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ABSTRACT

This work studies training one-hidden-layer overparameterized ReLU networks
via gradient descent in the neural tangent kernel (NTK) regime, where, differently
from the previous works, the networks’ biases are trainable and are initialized to
some constant rather than zero. The tantalizing benefit of such initialization is that
the neural network will provably have sparse activation pattern before, during and
after training, which can enable fast training procedures and, therefore, reduce the
training cost. The first set of results of this work characterize the convergence of
the network’s gradient descent dynamics. The required width is provided to ensure
gradient descent can drive the training error towards zero at a linear rate. The con-
tribution over previous work is that not only the bias is allowed to be updated by
gradient descent under our setting but also a finer analysis is given such that the re-
quired width to ensure the network’s closeness to its NTK is improved. Secondly,
the networks’ generalization bound after training is provided. A width-sparsity
dependence is presented which yields sparsity-dependent localized Rademacher
complexity and a generalization bound matching previous analysis (up to loga-
rithmic factors). To our knowledge, this is the first sparsity-dependent general-
ization result via localized Rademacher complexity. As a by-product, if the bias
initialization is chosen to be zero, the width requirement improves the previous
bound for the shallow networks’ generalization. Lastly, since the generalization
bound has dependence on the smallest eigenvalue of the limiting NTK and the
bounds from previous works yield vacuous generalization, this work further stud-
ies the least eigenvalue of the limiting NTK. Surprisingly, while it is not shown
that trainable biases are necessary, trainable bias helps to identify a nice data-
dependent region where a much finer analysis of the NTK’s smallest eigenvalue
can be conducted, which leads to a much sharper lower bound than the previously
known worst-case bound and, consequently, a non-vacuous generalization bound.
Experimental evaluation is provided to evaluate our results.

1 INTRODUCTION

The literature of sparse neural networks can be dated back to the early work of LeCun et al. (1989)
where they showed that a fully-trained neural network can be pruned to preserve generalization. Re-
cently, training sparse neural networks has been receiving increasing attention since the discovery of
the lottery ticket hypothesis (Frankle & Carbin, 2018). In their work, they showed that if we repeat-
edly train and prune a neural network and then rewind the weights to the initialization, we are able
to find a sparse neural network that can be trained to match the performance of its dense counter-
part. However, this method is more of a proof of concept and is computationally expensive for any
practical purposes. Nonetheless, this inspires further interest in the machine learning community to
develop efficient methods to find the sparse pattern at the initialization such that the performance of
the sparse network matches the dense network after training (Lee et al., 2018; Wang et al., 2019;
Tanaka et al., 2020; Liu & Zenke, 2020; Chen et al., 2021; He et al., 2017; Liu et al., 2021b).

On the other hand, instead of trying to find some desired sparsity patterns at the initialization, another
line of research has been focusing on inducing the sparsity pattern naturally and then creatively
utilizing such sparse structure via high-dimensional geometric data structures as well as sketching
or even quantum algorithms to speedup per-step gradient descent training (Song et al., 2021a;b; Hu
et al., 2022; Gao et al., 2022). In this line of theoretical studies, the sparsity is induced by shifted
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ReLU which is the same as initializing the bias of the network’s linear layer to some large constant
instead of zero and holding the bias fixed throughout the entire training. By the concentration of
Gaussian, at the initialization, the total number of activated neurons (i.e., ReLU will output some
non-zero value) will be sublinear in the total number m of neurons, as long as the bias is initialized
to be C

√
logm for some appropriate constant C. We call this sparsity-inducing initialization. If the

network is in the NTK regime, each neuron weight will exhibit microscopic change after training,
and thus the sparsity can be preserved throughout the entire training process. Therefore, during the
entire training process, only a sublinear number of the neuron weights need to be updated, which
can significantly speedup the training process.

