theorem 4. Assume that the
evaluators Ĵ and Ĵ∂ are sufficiently accurate such that

εgrd = C∂ε
2 where C∂ :=

1

1024C2ℓsm
√
S

and εest = CJε
2 where CJ :=

1

1024C2ℓsm
.

Set α = Cαε
2 and T = CT ε

−4 such that

Cα :=
1

64C2ℓsm(ℓ2Lp + εgrd)
and CT := 4096C4ℓ2smS(ℓ

2
Lp + ε2grd) = Õ

(
D4S3A3H14

)
.

Then, Algorithm 1 returns a policy π(t⋆) such that

∆b0(π
(t⋆))−min

π∈Π
∆b0(π) ≤ ε .

We first introduce the following useful lemma.

Lemma 21. Let
(
M 1

2ℓsm
◦ ∆b0

)
: π 7→ minπ′∈Π

{
∆b0(π

′) + ℓsm∥π − π′∥22
}

be the Moreau

envelope function of ∆b0(π) with parameter 1/2ℓsm. For any policy π ∈ Π,

∆b0(π)− min
π′∈Π

∆b0(π
′) ≤ C

∥∥∥∇(M 1
2ℓsm

◦ ∆b0

)
(π)
∥∥∥
2
.

Proof. Define π := argminπ′∈Π ∆b0(π
′) + ℓsm∥π − π′∥22. According to Lemma 14 with

τ = 1/2ℓsm, there exists a subgradient g ∈ ∂∆b0(π) such that, for any π′ ∈ Π,

⟨π − π′, g⟩ ≤
〈
∇
(
M 1

2ℓsm
◦ ∆b0

)
(π), π − π′

〉
(a)

≤
∥∥∥∇(M 1

2ℓsm
◦ ∆b0

)
(π)
∥∥∥
2
∥π − π′∥2

(b)

≤ 2
√
S
∥∥∥∇(M 1

2ℓsm
◦ ∆b0

)
(π)
∥∥∥
2
,

(43)

where (a) is due to the Cauchy–Schwarz inequality and (b) uses that, for any π′ ∈ Π

∥π − π′∥2 =

√∑
s∈S

∑
a∈A

(π(s, a)− π′(s, a))
2 ≤

√
Smax

s∈S

√∑
a∈A

(π(s, a)− π′(s, a))
2

≤
√
Smax

s∈S

∑
a∈A

|π(s, a)− π′(s, a)| ≤ 2
√
S .

(44)

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Let π⋆
b0

∈ argminπ∈Π ∆b0(π). Inserting this result into Theorem 4, we have

∆b0(π)−∆b0(π
⋆
b0) ≤ DH max

π′∈Π
⟨π − π′, g⟩ ∀g ∈ ∂∆b0(π)

≤ 2DH
√
S
∥∥∥∇(M 1

2ℓsm
◦ ∆b0

)
(π)
∥∥∥
2
.

Therefore,

∆b0(π)−∆b0(π
⋆
b0) = ∆b0(π)−∆b0(π) + ∆b0(π)−∆b0(π

⋆
b0)

(a)

≤ ∆b0(π)−∆b0(π) + 2DH
√
S
∥∥∥∇(M 1

2ℓsm
◦ ∆b0

)
(π)
∥∥∥
2

(b)

≤ ℓLp∥π − π∥2 + 2DH
√
S
∥∥∥∇(M 1

2ℓsm
◦ ∆b0

)
(π)
∥∥∥
2

(c)

≤ ℓLp
2ℓsm

∥∥∥∇(M 1
2ℓsm

◦ ∆b0

)
(π)
∥∥∥
2
+ 2DH

√
S
∥∥∥∇(M 1

2ℓsm
◦ ∆b0

)
(π)
∥∥∥
2
,

where (a) is due to Theorem 4, (b) is due to the Lipschitz continuity by Lemma 18, and (c) uses
Lemma 7. This concludes the proof.

