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Abstract
We investigate learning approximate Nash equi-
librium (NE) policy profiles in two-player zero-
sum imperfect information extensive-form games
(IIEFGs) with last-iterate convergence guarantees.
Existing algorithms either rely on full-information
feedback or provide only asymptotic convergence
rates. In contrast, we focus on the bandit feedback
setting, where players receive feedback solely
from the rewards associated with the experienced
information set and action pairs in each episode.
Our proposed algorithm employs a negentropy
regularizer weighted by a “virtual transition” over
the information set-action space to facilitate an ef-
ficient approximate policy update. Through a care-
fully designed virtual transition and leveraging
the entropy regularization technique, we demon-
strate finite-time last-iterate convergence to the
NE with a rate of Õ(k−1/8) under bandit feedback
in each episode k. Empirical evaluations across
various IIEFG instances show its competitive per-
formance compared to baseline methods.

1. Introduction
In imperfect information games (IIGs), players operate with
limited visibility of the game’s true state, necessitating
strategic decision-making based on incomplete information.
Notably, the concept of imperfect-information extensive-
form games (IIEFGs), as introduced by Kuhn (1953), encap-
sulates both the intricacies of imperfect information and the
sequential nature of players’ moves. This framework aptly
represents a broad spectrum of real-world scenarios, such as
Poker (Heinrich et al., 2015; Moravčı́k et al., 2017; Brown
& Sandholm, 2018), Bridge (Tian et al., 2020), Scotland
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Yard (Schmid et al., 2021), and Mahjong (Li et al., 2020;
Kurita & Hoki, 2021; Fu et al., 2022). Extensive research
has been devoted to identifying the (approximate) Nash
equilibrium (NE) (Nash Jr, 1950) within IIEFGs. With the
full knowledge of the game, various methodologies have
been employed to tackle these games. These include lin-
ear programming approaches (Koller & Megiddo, 1992;
Von Stengel, 1996; Koller et al., 1996), first-order opti-
mization techniques (Hoda et al., 2010; Kroer et al., 2015;
2018; Munos et al., 2020; Lee et al., 2021; Liu et al., 2022),
and counterfactual regret minimization (CFR) algorithms
(Zinkevich et al., 2007; Lanctot et al., 2009; Johanson et al.,
2012; Tammelin, 2014; Schmid et al., 2019; Burch et al.,
2019; Liu et al., 2022).

In practical scenarios, IIEFGs might involve unknown re-
ward distributions over information set and action spaces,
thwarting the application of the above approaches for com-
puting the NE in IIEFGs. In this realm, the NE in IIEFGs
is typically learned from random samples gathered through
iterative playthroughs of the game, by Monte-Carlo CFR
methods (Lanctot et al., 2009; Farina et al., 2020; Farina &
Sandholm, 2021), online mirror descent (OMD) or follow-
the-regularized-leader (FTRL) frameworks (Farina et al.,
2021; Kozuno et al., 2021; Bai et al., 2022; Fiegel et al.,
2023). Notably, Bai et al. (2022) devise an OMD-based
approach incorporating “balanced exploration policies” to
learn an ε-approximate NE with a sample complexity of
Õ
(
H3(XA+ Y B)/ε2

)
, where H is the horizon length,

X , Y are the sizes of the information set space for the max-
and min-player, andA,B are the sizes of the action space for
the max- and min-player. This upper bound is information-
theoretically optimal with respect to all parameters except
H , up to logarithmic factors. Building upon Bai et al. (2022),
Fiegel et al. (2023) make further strides, refining the upper
bound to Õ

(
H(XA+ Y B)/ε2

)
by harnessing FTRL with

“balanced transitions”, achieving (nearly) optimal sample
complexity in all parameters.

Despite the (nearly) optimal leaning of the ε-NE in IIEFGs
by Bai et al. (2022) and Fiegel et al. (2023), the algorithms
in these works require to average all the policies generated
during the running of the algorithms, so as to obtain the
final policy profile with ε-NE guarantee. This is typically
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termed as the average-iterate convergence. However, in
cases when the policies in the games are approximated by
nonlinear function approximation (e.g., neural networks),
which has achieved great empirical success in recent years
(Moravčı́k et al., 2017; Brown & Sandholm, 2018), com-
puting the averaged policy might even be infeasible due
to the nonlinearity of such function approximations. This
motivates the studies of the learning algorithms with the
last-iterate convergence guarantee of various games includ-
ing IIEFGs (Lin et al., 2020; Wei et al., 2021a;a; Lee et al.,
2021; Cai et al., 2022; Abe et al., 2023; Feng et al., 2023;
Cen et al., 2023; Liu et al., 2023). Specifically, Lee et al.
(2021) and Liu et al. (2023) establish algorithms for learn-
ing IIEFGs with a last-iterate convergence rate of Õ(1/k).
However, the algorithms proposed by Lee et al. (2021) and
Liu et al. (2023) rely on full-information feedback when
learning IIEFGs, and therefore cannot be directly applied in
practical scenarios where only bandit feedback is available.
The above considerations naturally motivate the following
question:

Can we achieve last-iterate convergence for learning
IIEFGs with bandit feedback?

In fact, this same question has also been posed by Fiegel et al.
(2023). In this work, we answer this question affirmatively.
The main contributions of our work are summarized as
follows:

• We introduce the first algorithm that learns the approx-
imate NE of IIEFGs with provable last-iterate conver-
gence in the bandit feedback setting. Unlike previous
approaches (Lee et al., 2021; Liu et al., 2023) that use a
dilated negentropy regularizer to achieve last-iterate con-
vergence for IIEFGs under full-information feedback, our
algorithm employs a negentropy regularizer weighted by
a “virtual transition” over the information set-action space.
This design prevents our algorithm from encountering the
issues of coupled information set-action pairs—a problem
that arises with the dilated negentropy regularizer and
would otherwise result in an excessively large stability
term when applying the entropy regularization technique
over the objective function. On the other hand, from the
computational perspective, we show that our algorithm
still admits a closed-form solution for policy updates over
the full policy space, similar to the dilated negentropy
regularizer. This facilitates efficient approximate policy
updates, in contrast to using the vanilla negentropy reg-
ularizer (see Section 4.1 for details). Furthermore, our
algorithm does not require any communication or coordi-
nation between the two players and is model-free, without
requiring the knowledge of the underlying state transition
probabilities.

• To achieve the last-iterate convergence rate with a sharp
dependence on X (and Y ), it is essential to establish an

efficient bound for the stability term of OMD with the
virtual transition-weighted negentropy regularizer. To
this end, we devise a virtual transition over the infor-
mation set-action space that maximizes the minimum
“visitation probability” across all information sets (see
Section 4.2 for more details). With this virtual transition,
we ultimately prove that our algorithm achieves a last-
iterate convergence rate for learning IIEFGs in the bandit
feedback setting of Õ((X + Y )[(XA+ Y B)1/2 + (X +
Y )1/4H]k−1/8) with high probability for each episode
k. When only obtaining an expected NE gap is of in-
terest, we also show that our algorithm can generate a
policy profile that converges to the NE with a rate of
Õ((X + Y )[(X2A + Y 2B)1/2 + (X + Y )1/4H]k−1/6)
(see Section 5.1 for more details).

• Additionally, we conduct empirical evaluations on a vari-
ety of IIEFG instances, which demonstrate the advantages
of our proposed algorithm over baseline methods (see
Appendix I for details).

2. Related Works
2.1. Partially Observable Markov Games (POMGs)
With perfect information, learning Markov games (MGs)
can be traced back to the seminal work of Littman &
Szepesvári (1996) and has since garnered extensive research
attention (Littman, 2001; Greenwald & Hall, 2003; Hu &
Wellman, 2003; Hansen et al., 2013; Sidford et al., 2018;
Pérolat et al., 2015; Fan et al., 2020; Jia et al., 2019; Cui
& Yang, 2021; Zhang et al., 2021; Bai & Jin, 2020; Liu
et al., 2021; Zhou et al., 2021; Song et al., 2022; Li et al.,
2022; Xiong et al., 2022; Wang et al., 2023; Cui et al., 2023).
In scenarios where only imperfect information is available
yet the complete knowledge of the game (state transitions
and rewards) is known, existing research can be catego-
rized into three primary streams. The first stream leverages
sequence-form policies to recast the problem as a linear pro-
gram (Koller & Megiddo, 1992; Von Stengel, 1996; Koller
et al., 1996). The second stream translates the problem into
a minimax optimization problem and explores first-order
algorithms, as exemplified in Hoda et al. (2010); Kroer et al.
(2015; 2018); Munos et al. (2020); Lee et al. (2021); Liu
et al. (2022). Lastly, the third stream addresses the prob-
lem through CFR, minimizing counterfactual regrets locally
within each information set (Zinkevich et al., 2007; Lanctot
et al., 2009; Johanson et al., 2012; Tammelin, 2014; Schmid
et al., 2019; Burch et al., 2019; Liu et al., 2022).

In the realm where the knowledge of the game is unknown,
existing research focuses on integrating OMD and FTRL
frameworks with importance-weighted loss estimators (Fa-
rina et al., 2021; Kozuno et al., 2021; Bai et al., 2022; Fiegel
et al., 2023). Remarkably, Bai et al. (2022) achieve the
sample complexity of Õ

(
H3(XA+ Y B)/ε2

)
for learn-
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ing an ε-approximate NE by employing a “balanced” di-
lated KL-divergence as the distance metric. Building upon
this concept, Fiegel et al. (2023) utilize “balanced transi-
tions” and attain a (nearly) optimal sample complexity of
Õ
(
H(XA+ Y B)/ε2

)
. However, we note that all the exist-

ing algorithms studying POMGs with bandit feedback only
have average-iterate convergence guarantees, while we aim
to establish the algorithms with last-iterate convergence
guarantees.

2.2. Last-iterate Convergence Learning in Games

With full-information feedback, learning in games with
last-iterate convergence guarantee has been investigated in
strongly monotone games (Mokhtari et al., 2020; Jordan
et al., 2024), monotone games (Golowich et al., 2020; Cai
et al., 2022; Gorbunov et al., 2022; Cai & Zheng, 2023),
Markov games (Cen et al., 2021; Zeng et al., 2022; Cen
et al., 2023), and IIEFGs (Lee et al., 2021; Liu et al., 2023;
Bernasconi et al., 2024). Besides, there are some works
studying achieving last-iterate convergence in games with
noisy feedback. For instance, Abe et al. (2023; 2024; 2025)
establish algorithms for solving two-player zero-sum matrix
games or multi-player monotone games with noisy gradient
feedback, where the noisy feedback for all the actions is
observable.

Recently, motivated by the fact that it might be restrictive
to require full knowledge of the (noisy) gradient as in the
full-information feedback setting, a growing body of works
has studied learning in games with last-iterate convergence
guarantee in the bandit feedback setting, including strongly
monotone games (Bravo et al., 2018; Hsieh et al., 2019;
Lin et al., 2021; Drusvyatskiy et al., 2022; Huang & Hu,
2023) and matrix games (Cai et al., 2023). Though the last-
iterate convergence guarantees have also been established
for Markov games (Wei et al., 2021b; Chen et al., 2022;
2023; Cai et al., 2023), existing algorithms are not fully de-
coupled, with the exception of the algorithms of Chen et al.
(2023) and Cai et al. (2023). In particular, the algorithm
of Wei et al. (2021b) needs coordinated updates and prior
knowledge of the game, and the algorithm of Chen et al.
(2022) requires the players to inform the opponent about
the entropy of their own policies. Moreover, we note that
all existing works study fully observable Markov games,
while this work aims to establish uncoupled algorithms for
learning IIEFGs in the formulation of partially observable
Markov games, where only partial information of the under-
lying states is revealed to the players.

3. Preliminaries
For ease of exposition, we consider IIEFGs in the formula-
tion of POMGs (Kozuno et al., 2021; Bai et al., 2022) and
introduce the preliminaries in this section.

Partially Observable Markov Games We study episodic,
finite-horizon, two-player zero-sum POMGs, denoted by
POMG(H,S,X ,Y,A,B,P, r), in which

• H is the horizon length;

• S =
⋃
h∈[H] Sh is the finite state space, where Sh is the

state space at step h and Sh
⋂

Sh′ = ∅ for any h ̸= h′.
S =

∑H
h=1 Sh is the size of S and |Sh| = Sh for all h;

• X =
⋃
h∈[H] Xh is the finite space of information sets

(short for infosets in the following) for the max-player,
where Xh = {x(s) : s ∈ Sh} is the set of the infosets
at step h and x : S → X is the emission function. X =∑H
h=1Xh is the size of X with |Xh| = Xh. The finite

space of infosets Y =
⋃
h∈[H] Yh for the min-player and

its size are defined analogously;

• A with |A| = A and B with |B| = B are the finite action
spaces for the max-player and min-player, respectively;

• P = {p0(·) ∈ ∆S1
}
⋃
{ph (·|sh, ah, bh) ∈

∆Sh+1
}(sh,ah,bh)∈Sh×A×B,h∈[H−1] are the state

transition probabilities, where p0(·) is the probability
distribution of initial states, ph(sh+1|sh, ah, bh) is
the probability of transitioning to the next state sh+1

conditioned on (sh, ah, bh) at step h, and ∆Sh
denotes

the probability simplex over Sh;

• r = {rh (sh, ah, bh) ∈ [0, 1]}(sh,ah,bh)∈Sh×A×B,h∈[H]

are the (random) reward functions with r̄h (sh, ah, bh)
as mean for each rh(sh, ah, bh).

Learning Protocol We define the max-player’s (stochas-
tic) policy as µ = {µh}h∈[H], where µh : Xh → ∆A
denotes the max-player’s policy at step h. The set of all
such policies for the max-player is denoted by Πmax. Anal-
ogously, the min-player’s (stochastic) policy is denoted by
ν = {νh}h∈[H], with νh : Yh → ∆B being the min-player’s
policy at step h, and the set of all min-player’s policies is
denoted by Πmin. The game proceeds in a finite number
of episodes. At the commencement of episode k, the max-
player selects a policy µk ∈ Πmax, while the min-player
chooses νk ∈ Πmin. Meanwhile, an initial state sk1 is sam-
pled from p0(·) by the environment. During each step h
within episode k, the max-player and min-player observe
their respective infosets xkh := x(skh) and ykh := y(skh),
but they do not observe the underlying state skh. Given
xkh, the max-player takes an action akh ∼ µkh(·|xkh), while
the min-player concurrently takes an action bkh ∼ νkh(·|ykh).
Upon taking these actions, the max-player and min-player
receive rewards rkh := rh(s

k
h, a

k
h, b

k
h) and −rkh, respec-

tively. Subsequently, the game transitions to the next state
skh+1 ∼ ph(·|skh, akh, bkh). The k-th episode will terminate af-
ter actions akH and bkH are taken conditioned on xkH and ykH
and rewards rkH and −rkH are observed by the max-player
and min-player, respectively.

3



Learning IIEFGs with Last-iterate Convergence under Bandit Feedback

Perfect Recall and Tree Structure Following prior works
(Kozuno et al., 2021; Bai et al., 2022; Fiegel et al., 2023),
we assume that the POMGs adhere to the tree structure and
the perfect recall condition (Kuhn, 1953). The tree structure
signifies that for any step h = 2, . . . ,H and state sh ∈ Sh,
there exists a unique path (s1, a1, b1, . . . , sh−1, ah−1, bh−1)
culminating in sh. The perfect recall condition, mean-
while, is fulfilled for both players, implying that for any
h = 2, . . . ,H and any infoset xh ∈ Xh, there exists
a unique history (x1, a1, . . . , xh−1, ah−1) leading to xh
(analogously for the min-player). Furthermore, we de-
note by Ch′(xh, ah) ⊂ Xh′ the set of descendants of the
infoset-action pair (xh, ah) at step h′ ≥ h. Also, we de-
fine Ch′(xh) :=

⋃
ah∈A Ch′(xh, ah) as the union of de-

scendants across all actions at xh. For convenience, let
C(xh, ah) := Ch+1(xh, ah) signify the immediate descen-
dants at the subsequent step.

