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Abstract

Current visual detectors, though impressive
within their training distribution, often fail to
parse out-of-distribution scenes into their con-
stituent entities. Recent test-time adaptation meth-
ods use auxiliary self-supervised losses to adapt
the network parameters to each test example in-
dependently and have shown promising results
towards generalization outside the training distri-
bution for the task of image classification. In
our work, we find evidence that these losses
are insufficient for the task of scene decompo-
sition, without also considering architectural in-
ductive biases. Recent slot-centric generative
models attempt to decompose scenes into enti-
ties in a self-supervised manner by reconstructing
pixels. Drawing upon these two lines of work,
we propose Slot-TTA, a semi-supervised slot-
centric scene decomposition model that at test
time is adapted per scene through gradient de-
scent on reconstruction or cross-view synthesis
objectives. We evaluate Slot-TTA across multi-
ple input modalities, images or 3D point clouds,
and show substantial out-of-distribution perfor-
mance improvements against state-of-the-art su-
pervised feed-forward detectors, and alternative
test-time adaptation methods. Project Webpage:
http://slot-tta.github.io/

1. Introduction

While significant progress has been made in scene percep-
tion within the last decade, decomposing scenes into familiar
entities often generalizes poorly outside the training distri-
bution (Geirhos et al., 2020; Hendrycks et al., 2021). To
tackle changes in the data distribution, Test-Time Adapta-
tion (TTA) methods (Ghifary et al., 2016; Sun et al., 2020;
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Figure 1. Test-time adaptation in Slot-TTA: Segmentation im-
proves when optimizing reconstruction or view synthesis objec-
tives via gradient descent at test-time on a single test sample.

Wang et al., 2020) adapt the model parameters at test-time
to help generalization. In recent years, a variety of meth-
ods based on TTA have been proposed, focusing on few-
shot adaptation (Ren et al., 2018) where the network is
given access to a few labeled examples, or unsupervised
domain adaptation (UDA) (Zhang, 2021) where the network
is given access to many unlabelled examples from the new
distribution. A popular approach in this setting is pseudo-
labelling (Wang et al., 2020; Bateson et al., 2022), where
the network uses its confident predictions in some examples
as additional pseudo-labelled training data to improve its ac-
curacy. However, this approach requires multiple confident
examples for adaptation.

We instead, study a specific unsupervised domain adaptation
(UDA ) setting where the network is adapted independently
to each unlabelled example in the test set. This setting is
analogous to a human taking more time to parse a difficult
example while not having access to any additional informa-
tion (Kahneman, 2011). Existing approaches in this setting
typically devise a loss for a self-supervised pre-text task,
such as rotation prediction in TTT (Sun et al., 2020) or
instance discrimination in MT3 (Bartler et al., 2022), and
then optimize this loss per image at test-time (Sun et al.,
2020; Gandelsman et al., 2022; Bartler et al., 2022; Grill
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et al., 2020). While these methods have demonstrated suc-
cess for the task of image classification, they are not equally
effective when applied to other tasks, such as scene decom-
position, that requires reasoning about objects, as we show
in experiment Section 4.1. Specifically, when we apply the
instance discrimination loss of MT3 (Bartler et al., 2022) to
the state-of-the-art scene segmentation model Mask2Former
of Cheng et al. (2021), the segmentation performance de-
teriorates during test-time adaptation. The question then
becomes: what would be an effective TTA method for the
task of scene decomposition?

Recent slot-centric generative models that attempt to seg-
ment scenes into object entities completely unsupervised, by
optimizing a reconstruction objective (Eslami et al., 2016;
Greff et al., 2016; Van Steenkiste et al., 2018; Goyal et al.,
2021; Kosiorek et al., 2019; Locatello et al., 2020; Zoran
et al., 2021) share the end-goal of scene decomposition and
thus become a good candidate architecture for TTA. These
methods differ in details but share the notion of incorporat-
ing a fixed set of entities, also known as slots or object files.
Each slot extracts information about a single entity during
encoding and is “synthesized” back to the input domain
during decoding.

In light of the above, we propose Test-Time Adaptation
with Slot-Centric models (Slot-TTA), a semi-supervised
model equipped with a slot-centric bottleneck (Locatello
et al., 2020) that jointly segments and reconstructs scenes.
At training time, Slot-TTA is trained supervised to jointly
segment and reconstruct 2D (multi-view or single-view)
RGB images or 3D point clouds. At test time, the model
adapts to a single test sample by updating its network pa-
rameters solely by optimizing the reconstruction objective
through gradient descent, as shown in Figure 1. Slot-TTA
builds on top of slot-centric models by incorporating seg-
mentation supervision during the training phase. Until now,
slot-centric models have been neither designed nor utilized
with the foresight of Test-Time Adaptation (TTA). In par-
ticular, Engelcke et al. (2020) showed that TTA via recon-
struction in slot-centric models fails due to a reconstruction-
segmentation trade-off: as the entity bottleneck loosens,
there’s an improvement in reconstruction; however, segmen-
tation subsequently deteriorates. We show that segmentation
supervision aids in mitigating this trade-off and helps scale
to scenes with complicated textures. We show TTA in semi-
supervised slot-centric models significantly improves scene
decomposition.

We test Slot-TTA in scene segmentation of multi-view posed
images, single-view images and 3D point clouds in the
datasets of PartNet (Mo et al., 2019), MultiShapeNet-Hard
(Sajjadi et al., 2022b) and CLEVR (Johnson et al., 2017).
The model segments objects and parts while reconstructing
them in 2D or 3D. We compare its segmentation perfor-

mance against state-of-the-art supervised feedforward RGB
image and 3D point cloud segmentors of Mask2Former and
Mask3D (Cheng et al., 2021; Schult et al., 2022), NeRF-
based multi-view segmentation fusion methods of (Zhi et al.,
2021) that adapt per scene through RGB and segmenta-
tion rendering, state-of-the-art test-time adaptation methods
(Bartler et al., 2022), unsupervised entity-centric generative
models (Locatello et al., 2020; Sajjadi et al., 2022a), and
semi-supervised 3D part detectors (Wu et al., 2020; Tian
et al., 2019). We show that Slot-TTA outperforms SOTA
feedforward segmentators in out-of-distribution scenes, dra-
matically outperforms alternative TTA methods and alterna-
tive unsupervised or semi-supervised scene decomposition
methods (Locatello et al., 2020; Sajjadi et al., 2022a; Wu
et al., 2020; Tian et al., 2019), and better exploits multi-
view information for improving segmentation over seman-
tic NeRF-based multi-view fusion. Additionally, we show
that test-time adaptation not only improves segmentation
accuracy but also enhances the rendering quality of novel
(unseen) views that were not used during test-time training.

Our contributions are as follows:

(1) We present an algorithm that significantly improves scene
decomposition accuracy for out-of-distribution examples by
performing test-time adaptation on each example in the test
set independently.