The focus of this work is along the above line of theoretical studies of sparsely trained overparame-
terized neural networks and address the two main research limitations in the aforementioned studies.
(1) The bias parameters used in the previous works are not trainable, contrary to what people are do-
ing in practice. (2) The previous works only provided the convergence guarantee, while lacking the
generalization performance which is of the central interest in deep learning theory. Thus, our study
will fill the above important gaps, by providing a comprehensive study of training one-hidden-layer
sparsely activated neural networks in the NTK regime with (a) trainable biases incorporated in the
analysis; (b) finer analysis of the convergence; and (c) first generalization bound for such sparsely
activated neural networks after training with sharp bound on the restricted smallest eigenvalue of the
limiting NTK. We further elaborate our technical contributions are follows:

1. Convergence. Theorem 3.1 provides the required width to ensure that gradient descent can
drive the training error towards zero at a linear rate. Our convergence result contains two
novel ingredients compared to the existing study. (1) Our analysis handles trainable bias,
and shows that even though the biases are allowed to be updated from its initialization, the
network’s activation remains sparse during the entire training. This relies on our develop-
ment of a new result showing that the change of bias is also diminishing with a O(1/

√
m)

dependence on the network width m. (2) A finer analysis is provided such that the required
network width to ensure the convergence can be much smaller, with an improvement upon
the previous result by a factor of Θ̃(n8/3) under appropriate bias initialization, where n is
the sample size. This relies on our novel development of (1) a better characterization of the
activation flipping probability via an analysis of the Gaussian anti-concentration based on
the location of the strip and (2) a finer analysis of the initial training error.

2. Generalization. Theorem 3.8 studies the generalization of the network after gradient de-
scent training where we characterize how the network width should depend on activation
sparsity, which lead to a sparsity-dependent localized Rademacher complexity and a gener-
alization bound matching previous analysis (up to logarithmic factors). To our knowledge,
this is the first sparsity-dependent generalization result via localized Rademacher complex-
ity. In addition, compared with previous works, our result yields a better width’s depen-
dence by a factor of n10. This relies on (1) the usage of symmetric initialization and (2) a
finer analysis of the weight matrix change in Frobenius norm in Lemma 3.13.

3. Restricted Smallest Eigenvalue. Theorem 3.8 shows that the generalization bound heav-
ily depends on the smallest eigenvalue λmin of the limiting NTK. However, the previously
known worst-case lower bounds on λmin under data separation have a 1/n2 explicit depen-
dence in (Oymak & Soltanolkotabi, 2020; Song et al., 2021a), making the generalization
bound vacuous. Instead, our Theorem 3.11 establishes a much sharper lower bound re-
stricted to a data-dependent region, which is sample-size-independent. This hence yields a
desirable generalization bound that vanishes as fast as O(1/

√
n), given that the label vector

is in this region, which can be done with simple label-shifting.

1.1 FURTHER RELATED WORKS

Besides the works mentioned in the introduction, another work related to ours is (Liao & Kyrillidis,
2022) where they also considered training a one-hidden-layer neural network with sparse activation
and studied its convergence. However, different from our work, their sparsity is induced by sam-
pling a random mask at each step of gradient descent whereas our sparsity is induced by non-zero
initialization of the bias terms. Also, their network has no bias term, and they only focus on studying
the training convergence but not generalization. We discuss additional related works here.
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Training Overparameterized Neural Networks. Over the past few years, a tremendous amount
of efforts have been made to study training overparameterized neural networks. A series of works
have shown that if the neural network is wide enough (polynomial in depth, number of samples, etc),
gradient descent can drive the training error towards zero in a fast rate either explicitly (Du et al.,
2018; 2019; Ji & Telgarsky, 2019) or implicitly (Allen-Zhu et al., 2019; Zou & Gu, 2019; Zou et al.,
2020) using the neural tangent kernel (NTK) (Jacot et al., 2018). Further, under some conditions, the
networks can generalize (Cao & Gu, 2019). Under the NTK regime, the trained neural network can
be well-approximated by its first order Taylor approximation from the initialization and Liu et al.
(2020) showed that this transition to linearity phenomenon is a result from a diminishing Hessian 2-
norm with respect to width. Later on, Frei & Gu (2021) and Liu et al. (2022) showed that closeness
to initialization is sufficient but not necessary for gradient descent to achieve fast convergence as
long as the non-linear system satisfies some variants of the Polyak-Łojasiewicz condition. On the
other hand, although NTK offers good convergence explanation, it contradicts the practice since (1)
the neural networks need to be unrealistically wide and (2) the neuron weights merely change from
the initialization. As Chizat et al. (2019) pointed out, this “lazy training” regime can be explained
by a mere effect of scaling. Other works have considered the mean-field limit (Chizat & Bach, 2018;
Mei et al., 2019; Chen et al., 2020), feature learning (Allen-Zhu & Li, 2020; 2022; Shi et al., 2021;
Telgarsky, 2022) which allow the weights to travel far away from the initialization.