Sequence-form Representations For any pair of
product policies (µ, ν), the tree structure and the
perfect recall condition facilitate a sequence-form
representation of the reaching probability for the
state-action tuple (sh, ah, bh): Pµ,ν(sh, ah, bh) =
p1:h(sh)µ1:h(x(sh), ah)ν1:h(y(sh), bh), where
p1:h(sh) = p0(s1)

∏h−1
h′=1 ph′(sh′+1|sh′ , ah′ , bh′)

denotes the sequence-form transition probabil-
ity, and µ1:h(xh, ah) :=

∏h
h′=1 µh′(ah′ |xh′) and

ν1:h(yh, bh) :=
∏h
h′=1 νh′(bh′ |yh′) represent the sequence-

form policies of the max-player and min-player, respectively.
Under the sequence-form representation, we adopt a slight
abuse of notation for µ and ν by interpreting them as
µ = {µ1:h}h∈[H] and ν = {ν1:h}h∈[H].1 Furthermore, it
is clear that Πmax constitutes a convex compact subspace
of RXA that adheres to the constraints µ1:h(xh, ah) ≥ 0
and

∑
ah∈A µ1:h(xh, ah) = µ1:h−1(xh−1, ah−1), where

(xh−1, ah−1) is such that xh ∈ C(xh−1, ah−1) (with the
convention that µ1:0(x0, a0) = 1 as a base case).

Learning Objective In this work, we consider the learn-
ing objective of finding an approximate NE of the POMGs.
Specifically, for any ε ≥ 0, an ε-approximate NE is a pair of
product policy (µ, ν) satisfying NEGap(µ, ν) ≤ ε, where

NEGap(µ, ν) := sup
µ†∈Πmax,ν†∈Πmin

V µ
†,ν − V µ,ν

†
, (1)

and V µ,ν =Eµ,ν
[∑H

h=1 rh(sh, ah, bh)
]

is the value func-
tion of (µ, ν) with the expectation taken over the random-
ness of the product policy pair (µ, ν) and the environment
(i.e., P and r). It is known that using regret to NE conver-
sion, an approximate NE can be obtained by averaging all

1The set of sequence-form policies is defined in a top-down
manner and is equivalent to the “treeplex” space of policies defined
in a bottom-up manner (see, e.g., Lee et al. (2021)).

the policies {µ}Kk=1 of the max-player generated by an algo-
rithm with sublinear regret (similarly for the min-player) to
obtain the average policy pair (µ̄, ν̄) (see, e.g., Theorem 1 of
Kozuno et al. (2021)). This is the so-called average-iterate
convergence of learning NE. By contrast, as explained in
Section 1, in this work, we are interested in finding the ε-
NE with the (finite-time) last-iterate convergence guarantee;
that is, the algorithm is required to generate an approximate
NE policy profile (µk, νk) such that NEGap(µk, νk) ≤ εk
for each (finite-time) episode k.

Information Available to the Players In this work,
learning POMGs in the bandit feedback setting is
considered. Specifically, in each episode k, the
max-player only observes her experienced trajectory
(xk1 , a

k
1 , r

k
1 , . . . , x

k
H , a

k
H , r

k
H) of infosets, actions, and re-

wards, but not the underlying states or the opponent’s infos-
ets and actions (similarly for the min-player). Additionally,
the max-player has no knowledge of the min-player’s poli-
cies and cannot receive any information from the min-player,
and vice versa. Besides, there is no shared randomness be-
tween both players; that is, the algorithms of both players
need to be fully uncoupled from each other.

Additional Notations We slightly abuse the notation
to view xh as the set {s ∈ Sh : x(s) = xh}, when
writing s ∈ xh. Given sequence-form representations,
for any µ ∈ Πmax and a sequence of functions f =
(fh)h∈[H] with fh : Xh × A → R, we define ⟨µ, f⟩ :=∑

h∈[H],(xh,ah)∈Xh×A µ1:h(xh, ah)fh(xh, ah). We denote
by Fk the σ-algebra generated by the random variables
{(sth, ath, bth, rth)}h∈[H],t∈[k]. For brevity, we abbreviate the
conditional expectation E[· | Fk] as Ek[·]. Throughout this
paper, the notation Õ(·) suppresses all logarithmic factors.

4. Algorithm
This section presents the proposed algorithm, detailed in
Algorithm 1. In Section 4.1, we introduce the algorithmic
framework as well as the virtual transition-weighted negen-
troy regularizer. In Section 4.2, we present the algorithmic
design to compute an effective virtual transition to incorpo-
rate into the regularizer.

4.1. From Sequence-form Policies to Probability
Measures over Infoset-Action Space

With sequence-form policies, we first reformulate the IIEFG
into the following bilinear game:

f(µ, ν) = µ⊤Gν , (3)

where G ∈ RXA×Y B is the loss
matrix with G((xh, ah), (yh, bh)) =∑
sh∈xh∩yh p1:h (sh) (1− rh (sh, ah, bh)). In
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Algorithm 1 OMD with Virtual Transition-Weighted Ne-
gentropy Regularization (max-player)

1: Input: ηk = k−αη , γk = k−αγ , εk = k−αε .
2: Initialize: µ1(ah|xh) = 1

A , ∀(xh, ah) ∈ Xh×A, ∀h ∈
[H]. Set virtual transition px computed by Algorithm
2.

3: for k = 1, · · · , do
4: for h = 1, · · · , H do
5: Observes xkh, executes akh ∼ µkh(·|xkh) and receives

rkh.
6: For all (xh, ah) ∈ Xh×A, sets entropy regularized

loss estimator as in Eq. (7).
7: end for
8: Update policy

µk+1 = argmin
µ∈Πk+1

max

ηk⟨µ, ℓ̂k⟩+Dψ(µ, µ
k) , (2)

where Πk+1
max = {µ ∈ Πmax : µ(ah|xh) ⩾ 1

A(k+1) ,
∀(xh, ah) ∈ Xh ×A,∀h ∈ [H]}.

9: end for

Algorithm 2 Computing Virtual Transition px (max-player)
1: Input: Game tree structure of X ×A .
2: Initialize: Sequence-form representation of virtual tran-

sition q ∈ RX . Array of maximized number of descen-
dant infosets c ∈ RX , d ∈ RXA. For all xH in XH , set
c(xH) = 1.

3: for h = H − 1 to 1 do
4: for xh in Xh do
5: for ah in A do
6: Compute d(xh, ah) =∑

xh+1∈C(xh,ah)
c(xh+1).

7: end for
8: Compute c(xh) = maxa∈A d(xh, a).
9: end for

10: end for
11: for x1 in X1 do
12: Compute q1:1(x1) =

c(x1)∑
x1∈X1

c(x1)
.

13: end for
14: for h = 1 to H − 1 do
15: for xh, ah in Xh ×A do
16: for xh+1 in C(xh, ah) do
17: Compute q1:h+1(xh+1) = q1:h(xh) ·

c(xh+1)∑
x′
h+1

∈C(xh,ah) c(x
′
h+1)

.

18: end for
19: end for
20: end for
21: return q.

this manner, the learning objective is equiva-
lent to finding (µ, ν) such that NEGap(µ, ν) =

supµ†∈Πmax,ν†∈Πmin
f(µ, ν†) − f(µ†, ν) ≤ ε. At a

high level, we apply the entropy regularizing technique
to perturb the bilinear form of the game in Eq. (3) into
a strongly convex-strongly concave structure, ensuring
convergence to the NE of the perturbed game (and thus
the NE of the original game). This approach builds upon
previous research that has explored last-iterate convergence
learning in Markov games with full-information feedback
(Cen et al., 2021; Chen et al., 2022; Cen et al., 2023) and
with bandit feedback (Cai et al., 2023), and IIEFGs with
full-information feedback (Liu et al., 2023). In detail, we
consider the following perturbed game as a surrogate:

fk(µ, ν) = µ⊤Gν + εkψ(µ)− εkψ(ν) , (4)

where ψ is some strongly convex regularizer used in OMD
and εk > 0 serves as the knob to control the strength of the
entropy regularization in episode k. By gradually decreas-
ing εk to be moderately small, the approximate NE of the
perturbed game in Eq. (4) will also serve as an approximate
NE of the original game in Eq. (3).

The crucial aspect lies in selecting an appropriate regularizer
ψ. A natural approach is leveraging the dilated negentropy
(Kroer et al., 2015; Kozuno et al., 2021):

ψ(µ) =
∑

h,xh,ah

µ1:h (xh, ah) log

(
µ1:h (xh, ah)

µ1:h (xh)

)
, (5)

which has been widely used in existing literature studying
IIEFGs (Kozuno et al., 2021; Lee et al., 2021; Liu et al.,
2023; Bernasconi et al., 2024). In particular, the dilated
negentropy has been used to achieve the last-iterate con-
vergence in IIEFGs with full-information feedback (Lee
et al., 2021; Liu et al., 2023; Bernasconi et al., 2024).
However, the defect of dilated negentropy is that infoset-
action pairs on different steps are actually coupled with
each other (recall µ1:h (xh) =

∑
ah∈A µ1:h (xh, ah) in Eq.

(5)). In IIEFGs with bandit feedback, leveraging OMD
using dilated negentropy together with the entropy regular-
ization technique will deduce a stability term scaling with
Ezk [exp(−

∑
h,xh,ah

zk1:h(xh, ah) logµ
k(ah|xh))], where

zk (xh, ·) ∼ Cat
(
µkh (·|xh)

)
is a random vector indepen-

dently sampled from the categorical distribution parame-
terized by µkh (·|xh) and zk1:h(xh, ah) =

∏h
i=1 z

k(xi, ai) is
the sequence-form representation of zk. As logµk(ah|xh)
contributed by entropy regularization might be potentially
very negative, this renders this upper bound of the stability
term vacuous and is not sufficient to obtain a meaningful
last-iterate convergence rate.2

2It should be noted that this issue cannot be resolved by merely
restricting the feasible set to a subset of Πmax. In the case of OMD
with dilated negentropy, even if the feasible set is constrained as
Πk

max = {µ ∈ Πmax : µ(ah|xh) ⩾ 1
Ak

}—the approach used in
our Algorithm 1—the stability term can still reach magnitudes as
large as O(exp(X)), which is prohibitively large.
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To cope with this issue, we instead consider using the negen-
tropy regularizer weighted by a kind of “virtual transition”
px over the infoset-action space X ×A:

ψpx(µ) =
∑

h,xh,ah

[pxµ] (xh, ah) log [p
xµ] (xh, ah) , (6)

where [pxµ] (xh, ah) = px1:h(xh)µ1:h(xh, ah),
pxh(·|xh, ah) ∈ ∆C(xh,ah) is a transition
probability over Xh × A × Xh+1, and
px1:h(xh) = px0 (x1)

∏h−1
h′=1 p

x
h′ (xh′+1|xh′ , ah′)

is its sequence-form representation. Note that
pxh(xh+1|x(sh), ah) is not necessarily the true
transition probability Pµk,νk

(xh+1|x(sh), ah) =∑
sh+1∈xh+1,bh∈B p(sh+1|sh, ah, bh)νk(bh|y(sh)) ex-

perienced by the max-player in episode k. Also, notice
that the constructed virtual transition px is well-defined
by the perfect recall condition and pxµ is a probability
measure over the infoset-action space Xh × A at step h.
Therefore, by incorporating the virtual transition px, we
actually regularize the probability measures over X × A
instead of directly regularizing the sequence-form policy
µ, bypassing the issue arising when dealing with the
coupled (and potentially very negative) loss estimates of
infoset-action pairs of dilated negentropy. For notational
convenience, we drop the dependence in the subscript of
ψpx(·) on px, when the context is clear for brevity.

With regularizer ψ specified, the derivative of fk(µ, ν)
w.r.t. µ(xh, ah) is ∂fk(µ,ν)

∂µ1:h(xh,ah)
= [Gν] (xh, ah) +

εk · px1:h (xn) (log [pxµ] (xh, ah) + 1). Since [pxµ] ∈∏H
h=1 ∆Xh×A for any µ, the constant 1 in the above dis-

play does not affect the optimization of OMD. Besides,
with bandit feedback, an (optimistically biased) loss esti-
mate Ikh{xh,ah}

µk
1:h(xh,ah)+γk

(1− rkh) of [Gν] (xh, ah) in episode k
is constructed (Kozuno et al., 2021), where γk > 0 is the im-
plicit exploration parameter (Neu, 2015) and Ikh {xh, ah} :=
I
{
(xh, ah) = (xkh, a

k
h)
}

. This specifies the final entropy
regularized loss estimator as follows (Line 1):

ℓ̂kh(xh, ah) =
Ikh{xh, ah}

µk1:h(xh, ah) + γk
(1− rkh)

+ εk · px1:h (xh) log
[
pxµk

]
(xh, ah) . (7)

With the constructed loss estimator, Algorithm 1 then uses
OMD to update policy. Since now the entropy regularized
loss estimator is considered, the variance of the loss estima-
tor scales with | log [pxµ] (xh, ah)| and will be prohibitively
large if running OMD on the entire Πmax, eventually lead-
ing to an unbounded stability term of OMD. Hence we
constrain the feasible set of the OMD as a subset Πk+1

max of
Πmax, where each µ ∈ Πk+1

max satisfies µ(ah|xh) is lower
bounded for all (xh, ah) ∈ Xh ×A and h ∈ [H] (Line 1).

Computation Since the update of OMD is now con-
strained onto a subset Πkmax of Πmax, the computation of Eq.
(2) generally does not have a closed-form solution. How-
ever, we note that the approximate update of our Algorithm 1
still admits an efficient closed-form solution. Specifically,
notice that the operation of constraining the update of OMD
onto the constrained set Πkmax is only for the aim of prevent-
ing the entropy regularized loss from being prohibitively
large. In practice, we can still compute µk over the whole
Πmax, but clipping the regularized loss when it becomes
undesirably large. Importantly, in Appendix A, we prove
that updating µk over the whole Πmax has a closed-form
solution. As shown in the experiments, clipping the loss
estimator and then operating OMD in the whole Πmax using
this closed-form update suffices to obtain an appealing per-
formance (please see Appendix I for the experiment details).

4.2. Virtual Transition with Maximized Minimum
Visitation Probability

As elaborated in Section 4.1, our Algorithm 1 leverages a
virtual transition-weighted negentropy to regularize the loss
estimator and induce the Bregman divergence Dψ(·, ·) used
in OMD. The upside of employing such virtual transition px

lies in that it implicitly helps to operate the update of OMD
in the space of probability measures over infoset-action pairs
instead of the sequence-form policies, to avoid the coupling
between different infoset-action pairs. However, this is still
not sufficient to obtain a well-controlled stability term if
additional care is not taken. Specifically, upon applying the
virtual transition to weight the negentropy, the stability term
associated with OMD at each infoset xh will be enlarged by
(approximately) a multiplicative factor of 1/px1:h(xh). This
enlargement arises intuitively from the fact that, Dψ(·, ·)
induced by ψ at each xh undergoes a downscaling, propor-
tional to px1:h(xh), thereby resulting in a relative increase
in the stability term. Therefore, to ensure that the stability
term is well-controlled, we design the following px which
maximizes the minimum “visitation probability” of all xh
in its sequence-form representation:

px = argmax
q∈Px

min
xh∈Xh,h∈[H]

q1:h(xh) , (8)

where Px denotes the set of all the valid virtual transitions
over infoset-action space. The solution to Eq. (8) can be
computed efficiently via backward dynamic programming,
as shown in Algorithm 2.

