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ABSTRACT

Several recent works seek to train foundation models for tabular prediction by
pretraining neural networks on large collections of tabular classification and re-
gression datasets. These tabular foundation models (TFMs) are often reported to
outperform non-pretrained baselines when applied to predictive tasks on unseen
tables, demonstrating effective tabular transfer learning. In this paper, we show that,
in contrast to the positive conclusions of prior works, the perceived performance
benefits from large-scale tabular pretraining largely diminish when we aggregate
the results across datasets while (i) preserving the performance differences be-
tween models in their original scale (e.g., without min-max normalization); and
(ii) testing for the statistical significance of these differences. For example, when
we replicate the original evaluation setup for TabPFN-v2 on classification tasks,
TabPFN-v2 indeed achieves the highest average min-max normalized AUROC, but
reaches a statistical tie with CatBoost in 69% of all datasets, while significantly
outperforming it in 20.7% of datasets and underperforming it in the remaining
10.3% of datasets. We evaluate seven open-source TFMs on 88 classification
and 82 regression datasets in both full-data (i.e., using all training examples) and
few-shot settings, and find that existing TFMs only show statistically significant
improvements over non-pretrained baselines on small classification datasets, with
no consistent gains in other settings. To isolate the impact of tabular pretraining,
we also compare three TFMs directly to their non-pretrained counterparts, and
find that, in most cases, the performance gains from pretraining are minimal. Our
findings suggest that, unlike in vision and language, simply scaling pretraining
over a diverse collection of tabular datasets may offer limited performance benefits.
To support reproducible research and enable standardized evaluation of TFMs, we
release our evaluation suite as the TFM Evaluation Harness.

1 INTRODUCTION

Tables are one of the most ubiquitous forms of data across various real-world domains, including
electronic health records in medicine (Pollard et al., 2018; Johnson et al., 2016), risk assessment
records in criminal justice (Larson et al., 2016), and survey data in the social sciences (Kohavi,
1996). Owing to their heterogeneity, they remain one of the most challenging modalities for machine
learning (ML), with gradient-boosted decision trees (GBDTs; Friedman, 2001)—such as XGBoost
(Chen & Guestrin, 2016) and CatBoost (Prokhorenkova et al., 2018)—maintaining their edge over
modern approaches based on deep neural networks. Prior works on deep tabular models propose to
improve performance by e.g., designing specialized architectures (Huang et al., 2020; Arik & Pfister,
2021); performing extensive hyperparameter tuning (Kadra et al., 2021); improving the encoding of
numerical features (Gorishniy et al., 2022); and pretraining with self-supervision (Somepalli et al.,
2021; Bahri et al., 2022)—many of which conclude that the proposed method outperforms GBDTs
with state-of-the-art results. However, follow-up works often reveal that such positive conclusions
are not robust (Shwartz-Ziv & Armon, 2021; Grinsztajn et al., 2022; McElfresh et al., 2023; Ye et al.,
2025a), often still leaving GBDTs as the go-to approach in various practical settings.

Meanwhile, recent advances in foundation models for images and text have spurred significant interest
in the development of tabular foundation models (TFMs), with the hopes that large-scale tabular
pretraining would unlock similar benefits, enabling deep tabular models to outperform traditional
baselines via cross-table transfer learning (Wang & Sun, 2022; Levin et al., 2023). Some of the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

most successful examples of TFMs include (i) tabular in-context learning (ICL) models pretrained to
implement approximate Bayesian inference in a single forward pass (Hollmann et al., 2023; 2025;
Ma et al., 2024; Qu et al., 2025); and (ii) large language model (LLM)-based models, which aim
to leverage their parametric knowledge and language capabilities to improve cross-table transfer
learning (Wang et al., 2024; Kim et al., 2024; Yan et al., 2024; Gardner et al., 2024). By evaluating on
new, unseen tables, all such works claim significant improvements over non-pretrained baselines,
especially on small-sized datasets (Hollmann et al., 2025; Qu et al., 2025; Erickson et al., 2025).

Despite such positive conclusions, it is worth scrutinizing (i) how generalizable these findings are
and (ii) how much of the performance improvements can truly be attributed to tabular pretraining, as
the evaluation setups vary significantly. For example, TabDPT (Ma et al., 2024), CARTE (Kim et al.,
2024), and TP-BERTa (Yan et al., 2024) are all evaluated on datasets with different inclusion criteria,
each restricted to datasets with particular characteristics, but applied inconsistently; and TabPFN-v2
(Hollmann et al., 2025) internally performs additional feature preprocessing (e.g., outlier removal,
power transforms), while the baselines may not undergo comparable preprocessing. All such factors
can impact the conclusions about the effectiveness of each tabular pretraining approach (Tschalzev
et al., 2024), calling for a standardized protocol that ensures a fair and rigorous assessment of TFMs.

In this paper, we stress-test seven open-source TFMs on 88 classification and 82 regression datasets
in both full-data (i.e., using all training examples) and few-shot settings while addressing these issues,
and find that TFMs show modest improvements in narrow settings but generally fail to deliver
consistent, statistically significant gains over non-pretrained baselines (Section 4). In surfacing
this finding, we identify a critical gap in common evaluation approaches in tabular ML: comparing
models based on min-max normalized evaluation metrics and ranking-based hypothesis tests may
fail to capture whether the absolute gains in performance themselves are statistically significant,
potentially leading to overly optimistic conclusions about the effectiveness of tabular pretraining.

Our conclusions follow from testing the statistical significance of absolute performance gains (on the
original metric scale) of TFMs over the best-performing baselines via the percentile bootstrap, and
aggregating these pairwise results into a coherent ranking with the Elo system (Elo, 1978) (Section 3).
We also perform an apples-to-apples comparison of three TFMs vs. their non-pretrained counterparts
to isolate the performance benefits from large-scale pretraining itself, where we observe modest gains
that do not consistently translate into superior performance over baselines. Our findings suggest that,
unlike in vision and language, simply scaling pretraining over a large collection of tabular datasets
may offer limited performance benefits. To enable standardized and reproducible evaluation of TFMs,
we release our benchmarking suite as the TFM Evaluation Harness. Our main contributions are:

1. We demonstrate that evaluating TFMs based on min-max normalized evaluation metrics
and ranking-based hypothesis tests may fail to capture the statistical significance of any
measured performance gain, potentially leading to overly optimistic conclusions.

2. We stress-test seven open-source TFMs on 88 classification and 82 regression datasets,
carefully curated to cover a diversity of real-world settings, and find that TFMs generally
fail to consistently show statistically significant performance gains over baselines.

3. We compare three TFMs directly against their non-pretrained counterparts to fully isolate
the impact of large-scale tabular pretraining on downstream performance, and find that the
performance improvements are limited and fail to surpass non-pretrained baselines.

2 RELATED WORKS

Deep neural networks vs. GBDTs. Deep learning models for tabular data have historically lagged
behind GBDTs (Friedman, 2001)—such as CatBoost (Prokhorenkova et al., 2018), XGBoost (Chen &
Guestrin, 2016), and LightGBM (Ke et al., 2017)—which have effective inductive biases for learning
on heterogeneous structured data (Grinsztajn et al., 2022; McElfresh et al., 2023). Over the years,
various deep learning approaches have been proposed to improve over GBDTs, including but not
limited to tree-inspired neural network architectures (Lay et al., 2018; Popov et al., 2020), specialized
numerical and categorical feature encoding methods (Gorishniy et al., 2022; Holzmüller et al., 2024),
rigorous regularization techniques (Kadra et al., 2021), self-supervised pretraining (Yoon et al., 2020;
Somepalli et al., 2021; Bahri et al., 2022), kNN-style retrieval (Gorishniy et al., 2024; Ye et al.,
2025b), and deep ensembling (Gorishniy et al., 2025). However, follow-up studies often suggest that
the claimed improvements over GBDTs are limited (Shwartz-Ziv & Armon, 2021; Grinsztajn et al.,
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2022; Ye et al., 2025a), and while both model families have complementary strengths (McElfresh
et al., 2023), achieving a similar level of performance with neural networks often requires extensive
model training and hyperparameter tuning, which can be impractical in many real-world settings.

Tabular transfer learning and foundation models. Motivated by the successes of transfer learning
in vision and language, several recent works in tabular ML propose to transfer “knowledge” across
tables by pretraining or jointly training on a large collection of tables. Early works on cross-table
transfer learning demonstrate that when a model is pretrained on tables semantically related to the
downstream table of interest with highly overlapping columns, its downstream performance can
improve significantly (Wang & Sun, 2022; Levin et al., 2023). With the advent of LLMs and more
flexible architectures (e.g., Transformers (Vaswani et al., 2017)) that are capable of handling multiple
tables with varying structure, more recent works propose to pretrain models on a large miscellaneous
collection of tabular datasets, resulting in a foundation model for tabular prediction (i.e., TFM).

Some of the most empirically successful examples of TFMs include (i) tabular ICL models, such
as TabPFN (Hollmann et al., 2023; 2025), TabICL (Qu et al., 2025), and TabDPT (Ma et al., 2024);
and (ii) LLM-based models, such as TabuLa-8B (Gardner et al., 2024), TP-BERTa (Yan et al., 2024),
and CARTE (Kim et al., 2024), while other examples such as XTab (Zhu et al., 2023) and UniTabE
(Yang et al., 2024) also exist. Tabular ICL models are often pretrained such that, given a sequence of
tokens corresponding to the training examples followed by some test examples, a forward pass of the
model implements approximate posterior predictive inference with respect to a prior over plausible
tabular datasets (Müller et al., 2022). Prior works show that tabular ICL models often achieve strong
performance on small-scale datasets (McElfresh et al., 2023; Zabërgja et al., 2025; Erickson et al.,
2025), with improved robustness to common data challenges such as presence of missing values
and/or uninformative features (Hollmann et al., 2025). LLM-based TFMs are often shown to show
strong performance in limited-data settings and on datasets with rich textual semantics (Gardner
et al., 2024; Yan et al., 2024; Kim et al., 2024), albeit with limited applicability to large datasets that
contain many samples and features due to inefficient tokenization and high computational cost.