Sparse Neural Networks in Practice. Besides finding a fixed sparse mask at the initialization as
we mentioned in introduction, on the other hand, dynamic sparse training allows the sparse mask
to be updated during training, e.g., (Mocanu et al., 2018; Mostafa & Wang, 2019; Evci et al., 2020;
Jayakumar et al., 2020; Liu et al., 2021a;c;d).

2 PRELIMINARIES

Notations. We use ∥·∥2 to denote vector or matrix 2-norm and ∥·∥F to denote the Frobenius norm
of a matrix. When the subscript of ∥·∥ is unspecified, it is default to be the 2-norm. For matrices
A ∈ Rm×n1 and B ∈ Rm×n2 , we use [A,B] to denote the row concatenation of A,B and thus
[A,B] is a m × (n1 + n2) matrix. For matrix X ∈ Rm×n, the row-wise vectorization of X is
denoted by vec(X) = [x1, x2, . . . , xm]⊤ where xi is the i-th row of X . For a given integer n ∈ N,
we use [n] to denote the set {0, . . . , n}, i.e., the set of integers from 0 to n. For a set S, we use S to
denote the complement of S. We use N (µ, σ2) to denote the Gaussian distribution with mean µ and
standard deviation σ. In addition, we use Õ, Θ̃, Ω̃ to suppress (poly-)logarithmic factors in O,Θ,Ω.

2.1 PROBLEM FORMULATION

Let the training set to be (X, y) where X = (x1, x2, . . . , xn) ∈ Rd×n denotes the feature matrix
consisting of n d-dimensional vectors, and y = (y1, y2, . . . , yn) ∈ Rn consists of the corresponding
n response variables. We assume ∥xi∥2 ≤ 1 and yi = O(1) for all i ∈ [n]. We use one-hidden-layer
neural network and consider the regression problem with the square loss function:

f(x;W, b) :=
1√
m

m∑
r=1

arσ(⟨wr, x⟩ − br), L(W, b) :=
1

2

n∑
i=1

(f(xi;W, b)− yi)
2,

where W ∈ Rm×d with its r-th row being wr, b ∈ Rm is a vector with br being the bias of r-th
neuron, ar is the second layer weight, and σ(·) denotes the ReLU activation function. We initialize
the neural network by Wr,i ∼ N (0, 1) and ar ∼ Uniform({±1}) and br = B for some value B ≥ 0
of choice, for all r ∈ [m], i ∈ [d]. We train only the parameters W and b (i.e., the linear layer ar
for r ∈ [m] is not trained) via gradient descent, the update of which are given by

wr(t+ 1) = wr(t)− η
∂L(W (t), b(t))

∂wr
, br(t+ 1) = br(t)− η

∂L(W (t), b(t))

∂br
.

By the chain rule, we have ∂L
∂wr

= ∂L
∂f

∂f
∂wr

. The gradient of the loss with respect to the network is
∂L
∂f =

∑n
i=1(f(xi;W, b)− yi) and the network gradients with respect to weights and bias are

∂f(x;W, b)

∂wr
=

1√
m
arxI(w⊤

r x ≥ br),
∂f(x;W, b)

∂br
= − 1√

m
arI(w⊤

r x ≥ br),
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where I(·) is the indicator function. We further define H as the NTK matrix of this network with

Hi,j(W, b) :=

〈
∂f(xi;W, b)

∂W
,
∂f(xj ;W, b)

∂W

〉
+

〈
∂f(xi;W, b)

∂b
,
∂f(xj ;W, b)

∂b

〉
=

1

m

m∑
r=1

(⟨xi, xj⟩+ 1)I(w⊤
r xi ≥ br, w

⊤
r xj ≥ br) (1)

and the infinite-width version H∞(B) of the NTK matrix H is given by

H∞
ij (B) := Ew∼N (0,I)

[
(⟨xi, xj⟩+ 1)I(w⊤xi ≥ B,w⊤xj ≥ B)

]
.