Note that similar ideas leveraging negentropy weighted by
the transition over infoset-action space have also been ex-
ploited by Bai et al. (2022); Fiegel et al. (2023). How-
ever, we would like to underscore that the design of our
virtual transition px over infoset-action space is different
from those of Bai et al. (2022); Fiegel et al. (2023). In detail,
our virtual transition p⋆(xh+1|xh, ah) is defined based on

6



Learning IIEFGs with Last-iterate Convergence under Bandit Feedback

some fixed action ah+1 ∈ A that maximizes the number
of reachable infosets |CH(xh+1, ah+1)| ∈ XH . This ap-
proach contrasts with the “balanced transitions” introduced
by Bai et al. (2022) and Fiegel et al. (2023), which either
consider all reachable infosets in a specific layer Xh′ for
some h′ ≥ h+1, the entire sub-tree, or compute transitions
as the sum of reachable infosets across all possible actions
ah+1 ∈ A at infoset xh+1. Further, we aim to establish
the last-iterate convergence of IIEFGs while they can only
guarantee the average-iterate convergence, necessitating dif-
ferent theoretical analysis.

On the Requirement of Knowing Game Tree Structure
The construction of our virtual transition by Algorithm 2
requires the game tree structure to be known a priori, which
is also required by some algorithms learning IIEFGs with
average-iterate convergence (Bai et al., 2022; Fiegel et al.,
2023). While there are algorithms with average-iterate con-
vergence that do not need prior knowledge of the tree struc-
ture (e.g., Kozuno et al. (2021)), we note the game tree
structure can be extracted from one traversal on the game
tree in O(XA) time. Therefore, this requirement is mild
on game instances with moderately large X and A (Bai
et al., 2022). Whereas, we also remark that there exist some
game instances with exponentially large X (e.g., no-limit
Texas hold’em (Johanson, 2013)), making one traversal on
the game tree impractical. In such cases, the polynomial
dependence on X of the convergence rate lower bound (see
Section 5.2) indicates that it is also statistically intractable
to learn such game instances if no function approximation
assumptions are further imposed. Besides, in cases of un-
known game tree structure, we show that using vanilla ne-
gentropy is also able to achieve the last-iterate convergence
in IIEFGs (see Remark 5.4 and Appendix F for details). This
approach no longer requires knowledge of the game tree
structure. Nevertheless, the downside of using OMD with
vanilla negentropy is that it does not admit a closed-form
update (Hoda et al., 2010), even though the update of OMD
is performed on the whole Πmax, since it does not adapt to
the game tree structure.

Experiments As aforementioned, our Algorithm 1 ad-
mits an efficient approximate policy update. We conduct
empirical evaluations on various IIEFG game instances, in-
cluding Lewis Signaling, Kuhn Poker (Kuhn, 1950), Leduc
Poker (Southey et al., 2012), and Liars Dice. The empir-
ical evaluations show that when Algorithm 1 is equipped
with the virtual transition computed by Algorithm 2, it can
perform relatively well across all game instances. Though
there might be some baseline that performs similarly to our
algorithm on some game instances, this baseline algorithm
might not be able to converge fast on other game instances,
as the last-iterate convergences of all the baseline algorithms
are not theoretically guaranteed. We defer the detailed ex-

perimental results to Appendix I due to space limit.

5. Analysis
In Section 5.1, we first present the upper bound of the last-
iterate convergence rate of our Algorithm 1. Then in Sec-
tion 5.2, we provide the lower bound for learning IIEFGs
with bandit feedback and last-iterate convergence guarantee.

5.1. Upper Bound of Last-iterate Convergence

Theorem 5.1. If Algorithm 1 is adopted by both players, by
setting αη = 5/8, αγ = 3/8 and αε = 1/8, for any k ≥ 1,
with probability at least 1− Õ(δ), it holds that

NEGap(µk, νk)

=Õ
([

(XA+ Y B)
1
2 k−

1
8 + (XA+ Y B)

1
2 Hk−

3
8

+
(
X2A+ Y 2B

) 1
2 k−

1
4 + (X + Y )

1
4Hk−

1
8

]
(X + Y )

)
.

Remark 5.2. When k ≥
max{H4, (X

2A+Y 2B)
4

/(XA+Y B)4, (XA+Y B)
8/7
/(X+Y )

10/7},
we have NEGap(µk, νk) = Õ((X + Y )[(XA+ Y B)1/2 +
(X + Y )1/4H]k−1/8). Besides, when only obtaining an
expected last-iterate convergence rate is desired, our
Algorithm 1 has an improved last-iterate convergence rate
of Õ((X + Y )[(X2A + Y 2B)1/2 + (X + Y )1/4H]k−1/6)
in expectation (see Appendix E for details).

Remark 5.3. Though the last-iterate convergence rate of
our Algorithm 1 is inferior to the Õ(1/k) convergence rate
by Lee et al. (2021); Liu et al. (2023), we note that both their
algorithms can only work in the full-information setting.
Further, we remark that the algorithm of Lee et al. (2021)
needs the assumption that the NE of the IIEFG considered
is unique. Though such an assumption is not required by Liu
et al. (2023), the algorithm of Liu et al. (2023) requires both
players to be controlled by a central controller, and thus
their algorithm is not uncoupled. In contrast, our algorithm
can work in the bandit feedback setting, is fully uncoupled
between the two players, and can still guarantee a regret of
order Õ(k7/8) even when the opponent of the max-player is
an adversary. Moreover, Section 5.2 shows that the lower
bound of the convergence rate for learning IIEFGs with
bandit feedback, last-iterate convergence guarantee, and
uncoupled algorithms will be of order Ω(k−1/2) (for large
enough k).

Remark 5.4. In Appendix F, we demonstrate
that employing vanilla negentropy ψ(µ) =∑
h,xh,ah

µ1:h(xh, ah) logµ1:h(xh, ah) also achieves
a last-iterate convergence rate of NEGap(µk, νk) =

Õ((XA + Y B)Hk−1/8). Compared with Theorem 5.1,
when X and A are sufficiently large, this rate is superior
by a factor of Õ(

√
X) but worse by Õ(H

√
A). When H

is sufficiently large, it is superior by a factor of Õ(X1/4)
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but worse by Õ(A). However, we emphasize again that
in IIEFGs, using OMD with vanilla negentropy does not
permit an efficient closed-form update, even though OMD
operates on the entire Πmax, as opposed to the virtual
transition-weighted negentropy.

Proof Sketch of Theorem 5.1 We postpone the complete
proof of Theorem 5.1 to Appendix C. Here we provide a
proof sketch of it.

We denote by ξk,⋆ = (µk,⋆, νk,⋆) the unique NE in the
regularized game fk in Eq. (4) (there is only a unique NE
due to the strongly convex-strongly concave nature of fk).
To begin with, one can see that the NE policy profile ξk,⋆

of fk is also an approximate NE of the original game in Eq.
(3). This enables to bound NEGap(ξk) using NEGap(ξk,⋆)
together with the distance between ξk and ξk,⋆ weighted by
the virtual transitions as bellow:

NEGap(ξk) ≲ NEGap(ξk,⋆)

+X
∥∥px (µk − µk,⋆

)∥∥
1
+ Y

∥∥py (νk − νk,⋆
)∥∥

1
, (9)

where NEGap(ξk,⋆) can be controlled by Lemma C.1.
Due to the constructed virtual transition px and py, the
second and the third term in Eq. (9) are the ℓ1-norm
of the difference between the probability measures over
infoset-action spaces, which thus turn out to be bounded
by O(

√
KL (pxµk,⋆, pxµk)) and O(

√
KL (pyνk,⋆, pyνk))

by Pinsker’s inequality. Also, due to the constructed vir-
tual transition-weighted negentropy ψ, one can deduce that
KL
(
pxµk,⋆, pxµk

)
= Dψ(µ

k,⋆, µk) (and similarly on the
min-player side).

To bound the Bregman divergence Dψ(µ
k,⋆, µk), we show

that in each episode k, the product policy ξk := (µk, νk)
generated by the algorithm will approach ξk,⋆ close enough
by proving that Dψ(ξ

k,⋆, ξk) is an (approximate) contrac-
tion mapping. In particular, we have

Dψ

(
ξk+1,⋆, ξk+1

)
≲ (1− ηkεk)Dψ

(
ξk,⋆, ξk

)
+ η2k (X + Y ) τk + η2k

(
X2A+ Y 2B

)
+ ηkρk + ηkσk + η2kε

2
kH

2 (XA+ Y B) + ωk . (10)

Please see Appendix C.2 for the detailed definitions of τk,
ρk, σk and ωk.

Expanding the above recursion, we can bound
Dψ

(
ξk+1,⋆, ξk+1

)
as

Dψ

(
ξk+1,⋆, ξk+1

)
≲

k∑
i=1

wikηiρi︸ ︷︷ ︸
Term 1

+

k∑
i=1

wikηiσi︸ ︷︷ ︸
Term 2

+(XA+ Y B)

k∑
i=1

wik (ηiεi)
2

︸ ︷︷ ︸
Term 3

+(X + Y )

k∑
i=1

wikη
2
i τi︸ ︷︷ ︸

Term 4

+

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
︸ ︷︷ ︸

Term 5

+

k∑
i=1

wikωi︸ ︷︷ ︸
Term 6

, (11)

where wik =
∏k
j=i+1 (1− ηjεj) is the contraction coeffi-

cient. Intuitively, Term 1 and Term 2 represent the underes-
timation and overestimation errors of the loss estimator, re-
spectively. Term 3 through Term 5 arise from bounding the
stability term of OMD. Additionally, Term 6 is due to the
variation of fk (and hence ξk,⋆) in each episode. Then we
bound each of the above terms in by Lemma C.3 - Lemma
C.8 in Appendix C.2.

Finally, the proof can be concluded by substituting Eq. (11)
and the upper bound of NEGap(ξk,⋆) into Eq. (9).
Remark 5.5. Our analysis scheme is inspired by Cai et al.
(2023) to bound the last-iterate convergence of learning
matrix games with bandit feedback. However, we also re-
mark that a straightforward application of their analysis
will not address our problem of learning IIEFGs with bandit
feedback, since we leverage a different regularizer and a
new virtual transition px computed by Algorithm 2. This
serves as a core ingredient of the analysis when deriving the
contraction in Eq. (10) and when bounding Term 6—one of
the leading term in the final bound of the convergence rate.
Besides, compared with the analysis of Cai et al. (2023), the
additional Term 5 in Eq. (11) comes from the fact that we
establish a refined analysis in the case of IIEFGs to further
sharpen the dependence on X and A (as well as Y and B)
of the final convergence rate.

5.2. Lower Bound of Last-iterate Convergence

By leveraging existing regret lower bounds for learning
in IIEFGs with bandit feedback (e.g., Theorem 6 of Bai
et al. (2022) and Theorem 3.1 of Fiegel et al. (2023)), one
can directly obtain a lower bound for learning IIEFGs that
guarantees last-iterate convergence under bandit feedback.
For completeness, we formalize this result as the following
theorem.
Theorem 5.6. For any algorithm Alg that both players
adopt to generate policy profile (µk, νk) and is uncoupled
between both players, there exists an IIEFG instance such
that the lower bound of the last-iterate convergence of
learning this IIEFG in the bandit-feedback setting satis-
fies NEGap(µk, νk) = Ω(

√
XA+ Y Bk−1/2), when k ≥

max(XA,Y B).

Remark 5.7. Compared with the lower bound of the con-
vergence rate above, the upper bound in Theorem 5.1 is
loose by a factor of Õ((X + Y )k3/8) (for large enough X ,
Y , A and B). We believe one of the promising approaches
to improve the upper bound of the convergence rate might
be using the optimistic OMD/FTRL, which utilizes accel-
erated techniques from the optimization perspective and is
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typically used to achieve the Õ(1/k) convergence rate for
learning IIEFGs with last-iterate convergence in the full-
information setting. One of the main difficulties of using op-
timistic OMD/FTRL in conjunction with the regularization
technique to achieve a faster convergence rate in the bandit
feedback setting is that the loss estimator constructed in the
bandit feedback setting (either unbiased or optimistically
biased) would have undesirably large variance, rendering
the stability of optimistic OMD/FTRL hard to be controlled
even in the special case of learning matrix games. We leave
the possible improvement of our convergence upper bound
as our future study.

6. Conclustion
In this work, we take the first step toward developing an algo-
rithm that learns an approximate NE of IIEFGs in the bandit
feedback setting with finite-time last-iterate convergence.
Our algorithm operates in an entirely uncoupled manner be-
tween the two players involved, requiring no coordination,
communication, or shared randomness. We prove that our
algorithm achieves last-iterate convergence with a rate of
Õ(k−1/8) with high probability, and a rate of Õ(k−1/6) in
expectation. Furthermore, empirical evaluations on various
IIEFG instances show the comparative advantage of our
algorithm over baseline methods. A noteworthy open prob-
lem is closing the gap between the established upper and
lower bounds for convergence, which remains unresolved
even for the special case of learning matrix games with a
last-iterate convergence guarantee in the bandit feedback
setting. We leave the investigation of this for our future
research endeavors.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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extensive-form perfect equilibria in two-player zero-sum
sequential games. In International Conference on Artifi-
cial Intelligence and Statistics, 2-4 May 2024, Palau de
Congressos, Valencia, Spain, volume 238 of Proceedings
of Machine Learning Research, pp. 2152–2160. PMLR,
2024.

Bravo, M., Leslie, D., and Mertikopoulos, P. Bandit learning
in concave n-person games. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

Brown, N. and Sandholm, T. Superhuman ai for heads-up
no-limit poker: Libratus beats top professionals. Science,
359(6374):418–424, 2018.

Burch, N., Moravcik, M., and Schmid, M. Revisiting CFR+
and alternating updates. J. Artif. Intell. Res., 64:429–443,
2019.

Cai, Y. and Zheng, W. Doubly optimal no-regret learning
in monotone games. In International Conference on Ma-
chine Learning, ICML 2023, 23-29 July 2023, Honolulu,
Hawaii, USA, volume 202 of Proceedings of Machine
Learning Research, pp. 3507–3524. PMLR, 2023.

9



Learning IIEFGs with Last-iterate Convergence under Bandit Feedback

Cai, Y., Oikonomou, A., and Zheng, W. Finite-time last-
iterate convergence for learning in multi-player games. In
Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022, 2022.

Cai, Y., Luo, H., Wei, C., and Zheng, W. Uncoupled and con-
vergent learning in two-player zero-sum markov games
with bandit feedback. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Cen, S., Wei, Y., and Chi, Y. Fast policy extragradient meth-
ods for competitive games with entropy regularization.
In Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pp. 27952–27964, 2021.

Cen, S., Chi, Y., Du, S. S., and Xiao, L. Faster last-iterate
convergence of policy optimization in zero-sum markov
games. In The Eleventh International Conference on
Learning Representations, ICLR 2023, Kigali, Rwanda,
May 1-5, 2023. OpenReview.net, 2023.

Chen, Z., Ma, S., and Zhou, Y. Sample efficient stochas-
tic policy extragradient algorithm for zero-sum markov
game. In International Conference on Learning Repre-
sentation, 2022.

Chen, Z., Zhang, K., Mazumdar, E., Ozdaglar, A. E., and
Wierman, A. A finite-sample analysis of payoff-based
independent learning in zero-sum stochastic games. In
Advances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023, 2023.

Cui, Q. and Yang, L. F. Minimax sample complexity for
turn-based stochastic game. In Proceedings of the Thirty-
Seventh Conference on Uncertainty in Artificial Intelli-
gence, UAI 2021, Virtual Event, 27-30 July 2021, volume
161 of Proceedings of Machine Learning Research, pp.
1496–1504. AUAI Press, 2021.

Cui, Q., Zhang, K., and Du, S. S. Breaking the curse of mul-
tiagents in a large state space: RL in markov games with
independent linear function approximation. In The Thirty
Sixth Annual Conference on Learning Theory, COLT
2023, 12-15 July 2023, Bangalore, India, volume 195
of Proceedings of Machine Learning Research, pp. 2651–
2652. PMLR, 2023.

Drusvyatskiy, D., Fazel, M., and Ratliff, L. J. Improved rates
for derivative free gradient play in strongly monotone

games. In 2022 IEEE 61st Conference on Decision and
Control (CDC), pp. 3403–3408. IEEE, 2022.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. A theoretical
analysis of deep q-learning. In Proceedings of the 2nd
Annual Conference on Learning for Dynamics and Con-
trol, L4DC 2020, Online Event, Berkeley, CA, USA, 11-12
June 2020, volume 120 of Proceedings of Machine Learn-
ing Research, pp. 486–489. PMLR, 2020.