3 EVALUATION APPROACH

To investigate the performance benefits from large-scale tabular pretraining, we stress-test seven open-
source TFMs against baselines on 88 classification and 82 regression tasks, in both the full-data (i.e.,
using all training examples) and few-shot learning settings. In the full-data setting, we assume that all
of the training examples are available for model training or ICL. In the few-shot setting, on the other
hand, we randomly subsample k = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 examples (per class, for
classification tasks) from the training set and limit the access to just those examples. As such, for
models that need to be trained, we further split the k-shot examples into a training set and a validation
set. When k < 4, we take a (stratified) 50–50 split; otherwise, we take a 75–25 train–validation split.
For ICL models, we provide all of the subsampled examples as context for prediction. To account for
the randomness in subsampling, we always repeat each experiment five times with different random
seeds and report the average performance, for each model and dataset in the k-shot setting. For the
classification tasks, we use the area under the receiver operating characteristic curve (AUROC) as the
main metric, and take a micro-average in multi-class settings. For the regression datasets, we use the
root mean squared error (RMSE) and the coefficient of determination (R2) as the main metrics.

Benchmark datasets. To construct the evaluation suite, we first combine six widely used tabular
prediction benchmarks—TALENT (Ye et al., 2025a), TabZilla (McElfresh et al., 2023), Grinsztajn
et al. (2022), AutoML Benchmark (AMLB; Gijsbers et al., 2024), OpenML-CC18 (Vanschoren et al.,
2014), and OpenML-CTR23 (Fischer et al., 2023)—to construct a candidate pool of 163 classification
and 105 regression datasets from OpenML (Vanschoren et al., 2014). We perform this aggregation
to ensure that the datasets considered for evaluation are not biased towards a particular setting (e.g.,
Grinsztajn et al. (2022) focus on datasets with ≤ 10k samples, no missing values, and low-cardinality
categorical features), which is critical for drawing robust and generalizable conclusions (Kohli et al.,
2024). We then apply the following exclusion criteria in the order presented:

1. Exclude “non-tabular” datasets (e.g., Fashion-MNIST (Xiao et al., 2017) in OpenML-CC18);
2. Exclude datasets used to pretrain any of the TFMs (e.g., TabZilla datasets for TabDPT);
3. Exclude datasets that are “too easy” to reflect real-world settings.
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For Step 1, we consider a dataset to be “non-tabular” if its most natural representation is not in the
form of a table, considering its content (Kohli et al., 2024). For Step 3, we consider a classification
dataset as “too easy” if either a logistic regression or a kNN model achieves ≥ 0.95 test AUROC,
without any hyperparameter tuning (i.e., using the default hyperparameters in scikit-learn).
Similarly, for regression, we check if either a Ridge regression or a kNN model achieves ≥ 0.95 test
R2. This is in contrast to benchmarks like TALENT (Ye et al., 2025a), where the “easy” datasets
(based on a different definition) are deliberately retained for evaluation. Otherwise, we do not perform
any additional filtering based on dataset size, number/ratio of numerical vs. categorical features,
missingness, class imbalance, collinearity, etc. to cover a diversity of challenging settings in the wild.
We also assume the standard i.i.d. setting and do not consider any form of distribution shift (as in
e.g., Gardner et al. (2023); Rubachev et al. (2024)), which we leave as future work.

To prepare each dataset for training and evaluation, we use the official 90–10 train–test splits provided
through OpenML, following standard practice (McElfresh et al., 2023; Gijsbers et al., 2024; Zabërgja
et al., 2025). As we found that several datasets have train–test leakage (i.e., exactly same features and
target label) upon close inspection, we first remove all such instances from the test set. We then correct
any mislabeling of the features (e.g., numerical features labeled as categorical and vice versa) via an
automated correction criteria similar to Hollmann et al. (2025)1. We also remove features that exhibit
zero variance in the training set or correspond to sample identifiers (e.g., patient IDs). We convert any
timestamps (e.g., 2025-01-16 12:00:00) into a set of sinusoidal numerical features, following
Hoo et al. (2024). For all models except TabuLa-8B and Llama-3-8B, we then z-score normalize
all numerical features and one-hot encode all categorical features before providing them as input.
For missing values, we only perform imputation (mean/mode imputation for numerical/categorical
features) if a model is incapable of handling them. Meanwhile, for regression tasks, we do not
transform the target variables in any way, unlike often done in prior works to handle heavy-tailed
target distributions (e.g., log-transforms). We provide the remaining details in Appendix A.

Tabular foundation models (TFMs). We evaluate three tabular ICL models—TabPFN-v2 (Holl-
mann et al., 2025), TabICL (Qu et al., 2025), and TabDPT (Ma et al., 2024); three LLM-based
models—TabuLa-8B (Gardner et al., 2024), TP-BERTa (Yan et al., 2024), and CARTE (Kim et al.,
2024); and XTab (Zhu et al., 2023), a Transformer model pretrained on a subset of AMLB datasets
from scratch. TabICL and TabuLa-8B are limited to classification tasks, while all other TFMs can be
used for both classification and regression tasks. While TabPFN-v2 and TabICL are often evaluated
after optimizing their internal feature preprocessing steps (e.g., power transforms (Yeo & Johnson,
2000), kernel density integral transforms (McCarter, 2023)) and with post-hoc ensembling (Caruana
et al., 2004), we intentionally exclude these steps. Instead, we evaluate the off-the-shelf versions in
their default setup2 to (i) ensure a fair comparison with other models (especially non-ICL TFMs) and
(ii) isolate the impact of tabular pretraining on downstream performance as much as possible.

For all tabular ICL models, whenever the total number of training examples exceeds the context
window size, we retrieve the training examples with the smallest L2 distance (in the normalized
feature space) to each test example for ICL (Thomas et al., 2024; Ma et al., 2024). For TabuLa-8B,
fine-tuned from Llama-3-8B (Grattafiori et al., 2024), we only evaluate it in the few-shot setting, as its
context window size is too small to fit entire datasets. When generating predictions from TabuLa-8B
and Llama-3-8B, we follow Hegselmann et al. (2023) and treat the conditional log-probability of the
token sequence corresponding to each class, normalized over all classes, to be the model’s confidence
score. We treat the prompt format for Llama-3-8B as a hyperparameter and optimize it based on
validation AUROC (when k ≥ 2), following Jeong et al. (2024) (Appendix B.1). For TP-BERTa,
which was adapted from RoBERTa (Liu et al., 2019) for tabular prediction, we use the checkpoint
pretrained for each prediction task (i.e., classification or regression), as Yan et al. (2024) show that
pretraining on both tasks leads to worse performance on each task. We denote the model pretrained
on each task as TP-BERTa (CLF) and TP-BERTa (REG). For XTab, we use the checkpoint with a
FT-Transformer (Gorishniy et al., 2021) backbone. We provide the remaining details in Appendix B.

Baselines. For comparison, we consider six neural network baselines: TabR (Gorishniy et al.,
2024), ModernNCA (Ye et al., 2025b), MLP-PLR (Gorishniy et al., 2022), FT-Transformer (FT-T;
Gorishniy et al., 2021), ResNet (Gorishniy et al., 2021), and MLP; and seven classical baselines:

1See e.g., https://github.com/PriorLabs/TabPFN/blob/main/src/tabpfn/utils.py#L441
2For TabPFN-v2, we consider the default configuration in Extended Data Table 5 of Hollmann et al. (2025).
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CatBoost (CB; Prokhorenkova et al., 2018), LightGBM (LGBM; Ke et al., 2017), XGBoost (XGB;
Chen & Guestrin, 2016), random forest (RF; Breiman, 2001), SVM (Cortes & Vapnik, 1995), kNN,
and linear/logistic regression (LR). We focus on baselines that generally perform well according to
recent benchmark studies (McElfresh et al., 2023; Ye et al., 2025a; Erickson et al., 2025) and leave
the inclusion of other relevant models as future work. We also consider the non-pretrained versions
of TFMs (if applicable) as additional baselines: Llama-3-8B (Grattafiori et al., 2024) for TabuLa-8B,
the random and RoBERTa initializations for TP-BERTa, and the random initialization for XTab.

Training and hyperparameter optimization. To ensure we compare all models based on their
best performances, we extensively optimize the hyperparameters of each model we train based on
their validation AUROC (or RMSE), searching through 100 hyperparameter configurations sampled
via a Tree-structured Parzen Estimator (TPE; Watanabe, 2023) in Optuna (Akiba et al., 2019). One
exception we make is for TP-BERTa, for which we sample 30 hyperparameter configurations, due to
the relatively high runtimes associated with fine-tuning a 125M-parameter model. Unlike many prior
works (McElfresh et al., 2023; Hollmann et al., 2025; Zabërgja et al., 2025; Erickson et al., 2025),
we do not impose any timeout on the hyperparameter optimization process, so as not to confound the
interpretation of results. Within each trial, we train each model for a maximum of 200 epochs, with an
early stopping patience of 10 epochs. In the few-shot setting, we only optimize the hyperparameters
when the number of few-shot examples k ≥ 8, given that the validation performance may be an
unreliable measure of generalization given too few examples. For the classical baselines, we tune the
hyperparameters based on their 4-fold average cross-validation performance. For the neural network
baselines, given that full-blown cross-validation can be computationally costly, we take a random
75–25 train–validation split, and then use the performance on the resulting validation set for model
selection. We run the classicial baselines on CPUs only, and the neural network baselines on a single
48GB NVIDIA L40S or A6000 GPU for each trial. We include the remaining details in Appendix B.