Lemma 22. Under the settings of Theorem 6,

T−1∑
t=0

∥∥∥∇(M 1
2ℓsm

◦ ∆b0

)
(π(t))

∥∥∥2
2
≤ 16ℓsmS

α
+4T

(
αℓsm(ℓ

2
Lp + εgrd) + 4ℓsmεgrd

√
S + 2ℓsmεest

)
.

Proof. Recall that

π(t+1) ∈ argmin
π∈Π

〈
g(t), π − π(t)

〉
+

1

2α

∥∥∥π − π(t)
∥∥∥2 = ProjΠ

(
π(t) − αg(t)

)
.

Define π(t) := argminπ′ ∆b0(π
′) + ℓsm

∥∥π(t) − π′
∥∥2
2
. Then, we have(

M 1
2ℓsm

◦ ∆b0

)
(π(t+1)) = min

π∈Π
∆b0(π) + ℓsm

∥∥∥π(t+1) − π
∥∥∥2
2

≤ ∆b0(π
(t)) + ℓsm

∥∥∥π(t+1) − π(t)
∥∥∥2
2

= ∆b0(π
(t)) + ℓsm

∥∥∥ProjΠ(π(t) − αg(t)
)
− ProjΠ

(
π(t)

)∥∥∥2
2

≤ ∆b0(π
(t)) + ℓsm

∥∥∥π(t) − αg(t) − π(t)
∥∥∥2
2

= ∆b0(π
(t)) + ℓsm

∥∥∥π(t) − π(t)
∥∥∥2
2︸ ︷︷ ︸

=

(
M 1

2ℓsm

◦ ∆b0

)
(π(t))

+2ℓsmα
〈
g(t), π(t) − π(t)

〉
︸ ︷︷ ︸

=: 1

+α2ℓsm

∥∥∥g(t)∥∥∥2
2︸ ︷︷ ︸

=: 2

.

(45)
We further upper bound 1 and 2 . Recall n(t) ∈ argmaxn∈J0,NK Ĵn(π

(t)) − bn and
g(t) = Ĵ∂

n(t)(π
(t)). Due to Assumption 3, there exists an vector g′ ∈ RS×A that satisfies

g′ ∈
{
∇Jc

n(t) ,P (t)(π(t))

∣∣∣∣ P (t) ∈ argmax
P∈U

Jc
n(t) ,P (π

(t))

}
and

∥∥∥g(t) − g′
∥∥∥2
2
≤ ε2grd . (46)

Thus, using Lemma 16, we have 2 ≤ ∥g′∥22 +
∥∥g(t) − g′

∥∥2
2
≤ ℓ2Lp + ε2grd. Furthermore, we have

1 =
〈
g(t), π(t) − π(t)

〉
=
〈
g′, π(t) − π(t)

〉
+
〈
g(t) − g′, π(t) − π(t)

〉
(a)

≤
〈
g′, π(t) − π(t)

〉
+
∥∥∥g(t) − g′

∥∥∥
2

∥∥∥π(t) − π(t)
∥∥∥
2

(b)

≤
〈
g′, π(t) − π(t)

〉
+ 2εgrd

√
S
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where (a) is due to the Cauchy–Schwarz inequality and (b) uses Equation (44).

By inserting the above inequalities to Equation (45), using g′ defined in Equation (46), we have

3 := 2ℓsmα
〈
g′, π(t) − π(t)

〉
≤
(
M 1

2ℓsm
◦ ∆b0

)
(π(t))−

(
M 1

2ℓsm
◦ ∆b0

)
(π(t+1)) + α2ℓsm(ℓ

2
Lp + ε2grd) + 4ℓsmαεgrd

√
S .