Farina, G. and Sandholm, T. Model-free online learning
in unknown sequential decision making problems and
games. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on In-
novative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Ar-
tificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pp. 5381–5390. AAAI Press, 2021.

Farina, G., Kroer, C., and Sandholm, T. Stochastic regret
minimization in extensive-form games. In Proceedings of
the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event, volume 119
of Proceedings of Machine Learning Research, pp. 3018–
3028. PMLR, 2020.

Farina, G., Schmucker, R., and Sandholm, T. Bandit
linear optimization for sequential decision making and
extensive-form games. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third Con-
ference on Innovative Applications of Artificial Intelli-
gence, IAAI 2021, The Eleventh Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pp. 5372–5380. AAAI
Press, 2021.

Feng, Y., Fu, H., Hu, Q., Li, P., Panageas, I., Peng, B.,
and Wang, X. On the last-iterate convergence in time-
varying zero-sum games: Extra gradient succeeds where
optimism fails. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural In-
formation Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023, 2023.

Fiegel, C., Ménard, P., Kozuno, T., Munos, R., Perchet,
V., and Valko, M. Adapting to game trees in zero-sum
imperfect information games. In International Confer-
ence on Machine Learning, ICML 2023, 23-29 July 2023,
Honolulu, Hawaii, USA, volume 202 of Proceedings of
Machine Learning Research, pp. 10093–10135. PMLR,
2023.

Fu, H., Liu, W., Wu, S., Wang, Y., Yang, T., Li, K., Xing,
J., Li, B., Ma, B., Fu, Q., and Yang, W. Actor-critic
policy optimization in a large-scale imperfect-information
game. In The Tenth International Conference on Learning

10



Learning IIEFGs with Last-iterate Convergence under Bandit Feedback

Representations, ICLR 2022, Virtual Event, April 25-29,
2022. OpenReview.net, 2022.

Golowich, N., Pattathil, S., and Daskalakis, C. Tight last-
iterate convergence rates for no-regret learning in multi-
player games. In Advances in Neural Information Pro-
cessing Systems 33: Annual Conference on Neural Infor-
mation Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020.

Gorbunov, E., Taylor, A. B., and Gidel, G. Last-iterate
convergence of optimistic gradient method for monotone
variational inequalities. In Advances in Neural Infor-
mation Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022.

Greenwald, A. and Hall, K. Correlated q-learning. In
Machine Learning, Proceedings of the Twentieth Inter-
national Conference (ICML 2003), August 21-24, 2003,
Washington, DC, USA, pp. 242–249. AAAI Press, 2003.

Hansen, T. D., Miltersen, P. B., and Zwick, U. Strategy
iteration is strongly polynomial for 2-player turn-based
stochastic games with a constant discount factor. J. ACM,
60(1):1:1–1:16, 2013.

Heinrich, J., Lanctot, M., and Silver, D. Fictitious self-play
in extensive-form games. In Proceedings of the 32nd
International Conference on Machine Learning, ICML
2015, Lille, France, 6-11 July 2015, volume 37 of JMLR
Workshop and Conference Proceedings, pp. 805–813.
JMLR.org, 2015.

Hoda, S., Gilpin, A., Peña, J., and Sandholm, T. Smoothing
Techniques for Computing Nash Equilibria of Sequential
Games. Mathematics of Operations Research, 2010.

Hsieh, Y., Iutzeler, F., Malick, J., and Mertikopoulos, P. On
the convergence of single-call stochastic extra-gradient
methods. In Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pp. 6936–6946, 2019.

Hu, J. and Wellman, M. P. Nash q-learning for general-sum
stochastic games. J. Mach. Learn. Res., 4:1039–1069,
2003.

Huang, Y. and Hu, J. Zeroth-order learning in continu-
ous games via residual pseudogradient estimates. arXiv
preprint arXiv:2301.02279, 2023.

Jia, Z., Yang, L. F., and Wang, M. Feature-based q-learning
for two-player stochastic games. CoRR, abs/1906.00423,
2019.

Johanson, M. Measuring the size of large no-limit poker
games. CoRR, abs/1302.7008, 2013.

Johanson, M., Bard, N., Lanctot, M., Gibson, R. G., and
Bowling, M. Efficient nash equilibrium approximation
through monte carlo counterfactual regret minimization.
In International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 2012, Valencia, Spain, June
4-8, 2012 (3 Volumes), pp. 837–846. IFAAMAS, 2012.

Jordan, M., Lin, T., and Zhou, Z. Adaptive, doubly optimal
no-regret learning in strongly monotone and exp-concave
games with gradient feedback. Operations Research,
2024.

Koller, D. and Megiddo, N. The complexity of two-person
zero-sum games in extensive form. Games and economic
behavior, 4(4):528–552, 1992.

Koller, D., Megiddo, N., and Von Stengel, B. Efficient
computation of equilibria for extensive two-person games.
Games and economic behavior, 14(2):247–259, 1996.

Kozuno, T., Ménard, P., Munos, R., and Valko, M. Learn-
ing in two-player zero-sum partially observable markov
games with perfect recall. In Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pp. 11987–11998,
2021.

Kroer, C., Waugh, K., Kilinç-Karzan, F., and Sandholm,
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A. Computation
As mentioned in Section 4.2, in practice, it suffices to consider the following relaxed optimization problem of Eq. (2), which
performs the update of OMD over Πmax instead of Πk+1

max:

µk+1 = argmin
µ∈Πmax

ηk⟨µ, ℓ̂k⟩+Dψ(µ, µ
k) . (12)

Then, to prevent the loss estimates contributed by the entropy regularization from being prohibitively large, it only remains
to clip the part of the entropy regularization:

ℓ̂k+1
h (xh, ah) =

Ik+1
h {xh, ah}

µk+1
1:h (xh, ah) + γk

(1− rk+1
h ) + εk+1 · px1:h (xn) log

(
max

{[
pxµk+1

]
(xh, ah), ζ

k+1
})

, (13)

where ζk+1 > 0 is the clipping threshold.

To update the policy in Eq. (12), from the proof of Proposition F.2 of Fiegel et al. (2023), one can see that the virtual transition-
weighted negentropy ψpx(µ) =

∑
h,xh,ah

[pxµ] (xh, ah) log ([p
xµ] (xh, ah)) is equivalent to the following special dilated

negentropy:

ψ′
k(µ) =

∑
h,xh,ah

µ1:h (xh, ah)

κk(xh)
log

(
µ1:h (xh, ah)

µ1:h (xh)

)
+

∑
h,xh,ah

[pxµ] (xh, ah) log (p
x
1:h(xh)) . (14)

where

κk(xh) = ηk/((H − h+ 1)px1:h(xh)) . (15)

Since the second term in Eq. (14) is a linear term in µ, the virtual transition-weighted negentropy ψ and this special dilated
negentropy ψ′ will induce the same Bregman divergence. Hence, µk+1 computed in Eq. (12) is the same as it computed by
the following:

µk+1 = argmin
µ∈Πmax

ηk⟨µ, ℓ̂k⟩+Dψ′
k
(µ, µk) . (16)

We conclude the discussion here by demonstrating Algorithm 3, which provides a closed-form update of Eq. (16). The
correctness of Algorithm 3 is guaranteed in Proposition A.1.

Algorithm 3 Closed-form Solution of Eq. (16)

1: Input: Tree-like structure of X ×A, fixed learning rates η, virtual transition p⋆ and clipped loss estimator ℓ̂k.
2: Initialization: For all xH in XH , initialize Zk(xH+1) = 1. Set adaptive learning rates κk according to Eq. (15).
3: for h = H to 1 do
4: for xh in Xh do
5: Compute Jkh (xh, ah) = −κk(xh)ℓ̂kh(xh, ah) +

∑
xh+1∈C(xh,ah)

κk(xh)
κk(xh+1)

logZkh+1(xh+1).
6: Compute Zkh(xh) =

∑
ah∈A µ

⋆
h(ah|xh) exp

(
Jkh (xh, ah)

)
.

7: for ah in A do
8: Compute µk+1

h (ah|xh) = µ⋆h(ah|xh) exp
(
Jkh (xh, ah)− logZkh(xh)

)
.

9: end for
10: end for
11: end for

Proposition A.1. The solution to the update in Eq. (16) satisfies

µk+1
h (ah|xh) =µkh(ah|xh) exp

−κk(xh)ℓ̂kh(xh, ah) +
∑

xh+1∈C(xh,ah)

κk(xh)

κk(xh+1)
logZkh+1(xh+1)− logZkh(xh)

 ,
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where

Zkh(xh) =
∑
ah∈A

µkh(ah|xh) exp

−κk(xh)ℓ̂kh(xh, ah) +
∑

xh+1∈C(xh,ah)

κk(xh)

κk(xh+1)
logZkh+1(xh+1)

 , (17)

and for notational convenience, we define that ∀(xH , aH) ∈ XH × A, it has a unique descendant xH+1 such that
ZkH+1(xH+1) = 1.

Proof. First note that

〈
µ, ℓ̂k

〉
+Dψ′(µ, µk) =

H∑
h=1

∑
(xh,ah)∈Xh×A

µ1:h(xh, ah)

[
ℓ̂kh (xh, ah) +

1

κk(xh)
log

µh(ah|xh)
µkh(ah|xh)

]

=

H∑
h=1

∑
xh∈Xh

µ1:h−1(xh)

[〈
µh(·|xh), ℓ̂kh (xh, ·)

〉
+

KL
(
µh(·|xh), µkh(·|xh)

)
κk(xh)

]
. (18)

We now prove the proposition via backward induction over h = H, . . . , 1.

When h = H , for any xH ∈ XH , Eq. (18) shows that

µk+1
H (aH |xH) = µkH(aH |xH) exp

{
−κk(xh)ℓ̂kH(xH , aH)− logZkH(xH)

}
,

where ZkH(xH) =
∑
aH∈A µ

k
H(aH |xH) exp{−κk(xh)ℓ̂kH(xH , aH)} is a normalization factor.

Fix some h ∈ [H]. Now suppose the induction hypothesis holds from step h+ 1 to H and consider the h-th step. Using the
induction hypothesis, one can see that Eq. (18) can be rewritten as

H∑
h′=1

∑
(xh′ ,ah′ )∈Xh′×A

µ1:h′(xh′ , ah′)

[
ℓ̂kh′ (xh′ , ah′) +

1

κk(xh′)
log

µh′(ah′ |xh′)

µkh′(ah′ |xh′)

]

=

H∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂kh′ (xh′ , ·)

〉
+

KL
(
µh′(·|xh′), µkh′(·|xh′)

)
κk(xh′)

]

=

h∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂kh′ (xh′ , ·)

〉
+

KL
(
µh′(·|xh′), µkh′(·|xh′)

)
κk(xh′)

]

+

H∑
h′=h+1

 ∑
xh′+1∈Xh′+1

µ1:h′(xh′+1)

κk(xh′+1)
logZkh′+1(xh′+1)−

∑
xh′∈Xh′

µ1:h′−1(xh′)

κk(xh′)
logZkh′(xh′)


=

h∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂kh′ (xh′ , ·)

〉
+

KL
(
µh′(·|xh′), µkh′(·|xh′)

)
κk(xh′)

]

−
∑

xh+1∈Xh+1

µ1:h(xh+1)

κk(xh+1)
logZkh+1(xh+1)

=

h−1∑
h′=1

∑
xh′∈Xh′

µ1:h′−1(xh′)

[〈
µh′(·|xh′), ℓ̂kh′ (xh′ , ·)

〉
+

KL
(
µh′(·|xh′), µkh′(·|xh′)

)
κk(xh′)

]

+
∑
xh∈Xh

µ1:h−1(xh)


〈
µh(·|xh), ℓ̂kh (xh, ·)−

∑
xh+1∈C(xh,·)

logZkh+1(xh+1)

κk(xh+1)

〉
+

KL
(
µh(·|xh), µkh(·|xh)

)
κk(xh)︸ ︷︷ ︸

♡

 .
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By minimizing (♡), one can derive that

µk+1
h (ah|xh) = µkh(ah|xh) exp

−κk(xh)ℓ̂kh(xh, ah) +
∑

xh+1∈C(xh,ah)

κk(xh)

κk(xh+1)
logZkh+1(xh+1)− logZkh(xh)

 ,

where

Zkh(xh) =
∑
ah∈A

µkh(ah|xh) exp

−κk(xh)ℓ̂kh(xh, ah) +
∑

xh+1∈C(xh,ah)

κk(xh)

κk(xh+1)
logZkh+1(xh+1)

 .

The proof is thus concluded.

B. More Discussions on Virtual Transition Probabilities
B.1. Illustration on the Failure of Using Uniform Virtual Transition

In this section, we demonstrate why a uniform virtual transition is insufficient for achieving meaningful last-iterate
convergence rates.

Consider an IIEFG instance where there is only one action a and H = 4. Each infoset x in the game tree of this instance
satisfies |C(x, a)| = 2 except for infoset x2,1, which is such that |C(x2,1, a)| = n with some n ≥ 2. Now, suppose the
uniform distribution p is used as a virtual transition over infoset-action spaces. Then for all the descendants {x4,i}2ni=1 on
step h = 4 of infoset x2,1, one can see that p1:H(xH,i) =

1
2 · 1

n · 1
2 = 1

4n , while there are only X = 9 + 3n infosets in total.
Thus, it will happen that p1:H(xH,i) <

1
X when n > 9.

Actually, one can easily construct an IIEFG instance such that minxH∈XH
p1:H(xH) ≤ O( 1

nm ) and X = O(mn+ c) with
c as a parameter that depends on m but not n for uniform virtual transition p. Therefore, when using uniform distribution p
as a virtual transition, maxxH∈XH

1/p1:H(xH) might be prohibitively large and lead to a convergence rate with much worse
dependence on X than the virtual transition constructed in our Algorithm 2.

B.2. Balanced Effects of the Proposed Virtual Transition Probability

Lemma B.1. For any h ∈ [H] and xh ∈ Xh, the constructed virtual transition px guarantees that 1/px1:h(xh) ≤ X .

Proof. Clearly, px1:h(·) is minimzed at h = H for some xH ∈ XH by the definition of virtual transition. By the construction
of px1:h(·) in Algorithm 2, one can deduce that ∀xH ∈ XH , it holds that (understanding {(xh, ah)}h∈[H−1] as the unique
trajectory leading to xH below)

px1:H(xH) = q[xH ]

= q [xH−1] ·
c [xH ]∑

x′
H∈C(xH−1,aH−1)

c [x′H ]

= q [xH−2] ·
c [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

c
[
x′H−1

] · c [xH ]∑
x′
H∈C(xH−1,aH−1)

c [x′H ]

= q [xH−2] ·
c [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

c
[
x′H−1

] · c [xH ]

d [xH−1, aH−1]

(i)

≥ q [xH−2] ·
c [xH−1]∑

x′
H−1∈C(xH−2,aH−2)

c
[
x′H−1

] · c [xH ]

c[xH−1]

= q [xH−2] ·
c [xH ]∑

x′
H−1∈C(xH−2,aH−2)

c
[
x′H−1

]
≥ . . .

≥ c [xH ]∑
x1∈X1

c [x1]

16
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≥ c [xH ]

XH

≥ c [xH ]

X

=
1

X
,

where c[·], q[·], and d[·, ·] are defined in our Algorithm 2; and (i) is due to c[xH−1] = maxa∈A d[xH−1, a] ≥ d[xH−1, aH−1].

The property shown in this lemma of our constructed virtual transition px serves as a key ingredient in the analysis (say,
when bounding our Term 4 as well as Term 6 and when establishing the final convergence upper bound of the NE gap in
the proof of Theorem 5.1) as we shall see.

C. Proof of Theorem 5.1
Proof of Theorem 5.1. Throughout the proof, since Theorem 5.1 holds for all k as fixed constants, we assume k ≥ k0 =(

24
1−αη−αϵ

ln
(

12
1−αη−αϵ

)) 1
1−αη−αϵ

= (96 ln(48))4. In what follows, we denote by mx
k = minh,xh,ah

[
pxµk

]
(xh, ah) and

my
k = minh,yh,bh

[
pyνk

]
(yh, bh).