Aggregating the results for model comparison. When comparing ML models based on their
performance on multiple datasets, popular approaches are to (i) average the min-max normalized
evaluation metric (Grinsztajn et al., 2022) and (ii) perform ranking-based pairwise hypothesis testing
(Demšar, 2006). For the former, the test scores of all models on each dataset are projected onto a [0,1]
scale, with the worst-performing model receiving a score of 0, and the best-performing receiving a
score of 1. These normalized scores are then averaged across different datasets. For the latter, the
Wilcoxon signed-ranks test (Wilcoxon, 1945) with multiple testing correction via Holm’s procedure
(Holm, 1979) and the Nemenyi-Friedman test (Nemenyi, 1963; Friedman, 1940) are often used. Both
are nonparametric tests that check whether one model tends to rank higher than another statistically
significantly. However, as we show in Finding 1 of Section 4, both methods can fail to accurately
represent the statistical significance of the extent of improvement achieved by one model vs. another.

As such, when we compare any model pair on a given dataset, we also compute the 95% bootstrapping
confidence intervals (CIs) in their relative test performance (e.g., AUROCTabPFN-v2 − AUROCCB)
by resampling the test set with replacement 1000 times. We judge a performance difference to be
statistically significant if the CI does not overlap with 0. We use this approach to declare a win, tie,
or loss for one model vs. another on each dataset, which allows us to quantify how often one model
statistically significantly outperforms the other model.

To combine the pairwise CI-based comparisons into a coherent global ranking of models, we adapt
the Elo rating system (Elo, 1978), treating each pairwise comparison on a dataset as a duel and update
the ratings based on the 95% CIs in relative performance. As Elo ratings are highly sensitive to
the order in which models are compared (Boubdir et al., 2024), we randomly permute the order of
comparisons with 100 different random seeds, and take the average of the resulting Elo ratings.

4 RESULTS

Finding 1: Comparing models based on min-max normalized evaluation metrics and ranking-
based hypothesis tests can overestimate the perceived improvements in performance from
tabular pretraining (Figure 1). Using the original evaluation setup for TabPFN-v2 in Hollmann
et al. (2025) as an example, we demonstrate the importance of accounting for statistical uncertainty
in any measured pairwise performance improvement, and how it can change the conclusions about
the effectiveness of large-scale tabular pretraining. We compare the performances of TabPFN-v2
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Figure 1: Comparing models based on min-max normalized evaluation metrics and ranking-based
pairwise hypothesis tests can amplify the perceived performance improvements from tabular pre-
training. To illustrate, we consider the evaluation setup for TabPFN-v2 considered in Hollmann et al.
(2025), based on 29 classification tasks from AMLB. (a) With min-max normalization, TabPFN-v2
achieves a substantially higher average test AUROC (0.9035) than the best overall baseline (CB;
0.7777) (left), with generally large differences across datasets (middle). When we compare models
based on normalized AUROC (without statistical testing), TabPFN-v2 “wins” against CB in 75.9% of
datasets and “loses” in only 24.1% of datasets (right). (b) Without normalization, however, we see
that AUROC differences in the original scale between TabPFN-v2 and CB are actually small across
most datasets (left, middle). When we use the 95% bootstrapping CIs in relative AUROC to also test
whether the extent of improvement on each dataset is statistically significant (Section 3), TabPFN-v2
is virtually identical to CB performance-wise in 69% of cases, with a slightly higher win rate (20.7%)
vs. loss rate (10.3%) (right). Error bars indicate the standard error across datasets.

against the same baselines on the same 29 classification datasets from AMLB (Gijsbers et al., 2024)
(Appendix C), after optimizing the hyperparameters of each model as in Section 3. Based on min-max
normalized test AUROC, averaged over datasets, TabPFN-v2 shows a substantial improvement over
CB (0.9035 vs. 0.7777), which is the best overall baseline (Figure 1(a), left). Across most datasets,
TabPFN-v2 shows large gains over CB in normalized AUROC, and the Wilcoxon signed-ranks test
declares such a gap to be significant with a p-value of 0.006 (< 0.05) (Figure 1(a), middle).

However, when we compare the test AUROC scores for TabPFN-v2 and CB on the original scale (i.e.,
without min-max normalization), we observe that pairwise differences are small across most datasets
(Figure 1(b), left & middle), and are often not statistically significant. In fact, when we compute the
95% bootstrapping CIs in relative test AUROC between TabPFN-v2 and CB on each dataset, we
observe a statistical tie in 69% of cases, a statistically significant improvement of TabPFN-v2 over
CB in 20.7% of cases (“win rate”), and a statistically significant underperformance of TabPFN-v2
relative to CB in 10.3% of cases (“loss rate”) (Figure 4(b), right). These results are still in favor of
TabPFN-v2 over CB, but the perceived gains are far less pronounced than in the former, showing
“modest” improvements. These results suggest that, while commonly adopted, comparisons based
on normalized evaluation metrics and ranking-based hypothesis tests may fail to capture whether the
pairwise performance gains themselves are significant, which is crucial to draw reliable conclusions.

Finding 2: In the full-data setting (i.e., using all training examples), TFMs achieve modest
improvements on small classification datasets but little to no improvement on other types of
datasets (Figure 2, Table 1). Based on Finding 1, we revisit the positive conclusions of prior
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Win/Tie/Loss Rates (%) of TFMs vs. Best Overall Baseline
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Figure 2: In the full-data setting, only 3 out of 6 TFMs improve (i.e., win more than lose) over non-
pretrained baselines on small classification datasets, and no meaningful improvements are observed
on large classification, small regression, or large regression datasets. We show the win, tie, and loss
rates (%) of each TFM vs. the baseline with the highest Elo rating in each data regime (Figure D1).
On each dataset, a TFM “wins” over the best baseline if the 95% bootstrapping confidence interval in
their relative AUROC / R2 lies above 0 (Section 3). Small datasets are those in the “TabPFN” regime
with ≤ 10k samples, ≤ 500 features, and ≤ 10 classes, while large datasets refer to all others.

Table 1: The number of TFMs that win more than they lose to the best overall baseline (i.e., highest
Elo rating) and their average win-loss rate gap (%) across various stratifications of evaluation datasets.

Different Data Regimes

Small
(“TabPFN”)

Highly
Categorical

Column
Semantics

Missing
Values

Class
Imbalance

Yes No Yes No Yes No Yes No Yes No

Classification
(6 TFMs)

# of TFMs > Best Baseline 3 0 0 2 0 0 2 1 0 0

Average (Win Rate - Loss Rate) 9.6% - - 17.3% - - 12.5% 2.8% - -

Regression
(5 TFMs)

# of TFMs > Best Baseline 1 0 0 0 1 0 0 0 - -

Average (Win Rate - Loss Rate) 2.7% - - - 12.5% - - - - -

works on the performance benefits from large-scale tabular pretraining, using our evaluation suite
introduced in Section 3. Here, we consider the full-data setting, where all of the training examples
are accessible for model training or ICL. We take a closer look at two data regimes—one regime we
refer to as the “TabPFN regime” (Hollmann et al., 2025): small datasets with ≤ 10k samples, ≤ 500
features, and ≤ 10 classes. The other regime consists of all other datasets, which tend to be larger
with additional features and/or classes (Appendix A). We consider these settings as prior works on
TFMs demonstrate that they generally show stronger performance on datasets with a small number of
samples and features (McElfresh et al., 2023; Hollmann et al., 2023; 2025; Qu et al., 2025).

When directly compared against the best overall (highest Elo rating) baseline in each setting (Figure
D1), only 3 out of 6 TFMs win more than they lose on small classification datasets in the “TabPFN”
regime, and all TFMs show little to no improvement in the remaining settings (Figure 2). While
the three tabular ICL models—TabICL, TabPFN-v2, and TabDPT—achieve the highest Elo ratings
on small classification datasets (Figure D1(a)), they reach a statistical tie with the best baseline
(ModernNCA) on 65–75% of datasets, with an average win-loss gap of +9.6% (Figure 2, top left). In
all other settings, TFMs fail to outperform the best baselines, with both win and tie rates decreasing
and the loss rates increasing substantially going from the small-data to large-data regime.

Similar trends hold under alternative stratifications of datasets by ratio of categorical features (≥
50% is considered “highly categorical”), presence of meaningful column names, missingness, and
class imbalance. In the majority of data regimes, TFMs fail to improve over the best baseline in each
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Figure 3: In the few-shot setting, only 2 out of 7 TFMs consistently improve (i.e., win more than lose)
over non-pretrained baselines, and other models show little to no improvement at all. We show the
pairwise win, tie, and loss rates (%) of each TFM vs. the baseline with the highest Elo rating in each
k-shot setting (Figure D6). TabPFN-v2 and TabDPT scale better on regression tasks, although with
sufficient examples, the performance gains over non-pretrained baselines become small (Figure 2).

setting (Table 1, Figures D2–D5). These results suggest that while large-scale tabular pretraining may
improve the inductive biases of neural networks for effective tabular learning (Hollmann et al., 2023;
den Breejen et al., 2025), the fundamental gains in performance may still be limited in practice.

Finding 3: In the few-shot setting, only a few TFMs exhibit better sample efficiency compared to
non-pretrained baselines, and the majority of models show little to no efficiency gains (Figure 3).
To investigate whether large-scale tabular pretraining leads to consistent improvements in sample
efficiency, we evaluate all TFMs in the few-shot setting, as described in Section 3. As in Finding 2,
we measure the win, tie, loss rates (%) of each TFM vs. the best overall baseline (highest Elo rating)
in each k-shot setting, based on the 95% bootstrapping CIs in relative AUROC or R2. We average all
of the results over five random seeds that control the subsampling of training examples in each k-shot
setting, in order to obtain a stable measure of few-shot performance.