(i) We showcase the effectiveness of SSL-based TTA ap-
proaches for scene decomposition, while previous self-
supervised test-time adaptation methods have primarily
demonstrated results in classification tasks.

(iii) We introduce semi-supervised learning for slot-centric
generative models, and show it can enable these methods
to continue learning during test time. In contrast, previous
works on slot-centric generative have neither been trained
with supervision nor been used for test time adaptation.

(iv) Lastly, we devise numerous baselines and ablations, and
evaluate them across multiple benchmarks and distribution
shifts to offer valuable insights into test-time adaptation and
object-centric learning.

Our code is publicly available to the community on our
project webpage: http://slot-tta.github.io.

2. Related Work

Test-time adaptation In test-time adaptation, model pa-
rameters are updated at test-time for the model to better
generalize to data distribution shifts. In recent years, there
has been significant development in this direction. Methods
such as pseudo labelling and entropy minimization (Shin
et al., 2022; Wang et al., 2020; Iwasawa & Matsuo, 2021;
Bateson et al., 2022) have demonstrated that supervising
the model using its confident predictions helps improve its
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accuracy. Adaptive BatchNorm methods (Khurana et al.,
2021; Chang et al., 2019) have shown that updating the
BatchNorm parameters using a set of examples can help
adaptation. Despite their impressive performance, these
methods inherently require confident predictions or a batch
of examples to adapt. Self-supervised learning (SSL) (Sun
et al., 2020; Bartler et al., 2022; Gandelsman et al., 2022)
based TTA methods on the other hand, train using a com-
bination of the task and a SSL loss. During test time, they
optimize using only the SSL loss. They can adapt to indi-
vidual examples at test time. However, all methods in the
SSL setting thus far focus on the image classification task
and mainly differ in terms of the SSL loss employed. For
example TTT (Sun et al., 2020) uses rotation angle predic-
tion as their SSL loss, MT3 (Bartler et al., 2022) uses a
BYOL (Grill et al., 2020) loss and TTT-MAE (Gandelsman
et al., 2022) uses Masked autoencoding loss (Pathak et al.,
2016; He et al., 2022). Our work targets TTA for the task of
scene decomposition. In our work, we show that TTA with
reconstruction loss in slot-centric models can help improve
the segmentation peformance in out-of-distribution scenes.

Slot-centric generative models for scene decomposition
Entity-centric (or object-centric) models represent a visual
scene in terms of separate object variables, often referred to
as slots or object files (Greff et al., 2020; Sabour et al., 2017;
Kosiorek et al., 2018; Engelcke et al., 2019; Goyal et al.,
2020; Ke et al., 2021; Burgess et al., 2019; Greff et al., 2019;
Zablotskaia et al., 2020; Rahaman et al., 2020). Prominent
examples of such models include MONet (Burgess et al.,
2019), GENESIS (Engelcke et al., 2019), IODINE (Greff
etal., 2019), and Slot Attention (SA) (Locatello et al., 2020),
which are trained in a fully-unsupervised setting via a sim-
ple auto-encoding objective. Scene decomposition emerges
via the inductive bias of the model architecture (and in some
cases, additional regularizers). OSRT (Sajjadi et al., 2022a)
builds on top of SA by replacing their autoencoding ob-
jective with a novel-view synthesis objective. Slot-TTA
builds on top of slot-centric models by adding segmenta-
tion supervision at training time, and using reconstruction
optimization per example for TTA.

3. Method

The goal of Slot-TTA is to decompose scenes into objects
or parts. We consider three different settings: (i) 2D multi-
view RGB images (ii) 2D single-view RGB images and
(iii) 3D point clouds. In each setting, the model encodes
the scene as a set of slot vectors that capture information
about individual objects and decodes them back to either
(novel-view) RGB images or 3D point clouds, depending on
the setting. To compute slots, Slot-TTA uses Slot Attention
(SA) (Locatello et al., 2020), where visual features are softly
partitioned across slots through iterative attention.

3.1. Background

Current state-of-the-art detectors and segmentors instan-
tiate slots, a.k.a. query vectors, from 2D visual feature
maps or 3D point feature clouds (Cheng et al., 2021; Schult
et al., 2022) via iterative cross-attention (features to slots)
and self-attention (slots to slots) operations (Carion et al.,
2020; Cheng et al., 2021). Recently, Slot Attention of
Locatello et al. (2020) and Recurrent Independent Mecha-
nisms (RIMs) of Goyal et al. (2021) popularized competition
amongst slots and iterative routing to encourage a single
location in the input to be assigned to a unique slot vector.

Given a set of feature vectors M € RY*C obtained from

an encoder, where N is the number of tokens in the encoded
feature map and C' is the dimensionality of each token. The
Slot Attention module compresses these /V tokens into a set
of P slot vectors S € RP*P_ where D is the dimensionality
of each slot vector.

It does so by updating a set of learned latent embedding
vectors S € RP*P | conditioned on M. Specifically it
computes an attention matrix A € RV *F between feature
map M and S using the equation 1

exp ((M:) - a(5,)")
1 exp (K(M;) - g(S,)7)

Aip = ey

M =o(M)

here k, g, and v are learnable linear transformations. Specif-
ically k and v are applied element-wise to map M € RV*¢
to RV*P_ Similarly, ¢ applies an element-wise transforma-
tion from S € RP*P to RP* P The softmax normalization
over the slot axis in equation 1 ensures competition amongst
them to attend to a specific feature vector in M. It then
extracts slot vectors .S from M by updating S using a GRU.

S = GRU(S, U) where the update vector U/ is calculated
by taking a weighted average of elements in M using the
re-normalized attention matrix A:

O A A,
U=A"M e RP*C where 4; , = — 42—
21',:0 A'L’,p

We iterate 3 times over equations 1 to 4, while setting S=
S each time.

3.2. Test-time Adaptation with Slot-Centric Models
(Slot-TTA)

We first describe the encoders and decoders of Slot-TTA for
each modality. Next, we detail how we train Slot-TTA and
how we adapt it at test time.



Test-time Adaptation with Slot-Centric Models

Camera (Optional)

L g

Input Point Cloud

Token Features

Optimized only on training set Optimized on both training and test set

Segr'nentation Loss Reconstruction Loss

g

Weighted
Average

Predicted Masks

Predicted RGB

Ground Truth RGB

Optimized only on training set Optimized on both training and test set
Segz‘tentillon Loss Reconstruction Loss

B

Max

—m

Pool

Ground Truth

Predicted Occupancies
Occupancy

Predicted Occupancy

Figure 2. Model architecture for Slot-TTA for posed multi-view or single view RGB images (top) and 3D point clouds (bottom).
Slot-TTA maps the input (multi-view posed) RGB images or 3D point cloud to a set of token features with appropriate encoder backbones.
It then maps these token features to a set of slot vectors using Slot Attention. Finally, it decodes each slot into its respective segmentation
mask and RGB image or 3D point cloud. It uses weighted averaging or maxpooling to fuse renders across all slots. For RGB images,
we show results for multi-view and single-view settings, where in the multi-view setting the decoder is conditioned on a target camera-
viewpoint. We train Slot-TTA using reconstruction and segmentation losses. At test time, we optimize only the reconstruction loss.