First, notice that NEGap(ξk) can be translated into the summation of NEGap(ξk,⋆) and the distance of ξk to ξk,⋆ as
follows:

NEGap
(
ξk
)

= sup
µ∈Πmax,ν∈Πmin

f
(
µk, ν

)
− f

(
µ, νk

)
= sup
µ∈Πmax,ν∈Πmin

f
(
µk,⋆, ν

)
− f

(
µk,⋆, ν

)
+ f

(
µk, ν

)
− f

(
µ, νk

)
+ f

(
µ, νk,⋆

)
− f

(
µ, νk,⋆

)
≤ sup
µ∈Πmax,ν∈Πmin

NEGap
(
ξk,⋆

)
+
(
µk − µk,⋆

)⊤
Gν + µ⊤G

(
νk,⋆ − νk

)
(i)

≤ sup
µ∈Πmax,ν∈Πmin

NEGap
(
ξk,⋆

)
+
〈
px
(
µk − µk,⋆

)
,Gν/px

〉
+
〈
py
(
νk − νk,⋆

)
,G⊤µ/py

〉
≤ sup
µ∈Πmax,ν∈Πmin

NEGap
(
ξk,⋆

)
+
∥∥px (µk − µk,⋆

)∥∥
1
∥Gν/px∥∞ +

∥∥py (νk − νk,⋆
)
∥1∥G⊤µ/py

∥∥
∞

(ii)

≤ NEGap
(
ξk,⋆

)
+X

∥∥px (µk − µk,⋆
)∥∥

1
+ Y

∥∥py (νk − νk,⋆
)∥∥

1

(iii)

≤ εkH (ln(XA) + ln(Y B)) +O
(
XAH

k
+
Y BH

k
+X

√
KL (pxµk,⋆, pxµk) + Y

√
KL (pyνk,⋆, pyνk)

)
≤ εkH (ln(XA) + ln(Y B)) +O

(
XAH

k
+
Y BH

k
+ (X + Y )

√
KL (pxµk,⋆, pxµk) + KL (pyνk,⋆, pyνk)

)
(iv)

≤ εkH (ln(XA) + ln(Y B)) +O
(
XAH

k
+
Y BH

k
+ (X + Y )

√
KL (pzξk,⋆, pzξk)

)
(v)

≤ εkH (ln(XA) + ln(Y B)) +O
(
XAH

k
+
Y BH

k
+ (X + Y )

√
Dψ (ξk,⋆, ξk)

)
, (19)

where in (i)Gν/px ∈ RXA is defined such that (Gν/px)[(xh, ah)] = (Gν)[(xh, ah)]/p
x
1:h(xh) and similarly for G⊤µ/py;

(ii) is by Lemma B.1; (iii) is by Lemma C.1 and Pinsker’s inequality; in (iv) we denote by pz = (px, py); and (v) follows
from the definition of the virtual transition-weighted negentropy regularizer in Eq. (6).

We proceed to bound Dψ

(
ξk,⋆, ξk

)
in the above display. To this end, putting Lemma C.2, C.3, C.4, C.5, C.6, C.7, and C.8

together leads to

Dψ

(
ξk+1,⋆, ξk+1

)
17
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≲(XA+ Y B) ln(k)k−αγ+αε + k−
αk
2 +αε

2 log
(
k2/δ

)
+ k−αη+αγ log(k2/δ)

+
(
XA(log2mx

k) + Y B(log2my
k)
)
k−αη−αε + kαγ−2αη (X + Y ) log (1/δ) +

(
X2A+ Y 2B

)
k−αη+αε

+ (X + Y )
1
2 log2 (1/ (mx

km
y
k)) log(k)k

−min{1,(3−αε)/2}+αη+αϵ

≤O
(
(XA+ Y B) ln(k)k−αγ+αε + k−

αη
2 +αε

2 log

(
k2

δ

)
+ k−αη+αγ log

(
k2

δ

)
+
(
XA

(
logX +H log (Ak)

2
+ Y B (log Y +H log (Bk))

2
)
k−αη−αε

+ kαγ−2αη (X + Y ) log

(
1

δ

)
+ (X2A+ Y 2B)k−αη+αϵ

+ (X + Y )
1
2 (H log (Ak) +H log (Bk)) (logX +H log (k) + log Y +H log (Bk))

· log(k)k−min{1,(3−αε)/2}+αη+αϵ

≤O
([
k−

1
4 (XA+ Y B) + k−

1
4 + k−

1
4 + (XA+ Y B)H2k−

3
4 + (X + Y )k−

7
8 +

(
X2A+ Y 2B

)
k−

1
2

+(X + Y )
1
2H2K− 1

4

] (
log2 (XAk/δ) + log2 (Y Bk/δ)

)
log(K)

)
, (20)

where the second inequality is by the fact that log(1/mx
k) ≤ (logX +H log (Ak)) and log(1/my

k) ≤
(log Y +H log (Bk)).

Substituting Eq. (20) into Eq. (19) shows that

NEGap(µk, νk)

=O
(
(X + Y )

[
k−

1
8 (XA+ Y B)

1
2 + (XA+ Y B)

1
2Hk−

3
8 +

(
X2A+ Y 2B

) 1
2 k−

1
4 + (X + Y )

1
4HK− 1

8

]
· (log (XAk/δ) + log (Y Bk/δ)) log

1
2 (k) + k−

1
8H(ln(XA) + ln(Y B)) +

XAB

k
+
Y BH

k

)
=Õ

(
(X + Y )

[
k−

1
8 (XA+ Y B)

1
2 + (XA+ Y B)

1
2HK− 3

8 +
(
X2A+ Y 2B

) 1
2 k−

1
4 + (X + Y )

1
4Hk−

1
8

]
+
(XAH + Y BH)

k

)
=Õ

(
(X + Y )k−

1
8

[
(XA+ Y B)

1
2 + (X + Y )

1
4H
])

,

where the last equality holds when k ⩾ max{H4, (X
2A+Y 2B)

4

/(XA+Y B)4, (XA+Y B)
8/7
/(X+Y )

10/7}.

The proof is thus concluded.

C.1. Bounding NEGap(ξk,⋆)

Lemma C.1. ∀k ⩾ 1, it holds that

NEGap(ξk,⋆) = O
(
εkH(ln(XA) + ln(Y B)) +

XAH

k
+
Y BH

k

)
. (21)

Proof. Fix arbitrary (µ′, ν′) ∈ Πmax ×Πmin. Note that

f
(
µk,⋆, ν′

)
− f

(
µ′, νk,⋆

)
=f
(
µk,⋆, ν′

)
− f

(
µk,⋆, ν

)
+ f

(
µk,⋆, ν

)
− f

(
µ, νk,⋆

)
+ f

(
µ, νk,⋆

)
− f

(
µ′, νk,⋆

)
, (22)

where (µ, ν) ∈ Πkmax ×Πkmin is such that µ = argminµ̂∈Πk
max

∥µ̂− µ′∥∞ and ν = argminν̂∈Πk
min

∥ν̂ − ν′∥∞. It is clear
that f

(
µk,⋆, ν

)
− f

(
µ, νk,⋆

)
in the above display can be bounded as

f
(
µk,⋆, ν

)
− f

(
µ, νk,⋆

)
=f
(
µk,⋆, ν

)
− fk

(
µk,⋆, ν

)
+ fk

(
µk,⋆, ν

)
− fk

(
µ, νk,⋆

)
+ fk

(
µ, νk,⋆

)
− f

(
µ, νk,⋆

)
18
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(i)

≤ −
(
εkψ

(
µk,⋆

)
− εkψ(ν)

)
+
(
εkψ(µ)− εkψ

(
νk,⋆

))
(ii)

≤ − εkψ
(
µk,⋆

)
− εkψ

(
νk,⋆

)
≤εkH(ln(XA) + ln(Y B)) , (23)

where (i) is due to that (µk,⋆, νk,⋆) is the NE policy profile of fk; and (ii) follows from ψ(µ) ≤ 0 for all µ ∈ Πmax

(similarly for all ν ∈ Πmin).

Moreover, f
(
µk,⋆, ν′

)
− f

(
µk,⋆, ν

)
in Eq. (22) can be bounded as

f
(
µk,⋆, ν′

)
− f

(
µk,⋆, ν

)
=
〈
∇νf

(
µk,⋆, ν

)
, ν′ − ν

〉
≤∥∇νf

(
µk,⋆, ν

)
∥1∥ν′ − ν∥∞

(i)

≤Y B

(
1−

(
1− B − 1

Bk

)H)

≤Y B

(
1−

(
1− 1

k

)H)
(ii)
=O

(
Y BH

k

)
, (24)

where (i) is due to Lemma 2 of Kozuno et al. (2021) and the definition of Πkmax in Algorithm 1; and (ii) follows from
(1− 1/k)H = O

(
1−

(
H
1

)
/k +

(
H
2

)
/k2 − . . .

)
= O(1−H/k). Similarly, we have

f
(
µ, νk,⋆

)
− f

(
µ′, νk,⋆

)
≤ O

(
XAH

k

)
. (25)

The proof is concluded by substituting Eq. (23), Eq. (24) and Eq. (25) into Eq. (22) and noticing that the above holds for all
(µ′, ν′) ∈ Πmax ×Πmin.

C.2. Bounding Contraction of Bregman Divergences

Lemma C.2 (Contraction of Bregman divergences). The Bregman divergences of the virtual transition-weighted negentropy
regularizer satisfies

Dψ

(
ξk+1,⋆, ξk+1

)
≤

k∑
i=1

wikηiρi︸ ︷︷ ︸
Term 1

+

k∑
i=1

wikηiσi︸ ︷︷ ︸
Term 2

+XA(log2mx
k)

k∑
i=1

wik (ηiεi)
2
+ Y B(log2my

k)

k∑
i=1

wik (ηiεi)
2

︸ ︷︷ ︸
Term 3

+

k∑
i=1

wikη
2
i (Xτ i + Y τ̄i)︸ ︷︷ ︸
Term 4

+

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
︸ ︷︷ ︸

Term 5

+

k∑
i=1

wikωi︸ ︷︷ ︸
Term 6

, (26)

where wik =
∏k
j=i+1 (1− ηjεj).

Proof. We start by deriving a descent inequality for Dψ

(
µk+1,⋆, µk+1

)
using the difference between fk(µ

k, νk) −
fk(µ

k,⋆, νk):

fk(µ
k, νk)− fk(µ

k,⋆, νk) =
(
µk − µk,⋆

)⊤
Gνk + εk

(
ψ(µk)− ψ(µk,⋆)

)
. (27)

For the first term on the RHS of the above display, we have(
µk − µk,⋆

)⊤
Gνk

19
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=
(
µk − µk,⋆

)⊤ (
Gνk + ℓ̂k − ℓ̂k

)
=
(
µk − µk,⋆

)⊤
ℓ̂k +

(
µk
)⊤ (

Gνk − ℓ̂k
)
−
(
µk,⋆

)⊤ (
Gνk − ℓ̂k

)
=
(
µk − µk,⋆

)⊤
ℓ̂k +

∑
h,xh,ah

µk1:h (xh, ah)
([

Gνk
]
(xh, ah)− ℓ̂k (xh, ah)

)
−

∑
h,xh,ah

µk,⋆1:h (xn, an)
([

Gνk
]
(xh, ah)− ℓ̂k (xh, ah)

)
=
(
µk − µk,⋆

)⊤
ℓ̂k

+
∑

h,xh,ah

µk1:h (xh, ah)

[[
Gνk

]
(xh, ah)−

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk

(
1− rkh

)
+ εkp

x
1:h (xh) log

[
pxµk

]
(xh, ah)

)]

−
∑

h,xh,ah

µk,⋆1:h (xh, ah)

[[
Gνk

]
(xh, ah)−

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk

(
1− rkh

)
+ εkp

x
1:h (xh) log

[
pxµk

]
(xh, ah)

)]
.

(28)

For the second term of the RHS of Eq. (27), we have

ψ(µk)− ψ(µk,⋆)

=
∑

h,xh,ah

[
pxµk

]
(xh, ah) log

[
pxµk

]
(xh, ah)−

∑
h,xh,ah

[
pxµk,⋆

]
(xh, ah) log

[
pxµk,⋆

]
(xh, ah)

=
∑

h,xh,ah

([
pxµk

]
(xh, ah)−

[
pxµk,⋆

]
(xh, ah)

)
log
[
pxµk

]
(xh, ah)

−
∑

h,xh,ah

[
pxµk,⋆

]
(xh, ah)

(
log
[
pxµk,⋆

]
(xh, ah)− log

[
pxµk

]
(xh, ah)

)
=

∑
h,xh,ah

([
pxµk

]
(xh, ah)−

[
pxµk,⋆

]
(xh, ah)

)
log
[
pxµk

]
(xh, ah)−Dψ(µ

k,⋆, µk) , (29)

where the last equality again follows from the definition of the virtual transition-weighted negentropy regularizer in Eq. (6).

Substituting Eq. (28) and Eq. (29) into Eq. (27) leads to

fk(µ
k, νk)− fk(µ

k,⋆, νk)

=
(
µk − µk,⋆

)⊤
ℓ̂k +

∑
h,xh,ah

µk1:h (xh, ah)

[[
Gνk

]
(xh, ah)−

Ikh {xh, ah}
µk1:h (xh, ah) + γk

(
1− rkh

)]
︸ ︷︷ ︸

=:ρ
k

−
∑

h,xh,ah

µk,⋆1:h (xh, ah)

[[
Gνk

]
(xh, ah)−

Ikh {xh, ah}
µk1:h (xh, ah) + γk

(
1− rkh

)]
︸ ︷︷ ︸

=:σk

−εkDψ(µ
k,⋆, µk)

(i)

≤ 1

ηk

(
Dψ(µ

k,⋆, µk)−Dψ(µ
k,⋆, µk+1)

)
− εkDψ(µ

k,⋆, µk) + ρ
k
+ σk

+
∑

h,xh,ah

ηk

(
1

px1:h(xh)
µk1:h(xh, ah)ℓ̂

k
h(xh, ah)

2 + ε2k log
2
[
pxµk

]
(xh, ah)

)
(ii)

≤
(1− ηkεk)Dψ

(
µk,⋆, µk

)
−Dψ

(
µk,⋆, µk+1

)
ηk

+ ρ
k
+ σk

+
∑

h,xh,ah

ηk

(
1

px1:h(xh)

Ikh {xh, ah}
µk1:h (xh, ah) + γk

+ ε2k log
2mx

k

)
(iii)

≤
(1− ηkεk)Dψ

(
µk,⋆, µk

)
−Dψ

(
µk,⋆, µk+1

)
ηk

+ ρ
k
+ σk
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+ ηkX · 1

X

∑
h,xh,ah

1

px1:h(xh)

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk
− 1

)
︸ ︷︷ ︸

=:τk

+ηkX
2A+ ηkε

2
kXA log2mx

k

≤
(1− ηkεk)Dψ

(
µk,⋆, µk

)
−Dψ

(
µk,⋆, µk+1

)
ηk

+ ρ
k
+ σk + ηkXτk + ηkX

2A+ ηkε
2
kXA log2mx

k ,

where (i) is by Lemma D.1; recall mx
k := minh,xh,ah

[
pxµk

]
(xh, ah) in (ii); and (iii) is due to Lemma B.1.