On both classification and regression tasks in the 8-shot and 32-shot settings, only 2 out of 7 TFMs
show consistent improvements over the best overall baseline (CB; Figure D6), with TabPFN-v2 and
TabDPT being the only models that win more than they lose across all cases (Figure 3). TabuLa-8B
significantly outperforms CB in the 8-shot setting but underperforms it in the 32-shot setting (+19.7%
→−16%), showing limited sample efficiency despite being pretrained on 4M tables (Gardner et al.,
2024). Other models such as CARTE, TP-BERTa, and XTab substantially underperform CB, with loss
rates going up to 97%. These results suggest that large-scale tabular pretraining can lead to improved
sample efficiency, but the benefits remain inconsistent across different models and prediction tasks.

Finding 4: Head-to-head comparisons of three TFMs vs. their non-pretrained counterparts
show that tabular pretraining helps improve the ICL capabilties of LLMs on tables but offers
no clear benefits for other models, yielding limited overall gains (Figure 4). To fully isolate
the impact of tabular pretraining on downstream predictive performance, we compare three TFMs
(TabuLa-8B, TP-BERTa, and XTab) directly against their non-pretrained counterparts. For each
comparison, the only difference between models lies in tabular pretraining (i.e., each comparison
uses the same model architecture and size). For TabuLa-8B, we compare against Llama-3-8B in the
few-shot classification setting (up to 32 examples per class due to context window limits), while
optimizing the prompt for Llama-3-8B on each dataset and few-shot setting (Section 3). For TP-
BERTa, we compare it against TP-BERTa (RoBERTa) and TP-BERTa (Random), which correspond
to initializing the model with RoBERTa and random weights, respectively. For XTab, we compare it
against XTab (Random)—its randomly initialized counterpart. We exclude the tabular ICL models,
as their non-pretrained counterparts (random weights) would be incapable of ICL.
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Win/Tie/Loss Rates (%) of TFMs vs. Non-Pretrained Counterpart
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Figure 4: In an apples-to-apples comparison between three TFMs vs. their non-pretrained counterparts,
TabuLa-8B shows statistically significant improvements, while TP-BERTa and XTab do not. (a) Win,
tie, loss rates (%) for TabuLa-8B vs. Llama-3-8B in few-shot classification settings. The two models
reach a tie on 40–60% of datasets, but TabuLa-8B consistently wins more than it loses to Llama-3-8B.
(b) Win, tie, loss rates (%) for TP-BERTa vs. TP-BERTa (RoBERTa) & TP-BERTa (Random) on both
classification and regression datasets in the full-data setting. (c) Win, tie, loss rates (%) for XTab
vs. XTab (Random) on both classification and regression datasets in the full-data setting.

In the zero-shot setting, TabuLa-8B outperforms Llama-3-8B by a noticeable margin, achieving win
and loss rates of 29.6% and 13%, while reaching a tie in the remaining 57.4% of datasets (Figure 4(a)).
As the number of few-shot examples increases, TabuLa-8B outperforms Llama-3-8B in a much larger
fraction of cases, modulo the statistical ties that remain at around 50%. This is consistent with the
findings of Gardner et al. (2024), and suggests that (i) fine-tuning an LLM for tabular classification
tasks can improve the stability of tabular ICL; and (ii) it is challenging to elicit the same scaling
behavior from an LLM only trained on text just by optimizing the details of the prompt. Meanwhile,
TabuLa-8B still fails to consistently outperform the non-pretrained baselines (Figure 3(a)), which
undermines the practical utility of adapting an LLM for tabular prediction.

On the other hand, both TP-BERTa and XTab fail to improve over their non-pretrained counterparts,
on both classification and regression tasks in the full-data setting. TP-BERTa generally performs
worse than TP-BERTa (RoBERTa) and TP-BERTa (Random), with a higher loss rate than win rate
(Figure 4(b)). XTab is virtually indistinguishable from XTab (Random) performance-wise, reaching a
tie in 80–90% of cases and achieving almost identical win and loss rates (Figure 4(c)). These results
indicate that neither model benefits from tabular pretraining.

5 DISCUSSION AND CONCLUSION

In this work, we conducted a large-scale evaluation of seven open-source TFMs across 88 classifica-
tion and 82 regression datasets, testing whether the observed performance differences are statistically
significant and showing that neglecting this may give an overly optimistic impression of the per-
formance benefits from large-scale tabular pretraining. Our results revealed that tabular pretraining
yields modest gains in narrow settings—such as improved tabular ICL capabilities for LLMs (e.g.,
TabuLa-8B) and better sample efficiency for models like TabPFN-v2 and TabDPT—but these benefits
are inconsistent, often tied, and generally insufficient to surpass strong non-pretrained baselines
(e.g., GBDTs). In the full-data regime, improvements are largely confined to small classification
datasets, with little to no meaningful advantage elsewhere. In few-shot settings, only 2 out of 7 TFMs
reliably outperformed baselines, while others underperform or show no benefit from pretraining.
Taken together, these findings suggest that simply scaling pretraining over diverse tabular datasets
may offer limited benefits for downstream predictive performance.

Limitations. Due to space constraints, we include our discussion of limitations in Appendix E.
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A ADDITIONAL DETAILS ON DATASETS

In Tables A1 and A2, we list all of the OpenML classification and regression datasets selected for
evaluation from the candidate pool constructed from existing benchmarks (“Datasets” in Section 3).
We provide all of the OpenML task IDs that can be used to load the exact same dataset and dataset
splits as used in our experiments. As discussed in Section 3, the datasets in our benchmark cover a
wide range of settings, in terms of sample size, number of features, ratio of categorical/numerical
features, presence of meaningful column names, missingness, etc.
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Table A1: List of all OpenML classification datasets used in our evaluation suite. “Class Imbalance”
denotes the ratio of the # of samples in the minority class to that in the majority class. “Cat. Ratio”
denotes the proportion of features that are categorical.

OpenML
Task ID # Samples # Features

# Numerical
Features

# Categorical
Features

Meaningful
Col. Names # Classes

Class
Imbalance

Cat.
Ratio

Missing
Values

23 1473 9 2 7 Yes 3 0.529 0.778 No
25 368 26 7 19 Yes 2 0.586 0.731 Yes
29 690 15 6 9 No 2 0.802 0.6 Yes
31 1000 20 7 13 Yes 2 0.429 0.65 No
37 768 8 8 0 Yes 2 0.536 0.0 No
50 294 13 6 7 Yes 2 0.564 0.538 Yes
206 39366 9 0 9 Yes 2 0.532 1.0 No
219 45312 8 7 1 Yes 2 0.738 0.125 No
2075 4177 8 7 1 Yes 28 0.001 0.125 No
2079 736 19 14 5 Yes 5 0.491 0.263 Yes
2146 55296 9 2 7 Yes 3 0.528 0.778 No
3560 797 4 0 4 Yes 6 0.794 1.0 No
3561 672 9 5 4 Yes 2 0.5 0.444 No
3899 15545 5 5 0 Yes 2 0.489 0.0 No
3903 1563 37 37 0 Yes 2 0.114 0.0 No
3904 10885 21 21 0 No 2 0.24 0.0 Yes
3913 522 21 21 0 No 2 0.258 0.0 No
3917 2109 21 21 0 No 2 0.183 0.0 No
7592 48842 14 6 8 Yes 2 0.315 0.571 No
9906 1100 12 8 4 No 5 0.502 0.333 No
9908 2500 100 58 42 No 3 0.167 0.42 No
9910 3751 1776 1776 0 No 2 0.844 0.0 No
9952 5404 5 5 0 No 2 0.415 0.0 No
9957 1055 41 41 0 No 2 0.509 0.0 No
9959 7400 20 20 0 No 2 0.981 0.0 No
9971 583 10 9 1 No 2 0.401 0.1 No
9976 2600 500 500 0 No 2 1.0 0.0 No
9985 6118 51 51 0 No 6 0.19 0.0 No
10101 748 4 4 0 No 2 0.312 0.0 No
14954 540 35 18 17 Yes 2 0.731 0.486 Yes
14969 9873 32 32 0 No 5 0.338 0.0 No
125920 500 12 1 11 No 2 0.724 0.917 No
145941 2800 26 6 20 No 5 0.019 0.769 No
146065 601 6 0 6 No 2 0.522 1.0 No
146177 1600 20 0 20 No 2 1.0 1.0 No
146195 67557 42 0 42 No 3 0.145 1.0 No
146205 3200 7 0 7 No 10 0.792 1.0 No
146217 1599 11 11 0 Yes 6 0.015 0.0 No
167119 44819 6 6 0 Yes 3 0.188 0.0 No
167120 96320 21 21 0 No 2 0.98 0.0 No
167141 5000 20 16 4 Yes 2 0.165 0.2 No
189773 20000 20 20 0 No 5 0.067 0.0 No
189922 3153 970 970 0 No 2 0.967 0.0 No
189939 1294 140 139 1 Yes 11 0.081 0.007 Yes
190412 100 9920 9920 0 No 2 0.786 0.0 No
359974 4898 11 11 0 No 7 0.002 0.0 No
360676 43825 9 9 0 Yes 2 0.942 0.0 No
360679 1834 9 9 0 Yes 2 0.97 0.0 No
360721 43825 9 9 0 Yes 2 0.943 0.0 No
360791 43825 9 9 0 Yes 2 0.931 0.0 No
360797 1834 5 5 0 Yes 2 0.993 0.0 No
360801 43825 9 9 0 Yes 2 0.888 0.0 No
360822 43825 10 10 0 Yes 2 0.943 0.0 No
360832 1833 9 9 0 Yes 2 0.973 0.0 No
360839 1832 5 5 0 Yes 2 0.947 0.0 No
361056 20634 8 8 0 Yes 2 1.0 0.0 No
361057 2554 11 11 0 Yes 2 1.0 0.0 No
361060 38474 7 7 0 Yes 2 1.0 0.0 No
361063 13488 16 16 0 No 2 1.0 0.0 No
361064 5188 20 20 0 Yes 2 1.0 0.0 No
361065 13376 9 9 0 No 2 1.0 0.0 No
361066 10578 7 7 0 No 2 1.0 0.0 No
361069 940160 24 24 0 No 2 1.0 0.0 No
361070 7608 20 20 0 No 2 1.0 0.0 No
361111 7608 23 20 3 No 2 1.0 0.13 No
361112 5032 45 34 11 No 2 1.0 0.244 No
361114 4970 11 5 6 No 2 1.0 0.545 No
361115 111762 32 29 3 Yes 2 1.0 0.094 No
361116 16644 16 8 8 Yes 2 1.0 0.5 No
361278 10000 22 22 0 Yes 2 1.0 0.0 No