3.2.1. ENCODING AND DECODING BACKBONES

Posed multi-view 2D RGB images The architecture of
Slot-TTA for the the multi-view RGB setting is illustrated in
Figure 2 top. Our model’s architecture is built upon OSRT
(Sajjadi et al., 2022a), which is an object-centric, geometry-
free novel view synthesis method. Given a set of posed RGB
images as input, a CNN encodes each input image I; into
a feature grid, which is then flattened into a set of tokens
with camera pose and ray direction information added in
each of the tokens, similar to SRT (Sajjadi et al., 2022b).
These are then encoded into a set of latent features using a
transformer (Vaswani et al., 2017) Enc with multiple self-
attention blocks M = Enc(CNN(I;)). The latent features
M are then mapped into a set of slots S using Slot Attention
(Section 3.1).

For decoding, we adopt a spatial broadcast decoder (Wat-
ters et al., 2019), where a render MLP takes as input the
slot vector Sy and the pixel location p parameterized by
the camera position and the ray direction pointing to the
pixel to be decoded, and outputs an RGB color ¢; and
an unnormalized alpha score aj for each pixel location
¢k, ar = Dec(p, Sk). The ay’s are normalized using a Soft-
max and used as weights to aggregate the predicted RGB
values c;, for each slot. We ablate other decoder choices,
such as the Slot Mixer decoder (Sajjadi et al., 2022a) in
Appendix Section 9.1.

Single-view 2D RGB images The pipeline of Slot-TTA
for the the single-view RGB setting is the same as the
multi-view setting (Figure 2 top), except we do not con-
dition the decoder with the camera information. In this

setting, Slot-TTA uses a convolutional encoder the same
as Locatello et al. (2020), to encode the input RGB image
into a feature grid. We then add positional vectors to the
feature grid and map them to a set of slot vectors using Slot
Attention. Similar to the multi-view setting, each slot vector
is decoded to the RGB image and an alpha mask using an
MLP renderer. We parameterize pixel location p as (z,y)
points on the grid instead of camera information.

3D point clouds The architecture of Slot-TTA for the 3D
point cloud setting is illustrated in Figure 2 bottom. Our
model’s architecture uses a 3D point transformer (Zhao et al.,
2021) which maps the 3D input points to a set of M feature
vectors of C' dimensions each. We set M to 128 and C' to 64
in our experiments. Point feature vectors are mapped to slots
with Slot Attention. Slot-TTA decodes 3D point clouds from
each slot using implicit functions (Mescheder et al., 2019).
Specifically, each decoder takes in as input the slot vector
Sk and an (X, Y, Z) location and returns the corresponding
OCCupancy score oy g, . = Dec(Sk, (z,y, z)), where Dec
is a multi-block ResNet MLP similar to that of Lal et al.
(2021). We then max-pool over the slot dimension k to get
an occupancy value o, , ., for each 3D point in the scene.
More details on our encoder and decoder architectures are
included in the Appendix Section 8.

Information bottleneck in the decoder A very important
ingredient for scene decomposition via optimizing recon-
struction in slot-centric models is the information bottleneck
in the decoder (Engelcke et al., 2020; Locatello et al., 2020;
Sajjadi et al., 2022a). In slot-centric models, the decoder
Dec(Sk, (z,y, z)) decodes the segmentation mask condi-
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tioned only on S}, where S, is a C' dimensional slot vector,
whereas in supervised image segmentors (Cheng et al., 2021;
Carion et al., 2020) the decoder Dec(Sy, M) decodes the
segmentation mask conditioned on both the slot vector Sy,
and the feature map M. Specifically, in the latter case, they
use a dot product between the vectors in the encoded feature
map M and slot vectors Sy, thus not having an information
bottleneck. These different decoder choices create inter-
esting trade-offs between test-time adaptation and fitting
well to the training distribution. We discuss this further in
Section 5.

3.2.2. TRAINING AND TEST-TIME ADAPTATION

Slot-TTA is supervised from entity segmentation masks and
self-supervised from image and 3D point cloud reconstruc-
tion objectives.

Training for joint segmentation and reconstruction Our
model is trained to jointly optimize a (novel view) image
synthesis or point cloud reconstruction objective alongside a
task-specific segmentation objective over all the n examples
in the training set. The optimization reads:

1 n
in— § e i’ 2
H%n n pt A,SZSEQ (xl7 yl7 9) + )\TZ’I‘ECON (x’b7 6)7 ( )

where x represents the input scene and y the segmentation
labels. For RGB image reconstruction, we minimize the
mean squared error between the predicted and ground truth
RGB images. For segmentation, we supervise the alpha
masks a; of each slot as provided by the decoders. We
use Hungarian matching (Kuhn, 1955), a combinatorial
optimization algorithm that solves assignment problems, to
associate the ground truth masks with the predicted masks,
and upon association we apply a categorical cross-entropy
loss ls¢4. For 3D point cloud reconstruction, we supervise
the predicted occupancy probability o. We use a binary
cross-entropy loss for I ccon. For l;c4 we use Hungarian
matching with a categorical cross-entropy loss over oy. We
weight the respective losses by Ag and A,..

Test-time adaptation We refer to a single forward pass
through our trained model without any test-time adaptation
as direct inference (same as regular inference). During test-
time adaptation, we adapt the parameters 6 of our model by
backpropagating through only the reconstruction objective
of Eq.2 for 150 steps per scene example. For the multi-view
posed image case, we test-time adapt the model considering
RGB reconstruction on target RGB views, and measure seg-
mentation performance similarly on the same target views
(that are different from the input views). We visualize the
test-time adaptation results across variable number of itera-
tions in Figure 1. Further in our appendix Section 9.1 we
ablate different choices of parameters to update during TTA.

4. Experiments

We test Slot-TTA in its ability to segment multi-view posed
RGB images, single-view RGB images and 3D point clouds.
Further, we test Slot-TTA’s ability to render and decom-
pose image views from novel (unseen) viewpoints. Our
experiments aim to answer the following questions:

* How does Slot-TTA compare against state-of-the-art
2D and 3D segmentors, Mask2Former (Cheng et al.,
2021) and Mask3D (Schult et al., 2022), within and
outside of the training distribution?

e How does Slot-TTA compare against previous state-
of-the-art test-time adaptation methods (Bartler et al.,
2022)?