Rearranging shows that

Dψ

(
µk+1,⋆, µk+1

)
≤ (1− ηkεk)Dψ

(
µk,⋆, µk

)
+ ηk

(
fk
(
µk,⋆, νk

)
− fk

(
µk, νk

))
+ η2kXAε

2
k log

2mx
k

+ η2kXτk + η2kX
2A+ ηkρk + ηkσk +Dψ

(
µk+1,⋆, µk+1

)
−Dψ

(
µk,⋆, µk+1

)︸ ︷︷ ︸
=:ωk

. (30)

Analogously, for the min-player, we have

Dψ

(
νk+1,⋆, νk+1

)
≤ (1− ηkεk)Dψ

(
νk,⋆, νk

)
+ ηk

(
fk
(
µk, νk

)
− fk

(
µk, νk,⋆

))
+ η2kY Bε

2
k log

2my
k + η2kY τ̄k + η2kY

2B + ηkρ̄k + ηkσ̄k + ω̄k , (31)

where

my
k := min

h,yh,bh

[
pyνk

]
(yh, bh) ,

τ̄k :=
1

Y

∑
h,yh,bh

1

py1:h(yh)

(
Ikh {yh, bh}

νk1:h (yh, bh) + γk
− 1

)
,

ρ̄k :=
∑

h,yh,bh

νk1:h (yh, bh)

[(
1−

[
G⊤µk

]
(yh, bh)

)
− Ikh {yh, bh} rkh
νk1:h (yh, bh) + γk

]
,

σ̄k :=
∑

h,yh,bh

νk,⋆1:h (yh, bh)

[
Ikh {yh, bh} rkh

νk1:h (yh, bh) + γk
−
(
1−

[
G⊤µk

]
(yh, bh)

)]
,

ω̄k := Dψ

(
νk+1,⋆, νk+1

)
−Dψ

(
νk,⋆, νk+1

)
.

Combining Eq. (30) and Eq. (31), and noticing that fk
(
µk,⋆, νk

)
− fk

(
µk, νk,⋆

)
≤ 0, we have

Dψ

(
ξk+1,⋆, ξk+1

)
≤ (1− ηkεk)Dψ

(
ξk,⋆, ξk

)
+ η2k (X + Y ) τk + η2k

(
X2A+ Y 2B

)
+ ηkρk + ηkσk + ωk

+ η2kXAε
2
k log

2mx
k + η2kY Bε

2
k log

2my
k ,

where τk := τk + τ̄k, ρk := ρ
k
+ ρ̄k, σk := σk + σ̄k, and ωk := ωk + ω̄k.

Now expanding the recursion in the above display leads to

Dψ

(
ξk+1,⋆, ξk+1

)
≤

k∑
i=1

wikηiρi︸ ︷︷ ︸
Term 1

+

k∑
i=1

wikηiσi︸ ︷︷ ︸
Term 2

+XA(log2mx
k)

k∑
i=1

wik (ηiεi)
2
+ Y B(log2my

k)

k∑
i=1

wik (ηiεi)
2

︸ ︷︷ ︸
Term 3

+

k∑
i=1

wikη
2
i (X + Y ) τi︸ ︷︷ ︸
Term 4

+

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
︸ ︷︷ ︸

Term 5

+

k∑
i=1

wikωi︸ ︷︷ ︸
Term 6

,

where wik =
∏k
j=i+1 (1− ηjεj).

The proof is thus concluded.
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C.2.1. BOUNDING CONTRACTION TERMS

Lemma C.3 (Bounding Term 1). When k ≥ k0, Term 1 in Eq. (26) satisfies

Term 1 ≤ (XA+ Y B) ln(k)k−αγ+αε + k−
αk
2 +αε

2 log
(
k2/δ

)
.

Proof. Recall

Term 1 =

k∑
i=1

wikηiρi =

k∑
i=1

wikηiρi +

k∑
i=1

wikηiρ̄i .

To bound
∑k
i=1 w

i
kηiρi, note that

k∑
i=1

wikηiρi

=

k∑
i=1

wikηi

〈
µi, ℓi − ℓ̂i

〉
(i)
=XA

k∑
i=1

wikηiγi +H

√√√√2

k∑
i=1

(
wikηi

)2
log

k2

δ

≲XA
k∑
i=1

i−αγ−αη

k∏
j=i+1

(
1− j−αη−αε

)+

√√√√√√log

(
k2

δ

) k∑
i=1

i−2αη

 k∏
j=i+1

(1− j−αη−αε)

2


≲XA
k∑
i=1

i−αγ−αη

k∏
j=i+1

(
1− j−αη−αε

)+

√√√√√log

(
k2

δ

) k∑
i=1

i−2αη

 k∏
j=i+1

(1− j−αn−αε)


≲XA ln(k)k−αγ+αε +

√
log (k2/δ) ln(k)k−αη+αε

≲XA ln(k)k−αγ+αε + k(αε−αη)/2 log
(
k2/δ

)
,

where (i) is given by Lemma G.1 and the last inequality comes from Lemma G.4 and the condition of k ≥ k0.

Analogously, we have

k∑
i=1

wikηiρ̄i ≲ Y B ln(k)k−αγ+αε + k(αε−αη)/2 log
(
k2/δ

)
.

The proof is completed by combining the upper bounds of
∑k
i=1 w

i
kηiρi and

∑k
i=1 w

i
kηiρ̄i.

Lemma C.4 (Bounding Term 2). When k ≥ k0, with probability 1− (k2/δ), Term 2 in Eq. (26) satisfies

Term 2 ≤ k−αη+αγ log(k2/δ) .

Proof. Applying Lemma G.3 shows that with probability 1− (k2/δ),

Term 2 =

k∑
i=1

wikηiσi

=

k∑
i=1

wikηiσi +

k∑
i=1

wikηiσ̄i
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≲ max
1≤i≤k

ηiw
i
k

γk
log

k2

δ

≲k−αη+αγ log
k2

δ
,

where the last inequality is due to Lemma G.5 and the condition of k ≥ k0.

Lemma C.5 (Bounding Term 3). When k ≥ k0, Term 3 in Eq. (26) satisfies

Term 3 ≲
(
XA(log2mx

k) + Y B(log2my
k)
)
k−αη−αε .

Proof.

Term 3 =XA(log2mx
k)

k∑
i=1

wik (ηiεi)
2
+ Y B(log2my

k)

k∑
i=1

wik (ηiεi)
2

≲
(
XA(log2mx

k) + Y B(log2my
k)
)
k−2(αη+αε)+αη+αε

=
(
XA(log2mx

k) + Y B(log2my
k)
)
k−αη−αε ,

where the inequality follows from Lemma G.4 and the condition of k ≥ k0.

Lemma C.6 (Bounding Term 4). With probability 1− δ, Term 4 in Eq. (26) satisfies

Term 4 ≤ kαγ−2αη (X + Y ) log (1/δ) .

Proof.

Term 4

=

k∑
i=1

wikη
2
i (Xτ i + Y τ̄i)

=

k∑
i=1

wikη
2
i

X · 1

X

∑
h,xh,ah

1

px1:h(xh)

(
Ikh {xh, ah}

µk1:h (xh, ah) + γk
− 1

)
+ Y · 1

Y

∑
h,yh,bh

1

py1:h(yh)

(
Ikh {yh, bh}

νk1:h (yh, bh) + γk
− 1

)
≤ max

1≤i≤k

wikη
2
i (X + Y )

γk
log(1/δ)

≤kαγ−2αη (X + Y ) log (1/δ) ,

where the first inequality follows from that 1/X ≤ px1:h (xh) for all (xh, ah) guaranteed by Lemma B.1 and Lemma
G.3.

Lemma C.7 (Bounding Term 5). When k ≥ k0, Term 5 in Eq. (26) satisfies

Term 5 ≲
(
X2A+ Y 2B

)
k−αη+αε .

Proof.

Term 5 =

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
≲
(
X2A+ Y 2B

)
k−2αη+αη+αε

=
(
X2A+ Y 2B

)
k−αη+αε ,

where the inequality is due to Lemma G.4 as well as the condition of k ≥ k0.
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Lemma C.8 (Bounding Term 6). When k ≥ k0, Term 6 in Eq. (26) satisfies

Term 6 ≲(X + Y )
1
2 log2 (1/ (mx

km
y
k)) log(k)k

−min{1,(3−αε)/2}+αη+αϵ .

Proof. By definition, we have

Term 6 =

k∑
i=1

wikωi

≲(X + Y )
1
2 log2 (1/ (mx

km
y
k))

k∑
i=1

wiki
−min{1,(3−αε)/2}

≲(X + Y )
1
2 log2 (1/ (mx

km
y
k)) log(k)k

−min{1,(3−αε)/2}+αη+αϵ ,

where the first inequality is due to Lemma D.2 and the second inequality comes from Lemma G.4.

D. Omitted Details in the Proof of Theorem 5.1
D.1. One-step Analysis of OMD with Virtual Transition-Weighted Negentropy Regularized Loss

Lemma D.1. Let

µ′ = argmin
µ̃∈Ω

∑
h,xh,ah

µ̃1:h (xh, ah) (ℓ (xh, ah) + εpx1:h (xh) log [p
xµ] (xh, ah)) +

1

η
Dψ(µ̃, µ) ,

for some convex set Ω ⊆ Πmax, ℓ ∈ RXA⩾0 , and ε ∈
[
0, 1η

]XA
. Then ∀u ∈ Ω.

⟨µ− u, ℓ+ εpx log [pxµ]⟩

≤1

η
(Dψ(u, µ)−Dψ(u, µ

′)) +
∑

h,xh,ah

(
η

px1:h(xh)
µ1:h(xh, ah)ℓ(xh, ah)

2 + ηε2 log2 [pxµ] (xh, ah)

)
,

where [px log [pxµ]] (xh, ah) := px1:h(xh) log [p
xµ] (xh, ah).

Proof. The common one-step analysis of OMD shows that

⟨µ′ − u, ℓ+ εpx log [pxµ]⟩ ≤ 1

η
(Dψ(u, µ)−Dψ(u, µ

′)−Dψ(µ
′, µ)) .

Hence

⟨µ− u, ℓ+ εpx log [pxµ]⟩

≤1

η
(Dψ(u, µ)−Dψ(u, µ

′)−Dψ(µ
′, µ)) + ⟨µ− µ′, ℓ+ εpx log [pxµ]⟩ . (32)

Then, to upper bound ⟨µ− µ′, ℓ+ εpx log [pxµ]⟩ − 1
ηDψ (µ′, µ), notice that

⟨µ− µ′, ℓ+ εpx log [pxµ]⟩ − 1

η
Dψ (µ′, µ)

≤ sup
ν∈RXA

+

(
⟨µ− ν, ℓ+ εpx log [pxµ]⟩ − 1

η
Dψ (ν, µ)

)
= ⟨µ, ℓ+ εpx log [pxµ]⟩ − inf

ν∈RXA
+

(
⟨ν, ℓ+ εpx log [pxµ]⟩+ 1

η
Dψ (ν, µ)

)
. (33)
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Further, the first-order optimality condition, ℓ+ εpx log [pxµ] + 1
η (∇ψ(ν)−∇ψ(µ)) = 0, implies that

log
ν1:h (xh, ah)

µ1:h (xh, ah)
= − η

px1:h (xh)
[ℓ (xh, ah) + εpx1:h (xh) log [p

xµ] (xh, ah)] ,

and thus

ν1:h (xh, ah)

=µ1:h (xh, ah) exp

(
− η

px1:h (xh)
[ℓ (xh, ah) + εpx1:h (xh) log [p

xµ] (xh, ah)]

)
. (34)

Substituting Eq. (34) into Eq. (33) leads to

⟨µ− µ′, ℓ+ εpx log [pxµ]⟩ − 1

η
Dψ (µ′, µ)

=
∑

h,xh,ah

[
(µ1:h (xh, ah)− ν1:h (xh, ah)) (ℓ (xh, ah) + εpx1:h (xh) log [p

xµ] (xh, ah))

− 1

η

(
[pxν] (xh, ah) log

ν1:h(xh, ah)

µ1:h(xh, ah)
− ([pxν] (xh, ah)− [pxµ] (xh, ah))

)]
=

∑
h,xh,ah

[
µ1:h (xh, ah) (ℓ (xh, ah) + εpx1:h (xh) log [p

xµ] (xh, ah))

+
[pxµ] (xh, ah)

η

(
exp

(
− η

px1:h(xh)
[ℓ(xh, ah) + εpx1:h(xh) log [p

xµ] (xh, ah)]

)
− 1

)]
=

∑
h,xh,ah

[pxµ] (xh, ah)

η

[
η

px1:h(xh)
(ℓ (xh, ah) + εpx1:h (xh) log [p

xµ] (xh, ah))

+ exp

(
− η

px1:h(xh)
[ℓ(xh, ah) + εpx1:h(xh) [p

xµ] (xh, ah)]

)
− 1

]
(i)

≤
∑

h,xh,ah

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)

+
∑

h,xh,ah

px1:h(xh)

η

[
µ1:h (xh, ah)

η

px1:h(xh)
εpx1:h (xh) log [p

xµ] (xh, ah)

+ µ1:h(xh, ah) exp

(
− η

px1:h(xh)
[ℓ(xh, ah) + εpx1:h(xh) log [p

xµ] (xh, ah)]

)
− µ1:h(xh, ah) exp

(
− η

px1:h(xh)
ℓ(xh, ah)

)]
=

∑
h,xh,ah

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)

+
∑

h,xh,ah

1

η

[
ηε [pxµ] (xh, ah) log [p

xµ] (xh, ah)

+ exp

(
− η

px1:h(xh)
ℓ(xh, ah)

)(
[pxµ] (xh, ah)

1−ηε − [pxµ] (xh, ah)
)]

(ii)

≤
∑

h,xh,ah

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)

+
∑

h,xh,ah

1

η

[
ηε [pxµ] (xh, ah) log [p

xµ] (xh, ah) + [pxµ] (xh, ah)
1−ηε − [pxµ] (xh, ah)

]
(iii)

≤
∑

h,xh,ah

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)
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+
∑

h,xh,ah

1

η

[
ηε [pxµ] (xh, ah) log [p

xµ] (xh, ah)− ηε [pxµ] (xh, ah)
1−ηε log [pxµ] (xh, ah)

]
=

∑
h,xh,ah

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)

−
∑

h,xh,ah

1

η

(
ηε
(
[pxµ] (xh, ah)

1−ηε − [pxµ] (xh, ah)
)
log [pxµ] (xh, ah)

)
(iv)

≤
∑

h,xh,ah

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah)

+
∑

h,xh,ah

1

η

[
η2ε2 [pxµ] (xh, ah)

1−ηε log2 [pxµ] (xh, ah)
]

≤
∑

h,xh,ah

η

px1:h(xh)
µ1:h(xh, ah)ℓ

2(xh, ah) +
∑

h,xh,ah

ηε2 log2 [pxµ] (xh, ah) , (35)

where in (i) we use e−x ≤ x2 − x+ 1 for all x ≥ 0 and η
px1:h(xh)

ℓ (xh, ah) ≥ 0; (ii) follows from η
px1:h

ℓ(xh, ah) ≥ 0 and

([pxµ] (xh, ah))
1−ηε − [pxµ] (xh, ah) ≥ 0; (iii) and (iv) are by Lemma G.6.

Substituting Eq. (35) into Eq. (32) finishes the proof.

D.2. Bounding Divergence Differences

Recall the Bregman divergence difference ωk := ωk + ω̄k, where ωk = Dψ

(
µk+1,⋆, µk+1

)
− Dψ

(
µk,⋆, µk+1

)
and

ω̄k = Dψ

(
νk+1,⋆, νk+1

)
−Dψ

(
νk,⋆, νk+1

)
.

Lemma D.2. The Bregman divergence ωk can be bounded as

|ωk| = O

(
(X + Y )

1
2 log2 (1/ (mx

km
y
k))

kmin{1,(3−αε)/2}

)
.

Proof. By definition, we have

|ωk| ≤
∣∣Dψ

(
µk+1,⋆, µk+1

)
−Dψ

(
µk,⋆, µk+1

)∣∣+ ∣∣Dψ

(
νk+1,⋆, νk+1

)
−Dψ

(
νk,⋆, νk+1

)∣∣
≲
∥∥pxµk+1,⋆ − pxµk,⋆

∥∥
1
log

1

mx
k

+
∥∥pyνk+1,⋆ − pyνk,⋆

∥∥
1
log

1

my
k

≲
(X + Y )

1
2 log2 (1/ (mx

km
y
k))

kmin{1,(3−αε)/2}
,

where the second inequality is due to Lemma D.3 and the last inequality comes from Lemma D.4.