Continued on next page
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Task ID # Samples # Features
# Numerical

Features
# Categorical

Features
Meaningful
Col. Names # Classes

Class
Imbalance

Cat.
Ratio

Missing
Values

361302 12330 17 5 12 Yes 2 0.183 0.706 No
361304 10000 10 4 6 Yes 2 0.256 0.6 No
361306 23548 10 3 7 Yes 2 0.319 0.7 No
361309 26677 13 2 11 Yes 3 0.146 0.846 No
361315 10999 9 5 4 Yes 2 0.676 0.444 No
361316 5032 45 34 11 No 2 1.0 0.244 No
361930 1649 104 9 95 No 2 0.185 0.913 No
362772 2000 7 3 4 Yes 2 0.803 0.571 No
363088 9871 23 21 2 Yes 2 0.922 0.087 No
363322 20640 8 8 0 Yes 2 0.999 0.0 No
363323 70000 11 5 6 Yes 2 0.999 0.545 No
363328 2400 30 30 0 No 2 1.0 0.0 No
363329 1190 11 11 0 Yes 2 0.892 0.0 No
363331 1723 13 9 4 Yes 2 0.128 0.308 No
363334 1340 20 19 1 Yes 2 0.613 0.05 Yes
363337 1188 22 22 0 No 2 1.0 0.0 No
363338 1243 21 21 0 No 2 0.313 0.0 No
363339 7043 19 4 15 Yes 2 0.361 0.789 Yes

Table A2: List of all OpenML regression datasets used in our evaluation suite. “Cat. Ratio” denotes
the proportion of features that are categorical.

OpenML
Task ID # Samples # Features

# Numerical
Features

# Categorical
Features

Meaningful
Col. Names

Cat.
Ratio

Missing
Values

2289 9517 6 6 0 Yes 0.0 No
2306 40768 10 10 0 No 0.0 No
2309 22784 8 8 0 No 0.0 No
2313 8192 8 8 0 No 0.0 No
4708 6435 36 36 0 No 0.0 No
4772 8192 32 32 0 No 0.0 No
4831 6574 14 14 0 No 0.0 No
4881 8192 32 32 0 No 0.0 No
4885 40768 10 10 0 No 0.0 No
4891 8192 8 8 0 No 0.0 No
5012 526 5 3 2 No 0.4 No
7320 31104 9 2 7 No 0.778 No
7323 17496 9 6 3 Yes 0.333 No
7393 10886 10 4 6 Yes 0.6 No
189931 2108 25 22 3 Yes 0.12 No
190418 10738 14 14 0 Yes 0.0 No
233169 6277 6 5 1 No 0.167 No
359930 2178 3 3 0 No 0.0 No
359931 576 11 0 11 Yes 1.0 No
359936 16599 18 18 0 No 0.0 No
359939 8885 261 261 0 No 0.0 No
359940 8885 212 212 0 No 0.0 No
359943 581835 18 9 9 Yes 0.5 No
359949 21613 21 20 1 Yes 0.048 No
360879 45918 17 17 0 No 0.0 No
361074 16599 16 16 0 No 0.0 No
361075 7797 613 613 0 No 0.0 No
361078 20640 8 8 0 Yes 0.0 No
361079 22784 16 16 0 No 0.0 No
361080 53940 6 6 0 Yes 0.0 No
361082 17379 6 6 0 Yes 0.0 No
361083 581835 9 9 0 Yes 0.0 No
361084 21613 15 15 0 Yes 0.0 No
361087 13932 13 13 0 Yes 0.0 No
361088 21263 79 79 0 Yes 0.0 No
361089 20640 8 8 0 Yes 0.0 No
361090 18063 5 5 0 Yes 0.0 No
361091 515345 90 90 0 No 0.0 No
361092 8885 62 42 20 No 0.323 No
361095 166821 9 4 5 Yes 0.556 No
361098 10692 11 8 3 Yes 0.273 No
361100 39644 59 45 14 Yes 0.237 No
361102 21613 17 15 2 Yes 0.118 No
361234 4177 8 7 1 Yes 0.125 No
361235 1503 5 5 0 Yes 0.0 No
361236 2043 7 5 2 No 0.286 No
361237 1030 8 8 0 Yes 0.0 No

Continued on next page
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Task ID # Samples # Features
# Numerical

Features
# Categorical

Features
Meaningful
Col. Names

Cat.
Ratio

Missing
Values

361241 45730 9 9 0 No 0.0 No
361242 21263 81 81 0 Yes 0.0 No
361243 1059 116 116 0 No 0.0 No
361244 1066 9 1 8 Yes 0.889 No
361249 4898 11 11 0 Yes 0.0 No
361250 1599 11 11 0 Yes 0.0 No
361251 10000 12 12 0 No 0.0 No
361252 68784 18 16 2 Yes 0.111 No
361255 20640 8 8 0 Yes 0.0 No
361258 8192 8 8 0 No 0.0 No
361259 8192 32 32 0 No 0.0 No
361260 13932 15 15 0 Yes 0.0 No
361261 28155 6 2 4 Yes 0.667 No
361264 1156 5 1 4 Yes 0.8 No
361266 21613 21 17 4 Yes 0.19 No
361267 10692 9 5 4 Yes 0.444 No
361269 22272 11 4 7 Yes 0.636 No
361272 19178 28 27 1 Yes 0.036 No
361616 1232 14 8 6 Yes 0.429 Yes
361618 517 12 10 2 Yes 0.167 No
361619 649 30 13 17 Yes 0.567 No
361621 908 6 6 0 No 0.0 No
361622 804 17 17 0 Yes 0.0 No
361623 3107 6 6 0 Yes 0.0 No
362387 1038 12 11 1 Yes 0.083 Yes
362390 1234 8 5 3 Yes 0.375 No
362394 1538 7 6 1 Yes 0.143 No
362418 18249 13 11 2 Yes 0.154 No
362589 14480 29 28 1 Yes 0.034 No
363138 18182 12 8 4 Yes 0.333 No
363343 2394 7 7 0 No 0.0 No
363344 78732 10 7 3 No 0.3 No
363345 59049 9 9 0 No 0.0 No
363346 28155 6 2 4 Yes 0.667 No
363347 21613 19 18 1 Yes 0.053 No

B ADDITIONAL DETAILS ON MODEL TRAINING AND HYPERPARAMETER
OPTIMIZATION

Here, we provide additional details on how we train each model and optimize the hyperparameters.

B.1 PROMPT OPTIMIZATION FOR FEW-SHOT CLASSIFICATION WITH LLAMA-3-8B

Following Jeong et al. (2024), we first (i) construct a context-free grammar of plausible prompt
formats for tabular classification with LLMs; and then (ii) select the best combination of prompt
format, task instruction, and “serialization” method (i.e., format used for representing tabular features
as text) that results in the highest validation AUROC to use for final evaluation. We clarify that one
important difference with Jeong et al. (2024) is that we do not sample the few-shot examples to use
for ICL, as they are assumed to be given (i.e., they are the only examples accessible by the model).

Context-free grammar of prompt formats. Using the Backus-Naur notation as in Jeong et al.
(2024), let Hi be the instruction header (e.g., “### Instruction:”), Hf be the feature header
(e.g., “### Features:”), and Ha be the answer header (e.g., “### Answer:”). We define each
of these three headers as follows:

Hi(fcase, dq, s) ::= fcase(di)s⟨text⟩,
Hf (fcase, df , s) ::= fcase(df )s⟨text⟩,
Ha(fcase, da, s) ::= fcase(da)s⟨text⟩,

where fcase ∈ Fcase denotes the casing function (e.g., x 7→ “### ” + x, x 7→ x.upper()), di ∈ Di

denotes the instruction descriptor (e.g., “Instruction”), df ∈ Df denotes the feature descriptor (e.g.,
“Features”), da ∈ Da denotes the answer descriptor (e.g., “Answer”), s ∈ S denotes the header
separator (e.g., ‘:’), and ⟨text⟩ denotes a text placeholder. Notably, the text placeholder in Hf

demarcates where the serialized version of the tabular rows (e.g., “height is 183; systolic
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blood pressure is 79...”) is placed. The full prompt format P (fcase, di, df , da, s) is then
constructed by concatenating all of the headers, while adding space t ∈ T (e.g., “\n”) in-between:

P ::= HitHf tHa, (1)

where the arguments for each header are excluded for notational simplicity. We instantiate the above
grammar with the descriptors, separators, and functions below.

- Descriptors:

Di = {“Instruction”,“Task”,“”},
Df = {“Description”,“Input Table”,“Features”};
Da = {“Answer”,“Output”;“Response”,“Prediction”}.

- Separators:

S = {“: ”, “ : ”, “ :: ”, “:\n”, “= ”, “ = ”, “ == ”, “=\n”, “ - ”,

“ -- ”, “---”, “\n”, “\n\n”}.

- Spaces:

T = {“\n”, “\\”, “ || ”, “ ”}.

- Casing Functions:

Fcase = {x 7→ x,x 7→ x.title(),x 7→ x.upper(),x 7→ x.lower(),x 7→ “### ” + x}.