Let λ(B) := λmin(H
∞(B)). We define Ir,i(W, b) := I(w⊤

r xi ≥ br) and the matrix Z(W, b) as

Z(W, b) :=
1√
m

 I1,1(W, b)a1[x
⊤
1 ,−1]⊤ . . . I1,n(W, b)a1[x

⊤
n ,−1]⊤

...
. . .

...
Im,1(W, b)am[x⊤

1 ,−1]⊤ . . . Im,n(W, b)am[x⊤
n ,−1]⊤

 ∈ Rm(d+1)×n.

Note that H(W, b) = Z(W, b)⊤Z(W, b). Hence, the gradient descent step can be written as
vec([W, b](t+ 1)) = vec([W, b](t))− ηZ(t)(f(t)− y)

where [W, b](t) ∈ Rm×(d+1) denotes the row-wise concatenation of W (t) and b(t) at the t-th step
of gradient descent, and Z(t) := Z(W (t), b(t)).

3 MAIN THEORY

3.1 CONVERGENCE AND SPARSITY

We present the convergence of gradient descent for the sparsely activated neural networks. Com-
pared to the existing convergence result in (Song et al., 2021a), our study handles the trainable bias
with constant initialization in the convergence analysis (which is the first of such a type). Also, our
bound is sharper and yields a much smaller bound on the width of neural networks to guarantee the
convergence.

Theorem 3.1 (Convergence). Let the learning rate η ≤ O(λ exp(B2)
n2 ), and the bias initialization

B ∈ [0,
√
0.5 logm]. Assume λ(B) = λ0 exp(−B2/2) for some λ0 > 0 independent of B. Then, if

the network width satisfies m ≥ Ω̃
(
λ−4
0 n4 exp(B2)

)
, over the randomness in the initialization,

P
[
∀t : L(W (t), b(t)) ≤ (1− ηλ(B)/4)tL(W (0), b(0))

]
≥ 1− δ − e−Ω(n).

This theorem show that the training loss decreases linearly, and its rate depends on the smallest
eigenvalue of the NTK. The assumption on λ(B) in Theorem 3.1 can be justified by (Song et al.,
2021a, Theorem F.1) which shows that under some mild conditions, the NTK’s least eigenvalue
λ(B) is positive and has an exp(−B2/2) dependence.
Remark 3.2. Theorem 3.1 establishes a much sharper bound on the width of the neural network
than previous work to guarantee the linear convergence. To elaborate, our bound only requires
m ≥ Ω̃

(
λ−4
0 n4 exp(B2)

)
, as opposed to the bound m ≥ Ω̃(λ−4

0 n4B2 exp(2B2)) in (Song et al.,
2021a, Lemma D.9). If we take B =

√
0.25 logm (as allowed by the theorem), then our lower

bound yields a polynomial improvement by a factor of Θ̃(n/λ0)
8/3, which implies that the neural

network width can be much smaller to achieve the same linear convergence.

Key ideas in the proof of Theorem 3.1. The proof mainly consists of developing a novel bound on
activation flipping probability and a novel upper bound on initial error, as we elaborate below.

Like previous works, in order to prove convergence, we need to show that the NTK during training is
close to its initialization. Inspecting the expression of NTK in Equation (1), observe that the training
will affect the NTK by changing the output of each indicator function. We say that the r-th neuron
flips its activation with respect to input xi at the k-th step of gradient descent if I(wr(k)