(47)

Next, we are going to derive the lower bound of 3 . Define ∆
(t)
b0
(π) such that

∆
(t)
b0
(π) := Jc

n(t) ,U (π)− bn(t) . (48)

Additionally, let δn and δ̂n be shorthand such that δn := Jcn,U (π) − bn and δ̂n := Ĵn(π) − bn.
Then, Due to Assumption 1, for any π, we have∣∣∣∆(t)

b0
(π)−∆b0(π)

∣∣∣ (a)

≤
∣∣∣∆(t)

b0
(π)− δ̂n(t)

∣∣∣︸ ︷︷ ︸
≤εest by Assumption 1

+

∣∣∣∣ max
n∈J0,NK

δ̂n −∆b0(π)

∣∣∣∣
(b)

≤εest + max
n∈J0,NK

∣∣∣δ̂n − δn

∣∣∣ ≤ 2εest .

(49)

where (a) is due to the definition of n(t) and (b) uses Lemma 11.

Due to the weak convexity of ∆(t)
b0
(π) with respect to π (Lemma 18) and since g′ ∈ ∂∆

(t)
b0
(π(t)),

3 /2ℓsmα =
〈
g′, π(t) − π(t)

〉
≥ ∆

(t)
b0
(π(t))−∆

(t)
b0
(π(t))− ℓsm

2

∥∥∥π(t) − π(t)
∥∥∥2
2

≥ −
∣∣∣∆(t)

b0
(π(t))−∆b0(π

(t))
∣∣∣︸ ︷︷ ︸

≤εest by Equation (49)

−
∣∣∣∆b0(π

(t))−∆
(t)
b0
(π(t))

∣∣∣︸ ︷︷ ︸
≤εest by Equation (49)

+∆b0(π
(t))−∆b0(π

(t))− ℓsm
2

∥∥∥π(t) − π(t)
∥∥∥2
2

= ∆b0(π
(t)) + ℓsm

∥∥∥π(t) − π(t)
∥∥∥2
2
−∆b0(π

(t))− ℓsm

∥∥∥π(t) − π(t)
∥∥∥2
2
+

ℓsm
2

∥∥∥π(t) − π(t)
∥∥∥2
2
− 2εest

= ∆b0(π
(t)) + ℓsm

∥∥∥π(t) − π(t)
∥∥∥2
2
− min

π′∈Π

(
∆b0(π

′) + ℓsm

∥∥∥π′ − π(t)
∥∥∥2
2

)
+

ℓsm
2

∥∥∥π(t) − π(t)
∥∥∥2
2
− 2εest

≥ ℓsm
2

∥∥∥π(t) − π(t)
∥∥∥2
2
− 2εest

(a)
=

ℓsm
2

∥∥∥∥ 1

2ℓsm
∇
(
M 1

2ℓsm
◦ ∆b0

)
(π(t))

∥∥∥∥2
2

=
1

8ℓsm

∥∥∥∇(M 1
2ℓsm

◦ ∆b0

)
(π(t))

∥∥∥2
2
− 2εest ,

where (a) uses Lemma 7. By inserting this to Equation (47),

α

4

∥∥∥∇(M 1
2ℓsm

◦ ∆b0

)
(π(t))

∥∥∥2
2
− 8αℓsmεest

≤
(
M 1

2ℓsm
◦ ∆b0

)
(π(t))−

(
M 1

2ℓsm
◦ ∆b0

)
(π(t+1)) + α2ℓsm(ℓ

2
Lp + ε2grd) + 4αℓsmεgrd

√
S .

By taking summation over
∑T−1

t=0 ,

α

4

T−1∑
t=0

∥∥∥∇(M 1
2ℓsm

◦ ∆b0

)
(π(t))

∥∥∥2
2
≤
(
M 1

2ℓsm
◦ ∆b0

)
(π(0))−

(
M 1

2ℓsm
◦ ∆b0

)
(π(T ))

+ T
(
α2ℓsm(ℓ

2
Lp + ε2grd) + 4αℓsmεgrd

√
S + 8αℓsmεest

)
.
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Note that (
M 1

2ℓsm
◦ ∆b0

)
(π(0))−

(
M 1

2ℓsm
◦ ∆b0

)
(π(T ))