* How does Slot-TTA compare against NeRF-based
methods that do multi-view semantic fusion (Zhi et al.,
2021)?

* How much do different design choices of our model
contribute to performance? We investigate decoder
architecture, mask segmentation supervision, and the
use of Slot Attention.

We use Adjusted Random Index (ARI) as our segmentation
evaluation metric (Rand, 1971). ARI measures cluster
similarity while being invariant to the ordering of the cluster
centers. ARI of 0 indicates random clustering, while 1
indicates a perfect match. Note that we do include the
background component in our ARI metric. We use the
publicly available implementation of Kabra et al. (2019).

4.1. Decomposing RGB images in multi-view scenes

Dataset We evaluate Slot-TTA on the MultiShapeNet-
Hard (MSN) dataset from SRT of (Sajjadi et al., 2022b).
The dataset is constructed by rendering 51K ShapeNet ob-
jects using Kubric (Greff et al., 2022) simulator against 382
real world HDR backgrounds. Each scene has 9 posed RGB
rendered images that are randomly assigned into input and
target views for our model. We consider a train-test split
where we ensure that there is no overlap between object in-
stances and between number of objects present in the scene
between training and test sets. Specifically, scenes with 5-7
object instances are in the training set, and scenes with 16-
30 objects are in the test set. Increasing the amount of clutter
or occlusions in the scene has shown to be a common test
for a model’s strong generalization (Cai et al., 2020). In the
Appendix, we test our model on a different distribution shift
where we introduce instances from unseen object categories
from Google Scanned objects dataset (Downs et al., 2022)
in the test set (Table 6). Further, in appedix Table 7, we
evaluate Slot-TTA on multi-view CLEVR dataset (Johnson
et al., 2017).
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Figure 3. Test-time adaptation in Slot-TTA for multi-view RGB
images. We visualize image reconstruction loss (blue curve) and
segmentation ARI accuracy (red curve) during TTA iterations.
Segmentation accuracy increases as reconstruction loss decreases.

Baselines We consider the following baselines:

(i) Mask2Former (Cheng et al., 2021), a state-of-the-art
2D image segmentor that extends detection transformers
(Carion et al., 2020) to the task of image segmentation
via using multiscale segmentation decoders with masked
attention.

(i1) Mask2Former-BYOL which combines the segmentation
model of Cheng et al. (2021) with test time adaptation using
BYOL self-supervised loss of Bartler et al. (2022).

(iii) Mask2Former-Recon which combines the segmenta-
tion model of Cheng et al. (2021) with a RGB rendering
module and an image reconstruction objective for test-time
adaptation.

(iv) Semantic-NeRF (Zhi et al., 2021), a NeRF model which
adds a segmentation rendering head to the multi-view RGB

in-dist : 5-7 instances out-dist : 16-30 instances

Method
Direct Infer.  with TTA. Direct Infer. ~ with TTA.

Slot-TTA-w/o supervision 0.32 0.30 0.33 0.29
Mask2Former 0.93 N/A 0.74 N/A
Mask2Former-BYOL 0.93 0.95 0.75 0.74
Mask2Former-Recon 0.93 0.92 0.74 0.67
Semantic-NeRF N/A 0.94 N/A 0.77
Slot-TTA (Ours) 0.92 0.95 0.70 0.84

Table 1. Instance Segmentation ARI accuracy (higher is better)
in the multi-view RGB setup for in-distribution test set of 5-7
object instances and out-of-distribution 16-30 object instances.

rendering head of traditional NeRFs. It is fit per scene
on all available 9 RGB posed images and corresponding
segmentation maps from Mask2Former as input.

(v) Slot-TTA-w/o supervision, a variant of our model that
does not use any segmentation supervision; rather is trained
only for cross-view image synthesis similar to OSRT (Saj-
jadi et al., 2022a).

Results We show quantitative segmentation results for our
model and baselines on target camera viewpoints in Table
1 and qualitative TTA results in Figure 3. Our conclusions
are as follows:

(1) Slot-TTA with TTA outperforms Mask2Former in out-of-
distribution scenes and has comparable performance within
the training distribution.

(i) Mask2Former-BYOL does not improve over
Mask2Former, which suggests that adding self-supervised
losses of SOTA image classification TTA methods (Bartler
et al., 2022) to scene segmentation methods does not help.

(iii) Slot-TTA-w/o supervision (model identical to Sajjadi
et al. (2022a)) greatly underperforms a supervised segmen-
tor Mask2Former. This means that unsupervised slot-centric
models are still far from reaching their supervised counter-
parts.

(iv) Slot-TTA-w/o supervision does not improve during test-
time adaptation. This suggests segmentation supervision at
training time is essential for effective TTA.

(v) Semantic-NeRF which fuses segmentation masks across
views in a geometrically consistent manner outperforms sin-
gle view segmentation performance of Mask2Former by 3%.

(vi) Slot-TTA which adapts model parameters of the seg-
mentor at test time greatly outperforms Semantic-NeRF in
OOD scenes.

(vii) Mask2Former-Recon performs worse with TTA, which
suggests that the decoder’s design is very important for
aligning the reconstruction and segmentation tasks.
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For qualitative comparisions with Mask2former and addi-
tional qualitative results, please refer to Figure 7 and Figure
8 in the Appendix. Further in Section 9.1 of the Appendix,
we show results on a different distribution shift, where we
include object instances from novel object categories that
are not present in the train set. Additionally we also include
results on multi-view CLEVR dataset.

4.1.1. SYNTHESIZING AND DECOMPOSING UNSEEN
VIEWPOINTS

We evaluate Slot-TTA’s ability to render and decompose
novel (unseen) RGB image views. We consider the same
dataset and train-test split as above, where in the MSN-Hard
dataset we have 5-7 object instances in the training set and
16-30 object instances in the test set. Our model takes two
views as input, and uses two views for TTA, and the re-
maining five (unseen) views are used to evaluate rendering
quality. We evaluate the pixel-accurate reconstruction qual-
ity PSNR and segmentation ARI accuracy for the remaining
five novel unseen viewpoints, which are not seen during
TTA training. Views are randomly sampled in the different
sets. We fit SemanticNeRF in the same 4 (input and target)
views, and evaluate it in the same remaining five views as
our model.

We see in Table 2 that Slot-TTA’s rendering quality on
novel (unseen) viewpoints improves with test-time adapta-
tion. This means that test-time adaptation does not only
improve segmentation on the test-time adapted viewpoints,
but also improves the view synthesis quality and segmenta-
tion accuracy on novel (unseen) viewpoints. Further, we find
that Semantic-NeRF does not generalize as well to novel
(unseen) viewpoints. NeRFs are well known to perform
poorly with a small number of views (Yu et al., 2021; Johari
et al., 2022). This is because the model does not have any
inductive biases of scene structure. Rather, an MLP renderer
is optimized for each scene separately.