Lemma D.3 (Bounding divergence using ℓ1-norm). For all µ, µ1, µ2 ∈ Πkmax, it holds that

|Dψ

(
µ1, µ

)
−Dψ

(
µ2, µ

)
| ≤ O

(∥∥pxµ1 − pxµ2
∥∥
1
log

1

mx
k

)
.

Proof. By definition of virtual transition-weighted negentropy ψ, one can deduce that

Dψ

(
µ1, µ

)
−Dψ

(
µ2, µ

)
=

∑
h,xh,ah

px1:h (xh)

(
µ1
1:h (xh, ah) log

µ1
1:h (xh, ah)

µ1:h (xh, ah)
− µ2

1:h (xh, ah) log
µ2
1:h (xh, ah)

µ1:h (xh, ah)

)

=
∑

h,xh,ah

px1:h (xh)
(
µ1
1:h (xh, ah)− µ2

1:h (xh, ah)
)
log

µ1
1:h (xh, ah)

µ1:h (xh, ah)
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+
∑

h,xh,ah

px1:h (xh)µ
2
1:h (xh, ah)

(
log

µ1
1:h (xh, ah)

µ1:h (xh, ah)
− log

µ2
1:h (xh, ah)

µ1:h (xh, ah)

)

≤O
(∥∥pxµ1 − pxµ2

∥∥
1
log

1

mx
k

)
−Dψ(µ

2, µ1)

≤O
(∥∥pxµ1 − pxµ2

∥∥
1
log

1

mx
k

)
,

where the first inequality is due to that px1:h(xh) ≤ 1 for all xh ∈ X and thus minh,xh
µ1:h(xh) ≥ mx

k .

Lemma D.4. Let pzξk,⋆ = (pxµk,⋆, pyνk,⋆). The ℓ1-norm of the virtual transition-weighted difference between ξk,⋆ and
ξk+1,⋆ satisfies

∥∥pzξk+1,⋆ − pzξk,⋆
∥∥
1
= O

(
(X + Y )

1
2 log (1/(mx

km
y
k))

kmin{1,(3−αε)/2}

)
.

Proof. Recall the entropy perturbed game fk(µ, ν) defined in Eq. (4). To begin with, note that for all k ≥ 1 and
(µ, ν) ∈ Πkmax ×Πkmin, it holds that

fk
(
µ, νk,⋆

)
− fk

(
µk,⋆, ν

)
=fk

(
µ, νk,⋆

)
− fk

(
µk,⋆, νk,⋆

)
+ fk

(
µk,⋆, νk,⋆

)
− fk

(
µk,⋆, ν

)
(i)

⩾fk
(
µ, νk,⋆

)
− fk

(
µk,⋆, νk,⋆

)
−∇µfk

(
µk,⋆, νk,⋆

)⊤ (
µ− µk,⋆

)
− fk

(
µk,⋆, ν

)
−
(
−fk

(
µk,⋆, νk,⋆

))
−
(
−∇νfk

(
µk,⋆, νk,⋆

)⊤ (
ν − νk,⋆

))
⩾εkDψ

(
µ, µk,⋆

)
+ εkDψ

(
ν, νk,⋆

)
=εk KL

(
pxµ, pxµk,⋆

)
+ εk KL

(
pyν, pyνk,⋆

)
(ii)

⩾
1

2
εk

(∥∥pxµ− pxµk,⋆
∥∥2
1
+
∥∥pyν − pyνk,⋆

∥∥2
1

)
⩾
1

4
εk
∥∥pzξ − pzξk,⋆

∥∥2
1
, (36)

where (i) follows from the fact that µk,⋆ is the minimizer of fk given νk,⋆ and νk,⋆ is the maximizer of fk given µk,⋆

together with the first-order optimality condition; and (ii) is by Pinsker’s inequality.

Let pk = min{1, 2k−3} and µ̄ and ν̄ are the uniform policies for the max-player and the min-player, respectively. Define
µk+1,′ = pk+1µ̄+ (1− pk+1)µ

k+1,⋆. Then for all h and (xh, ah), it is clear that

µk+1,′ (ah|xh) ⩾ pk+1
1

A
+ (1− pk+1)

1

A(k + 1)2
⩾

1

Ak2
,

which means that µk+1,′ ∈ Πkmax. Similarly, we define νk+1,′, which satisfies that νk+1,′ ∈ Πkmin. Thus, by Eq. (36), we
have

fk
(
µk+1,′, νk,⋆

)
− fk

(
µk,⋆, νk+1,′) ⩾ 1

4
εk
∥∥pzξk+1,′ − pzξk,⋆

∥∥2
1
. (37)

On the other hand, since
(
µk,⋆, νk,⋆

)
∈ Πk+1

max ×Πk+1
min , we have

fk+1

(
µk,⋆, νk+1,⋆

)
− fk+1

(
µk+1,⋆, νk,⋆

)
⩾

1

4
εk+1

∥∥pzξk,⋆ − pzξk+1,⋆
∥∥2
1
. (38)

Therefore, one can see that

fk
(
µk+1,⋆, νk,⋆

)
− fk

(
µk,⋆, νk+1,⋆

)
=fk

(
µk+1,′, νk,⋆

)
− fk

(
µk,⋆, νk+1,′)+ fk

(
µk+1,⋆, νk,⋆

)
− fk

(
µk+1,′, νk,⋆

)
+ fk

(
µk,⋆, νk+1,′)− fk

(
µk,⋆, νk+1,⋆

)
≥fk

(
µk+1,′, νk,⋆

)
− fk

(
µk,⋆, νk+1,′)+ 〈∇µfk

(
µk+1,′, νk,⋆

)
, µk+1,⋆ − µk+1,′〉
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+
〈
∇νfk

(
µk,⋆, νk+1,′) , νk+1,′ − νk+1,⋆

〉
≥1

4
εk
∥∥pzξk+1,′ − pzξk,⋆

∥∥2
1
−
∥∥∇µfk

(
µk+1,′, νk,⋆

)∥∥
∞

∥∥µk+1,⋆ − µk+1,′∥∥
1

−
∥∥∇νfk

(
µk,⋆, νk+1,′)∥∥

∞

∥∥νk+1,′ − νk+1,⋆
∥∥
1

≥1

4
εk
∥∥pzξk+1,′ − pzξk,⋆

∥∥2
1
− sup
µ∈Πk+1

max

∥∥∇µfk
(
µ, νk,⋆

)∥∥
∞

∥∥µk+1,⋆ − µk+1,′∥∥
1

− sup
ν∈Πk+1

min

∥∇νfk(µ
k,⋆, ν)∥∞∥νk+1,′ − νk+1,⋆∥1 , (39)

where the first inequality is due to that fk is convex in µ and is concave in ν and the second inequality follows from Eq. (37)
and Höder’s inequality. Further, by noticing that

sup
µ∈Πk+1

max

∥∥∇µfk
(
µ, νk,⋆

)∥∥
∞ = sup

µ∈Πk+1
max

max
h,xh,ah

∣∣[Gνk,⋆] (xh, ah) + εkp
x
1:h (xh) log [p

xµ] (xh, ah)
∣∣

≤ sup
µ∈Πk+1

max

max
h,xh,ah

∣∣[Gνk,⋆] (xh, ah)∣∣+ |εkpx1:h (xh) log [pxµ] (xh, ah)|

≤1 + k−αε log
1

mx
k+1

= O(1) ,

and

∥µk+1,⋆ − µk+1,′∥1 = ∥pk+1

(
µ̄− µ⋆k+1

)
∥1 ≤ ∥pk+1µ̄∥1 +

∥∥pk+1µ
⋆
k+1

∥∥
1
= O

(
X/k3

)
,

we proceed to lower bound Eq. (39) as

fk
(
µk+1,⋆, νk,⋆

)
− fk

(
µk,⋆, νk+1,⋆

)
⩾
1

8
εk
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥2
1
− 1

4
εk
∥∥pzξk+1,′ − pzξk+1,⋆

∥∥2
1
−O

(
X + Y

k3

)
⩾
1

8
εk
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥2
1
− 2

4
εk

(∥∥pxµk+1,′ − pxµk+1,⋆
∥∥2
1
+
∥∥pyνk+1,′ − pyνk+1,⋆

∥∥2
1

)
−O

(
X + Y

k3

)
⩾
1

8
εk
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥2
1
−O

(
X + Y

k3

)
− εk

(
∥pk+1 · pxµ̄∥21 +

∥∥pk+1 · pxµk+1,⋆
∥∥2
1
+ ∥pk+1 · py ν̄∥21 +

∥∥pk+1 · pyνk+1,⋆
∥∥2
1

)
=
1

8
εk
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥2
1
−O

(
X + Y

k3

)
−O

(
1

k6+αε

)
⩾
1

8
εk+1

∥∥pzξk+1,⋆ − pzξk,⋆
∥∥2
1
−O

(
X + Y

k3

)
, (40)

where the first and the second inequality is by a2 + b2 ≥ (a+ b)2/2 for any a and b.

Combining Eq. (40) with Eq. (38) shows that

3

8
εk+1∥pzξk+1,⋆ − pzξk,⋆∥21

≤fk+1

(
µk,⋆, νk+1,⋆

)
− fk

(
µk,⋆, νk+1,⋆

)
− fk+1

(
µk+1,⋆, νk,⋆

)
+ fk

(
µk+1,⋆, νk,⋆

)
+O

(
X + Y

k3

)
(i)
=f̄k

(
µk,⋆, νk+1,⋆

)
− f̄k

(
µk+1,⋆, νk,⋆

)
+O

(
X + Y

k3

)
=f̄k

(
µk,⋆, νk+1,⋆

)
− f̄k

(
µk+1,⋆, νk+1,⋆

)
+ f̄k

(
µk+1,⋆, νk+1,⋆

)
− f̄k

(
µk+1,⋆, νk,⋆

)
+O

(
X + Y

k3

)
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≤
〈
∇µf̄k

(
µk,⋆, νk+1,⋆

)
, µk,⋆ − µk+1,⋆

〉
+
〈
∇ν f̄k

(
µk+1,⋆, νk,⋆

)
, νk+1,⋆ − νk,⋆

〉
+O

(
X + Y

k3

)
=
〈
∇µf̄k

(
µk,⋆, νk+1,⋆

)
/px, px

(
µk,⋆ − µk+1,⋆

)〉
+
〈
∇ν f̄k

(
µk+1,⋆, νk,⋆

)
/py, py

(
νk+1,⋆ − νk,⋆

)〉
+O

(
X + Y

k3

)
≤
∥∥∇µf̄k

(
µk,⋆, νk+1,⋆

)
/px ∥∞∥ px

(
µk,⋆ − µk+1,⋆

)
∥1+∥∇ν f̄k

(
µk+1,⋆, νk,⋆

)
/py
∥∥
∞

∥∥py (νk+1,⋆ − νk,⋆
)∥∥

1

+O
(
X + Y

k3

)
≤

(
sup

µ∈Πk
max

∥∥∇µf̄k
(
µ, νk+1,⋆

)
/px
∥∥
∞ + sup

ν∈Πk
min

∥∥∇ν f̄k
(
µk+1,⋆, ν

)/
py∥∞

)∥∥pzξk+1,⋆ − pzξk,⋆
∥∥
1
+O

(
X + Y

k3

)

≤

(
sup

µ∈Πk
max

max
h,xh,ah

|(εk − εk+1) log [p
xµ] (xh, ah)|+ sup

ν∈Πk
min

max
h,yh,bh

|(εk − εk+1) log [p
yν] (yh, bh)|

)

·
∥∥pzξk+1,⋆ − pzξk,⋆

∥∥
1
+O

(
X + Y

k3

)
=O

(
(εk − εk+1)

(
log

1

mx
k

+ log
1

my
k

)∥∥pzξk+1,⋆ − pzξk,⋆
∥∥
1
+
X + Y

k3

)
, (41)

where in (i) we let f̄k(µ, ν) := fk+1(µ, ν)− fk(µ, ν).

Solving the quadratic equation in Eq. (41) leads to

∥∥pzξk+1,⋆ − pzξk,⋆
∥∥
1
≲
(εk − εk+1) log (1/(m

x
km

y
k)) +

√
(εk − εk+1)

2
log2 (mx

km
y
k) + εk+1 (X + Y ) /k3

εk+1

≲
(εk − εk+1)

εk+1
log (1/(mx

km
y
k)) +

√
X + Y

εk+1k3

≲
log (1/(mx

km
y
k))

k
+

√
X + Y

εk+1k3
= O

(
(X + Y )

1
2 log (1/(mx

km
y
k))

kmin{1,(3−αε)/2}

)
,

where in the last inequality, we use the fact that

(εk − εk+1)

εk+1
=

k−αε

(k + 1)−αε
− 1 = (1 + 1/k)

αε − 1 = O
(αε
k

)
,

by Taylor expansion.

E. Last-iterate Convergence Rate in Expectation
Theorem E.1. With the same condition as in Theorem 5.1, Algorithm 1 guarantees that

E
[
NEGap(µk, νk)

]
= Õ

((
(X + Y )

1
4H +

√
(X2A+ Y 2B)

)
k−

1
6

)
.

Proof. With the same arguments as in the proof of Theorem 5.1, we have

Dψ

(
ξk+1,x, ξk+1

)
≤ (1− ηkεk)Dψ

(
ξk,⋆, ξk

)
+ η2k (Xτk + Y τ̄k) + η2k

(
X2A+ Y 2B

)
+ ηkρk + ηkσk + ωk

+ η2kXAε
2
k (logX +H log (Ak))

2
+ η2kY Bε

2
k (log Y +H log (Bk))

2
.

Taking conditional expectation Ek−1[·] on both sides and by noticing the fact that Ek−1 [τk] < 0, Ek−1 [ρk] = 0, and
Ek−1 [σk] = 0, we have

Ek−1

[
Dψ

(
ξk+1,x, ξk+1

)]
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≤ (1− ηkεk)Dψ

(
ξk,⋆, ξk

)
+ η2k

(
X2A+ Y 2B

)
+ Ek−1 [ωk]

+ η2kXAε
2
k (logX +H log (Ak))

2
+ η2kY Bε

2
k (log Y +H log (Bk))

2
.

Expanding the recursion in the above display leads to

E
[
Dψ

(
ξk+1,⋆, ξk+1

)]
≤E

[
k∑
i=1

wikωi

]
+XA (logX +H log (Ak))

2
k∑
i=1

wik (ηiεi)
2
+ Y B (log Y +H log (Bk))

2
k∑
i=1

wik (ηiεi)
2

+

k∑
i=1

wikη
2
i

(
X2A+ Y 2B

)
≤(X + Y )

1
2 (H log(Ak) +H log(Bk))(logX +H log(Ak) + log Y +H log(Bk))

· log(k)k−min{1, 32−
αε
2 }−αη+αε

+
(
XA (logX +H log (Ak))

2
+ Y B (log Y +H log (Bk))

2
)
k−αη−αε +

(
X2A+ Y 2B

)
k−αη+αε

=Õ
(
(X + Y )

1
2H2k−min{1, 32−αε

2 }+αη+αε + (XA+ Y B)H2k−αη−αε +
(
X2A+ Y 2B

)
k−αη+αε

)
.

Hence,

NEGap(µk, νk)

=Õ
(
εkH +

XAH

k
+
Y BH

k

+ (X + Y )
[
(X + Y )

1
4Hk(−min{1, 32−αε

2 }+αη+αε)/2 +
√

(XA+ Y B) +Hk
−αη−αε

2

+
√
(X2A+ Y 2B)k

−αη+αε
2

])
=Õ

(
k−

1
6H +

XAH

k
+
Y BH

k
+ (X + Y )

[
(X + Y )

1
4Hk−

1
6 +

√
(XA+ Y B)Hk−

1
3

+
√
X2A+ Y 2Bk−

1
6

])
=Õ

(
(X + Y )

[
(X + Y )

1
4H +

√
(X2A+ Y 2B)

]
k−

1
6

)
.