To randomly sample a prompt format accepted by the grammar, we randomly sample each of these
components and construct the full prompt format, following Equation equation 1.

Task instruction. We sample the task instruction to provide to the model from the following list of
predefined instructions, where ⟨⟩ is a placeholder for the target column name:

• Based on the provided column values of a row from a table, predict the value of the ⟨⟩
column.

• Using the given column values from a row in a table, determine the value for the ⟨⟩ column.
• Given the values of other columns in a table row, predict the value for the ⟨⟩ column.
• From the provided table row data, infer the value of the ⟨⟩ column.
• Based on the information in the row’s column values, estimate the value of the ⟨⟩ column.
• Using the row’s column values from the table, calculate the value of the ⟨⟩ column.
• With the available column values for a table row, predict what the ⟨⟩ column contains.
• Taking into account the values from the other columns in the row, determine the ⟨⟩ column’s

value.
• Analyze the row’s column values to forecast the value of the ⟨⟩ column.
• Given the data for a row’s columns, identify the value of the ⟨⟩ column.
• Predict the value of the ⟨⟩ column using the values of other columns in the row from the

table.
• Identify the value of the ⟨⟩ column based on the data provided for the other columns in the

row.
• Using the row’s data from a table, forecast the value of the ⟨⟩ column.
• Determine the ⟨⟩ column’s value by analyzing the row’s other column values from the table.
• Relying on the provided row data, calculate the value of the ⟨⟩ column.
• From the given table row values, deduce what the ⟨⟩ column contains.
• Based on the row’s column values, ascertain the value of the ⟨⟩ column in the table.
• Leverage the provided row data to infer the value of the ⟨⟩ column from the table.
• Examine the column values in a table row to predict the entry for the ⟨⟩ column.
• Given the data for the row in the table, determine what the ⟨⟩ column should be.

The task instruction is then followed by the phrase “Possible choices are: ⟨labels⟩”, where ⟨labels⟩ is
a placeholder for all of the possible class labels.
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Serialization method. We consider a total of 7 different serialization methods, which are reported
to work well in prior works (Dinh et al., 2022; Hegselmann et al., 2023; Wang et al., 2024; Fang et al.,
2024). For illustration, suppose that we are serializing a table with two features/columns “height”
and “weight”, which each take values 180 and 80. Below, we show the outcome of serializing a row
in this table according to each serialization method:

• List: “- height: 180\- weight: 80\n”
• Sentence: “The height is 180. The weight is 80.”
• Attribute-Value: “{height: 180; weight: 80.}”
• Equation: “height=180, weight=80.”
• Markdown: “| height | weight |\n| — | — |\| 180 | 80 |”
• CSV: “height,weight\n180,80”
• HTML: “<table>\n\t<tr>\n\t \t<th>height</th>\n\t\t<th>weight</th>\n\t</tr>\n\t<tr>\n\t

\t<td>180</td>\n\t \t<td>80</td>\n\t</tr>\n</table>”

Meanwhile, we round all of the floating-point values to the fourth decimal place by default, in order
to avoid excessively long tokenization for tables with many numerical features.

Sampling and selection of prompts. For each k-shot setting and run (i.e., one of the 5 repeated
trials with different random seeds), we further split given examples into a training and validation set,
in order to select the prompt (i.e., combination of prompt format, task instruction, and serialization)
that results in the best validation performance. Note that if k ∈ {0, 1}, it is not feasible to split
into a training and validation set, so we only perform this procedure for k ≥ 2. After obtaining the
train and validation sets, we randomly sample 30 different combinations of the prompt format, task
instruction, and serialization method described above. Below, we show examples of 2-shot prompts
sampled based according to the procedure above (classification dataset with task ID 31, with only 3
features shown). Using the examples in the training set for ICL, we measure the validation AUROC
for all of the randomly sampled prompts, and use the best prompt for final evaluation on the test
set. This procedure is performed to account for the sensitivity of LLMs to the choice of prompts
(Sclar et al., 2024; Jeong et al., 2024), which is critical for an apples-to-apples comparison of the best
performances. Meanwhile, as the predefined prompt search space does not cover all possible prompts,
the performance measured under this framework may still underestimate the “best” performance
achievable with an LLM.

Example 1

Based on the provided column values of a row from a table, predict the value of the “class”
column. Possible choices are [‘bad’, ‘good’].

Description : - checking_status: 0<=X<200
- duration: 48.0
- credit_amount: 14421.0

Response: bad

Description : - checking_status: 0<=X<200
- duration: 18.0
- credit_amount: 1056.0

Response: good

Description : - checking_status: no checking
- duration: 42.0
- credit_amount: 3161.0

Response:
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Table B1: Hyperparameter search space for TP-BERTa. λ is the coefficient applied to the special
regularization term for relative magnitude tokenization (see Equation (11) of Yan et al. (2024)).

Hyperparameter Distribution

Learning Rate LogUniform(1e-6,5e-5)
Weight Decay LogUniform(1e-6,0.5)

λ LogUniform(1e-6,0.2)

Table B2: Hyperparameter search space for CARTE.

Hyperparameter Distribution

Learning Rate LogUniform(1e-4,1e-2)
Dropout LogUniform(1e-6,0.5)

Freeze Pretrained Weights Categorical([True, False])

Table B3: Hyperparameter search space for XTab.

Hyperparameter Distribution

Learning Rate LogUniform(1e-5,1e-3)
Weight Decay LogUniform(1e-5,1e-3)

Example 2

Analyze the row’s column values to forecast the value of the “class” column. || ### Input
Table == checking_status=0<=X<200, duration=48.0, credit_amount=14421.0 || ### Output ==
bad || ### Input Table == checking_status=0<=X<200, duration=18.0, credit_amount=1056.0
|| ### Output == good || ### Input Table == checking_status=0<=X<200, duration=42.0,
credit_amount=3161.0 || ### Output ==

B.2 HYPERPARAMETER OPTIMIZATION

Here, we detail all of the hyperparameter search spaces for all of the TFMs (if training is involved) and
all of the baselines. As discussed in Section 3, we optimize the hyperparameters of all models by ran-
domly sampling 100 configurations (except TP-BERTa, for which we sample 30 configurations) based
on the Tree-structured Parzen Estimator (TPE; Watanabe, 2023) and selecting the configuration that
results in the best validation performance (AUROC (↑) for classification, RMSE (↓) for regression).
Meanwhile, for each model that undergoes mini-batch training, we use the largest batch size afford-
able by the model on each given dataset, based on a predefined list of batch sizes, in order to better
handle out-of-memory errors and avoid excessively long runtimes (especially since we do not impose
arbitrary time limits during hyperparameter optimization). If none of the batch sizes work for a model
on some dataset, we exclude this (model, dataset) pair from evaluation. For TP-BERTa, we try the
batch sizes [64,32,16,8,4,2,1] in order. For CARTE, we try the batch sizes [256,128,64,32,16,8,4,2,1]
in order. For all of the deep baselines, we try the batch sizes [512,256,128,64,32,16,8,4,2,1] in order.
In Tables B1–B18, we detail the hyperparameter search space used for each model.

C REPLICATION OF TABPFN-V2 EXPERIMENTS

Here, we provide additional details on our process for replicating the classification setup considered
in Hollmann et al. (2025), where TabPFN-v2 is compared against several baselines—CatBoost (CB;
Prokhorenkova et al., 2018), XGBoost (XGB; Chen & Guestrin, 2016), LightGBM (LGBM; Ke
et al., 2017), random forest (RF; Breiman, 2001), support vector machine (SVM; Cortes & Vapnik,
1995), L2-penalized logistic regression (LR), and multi-layer perceptron (MLP). We use the same 29
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Table B4: Hyperparameter search space for TabR.

Hyperparameter Distribution

d Uniform(96,384)
Number of Encoder Blocks NE Categorical([0,1])
Number of Predictor Blocks NP Categorical([1,2])

Context Dropout Uniform(0,0.6)
Dropout Uniform(0,0.6)

Context Size Categorical([32,64,96,128,. . .,512])
PLR Embedding # Components UniformInt(16,96)

PLR Embedding Scale σ LogUniform(0.01,100)
PLR Embedding Size UniformInt(16,64)

PLR Embedding “Lite” Mode Categorical([True,False])
Learning Rate LogUniform(1e-5,1e-2)
Weight Decay LogUniform(1e-6,1e-2)

Table B5: Hyperparameter search space for ModernNCA.

Hyperparameter Distribution

Linear Projection Dimension UniformInt(64,1024)
MLP Block Dimension UniformInt(64,1024)

Dropout Uniform(0,0.5)
Number of MLP Blocks Categorical([0,1,2])

PLR Embedding # Components UniformInt(16,96)
PLR Embedding Scale σ LogUniform(0.01,100)

PLR Embedding Size UniformInt(16,64)
PLR Embedding “Lite” Mode Categorical([True,False])

Temperature Categorical([0.8,0.9,1])
Retrieval Sample Rate Categorical([0,0.2,0.4,0.6,0.8,1])

Learning Rate LogUniform(1e-5,1e-2)
Weight Decay LogUniform(1e-6,1e-2)

Table B6: Hyperparameter search space for MLP-PLR.

Hyperparameter Distribution

Hidden Layer Dimension UniformInt(64,1024)
Number of Layers UniformInt(1,8)

Dropout Uniform(0,0.5)
PLR Embedding # Components UniformInt(16,96)

PLR Embedding Scale σ LogUniform(0.01,100)
PLR Embedding Size UniformInt(16,64)

PLR Embedding “Lite” Mode Categorical([True,False])
Learning Rate LogUniform(1e-5,1e-2)
Weight Decay LogUniform(1e-6,1e-2)

OpenML classification datasets subsampled from AMLB (Gijsbers et al., 2024), which are detailed
in Extended Data Table 3 of Hollmann et al. (2025). For hyperparameter tuning, we follow the search
space provided in Extended Data Table 5 for CB, XGB, and LGBM, but use alternative search spaces
for the other baselines as our own search spaces (Section B) yield better results in the replicated setup
(Table C1). We mainly compare the raw test AUROC values, averaged over all datasets, reported in
the paper and from our own evaluations, as the min-max normalized scores in Hollmann et al. (2025)
are computed with respect to TabPFN-v2 & baselines both with and without hyperparameter tuning
(under a 4h budget for hyperparameter tuning), while we only we compare TabPFN-v2 (without
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Table B7: Hyperparameter search space for FT-T.