4.2. Decomposing RGB images in single-view scenes

We test Slot-TTA in it’s ability to segment single-view RGB
images on CLEVR (Johnson et al., 2017) and ClevrTex
(Karazija et al., 2021) which are standard object-centric
learning datasets. We compare Slot-TTA against state-of-
the-art supervised and unsupervised scene decomposition
methods such as Mask2Former (Cheng et al., 2021) and Slot
Attention (Locatello et al., 2020).

Dataset We consider CLEVR (Johnson et al., 2017) and
it’s out-of-distribution variant ClevrTex (Karazija et al.,
2021). For supervised training, we use the CLEVR dataset
open-sourced by Kabra et al. (2019). The train set consists
of standard CLEVR scenes sampled from 3 object shapes, 8
object colors and 2 object materials. For the test set we use

Method PSNR ARI

Direct Infer.  with TTA.  Direct Infer. ~ with TTA.
Semantic-NeRF N/A 18.9 N/A 0.51
Slot-TTA (Ours) 19.7 22.6 0.57 0.68

Table 2. RGB rendering and segmentation accuracy (higher is
better) in out-of-distribution test set of 16-30 object instances.

in-dist: CLEVR out-of-dist: ClevrTex

Method

Direct Infer. with TTA. Direct Infer. with TTA.
Slot-TTA-w/o supervision 0.21 0.22 0.15 0.37
Mask2Former 0.97 N/A 0.64 N/A
Slot-TTA (Ours) 0.95 0.97 0.35 0.68

Table 3. Instance Segmentation ARI accuracy (higher is better)
for single-view RGB images. Out-of-distribution scenes are sam-
pled from ClevrTex having different object shapes and materials
compared to the in-distribution train set of CLEVR.

the ClevrTex dataset of Karazija et al. (2021) which is sam-
pled from 8 object shapes and 85 object materials. Specif-
ically we use their publicly available ClevrTex-PlainBG
dataset, thus resulting in a significant distribution shift in
terms of object properties. Both the datasets contain 3-10
object instances per scene.

Baselines We compare against the following baselines:

(i) Mask2Former (Cheng et al., 2021) a state-of-the-art 2D
image segmentor.

(ii) Slot-TTA-w/o supervision, has the same model architec-
ture as our method except is not trained using supervised
segmentation loss. This method is similar to Slot Attention
(Locatello et al., 2020).

Results We show our results in Table 3. Our findings are
similar to Section 4.1, for instance Slot-TTA significantly
outperforms Mask2former on out-of-distribution scenes af-
ter doing test-time adaptation. Similarly Slot-TTA gets sim-
ilar results to Mask2former on the in-distribution set after
adaptation. Further training Slot Attention with supervision
is important to get high ARI accuracy.

4.3. Decomposing 3D point clouds

We test Slot-TTA in its ability to segment 3D object point
clouds into parts. We consider two types of distribution
shifts: (i) Part-to-object distribution shift, where our model
and baselines are supervised from a dataset of generic 3D
part primitives and are tested on segmenting 3D object point
clouds. (ii) Cross-object-category distribution shift, where
our model and baselines are supervised from 3D object part
segmentations and tested on segmenting instances of novel
(unseen) categories into parts.
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4.3.1. PART-TO-OBJECT DISTRIBUTION SHIFT

Dataset We consider the dataset split of Shape2Prog (Tian
et al., 2019). Our supervised training set consists of scenes
that contain 2-3 primitive parts, resized and translated in
different 3D locations of a blank 3D canvas. The part primi-
tives (akin to generalized cylinders of Marr (1982)) consist
of differently sized cubes, cuboids, and discs. Our test set
consists of unseen object categories specifically chairs and
tables from PartNet, each composed of 6 to 16 parts.

Baselines We consider the following semi-supervised 3D
baselines which show results for the aforementioned train-
test split in their respective papers:

(i) PQ-Nets of Wu et al. (2020), which assumes access to
a set of primitive 3D parts for pre-training. Specifically
they first learn a primitive part decoder, then they learn a
sequential encoder that encodes the 3D point cloud into a
1D latent vector and sequentially decodes parts using the
pretrained part decoder. We use the publicly available code
to train the model.

(i1) Shape2Prog of Tian et al. (2019), which is a shape pro-
gram synthesis method that is trained supervised to predict
shape programs from object 3D point clouds. The program
represents the part category, location, and the symmetry
relations among the parts (if any).

We further consider the following ablative versions of
Slot-TTA:

(i) Slot-TTA w/o supervision, a variant of our model that
does not use any segmentation supervision.

(i1) Slot-TTA w/o SlotAttention, which instead of Slot At-
tention it maps 3D point features to slots via iterative layers
of cross (query to point) and self (query-to-query) attention
layers on learnable query vectors similar to DETR (Carion
et al., 2020). Please note that slots and queries represent the
same thing, but we use the terminology of DETR (Carion
et al., 2020) in this case.

(iii) Slot-TTA w/o SlotDecoder, does not use a information
bottleneck during mask decoding. Rather it decodes the
mask by computing a dot product between slot vectors and
the feature grid, similar to Mask3D. For the reconstruction
head it uses the same decoder as Slot-TTA.

Results We show quantitative results of our model and
baselines in Table 4. Our conclusions are as follows:

(i) Slot-TTA significantly outperform PQ-Nets (Wu et al.,
2020) and Shape2Prog (Tian et al., 2019).

(ii) Slot-TTA outperforms Slot-TTA w/o SlotAttention,
which indicates that competition among slots is important
for TTA.

Method in-dist: @ out-dist: 1 %
Direct Infer. with TTA. Direct Infer.  with TTA.

Shape2Prog 0.65 0.71 0.26 0.38
PQ-Nets 0.63 0.67 0.19 0.28
Slot-TTA w/o SlotAttention 0.71 0.74 0.41 0.52
Slot-TTA w/o Supervision 0.42 0.38 0.38 0.27
Slot-TTA w/o SlotDecoder 0.79 0.77 0.42 0.33
Slot-TTA (Ours) 0.69 0.75 0.44 0.58

Table 4. Instance Segmentation ARI accuracy (higher is better)
in instances from generic primitives dataset (in-distribution) and
Chair and Table categories (out-of-distribution) when trained using
the supervision from generic primitive compositions (part-to-object
distribution shift).

(iii) Test-time adaptation through reconstruction feedback
increases 3D part segmentation accuracy on both our model
and our baselines. We think this is due to the common slot
bottleneck present in the baselines. However, the difference
is that the baselines infer slot vectors one at a time using
sequential RNN operations whereas our model infers them
jointly using SlotAttention.

(iv) Slot-TTA w/o supervision does not improve during TTA,
much like in the multi view RGB image case of Section 4.1.