⊤xi −
br(k) > 0) ̸= I(wr(k − 1)⊤xi − br(k − 1) > 0) for all r ∈ [m]. The central idea is that for each
neuron, as long as the weight and bias movement Rw, Rb from its initialization is small, then the
probability of activation flipping (with respect to random initialization) should not be large. We first
present the bound on the probability that a given neuron flips its activation.
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Lemma 3.3 (Bound on Activation flipping probability). Let B ≥ 0 and Rw, Rb ≤ min{1/B, 1}.
Let W̃ = (w̃1, . . . , w̃m) be vectors generated i.i.d. from N (0, I) and b̃ = (b̃1, . . . , b̃m) =
(B, . . . , B), and weights W = (w1, . . . , wm) and biases b = (b1, . . . , bm) that satisfy for any
r ∈ [m], ∥w̃r − wr∥2 ≤ Rw and |b̃r − br| ≤ Rb. Define the event

Ai,r = {∃wr, br : ∥w̃r − wr∥2 ≤ Rw, |br − b̃r| ≤ Rb, I(x⊤
i w̃r ≥ b̃r) ̸= I(x⊤

i wr ≥ br)}.

Then, for some constant c,

P [Ai,r] ≤ c(Rw +Rb) exp(−B2/2).

(Song et al., 2021a, Claim C.11) presents a O(min{R, exp(−B2/2)}) bound on P[Ai,r]. The reason
that their bound involving the min operation is because P[Ai,r] can be bounded by the standard
Gaussian tail bound and Gaussian anti-concentration bound separately and then, take the one that
is smaller. On the other hand, our bound replaces the min operation by the product which creates
a more convenient (and tighter) interpolation between the two bounds. Later, we will show that the
maximum movement of neuron weights and biases, Rw and Rb, both have a O(1/

√
m) dependence

on the network width, and thus our bound offers a exp(−B2/2) improvement where exp(−B2/2)
can be as small as 1/m1/4 when we take B =

√
0.5 logm.

Proof idea of Lemma 3.3. First notice that P[Ai,r] = Px∼N (0,1)[|x−B| ≤ Rw +Rb]. Thus, here
we are trying to solve a fine-grained Gaussian anti-concentration problem with the strip centered
at B. The problem with the standard Gaussian anti-concentration bound is that it only provides a
worst case bound and, thus, is location-oblivious. Centered in our proof is a nice Gaussian anti-
concentration bound based on the location of the strip, which we describe as follows: Let’s first
assume B > Rw+Rb. A simple probability argument yields a bound of 2(Rw+Rb)

1√
2π

exp(−(B−
Rw−Rb)

2). Since later in the Appendix we can show that Rw and Rb have a O(1/
√
m) dependence

(Lemma A.9 bounds the movement for gradient descent and Lemma A.10 for gradient flow) and we
only take B = O(

√
logm), by making m sufficiently large, we can safely assume that Rw and Rb is

sufficiently small. Thus, the probability can be bounded by O((Rw +Rb) exp(−B2/2)). However,
when B < Rw + Rb the above bound no longer holds. But a closer look tells us that in this case
B is close to zero, and thus (Rw +Rb)

1√
2π

exp(−B2/2) ≈ Rw+Rb√
2π

which yields roughly the same
bound as the standard Gaussian anti-concentration.

Next, our proof of Theorem 3.1 develops the following initial error bound.
Lemma 3.4 (Initial error upper bound). Let B > 0 be the initialization value of the biases and all
the weights be initialized from standard Gaussian. Let δ ∈ (0, 1) be the failure probability. Then,
with probability at least 1− δ over the randomness in the initialization, we have

L(W (0), b(0)) = O
(
n+ n

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
.

(Song et al., 2021a, Claim D.1) gives a rough estimate of the initial error with O(n(1 +
B2) log2(n/δ) log(m/δ)) bound. When we set B = C

√
logm for some constant C, our bound

improves the previous result by a polylogarithmic factor. The previous bound is not tight in the
following two senses: (1) the bias will only decrease the magnitude of the neuron activation instead
of increasing and (2) when the bias is initialized as B, only roughly O(exp(−B2/2)) ·m neurons
will activate. Thus, we can improve the B2 dependence to exp(−B2/2).

By combining the above two improved results, we can prove our convergence result with improved
lower bound of m as in Remark 3.2. We provide the complete proof in Appendix A.