Hyperparameter Distribution

Token Embedding Size Categorical([64,72,80,. . .,512])
FFN Dimension Factor Uniform(0.67,2.67)

Attention Dropout Uniform(0,0.5)
Residual Dropout Uniform(0,0.2)

FFN Dropout Uniform(0,0.5)
Number of Layers Uniform(1,6)

Dropout Uniform(0,0.5)
Learning Rate LogUniform(1e-5,1e-3)
Weight Decay LogUniform(1e-6,1e-3)

Table B8: Hyperparameter search space for MLP.

Hyperparameter Distribution

Hidden Layer Dimension UniformInt(64,1024)
Number of Layers UniformInt(1,8)

Dropout Uniform(0,0.5)
Learning Rate LogUniform(1e-5,1e-2)
Weight Decay LogUniform(1e-6,1e-2)

Table B9: Hyperparameter search space for ResNet.

Hyperparameter Distribution

Hidden Layer Dimension UniformInt(64,1024)
FFN Dimension Factor Uniform(1,4)

Number of Layers UniformInt(1,8)
Activation Categorical([ReLU,GeLU,ReGLU,GeGLU])
Dropout Uniform(0,0.5)

Residual Dropout Uniform(0,0.5)
Learning Rate LogUniform(1e-5,1e-2)
Weight Decay LogUniform(1e-6,1e-2)

Table B10: Hyperparameter search space for MLP.

Hyperparameter Distribution

Hidden Layer Dimension UniformInt(64,1024)
Number of Layers UniformInt(1,8)

Dropout Uniform(0,0.5)
Learning Rate LogUniform(1e-5,1e-2)
Weight Decay LogUniform(1e-6,1e-2)

Table B11: Hyperparameter search space for CB.

Hyperparameter Distribution

Number of Estimators UniformInt(5,125)
Max Depth UniformInt(2,12)

Learning Rate LogUniform(1e-5,1)
L2 Regularization LogUniform(1,10)

post-hoc ensembling) against the hyperparameter-tuned baselines and do not impose an arbitrary
4-hour time limit on the hyperparameter optimization process. While there are some unresolved
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Table B12: Hyperparameter search space for XGB.

Hyperparameter Distribution

Number of Estimators UniformInt(5,125)
Max Depth UniformInt(1,10)

α LogUniform(1e-16,1e2)
λ LogUniform(1e-16,1e2)

Learning Rate LogUniform(1e-7,1)

Table B13: Hyperparameter search space for LGBM.

Hyperparameter Distribution

Number of Estimators UniformInt(5,125)
Number of Leaves UniformInt(2,4096)

α LogUniform(1e-8,1)
λ LogUniform(1e-8,1)

Learning Rate LogUniform(1e-3,1)

Table B14: Hyperparameter search space for RF.

Hyperparameter Distribution

Number of Estimators UniformInt(5,100)
Max Depth UniformInt(2,12)

Table B15: Hyperparameter search space for SVM.

Hyperparameter Distribution

Inverse Regularization C LogUniform(1e-5,1e5)

Table B16: Hyperparameter search space for kNN.

Hyperparameter Distribution

k Categorical([3,5,7,9,. . .,42])
NN Search Categorical([k-d tree, ball tree])

NN Weighting Categorical([Uniform, Inverse-Distance])

Table B17: Hyperparameter search space for LR (Logistic Regression).

Hyperparameter Distribution

Inverse Regularization C LogUniform(1e-10,1e10)

Table B18: Hyperparameter search space for LR (Ridge Regression).

Hyperparameter Distribution

Regularization α LogUniform(1e-10,1)

differences between the reported numbers and our own, partially due to the lack of access to the exact
code that was used by Hollmann et al. (2025), they are similar across the board for most models, with
some baseline numbers even being better than the reported numbers (e.g., MLP and LR).

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table C1: Comparison of average test AUROCs between the reported numbers and our numbers, in
our replication of the evaluation setup considered in Hollmann et al. (2025). We report the numbers
for Hollmann et al. (2025) based on Extended Data Table 5, where for TabPFN-v2, we report the
average test AUROC corresponding to “TabPFN (default)”, and for the baselines, we report the
average test AUROC corresponding to the “4h tuned” models.

TabPFN-v2 CB XGB LGBM RF MLP SVM LR

Hollmann et al. (2025) 0.929 0.920 0.920 0.915 0.913 0.883 0.887 0.874
Ours 0.928 0.912 0.920 0.911 0.905 0.897 0.877 0.881

TabPFN-v2
TabICL
TabDPT
CARTE

XTab
XTab (Random)
TP-BERTa (CLF)
TP-BERTa (REG)

TP-BERTa (RoBERTa)
TP-BERTa (Random)
MLP
ResNet

FT-T
MLP-PLR
ModernNCA
TabR

CB
XGB
LGBM
RF

SVM
kNN
LR
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Figure D1: In the full-data setting, the performance gap between TFMs and non-pretrained baselines
on classification and regression tasks remain small, across both small-data and large-data regimes.
Here, we show the Elo ratings computed based on the 95% bootstrapping confidence intervals in
relative AUROC / R2 (Section 3). (a) Classification results on small datasets in the “TabPFN” regime.
(b) Classification results on large datasets. (c) Regression results on small datasets in the “TabPFN”
regime. (d) Regression results on large datasets.

D ADDITIONAL EXPERIMENTAL RESULTS

Here, we provide additional results for the experiments discussed in Section 4.

Evaluations in the full-data setting (Section 4). In Figures D1(a) and D1(b), we show the Elo
rating plots on the classification datasets in the small “TabPFN” regime and the alternative large-data
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regime, respectively. In Figures D1(c) and D1(d), we show the same plots for the regression datasets.
Across all datasets, we find that ModernNCA is the best-performing non-pretrained baseline (i.e.,
with the highest Elo rating), and therefore the pairwise win/tie/loss rates (%) for each TFM shown in
Figure 2 are calculated with respect to ModernNCA.

In Figures D2–D5, we also show the (i) win, tie, and loss rates (%) of each TFM vs. the best-
performing baseline; (ii) the critical difference diagrams along with Nemenyi-Friedman post-hoc
test results; and (iii) the Elo ratings calculated based on the 95% bootstrapping CIs, under several
alternative stratifications of the datasets. In particular, we consider splitting the datasets by each
criterion below:

1. Column names are grounded on real-world concepts and meaningful (e.g., “blood pressure”);

2. More than 50% of features are categorical (i.e., dataset is “highly categorical”);

3. Dataset contains features with missing values3;

4. Ratio of number of samples in the minority class to that in the majority class is less than
50% (i.e., dataset has high class imbalance)4.

Among many other possible stratifications, we consider these four settings as a representative set of
alternative scenarios where TFMs are often claimed to better handle or expected to perform better
(Kim et al., 2024; Gardner et al., 2024; Hollmann et al., 2025) (e.g., models that leverage LLM
embeddings of column names are expected to perform better when the dataset is rich with meaningful
column names). For each stratification, we compute the win, tie, and loss rates (%) for each TFM
with respect to the best-performing baseline with the highest Elo rating. Overall, the performance
gains achieved by each TFM over non-pretrained baselines remain small across most of these settings,
even for tables with meaningful column names, where language-based TFMs are supposed to provide
a decisive advantage.

Evaluations in the few-shot setting (Section 4). In Figures D6(a) and D6(b), we show the Elo
rating plots on the classification datasets in the 8-shot and 32-shot settings. In Figures D6(c) and
D6(d), we show the same plots for the regression datasets. As all of the few-shot evaluations are
repeated with 5 different random seeds, which control the subsampling of the k-shot examples used
for training and validation, we compute the Elo ratings for each seed and then average the Elo ratings.
As discussed in Section 4, we observe that the performance gap between TFMs and non-pretrained
baselines on classification and regression tasks remain small for most models in the few-shot setting.

E LIMITATIONS

We discuss our findings with the following caveats. First, our evaluations are primarily focused on the
performance benefits from large-scale tabular pretraining, and therefore our analysis and conclusions
about the utility of such pretraining do not account for improvements in off-the-shelf training and
inference runtimes, which several prior works highlight as a major practical advantage (Hollmann
et al., 2023; 2025; Qu et al., 2025). Second, we deliberately excluded post-hoc ensembling for all of
the TFMs to isolate the impact of large-scale tabular pretraining as much as possible and to ensure a
fair comparison among all TFMs, although it is often considered for ICL models like TabPFN-v2. As
such, the resulting numbers may not be reflective of the best performance that can be achieved by
these models on the datasets we considered. Third, while we have sought to include in our evaluation
a diverse set of open-source TFMs—excluding those for which the checkpoints or relevant code are
unavailable—our findings may not be characteristic of all existing TFMs that have yet to be included
in our experiments (e.g., hypernetwork models (Müller et al., 2025)). It is certainly possible that
newly released TFMs do consistently show statistically significant performance gains across various
settings, and we leave an extended analysis of any additional up-to-date models as future work. Last
but not least, while our benchmark was carefully designed to include datasets with a wide range of
characteristics while ensuring that they are challenging enough to reflect the difficulties of real-world
prediction tasks, our analysis is still limited to OpenML datasets, which dominate most existing

3We group all datasets with missingness together as there are not as many to further divide into subgroups
with different levels of missingness.