(v) The direct inference version of Slot-TTA w/o SlotDe-
coder significantly outperforms Slot-TTA in distribution,
however it fails to improve with TTA in out-of-distribution
setting. This suggests that information bottleneck in the
decoder is a plus for test-time adaptation, however it is a
minus for fitting to the training distribution.

Please, refer to Section 9.2 of the Appendix for further
ablations and qualitative comparison against baselines. Fur-
ther please refer to our project webpage <link> for videos
of 3D object segmentation during TTA iterations. Finally,
please refer to Appendix Figure 6 for visualization of the
3D primitive dataset.

4.3.2. CROSS-CATEGORY DISTRIBUTION SHIFT

Dataset We divide object categories in the PartNet bench-
mark (Mo et al., 2019) into train and test sets such that there
is no overlap of categories between the two sets. Specifi-
cally, the model has access to the ground-truth point cloud
segmentation of eight categories and is tested on the remain-
ing 9 PartNet categories. We use annotation for the finest
segmentation level available (level 3).

Baselines
baselines:

(i) Mask-3D (Schult et al., 2022), a state-of-the-art 3D in-
stance segmentation model, which is a 3D adaptation of the
2D state-of-the-art segmentor Mask2Former.

We compare our model against the following
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Figure 4. Left: Instance segmentation ARI accuracy on out-of-distribution categories for Slot-TTA and baselines. Right: Segmentation-
reconstruction gradient similarity versus segmentation improvement. We plot the cosine similarity of gradients from reconstruction and
segmentation losses for various examples in the test-set paired with their corresponding difference in segmentation accuracy before and

after TTA (Improvement Points).

(i1) Mask-3D-Recon, where we add a reconstruction de-
coding head to the Mask-3D baseline, for doing test-time
adaptation.

Please refer to Section 8.3 of the Appendix for additional
details on the baselines.

Results We show quantitative results in Figure 4 on the left
side and qualitative results in Figure 2 and in the Appendix.
Our conclusions are as follows:

(i) Slot-TTA outperforms Mask3D in OOD categories and
has comparable performance within the training distribution.

(i1) Mask3D-Recon does not improve during test-time adap-
tation. This suggests that the decoder’s architecture in
Slot-TTA are important for aligning the segmentation and
reconstruction objectives. To illustrate this point further, we
visualize in Figure 4 on the right side, the cosine similarity
between gradient vectors of segmentation and reconstruc-
tion loss during TTA of multiple individual scene examples
for our model and for the Mask3D-Recon baseline. As can
be seen, higher gradient similarity correlates with larger im-
provements in segmentation performance from reconstruc-
tion gradient descent during TTA. We find that Slot-TTA
has higher gradient similarity than Mask3D-Recon, which
explains their performance difference during TTA.

(iii) Direct inference in Slot-TTA has a lower performance
than Slot-TTA, Mask3D and Mask3D-Recon baselines.

5. Discussion - Limitations

As can be inferred from the results in Sections 4.1, 4.3.1
and 4.3.2, the direct inference versions of baseline models
such as Mask2former or Mask3D, significantly outperforms
the direct inference version of Slot-TTA. On the other
hand, Slot-TTA after TTA significantly outperforms the
above baselines on out-of-distribution examples. This
stark difference in performance between direct inference
and after TTA setting can be attributed to the information
bottleneck of the segmentation decoder, which we ablate in

Section 4.3.1. We find that the presence of an information
bottleneck within the decoder adversely impacts the direct
inference performance. This effect is found to escalate
exponentially when dealing with complex datasets like
MS-COCO (Lin et al., 2014), even when trained supervised
using human-annotated segmentations. This significantly
diminished direct inference capability compromises
the model’s potential for doing test-time adaptation.
Exploration of architectures that can both fit on large scale
training data, such as COCO, and be test time adapted is
a direct avenue of our future work. Our present work sheds
lights to limitations and opportunities of slot-centric models
when combined with entity segmentation supervision.

6. Conclusion

We presented Slot-TTA, a novel semi-supervised scene de-
composition model equipped with a slot-centric image or
point-cloud rendering component for test time adaptation.
We showed Slot-TTA greatly improves instance segmenta-
tion on out-of-distribution scenes using test-time adaptation
on reconstruction or novel view synthesis objectives. We
compared with numerous baseline methods, ranging from
state-of-the-art feedforward segmentors, to NERF-based
TTA for multiview semantic fusion, to state-of-the-art TTA
methods, to unsupervised or weakly supervised 2D and 3D
generative models. We showed Slot-TTA compares favor-
ably against all of them for scene decomposition of OOD
scenes, while still being competitive within distribution.
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Appendix

The structure of this appendix is as follows: In Section
7 we cover the details on the datasets. In Section 8 we
specify further implementation details. In Section 9 we
provide additional qualitative and quantitative results for the
experiments in Section 4 of our main paper.

7. Datasets
7.1. Multi-view RGB

Training Set Test Set

Figure 5. We visualize samples from the train-test split used by us
in experiment Section 4.1. Different rows correspond to different
scenes and different columns correspond to different viewpoints.

We use the MultiShapeNet-Hard dataset of Scene Repre-
sentation Transformer, a complex photo-realistic dataset for
Novel View Synthesis (Sajjadi et al., 2022b). Our train split
consists of 5-7 ShapeNet objects placed at random loca-
tions and orientations in the scene. The backgrounds are
sampled from 382 realistic HDR environment maps. Our
test set consists of 16-30 novel object instances placed at
novel arrangements. We sample objects from a pool of 51K
ShapeNet objects across all categories, we divide the pool
into train and test such that the test set consists of objects
not seen during training. The train split has 200K scenes,
and the test set consists of 4000 scenes, each with 9 views.
We had to regenerate the dataset for this specific train-test
split.

7.2. Single-view RGB

We use the CLEVR dataset of Johnson et al. (2017), which
includes RGB images and segmentation masks rendered
using Blender. For the training set we use the official
dataset opensourced by Kabra et al. (2019). For the test-
set we use the official dataset of ClevrTex by Karazija
et al. (2021). Specifically we use their publicly available
ClevrTex-PlainBG dataset. Due to computational cost of
TTA, we only use the first 1000 scenes in the dataset for
testing.

7.3. Point Cloud

7.3.1. GENERIC PRIMITIVE PART DATASET.

We use the primitive dataset of (Tian et al., 2019) as super-
vision in Experiment Section 4.3.1. The dataset consists of
200K primitive instances sampled from the primitive tem-
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Figure 6. We visualize all the generic primitive templates of (Tian
etal., 2019), as you can see, they mainly consist of Cubes, Cuboids,
and Discs.

plates that are visualized in Figure 6. Examples are sampled
from the templates by changing their sizes and placing 2-3
primitives uniformly in random locations. The primitives
are represented using a 32x32x32 binary voxel grid.