Lastly, since the total movement of each neuron’s bias has a O(1/
√
m) dependence (shown in

Lemma A.9), combining with the number of activated neurons at the initialization, we can show that
during the entire training, the number of activated neurons is small.
Lemma 3.5 (Number of Activated Neurons per Iteration). Assume the parameter settings in Theo-
rem 3.1. With probability at least 1− e−Ω(n) over the random initialization, we have

|Son(i, t)| = O(m · exp(−B2/2))

for all 0 ≤ t ≤ T and i ∈ [n], where Son(i, t) = {r ∈ [m] : wr(t)
⊤xi ≥ br(t)}.
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3.2 GENERALIZATION AND RESTRICTED LEAST EIGENVALUE

In this section, we present the sparsity-dependent generalization of our neural networks after gradi-
ent descent training. However, for technical reasons stated in Section 3.3, we use symmetric initial-
ization defined below. Further, we adopt the setting in (Arora et al., 2019) and use a non-degenerate
data distribution to make sure the infinite-width NTK is positive definite.
Definition 3.6 (Symmetric Initialization). For a one-hidden layer neural network with 2m neurons,
the network is initialized as the following:

1. For r ∈ [m], independently initialize wr ∼ N (0, I) and ar ∼ Uniform({−1, 1}).

2. For r ∈ {m+ 1, . . . , 2m}, let wr = wr−m and ar = −ar−m.
Definition 3.7 ((λ0, δ, n)-non-degenerate distribution, (Arora et al., 2019)). A distribution D over
Rd × R is (λ0, δ, n)-non-degenerate, if for n i.i.d. samples {(xi, yi)}ni=1 from D, with probability
1− δ we have λmin(H

∞(B)) ≥ λ0 > 0.
Theorem 3.8. Fix a failure probability δ ∈ (0, 1) and an accuracy parameter ϵ ∈ (0, 1). Suppose
the training data S = {(xi, yi)}ni=1 are i.i.d. samples from a (λ, δ, n)-non-degenerate distribution
D defined in Definition 3.7. Assume the one-hidden layer neural network is initialized by symmetric
initialization in Definition 3.6. Further, assume the parameter settings in Theorem 3.1 except we let
m ≥ Ω̃

(
λ(B)−6n6 exp(−B2)

)
. Consider any loss function ℓ : R×R → [0, 1] that is 1-Lipschitz in

its first argument. Then with probability at least 1− 2δ− e−Ω(n) over the randomness in symmetric
initialization of W (0) ∈ Rm×d and a ∈ Rm and the training samples, the two layer neural network
f(W (t), b(t), a) trained by gradient descent for t ≥ Ω( 1

ηλ(B) log
n log(1/δ)

ϵ ) iterations has empirical
Rademacher complexity (see its formal definition in Definition C.1 in Appendix) bounded as

RS(F) ≤
√

y⊤(H∞(B))−1y · 8 exp(−B2/2)

n
+ Õ

(
exp(−B2/4)

n1/2

)
and the population loss LD(f) = E(x,y)∼D[ℓ(f(x), y)] can be upper bounded as

LD(f(W (t), b(t), a)) ≤
√

y⊤(H∞(B))−1y · 32 exp(−B2/2)

n
+ Õ

(
1

n1/2

)
. (2)

To show good generalization, we need a larger width: the second term in the Rademacher complexity
bound is diminishing with m and to make this term O(1/

√
n), the width needs to have (n/λ(B))6

dependence as opposed to (n/λ(B))4 for convergence. Now, at the first glance of our generalization
result, it seems we can make the Rademacher complexity arbitrarily small by increasing B. Recall
from the discussion of Theorem 3.1 that the smallest eigenvalue of H∞(B) also has an exp(−B2/2)
dependence. Thus, in the worst case, the exp(−B2/2) factor gets canceled and sparsity will not hurt
the network’s generalization.

Before we present the proof, we make a corollary of Theorem 3.8 for the zero-initialized bias case.
Corollary 3.9. Take the same setting as in Theorem 3.8 except now the biases are initialized as
zero, i.e., B = 0. Then, if we let m ≥ Ω̃(λ(0)−6n6), the empirical Rademacher complexity and
population loss are both bounded by

RS(F), LD(f(W (t), b(t), a)) ≤
√

y⊤(H∞(0))−1y · 32
n

+ Õ

(
1

n1/2

)
.