=min
π∈Π

{
∆b0(π) + ℓsm

∥∥∥π(0) − π
∥∥∥2
2

}
−min

π∈Π

{
∆b0(π) + ℓsm

∥∥∥π(T ) − π
∥∥∥2
2

}
=∆b0(π

(0)) + ℓsm

∥∥∥π(0) − π(0)
∥∥∥2
2
−∆b0(π

(T ))− ℓsm

∥∥∥π(T ) − π(T )
∥∥∥2
2

≤∆b0(π
(T )) + ℓsm

∥∥∥π(0) − π(T )
∥∥∥2
2
−∆b0(π

(T ))− ℓsm

∥∥∥π(T ) − π(T )
∥∥∥2
2

≤ℓsm

∥∥∥π(0) − π(T )
∥∥∥2
2
≤ 4ℓsmS ,

where the last inequality uses Equation (44).

By combining all the results, we obtain

T−1∑
t=0

∥∥∥∇(M 1
2ℓsm

◦ ∆b0

)
(π(t))

∥∥∥2
2
≤ 16ℓsmS

α
+4T

(
αℓsm(ℓ

2
Lp + ε2grd) + 4ℓsmεgrd

√
S + 2ℓsmεest

)
.

This concludes the proof.

We are now ready to prove Theorem 6.

Proof of Theorem 6. Let π⋆
b0

∈ argminπ∈Π ∆b0(π). Then,

min
t∈J0,T−1K

∆b0(π
(t))−∆b0(π

⋆
b0)

≤ 1

T

T−1∑
t=0
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⋆
b0)

(a)

≤ 1

T
C
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∥∥∥∇(M 1
2ℓsm
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)
(π)
∥∥∥
2

≤ C

√√√√ 1

T
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∥∥∥∇(M 1
2ℓsm

◦ ∆b0

)
(π)
∥∥∥2
2

(b)
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√
16ℓsmS

Tα
+ 4
(
αℓsm(ℓ2Lp + ε2grd) + 4ℓsmεgrd

√
S + 2ℓsmεest

)
(c)
= C

√
16ℓsmS

δ
√
T

+
4δ√
T
ℓsm(ℓ2Lp + ε2grd) + 16ℓsmεgrd

√
S + 8ℓsmεest

(d)

≤ 4C
√
ℓsmSδ−1T− 1

4 + 2C
√
ℓsm(ℓ2Lp + ε2grd)δT

− 1
4 + 4C

√
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(
S

1
4
√
εgrd +

√
εest

)
(e)
= 4C

√
ℓsmS

1
4 (ℓ2Lp + ε2grd)

1
4T− 1

4 + 4C
√
ℓsm

(
S

1
4
√
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√
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)
.

where (a) uses Lemma 21, (b) uses Lemma 22, (c) replaces α with δ/
√
T , (d) uses

√
x+ y ≤

√
x+

√
y, and (e) sets δ =

√
S/(ℓ2Lp + ε2grd).

Therefore, when εest, εgrd, α, and T satisfy:

εgrd =
ε2

1024C2ℓsm
√
S

, εest =
ε2

1024C2ℓsm
,

T = 4096C4ℓ2smS(ℓ
2
Lp + ε2grd)ε

−4 , and α =
δ√
T

=
ε2

64C2ℓsm(ℓ2Lp + ε2grd)
,
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we have
min

t∈J0,T−1K
∆b0(π

(t)) ≤ ∆b0(π
⋆
b0) +

3

4
ε .

Finally, t⋆ ∈ argmint∈J0,T−1K ∆̂
(t) satisfies that

∆b0(π
(t⋆)) = ∆̂(t⋆) +∆b0(π

(t⋆))− ∆̂(t⋆)

≤ min
t∈J0,T−1K

∆̂(t) + εest

≤ min
t∈J0,T−1K

∆b0(π
(t)) + ∆̂(t) −∆b0(π

(t)) + εest

≤ min
t∈J0,T−1K

∆b0(π
(t)) + 2εest

≤ ∆b0(π
⋆
b0) +

3

4
ε+ 2εest

≤ ∆b0(π
⋆
b0) + ε .

This concludes the proof.
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