7.3.2. PARTNET DATASET.

We use the official level-3 train-test split of PartNet (Mo
et al., 2019). We randomly split the categories in PartNet
into train and test. Our train categories consist of: Chair,
Lamp, Clock, Refrigerator, Microwave, Dishwasher, Door
and Vase. Our test categories consist of: Table, Storage, Bed,
Bottle, Display, Earphone, Faucet, Knife and TrashCan.
We use this as the train-test split in Experiment Section
4.3.2. We set the value of number of slots K as 16 for this
dataset. We provide all 10K points as input to Slot-TTA and
baselines. For evaluation, we calculate ARI segmentation
accuracy on occupied points after voxelizing 10K points
into a 32x32x32 binary voxel grid.

8. Implementation details
8.1. Posed multi-view 2D RGB images

Training details and computational complexity. We use
a batch size of 256 in this setting. We set our learning
rate as 10~%. We use an Adam optimizer with 5; = 0.9,
B2 = 0.999. For training, our model takes about 4 days to
converge using 64 TPUv2 chips. Test-time adaptation for
each example takes about 10 seconds on a single TPUv2
chip. Similarly, a forward pass through our model takes
about 0.1 seconds. During training, instead of decoding all
the pixels, we decode only a sample of them. Specifically,
we randomly pick 1024-pixel locations for each example in
the batch during each iteration of training. During test-time
adaptation, instead of uniformly sampling pixel locations,
we use an error-weighted sampling strategy which we de-
scribe below.
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Inputs. During training and test-time adaptation, our
model takes in as input multi-view RGB images along with
their ground-truth egomotion. For each scene, we randomly
select four input and five target views. We use a resolution
of 128x128 for our input and target images.

Encoder. Here we follow the original implementation of
OSRT (Sajjadi et al., 2022b). The model encodes each
input image I;, its camera extrinsic and intrinsics into a set
representation via a shared CNN and transformer backbone.
Specifically, the CNN outputs a feature grid for each image
conditioned on the camera extrinsic and intrinsics, which
are then flattened into a set of flat patch embeddings. The
patch embeddings are then processed by a transformer that
outputs a set of latent embeddings. The latent embeddings
have a dimensionality of 1535. The CNN consists of 3
blocks of convolutions, with a ReLU activation after each
convolution. The transformer contains 5 blocks of Multi-
Head Self-attention.

Slot Attention. The latent embeddings from the encoder
are then mapped to a Slot Attention module. We use the
original implementation by (Locatello et al., 2020), however
instead of initializing the slots from a multi-variate gaussian
we have them as learnable embedding vectors. We keep our
slot vectors dimensionality as 1536. We set the number of
slots as 32 in this setting.

Decoder. We use the broadcast decoder of (Sajjadi et al.,
2022a) for decoding the slots to their RGB image condi-
tioned on the target viewpoints. Our slot decoder consists
of a 4-layer MLP with a hidden dimensionality of 1536 and
ReLU activation. Our target viewpoints are parameterized
using 6D light-field parametrization of camera position and
normalized ray direction.

Error-conditioned pixel sampling To accelerate test-
time adaptation, we sparsely sample a subset of pixels from
the target images, where we prioritize the pixels with a high
reconstruction error. To this end, we calculate the recon-
struction error over all pixels and apply a Softmax with a
temperature 7 = 0.01 along the pixel dimension.

8.2. 3D point clouds

Training details and computational complexity. We use
a batch size of 16 for point cloud input. We set our learning
rate as 40~%. We use the Adam optimizer with 3; = 0.9,
B2 = 0.999. Our model takes 24 hours (approximately
200k iterations) to converge. Our test-time adaptation per
example takes about 1 min (500 iterations). A forward pass
through the proposed model takes about 0.15 secs. We use
a single V100 GPU for training and inference.
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Inputs. We subsample the input point clouds of 10K
points to a standard size of 2048 points, before passing
it to the encoder.

Encoder. We adopt the point transformer (Zhao et al.,
2021) architecture as our encoder. Point transformer en-
coder is essentially layers of self-attention blocks. Specif-
ically, a self-attention block includes sampling of query
points and updating them using their N most neighboring
points as key/value vectors. In the architecture, we apply 5
layers of self-attention which look as follows: 2048-16-64,
2048-16-64, 512-16-64, 512-16-64, 128-16-64, 128-16-64.
We use the notation of S-N-C|, where S is the number of
subsampled query points from the point cloud, N is the num-
ber of neighboring points and C' is the feature dimension.
We thus get an output feature map of size 128 x 64.

Decoder. We obtain point occupancies by querying the
slot feature vector sloty, at discrete locations (x, y, z) specif-
ically 0, . = Dec(sloty, (z,y,2)). The architecture of
Dec is similar to that of (Lal et al., 2021). Given slot,
which is one of the slot feature vector. We encode the coor-
dinate (z, y, z) into a 64-D feature vector using a linear layer.
We denote this vector as z. The inputs sloty and z are then
processed as follows: outy, = RB;(z + FCy(sloty))--+)
We set i = 3. F'Cj is a linear layer that outputs a 64 dimen-
sional vector. RNN; is a 2 layer ResNet MLP block (He et al.,
2016). The architecture of ResNet block is: ReLU, 64-64,
ReLU, 64-64. Here, ¢ — o represents a linear layer, where
1 and o are the input and output dimension. Finally outy, is
then passed through a ReLLU activation function followed
by a linear layer to generate a single value for occupancy.

8.3. Baselines

Mask2former (Cheng et al., 2021) Mask2former is a re-
cent state-of-the-art 2D RGB segmentation network, that
scales transformer-based DETR (Carion et al., 2020) for the
task of segmentation. They improve DETR’s transformer
decoder by adding masked and multi-scale attention, which
helps them achieve SOTA results on panoptic, instance and
semantic segmentation on the COCO dataset. We use their
publicly available code to train on the MultiShapeNet-Hard
dataset. We use a batch size of 256 and train their network
on 8 V100s GPUS for four days until convergence. We set
the number of slots in their network as 32, similar to our
model.

Mask2former-BYOL Following the implementation of
MTS3 (Bartler et al., 2022), we add a byol head on top of the
slot vectors Mask2former. Specifically, we compress the
slot vectors into a single vector also commonly known as
<CLS TOKEN> in ViT(Dosovitskiy et al., 2020). We then
follow the implementation of MT3 where add a BYOL head
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on top of this vector. We use all the augmentations originally
used by Mask2former for computing the non-contrastive
loss.

Mask2former-Recon Similar to Slot-TTA, we add an
RGB decoder on top of the slot vectors of Mask2former.
Specifically, we use the same implicit broadcast decoder and
alpha composting of Slot-TTA to predict the scene RGB.
Note that we only predict the RGB and not the segmentation
mask from this decoder.