4We choose 50% as the threshold such that we divide the datasets by roughly half.
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Win/Tie/Loss Rates (%) of TFMs vs. Best Overall Baseline
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Figure D2: In the full-data setting (i.e., using all training examples), TFMs show modest improve-
ments over non-pretrained baselines on both “highly categorical” datasets (i.e., at least 50% of features
are categorical) and “highly numerical” datasets. Panel (a) shows classification tasks, and panel
(b) shows regression tasks. In each panel, the top row shows the results on the “highly categorical”
datasets, while the bottom row shows the results on the “highly numerical” datasets. (Left) Pairwise
win, tie, and loss rates (%) of each TFM vs. the baseline with the highest Elo rating (Appendix D). On
each dataset, a TFM “wins” over the best-performing baseline if the 95% bootstrapping confidence
interval (CI) in their relative AUROC / R2 lies above 0 (Section 3). (Middle) Critical difference
diagram based on the Nemenyi-Friedman test results. If two models are connected horizontally, their
differences in ranking are not statistically significant. (Right) Elo ratings of all models computed
based on the 95% bootstrapping CIs.

tabular prediction benchmark studies and still may not be reflective of realistic settings (Rubachev
et al., 2024). As such, we also leave an extension of our analysis to non-OpenML datasets with clearly
verifiable real-world sources (e.g., electronic health record datasets such as MIMIC (Johnson et al.,
2016; 2023) or eICU (Pollard et al., 2018), industry-grade datasets on Kaggle) as future work.
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Win/Tie/Loss Rates (%) of TFMs vs. Best Overall Baseline

Win Tie Loss

TabPFN-v2
TabICL
TabDPT
CARTE

XTab
XTab (Random)
TP-BERTa (CLF)
TP-BERTa (REG)

TP-BERTa (RoBERTa)
TP-BERTa (Random)
MLP
ResNet

FT-T
MLP-PLR
ModernNCA
TabR

CB
XGB
LGBM
RF

SVM
kNN
LR

(a)

0 20 40 60 80 100
Proportion of Datasets (%)

TabPFN-v2

TabICL

TabDPT

CARTE

TP-BERTa (CLF)

XTab

10.9% 52.2% 37.0%

63.0% 28.3%

52.2% 41.3%

52.2% 41.3%

37.8% 57.8%

58.7% 39.1%

8 10 12 14 16 18

TabICL [7.221]
TabR [8.023]

ModernNCA [8.093]
LGBM [8.291]

TabPFN-v2 [8.430]
CB [8.872]

TabDPT [10.116]
FT-T [10.802]
XGB [10.872]

MLP-PLR [11.279]
XTab (Random) [11.593]

MLP [11.767]
XTab [11.965]

ResNet [12.140]
TP-BERTa (RoBERTa) [12.256]

CARTE [12.256]
RF [12.628]

SVM [13.919]
LR [13.965]

TP-BERTa (Random) [14.674]
TP-BERTa (CLF) [16.326]

kNN [17.512]

Avg. Ranking by AUROC

0

200

400

600

800

1000

1200

1400

1600

El
o 

Ra
tin

g 
(A

UR
OC

)

0 20 40 60 80 100
Proportion of Datasets (%)

TabICL

TabPFN-v2

TabDPT

CARTE

XTab

TP-BERTa (CLF)

20.6% 58.8% 20.6%

17.6% 61.8% 20.6%

11.8% 55.9% 32.4%

52.9% 47.1%

58.8% 41.2%

37.5% 62.5%

6 8 10 12 14 16 18

TabICL [6.194]
TabPFN-v2 [6.226]

LGBM [6.677]
TabDPT [7.581]

CB [8.210]
XGB [8.323]
TabR [9.145]

ModernNCA [9.548]
MLP-PLR [10.371]

RF [10.839]
ResNet [11.339]

FT-T [11.774]
XTab (Random) [11.935]

XTab [12.565]
MLP [13.726]

TP-BERTa (RoBERTa) [14.419]
TP-BERTa (Random) [14.661]

SVM [14.806]
CARTE [14.839]

LR [15.161]
kNN [16.661]

TP-BERTa (CLF) [18.000]

Avg. Ranking by AUROC

0

250

500

750

1000

1250

1500

1750

El
o 

Ra
tin

g 
(A

UR
OC

)

(b)

0 20 40 60 80 100
Proportion of Datasets (%)

TabPFN-v2

TabDPT

XTab

TP-BERTa (REG)

CARTE

22.5% 67.5% 10.0%

15.0% 47.5% 37.5%

10.0% 50.0% 40.0%

24.4% 73.2%

37.5% 62.5%

6 8 10 12 14 16

TabPFN-v2 [5.872]
LGBM [5.923]

CB [6.231]
ModernNCA [6.333]

TabDPT [7.513]
XGB [7.846]

XTab (Random) [8.744]
TabR [8.872]
XTab [9.513]

RF [9.641]
MLP-PLR [10.359]

FT-T [11.949]
MLP [11.949]

CARTE [12.410]
ResNet [14.718]

TP-BERTa (RoBERTa) [14.756]
kNN [14.923]

LR [14.923]
TP-BERTa (REG) [15.385]

TP-BERTa (Random) [16.218]
SVM [16.923]

Avg. Ranking by R2

0

250

500

750

1000

1250

1500

1750

El
o 

Ra
tin

g 
(R

2 )

0 20 40 60 80 100
Proportion of Datasets (%)

TabPFN-v2

XTab

TabDPT

CARTE

TP-BERTa (REG)

15.4% 38.5% 46.2%

11.5% 53.8% 34.6%

50.0% 42.3%

42.3% 57.7%

19.2% 80.8%

6 8 10 12 14 16 18

ModernNCA [5.958]
TabPFN-v2 [6.792]

TabDPT [7.083]
CB [7.208]

XTab (Random) [7.333]
TabR [7.500]

MLP-PLR [7.542]
XTab [8.250]

LGBM [8.708]
XGB [9.625]

CARTE [10.042]
RF [10.750]

MLP [10.833]
ResNet [12.083]

FT-T [12.792]
TP-BERTa (RoBERTa) [14.938]

TP-BERTa (REG) [15.167]
kNN [15.667]

TP-BERTa (Random) [16.688]
LR [17.167]

SVM [18.875]

Avg. Ranking by R2

0

250

500

750

1000

1250

1500

1750

El
o 

Ra
tin

g 
(R

2 )

Figure D3: In the full-data setting (i.e., using all training examples), TFMs show modest improve-
ments over non-pretrained baselines on both datasets with and without meaningful column names.
Panel (a) shows classification tasks, and panel (b) shows regression tasks. In each panel, the top row
shows the results on datasets with meaningful column names, while the bottom row shows the results
on the datasets without. (Left) Pairwise win, tie, and loss rates (%) of each TFM vs. the baseline
with the highest Elo rating (Appendix D). On each dataset, a TFM “wins” over the best-performing
baseline if the 95% bootstrapping confidence interval (CI) in their relative AUROC / R2 lies above
0 (Section 3). (Middle) Critical difference diagram based on the Nemenyi-Friedman test results. If
two models are connected horizontally, their differences in ranking are not statistically significant.
(Right) Elo ratings of all models computed based on the 95% bootstrapping CIs.

F SOURCE CODE

An anonymized version of our source code can be found here: https://anonymous.4open.science/r/tfm-
evaluation-harness-7D90/.
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Win/Tie/Loss Rates (%) of TFMs vs. Best Overall Baseline
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Figure D4: In the full-data setting (i.e., using all training examples), TFMs show modest improve-
ments over non-pretrained baselines on both datasets with and without features with missing values.
Panel (a) shows classification tasks, and panel (b) shows regression tasks. In each panel, the top row
shows the results on datasets with missing values, while the bottom row shows the results on the
datasets without. (Left) Pairwise win, tie, and loss rates (%) of each TFM vs. the baseline with the
highest Elo rating (Appendix D). On each dataset, a TFM “wins” over the best-performing baseline if
the 95% bootstrapping confidence interval (CI) in their relative AUROC / R2 lies above 0 (Section
3). (Middle) Critical difference diagram based on the Nemenyi-Friedman test results. If two models
are connected horizontally, their differences in ranking are not statistically significant. (Right) Elo
ratings of all models computed based on the 95% bootstrapping CIs. Meanwhile, we note that there
are only 2 datasets with missing values for regression (Figure D4(b), top), which results in a failure
to reject the null for all pairwise comparisons performed with Nemenyi-Friedman.
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Figure D5: In the full-data setting (i.e., using all training examples), TFMs show modest improve-
ments over non-pretrained baselines on classification datasets with and without class imbalance. The
top row shows the results on datasets with class imbalance, while the bottom row shows the results
on the datasets without. (Left) Pairwise win, tie, and loss rates (%) of each TFM vs. the baseline
with the highest Elo rating (Appendix D). On each dataset, a TFM “wins” over the best-performing
baseline if the 95% bootstrapping confidence interval (CI) in their relative AUROC / R2 lies above
0 (Section 3). (Middle) Critical difference diagram based on the Nemenyi-Friedman test results. If
two models are connected horizontally, their differences in ranking are not statistically significant.
(Right) Elo ratings of all models computed based on the 95% bootstrapping CIs.
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Figure D6: The performance gap between TFMs and non-pretrained baselines on classification and
regression tasks remain small for most models in the few-shot setting. Here, we show the Elo ratings
computed based on the 95% bootstrapping confidence intervals in relative AUROC / R2 (Section
3). (a) Classification results in the 8-shot setting. (b) Classification results in the 32-shot setting. (c)
Regression results in the 8-shot setting. (d) Regression results in the 32-shot setting. As discussed
in Section 4, we do find that TabPFN-v2 and TabDPT tend to show better sample efficiency on
regression tasks, while all other TFMs do not. Error bars indicate the standard error across datasets.
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