F. Last-iterate Convergence of OMD with Vanilla Negentropy
Theorem F.1. If Algorithm 1 is adopted by both players and the vanilla negentropy ψ(µ) =∑

h,xh,ah
µ1:h(xh, ah) logµ1:h(xh, ah) is used, by setting αη = 5/8, αγ = 3/8 and αε = 1/8, for any k ⩾ 1,

with probability at least 1− Õ(δ), it holds that

NEGap(µk, νk) = Õ
(
(XA+ Y B)Hk−

1
8

)
.

Proof. The proof is mostly similar to that of Theorem 5.1 and hence we only present the key steps that differ from those in
the proof of Theorem 5.1.

To start with, since vanilla negentropy is 1-strongly-convex with respective to the ℓ2-norm (see, e.g., Lemma 11 of Lee et al.
(2021)), following a similar analysis in the proof of Theorem 5.1, we have

NEGap
(
ξk
)
≤NEGap

(
ξk,⋆

)
+

√
XA

∥∥µk − µk,⋆
∥∥
2
+

√
Y B

∥∥νk − νk,⋆
∥∥
2

≲NEGap
(
ξk,⋆

)
+
(√

XA+
√
Y B

)√
Dψ (ξk,⋆, ξk) .
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When the vanilla negentropy is used, building on a similar analysis as in the proof of Lemma C.1, it holds that

NEGap(ξk,⋆) = Õ
(
εk(X + Y ) +

XAH

k
+
Y BH

k

)
. (42)

To bound Dψ

(
ξk,⋆, ξk

)
, by similar analysis of Lemma C.2, one can see that

Dψ

(
ξk+1,⋆, ξk+1

)
≤

k∑
i=1

wikηiρi︸ ︷︷ ︸
Term 1

+

k∑
i=1

wikηiσi︸ ︷︷ ︸
Term 2

+XA(log2mx
k)

k∑
i=1

wik (ηiεi)
2
+ Y B(log2my

k)

k∑
i=1

wik (ηiεi)
2

︸ ︷︷ ︸
Term 3

+

k∑
i=1

wikη
2
i (τ i + τ̄i)︸ ︷︷ ︸

Term 4

+

k∑
i=1

wikη
2
i (XA+ Y B)︸ ︷︷ ︸
Term 5

+

k∑
i=1

wikωi︸ ︷︷ ︸
Term 6

. (43)

Note that Term 1 through Term 3 are the same as in the case of using virtual transition-weighted negentropy and can
be bounded by Lemma C.3 - Lemma C.5, respectively. For Term 4 and Term 5, by similar analysis of Lemma C.6 and
Lemma C.7, we have

Term 4 ≤ kαγ−2αη log (1/δ) ,

and

Term 5 ≲ (XA+ Y B) k−αη+αε .

On the other hand, using again the fact that vanilla negentropy is 1-strongly-convex with respective to the ℓ2-norm and the
analysis of Lemma C.8, we can show that

Term 6 ≲(XA+ Y B) log2 (1/ (mx
km

y
k)) log(k)k

−min{1,(3−αε)/2}+αη+αϵ .

The proof is concluded by putting all the above together.

G. Auxiliary Lemmas
Lemma G.1. Let {ci}ki=1 be fixed positive numbers. Then with probability at least 1− δ, it holds that

k∑
i=1

ci

〈
µi, ℓi,x − ℓ̂i,x

〉
≤ XA

k∑
i=1

ciγi +H

√√√√2

k∑
i=1

c2i log
1

δ
.

Proof. To begin with, notice that

k∑
i=1

ci

〈
µi, ℓi,x − ℓ̂i,x

〉
=

k∑
i=1

ci

〈
µi, ℓi,x − Ei−1

[
ℓ̂i,x
]〉

+

k∑
i=1

ci

〈
µi,Ei−1

[
ℓ̂i,x
]
− ℓ̂i,x

〉
.

For the first part, we have

k∑
i=1

ci

〈
µi, ℓi,x − Ei−1

[
ℓ̂i,x
]〉

=

k∑
i=1

ci
∑

h,xh,ah

µi1:h (xh, ah) ℓ
i,x (xh, ah)

(
1− µi1:h (xh, ah)

µi1:h (xh, ah) + γi

)
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≤
k∑
i=1

ciγi
∑

h,xh,ah

ℓi,x (xh, ah)

≤
k∑
i=1

ciγiXA ,

where the last inequality comes from ℓi,x (xh, ah) ≤ 1 for all (xh, ah) ∈ X ×A.

For the second part, taking δ = exp
(
−ε2/

(
2
∑k
i=1 c

2
iH

2
))

, ε =
√

2
∑k
i=1 c

2
iH

2 log (1/δ) and using Azuma-Hoeffding
inequality, it holds with probability at least 1− δ that

k∑
i=1

ci

〈
µi,Ei−1

[
ℓ̂i,x
]
− ℓ̂i,x

〉
≤

√√√√2

k∑
i=1

c2iH
2 log

(
1

δ

)
.

The proof is concluded by combining the upper bounds of the two parts above.

Lemma G.2. Let δ ∈ (0, 1) and {γi}ki=1 ∈ (0,+∞)k. Fix h ∈ [H]. For any coefficient sequence {ci}ki=1 s.t. ci ∈
[0, 2γi]

XA is Fi−1 - measurable, with probability 1− δ, we have

k∑
i=1

wi

〈
ci, ℓ̂i − ℓi

〉
≤ max

1≤i≤k
wi log

1

δ
.

Proof. Define w = max1≤i≤k wi. Hence

wiℓ̂i (xh, ah) =
wiIi,h {xh, ah}

(
1− rih

)
µi1:h (xh, ah) + ri

≤
wiIi,h {xh, ah}

(
1− rih

)
µi1,h (xh, ah) + riwi

(
1− rih

)
Ii,h {xh, ah} /w

=
w

2γi
·

2γiwi
(
1− rih

)
Ii,h {xh, ah} /(wµi1:h(xh, ah))

1 + γiwi
(
1− rih

)
Ii,h {xh, ah} /(wµi1:h(xh, ah))

≤ w

2γi
log

(
1 +

2γiwi
(
1− rih

)
Ii,h {xh, ah}

wµi1:h (xh, ah)

)
.

Denote by Ŝih = wi

w

〈
ci, ℓ̂

i
h

〉
, Sih = wi

w

〈
ci, ℓ

i
h

〉
. Then

Ei−1

[
exp

(
Ŝi
)]

≤Ei−1

exp
 ∑

(xh,ah)∈X×A

ci(xh, ah)

2γi
log

(
1 +

2γiwi
(
1− rih

)
Ii,h {xh, ah}

wµi1:h (xh, ah)

)
≤Ei−1

 ∏
(xh,ah)∈X×A

(
1 +

ci(xh, ah)wi
(
1− rih

)
Ii,h {xh, ah}

wµi1:h (xh, ah)

)
=Ei−1

1 + ∑
(xh,ah)∈X×A

ci (xh, ah)wi
(
1− rih

)
Ii,h {xh, ah}

wµi1:h (xh, ah)


=1 + Sih ≤ exp

(
Sih
)
.

Finally, one can see that

E

[
k∑
i=1

(
Ŝih − Sih

)
⩾ log

1

δ

]
=E

[
exp

(
k∑
i=1

(
Ŝih − Sih

))
⩾

1

δ

]
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≤δE

[
exp

(
k∑
i=1

(
Ŝih − Sih

))]

=δE

[[
Ek−1

[
exp

(
k∑
i=1

(
Ŝih − Sih

))]]

=δE

[
exp

(
k−1∑
i=1

(
Ŝih − Sih

))[
Ek−1

[
exp

(
Ŝkh − Skh

)]]
≤ . . . ≤ δ .

Lemma G.3. Let {ci}ki=1 be fixed positive numbers. Fix h ∈ [H]. Then ∀ sequence {qi}ki=1 ∈ [0, 1]XA s.t. qi is Fi−1 -
measurable, with probability at least 1− δ,

k∑
i=1

ci

〈
qi, ℓ̂

i
h − ℓih

〉
≤ max

1≤i≤k

ci
γk

log

(
1

δ

)
.

Proof. Noticing that {γi}ki=1 is decreasing and ∥qi∥∞ ≤ 1, applying Lemma G.2, we arrive at

k∑
i=1

ci

〈
qi, ℓ̂ih − ℓih

〉
=

k∑
i=1

ci
2γi

〈
2γiq

i, ℓ̂ih − ℓih

〉
≤ max

1≤i≤k

ci
γk

log

(
1

δ

)
.

Lemma G.4 (Lemma 1 of Cai et al. (2023)). Let 0 < h < 1, 0 ≤ k ≤ 2, and let t ⩾
(

24
1−h ln

12
1−h

) 1
1−h

. Then

k∑
i=1

i−k k∏
j=i+1

(
1− j−h

) ≤ 9 ln(t)t−k+h .

Lemma G.5 (Lemma 2 of Cai et al. (2023)). Let 0 < h < 1, 0 ≤ k ≤ 2, and let t ⩾
(

24
1−h ln

12
1−h

) 1
1−h

. Then

max
1≤i≤t

i−k k∏
j=i+1

(
1− j−h

) ≤ 4t−k .

Lemma G.6 (Lemma 12 of Cai et al. (2023)). For all x ∈ (0, 1) and y > 0, it holds that x1−y − x ≤ −yx1−y lnx.

Lemma G.7 (Lemma 20 of Bai et al. (2020)). Let c1, c2, . . . , ct be fixed positive numbers. Then with probability at least
1− δ,

k∑
i=1

ci

〈
xi, ℓi − ℓ̂i

〉
= O

A k∑
i=1

βici +

√√√√ln(A/δ)

k∑
i=1

c2i

 .

H. Proof of Lower Bound of Last-iterate Convergence
Proof of Theorem 5.6. Let NEGapk := NEGap

(
µk, νk

)
with

(
µk, νk

)
as the policy profile generated by some algorithm

Alg. Suppose that Alg leans the IIEFG with the last-iterate convergence rate of NEGapk = Θ(f(X,A)k−α) for some
α ∈ (0, 1), where fAlg(X,A) denotes the polynomial dependence on X and A of NEGapk.

Fix some K ⩾ max(XA,Y B). Consider the regret defined as follows (Kozuno et al., 2021; Bai et al., 2022; Fiegel et al.,
2023):

RegK(Alg) = sup
µ∈Πmax

K∑
k=1

〈
µk − µ,Gνk

〉
,
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where {νk}k∈[K] is potentially generated by an adversary. Then, one can deduce that

RegK(Alg) = sup
µ∈Πmax

K∑
k=1

⟨µk − µ,Gνk⟩ (44)

≤
K∑
k=1

sup
µ∈Πmax

⟨µk − µ,Gνk⟩

=

K∑
k=1

supµ∈Πmax
µ⊤
kGνk − µ⊤Gνk

≤
K∑
k=1

supµ∈Πmax,ν∈Πmin
µ⊤
kGν − µ⊤Gνk

=

K∑
k=1

NEGapk

=Θ

(
f(X,A)

K∑
k=1

k−α

)
=Θ

(
f(X,A)K1−α) . (45)

On the other hand, by Theorem 6 of Bai et al. (2022) (see also Theorem 3.1 of Fiegel et al. (2023)), we have

RegK(Alg) ⩾ Ω(
√
AXK) . (46)

Combining Eq. (44) and Eq. (46), we have

Ω(
√
AXK) ≤ Θ

(
f(X,A)K1−α) .

We now further consider the following three cases:

• If α > 1
2 , then

√
AX ≤ f(X,A)K

1
2−α. However, this does not hold for any f , when K is large enough;

• If α = 1
2 , it must hold that

√
AX ≤ f(X,A);

• If α < 1
2 , then

√
AX ≤ f(X,A)K

1
2−α. This holds for all f , including f(X,A) = 1 when K is large enough. In this

case, the “minimal” f is f(X,A) = 1, implying that the minimal possible convergence rate of NEGapk in this case is
NEGapk = Θ(k−α).

Taking the above three cases into account, the minimal possible convergence rate is

min
{
Θ
(√

XAk−
1
2

)
,Θ
(
k−α

)}
(α >

1

2
)

=Θ
(√

XAk−
1
2

)
.

Analogously, we can prove that NEGapk ≥ Θ(
√
Y Bk−

1
2 ). Therefore, we have

NEGapk ≥ Θ
((√

XA+
√
Y B

)
k−

1
2

)
.

The proof is concluded by noticing that the above holds for all algorithms.
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I. Experiments
In this section, we present the empirical evaluations of our Algorithm 1. 3 Since we are not aware of any other algorithm
that can also learn the (approximate) NE policy profile in IIEFGs with provable last-iterate convergence guarantees under
bandit feedback, we compare our algorithm against previous algorithms that converge to the (approximate) NE policy profile
in IIEFGs with only average-iterate convergence guarantees including IXOMD (Kozuno et al., 2021), BalancedOMD (Bai
et al., 2022) and BalancedFTRL (Fiegel et al., 2023). Since these algorithms are only devised to obtain the average-iterate
convergence for learning IIEFGs, the last-iterate convergence of these algorithms for learning IIEFGs is not theoretically
guaranteed.

Environments We consider four standard IIEFG instances including Lewis Signaling, Kuhn Poker (Kuhn, 1950), Leduc
Poker (Southey et al., 2012) and Liars Dice. All the implementations of these games are from the OpenSpiel library (Lanctot
et al., 2019).

Implementation Details As mentioned in Section 4.1, for our Algorithm 1, instead of operating the update OMD in
the constrained set Πkmax, we clip the loss estimator and then perform the update of OMD in the whole Πmax to compute
an approximate update using the closed-form solution in Algorithm 3. The clipping estimator ζk+1 in Eq. (13) is set as
ζk+1 = 1 × 10−10. We adopt the implementation of all the baselines by Fiegel et al. (2023). Besides, we consider a
(logarithmic) grid search on the learning rates for all the algorithms, following Fiegel et al. (2023). All the experiments
are conducted on a server with an Intel Xeon Gold CPU and 251GiB system memory. The running of all the algorithms
including our algorithm costs approximately 10 hours, 12 hours, 13 hours, and 16 hours on Lewis Signaling, Kuhn Poker,
Leduc Poker, and Liars Dice, respectively.

Results The experimental results are shown in Figure 1. Our algorithm obtains the best or the competitive performance
across all four IIEFG instances. In particular, our algorithm converges faster than all the baseline algorithms on Kuhn
Poker and Liars Dice and also converges as fast as the empirically best baseline algorithm on Lewis Signaling and Leduc
Poker. Though some baseline algorithms work relatively well on some game instances, we would like to note again that
these algorithms are not theoretically guaranteed to converge to the NE policy profile with the last-iterate convergence. We
speculate that this might also be the reason why some baseline algorithms perform relatively well in some instances but
poorly in the remaining ones. For instance, the BalancedFTRL algorithm performs well on Leduc Poker while converging
very slowly on Kuhn Poker. Analogously, BalancedOMD converges relatively well on Kuhn Poker and Leduc Poker but
converges the most slowly on Liars Dice.

Moreover, in general, it appears that the advantage of our algorithm becomes more pronounced in IIEFG instances with
larger infoset spaces X (and action spaces A) over previous algorithms. This observation aligns with the intuition that in
such instances, the baseline algorithms, which solely have average-iterate convergence theoretical guarantees, face greater
difficulty in achieving last-iterate convergence to the NE. This challenge may arise because these algorithms are more
susceptible to getting stuck in suboptimal policy profiles, due to lack of the last-iterate convergence theoretical guarantees.

3Codes of the experiments are available at https://github.com/ColoeredGalaxy/Last_ite_Convergence_in_
EFGs.
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Figure 1. We present experimental results of our Algorithm 1 in comparison with IXOMD (Kozuno et al., 2021), BalancedOMD (Bai
et al., 2022), and BalancedFTRL (Fiegel et al., 2023). The curves depict the last-iterate convergence of the NE gap, as defined in Eq. (1),
versus the number of episodes.
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