Mask3D. (Schult et al., 2022) Mask3D is a 3D re-
implementation of Mask2former (Cheng et al., 2021)(a state-
of-the-art object 2D segmentation method) for the task of
instance segmentation. Mask3D doesn’t officially show
any results on PartNet dataset, so we adapt their code to fit
the resolution of PartNet dataset while keeping their core
architecture the same.

Mask3D-Recon We follow the same design choice as
Mask2former-Recon, however, we add the reconstruction
decoder to Mask3D instead of Mask2former.

Shape2Prog (Tian et al.,2019)  Shape2Prog is a shape pro-
gram synthesis method that is trained supervised to predict
shape programs from object 3D point clouds. Shape2Prog
introduced two synthetically generated datasets that helped
the model parse 3D pointclouds from ShapeNet (Chang
et al., 2015) into shape programs without any supervision:
1) Generic primitive set (Figure 6) we discussed earlier in
which they use to pre-train their part decoders. Shape2Prog
assumes access to a Synthetic whole shape dataset of chairs
and tables generated programmatically alongside its re-
spective ground-truth programs. Their model requires su-
pervised pre-training on the dataset of synthetic whole
shapes paired with programs. Inorder to maintain the OOD
shift, we don’t assume access to synthetic whole shapes
dataset, however instead we train their encoder to predict
programs/segment multiple instances of primitive parts. We
use their open-sourced code for comparision with our model.
We change the value of number of blocks similar to the num-
ber of slots in our model.

PQ-Nets. (Wu et al., 2020) PQ-Nets is a sequential
encoder-decoder architecture, that takes 3D point cloud as
input and sequentially encodes it into multiple 1D latents
which are then decoded to part point clouds. It achieves
this decomposition by pre-training their decoder to predict
part point clouds. We use their open-sourced architecture
and code for comparision with our model. We train their
model using our datasets from scratch. We change the value
of number of slots in their model based on the maximum
number of parts in the dataset.

15

9. Additional Experiments

9.1. Segmenting RGB images in multi-view scenes

in-dist (5-7 instances) out-of-dist (16-30 instances)

Method

Direct Infer. ~ with TTA.  Direct Infer. with TTA.
Slot-TTA-SlotMixer_Decoder 0.94 0.89 0.65 0.72
Slot-TTA-SRT_Decoder 0.92 0.88 0.60 0.63
Slot-TTA-tta_All_param N/A 0.92 N/A 0.82
Slot-TTA-tta_Norm_param N/A 0.94 N/A 0.79
Slot-TTA-tta_Slot_param N/A 0.94 N/A 0.76
Slot-TTA w/o Weighted_Sample N/A 0.93 N/A 0.81
Slot-TTA (Ours) 0.92 0.95 0.70 0.84

Table 5. Instance Segmentation ARI accuracy (higher is better)
in the in-distribution test set of 5-7 object instances and out-of-
distribution 16-30 object instances.

in-dist (ShapeNet categories)  out-of-dist (GSO categories)

Method

Direct Infer. with TTA. Direct Infer. with TTA.
Mask2Former 0.93 N/A 0.93 N/A
Mask2Former-BYOL 0.93 0.95 0.92 0.93
Mask2Former-Recon 0.93 0.92 0.92 0.91
Slot-TTA (Ours) 0.92 0.95 0.92 0.95

Table 6. Instance Segmentation ARI accuracy (higher is better)
in the in-distribution test set of ShapeNet object categories(Chang
et al., 2015) and out-of-distribution test set of GSO object cate-
gories (Downs et al., 2022).

In Table 6, we tested our model on a different distribution
shift. In the test set instead of increasing the number of
instances in the scene in Table 1, we introduced instances
from new object categories. Specifically the MSN (Sajjadi
et al., 2022b) train-set consists of ShapeNet object cate-
gories(Chang et al., 2015) (Tables, Chairs etc), whereas the
new test-set consists of Google Scanned Object (Downs
et al., 2022) (GSO) categories (Shoes, Stuffed toys etc).

In Table 7, we tested our model on CLEVR dataset of (John-
son et al., 2017) using the same train-test setup as Section
4.1, where in the train set we use 4-7 objects and in the test
set we use 7-10 objects. As can be seen Slot-TTA achieves
close to perfect results out-of-dist shift after TTA.

in-dist (4-7 instances)
with TTA.
0.97

out-of-dist (7-10 instances)
with TTA.
0.97

Method

Direct Infer.

0.92

Direct Infer.

0.96

Slot-TTA (Ours)

Table 7. Instance Segmentation ARI accuracy (higher is better)
in the in-distribution test set of 4-7 object instances and out-of-
distribution 7-10 object instances of CLEVR dataset.
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Figure 7. We compare Mask2former with Slot-TTA-with TTA on
out-of-dist test set of 16-30 object instances, following the setup
of Section 4.1.

We conduct various ablations of Slot-TTA considering the
same setting as 4.1 in Table 1. In Figure 8, we show addi-
tional qualitative results comparing Slot-TTA-DirectInfer
and Slot-TTA-with TTA. In Figure 7, we qualitatively com-
pare Mask2former with Slot-TTA.

(i) We ablate different decoder choices in the topmost sec-
tion where instead of using the broadcast decoder we use
the Scene representation transformer (SRT) decoder (Sajjadi
et al., 2022b) which we refer to as Slot-TTA-SRT_Decoder
or the SlotMixer decoder (Sajjadi et al., 2022a), referred to
as Slot-TTA-SlotMixer_Decoder.

(ii) We ablate what parameters to adapt at test time. As it’s
unclear since TENT (Wang et al., 2020) optimizes Batch-
Norm or LayerNorm parameters, but TTT (Sun et al., 2020)
optimizes the shared parameters between the SSL and the
task-specific branch, which in our case will be all the param-
eters in the network. In Table 5, Slot-TTA-tta_All_param
is when we adapt all the network parameters, Slot-TTA-
tta_Norm_param adapts only the Layer or BatchNorm
parameters and Slot-TTA-tta_Slot_param adapts only the
learnable slot embeddings. We find that optimizing only the
encoder parameters works the best for our setting.

(iii) Further, we ablate error-conditioned pixel sampling
where Slot-TTA w/o Weighted_Sample refers to our model
that uses uniform sampling instead of the error weighted
sampling.
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Figure 8. On the left, we visualize Slot-TTA-DirectInfer. In the
middle, we visualize Slot-TTA-with TTA. In the first row we visu-
alize the ground truth target RGB views. In the second and third
row we visualize Slot-TTA predicted target RGB views and their
segmentation masks. On the right-most column we visualize the
RGB loss and segmentation accuracy during adaptation.

9.2. Decomposing 3D point clouds

We show additional qualitative results for Section 4.3.1 in
Figure 9.

Segmentation using generic primitives
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Figure 9. Additional segmentation results on out-of-distribution
categories when supervised from generic primitives. Same setting
as Section 4.3.1