Corollary 3.9 requires the network width m ≥ Ω̃((n/λ(0))6) which significantly improves upon
the previous result in (Song & Yang, 2019, Theorem G.7) m ≥ Ω̃(n16 poly(1/λ(0))) (including the
dependence on the rescaling factor κ) which is a much wider network.

Generalization Bound via Least Eigenvalue. Note that in Theorem 3.8, the worst case of the
first term in the generalization bound in Equation (2) is given by Õ(

√
1/(λ(B) · n)). Hence, the

least eigenvalue λ(B) of the NTK matrix can significantly affect the generalization bound. Previous
works (Oymak & Soltanolkotabi, 2020; Song et al., 2021a) established lower bounds on λ(B) with
an explicit 1/n2 dependence on n under the δ data separation assumption (see Theorem 3.11), which
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clearly makes a vacuous generalization bound of Õ(
√
n). This thus motivates us to provide a tighter

bound (desirably independent on n) on the least eigenvalue of the infinite-width NTK in order to
make the generalization bound in Theorem 3.8 valid and useful. However, it turns out that there are
major difficulties in proving a better lower bound in the general case and thus, we are only able to
present a better lower bound when we restrict the domain to some (data-dependent) regions.
Definition 3.10 (Data-dependent Region). Let pij = Pw∼N (0,I)[w

⊤xi ≥ B, w⊤xj ≥ B] for i ̸= j.
Define the (data-dependent) region R = {a ∈ Rn :

∑
i ̸=j aiajpij ≥ mini′ ̸=j′ pi′j′

∑
i ̸=j aiaj}.

Notice that R is non-empty for any input data-set since Rn
+ ⊂ R where Rn

+ denotes the set of
vectors with non-negative entries, and R = Rn if pij = pi′j′ for all i ̸= i′, j ̸= j′.

Theorem 3.11 (Restricted Least Eigenvalue). Let X = (x1, . . . , xn) be points in Rd with ∥xi∥2 = 1

for all i ∈ [n] and w ∼ N (0, Id). Suppose that there exists δ ∈ [0,
√
2] such that

min
i ̸=j∈[n]

(∥xi − xj∥2 , ∥xi + xj∥2) ≥ δ.

Let B ≥ 0. Consider the minimal eigenvalue of H∞ over the data-dependent region R defined
above, i.e., let λ := min∥a∥2=1, a∈R a⊤H∞a. Then, λ ≥ max(0, λ′) where

λ′ ≥ max

(
1

2
− B√

2π
,

(
1

B
− 1

B3

)
e−B2/2

√
2π

)
− e−B2/(2−δ2/2)

π − arctan

(
δ
√

1−δ2/4

1−δ2/2

)
2π

. (3)

To demonstrate the usefulness of our result, if we take the bias initialization B = 0 in Equation (3),
this bound yields 1/(2π) · arctan((δ

√
1− δ2/4)/(1− δ2/2)) ≈ δ/(2π), when δ is close to 0

whereas (Song et al., 2021a) yields a bound of δ/n2. On the other hand, if the data has maximal

separation, i.e., δ =
√
2, we get a max

(
1
2 − B√

2π
,
(
1
B − 1

B3

)
e−B2/2
√
2π

)
lower bound, whereas (Song

et al., 2021a) yields a bound of exp(−B2/2)
√
2/n2. Connecting to our convergence result in The-

orem 3.1, if f(t)− y ∈ R, then the error can be reduced at a much faster rate than the (pessimistic)
rate with 1/n2 dependence in the previous studies as long as the error vector lies in the region.
Remark 3.12. The lower bound on the restricted smallest eigenvalue λ in Theorem 3.11 is indepen-
dent on n, which makes that the generalization bound in Theorem 3.8 vanishes as fast as O(1/

√
n).

Such a lower bound is much sharper than the previous results with a 1/n2 explicit dependence which
yields vacuous generalization. This improvement relies on a fact that the label vector should lie in
the region R, which can be justified by a simple label-shifting strategy as follows. Since Rn

+ ⊂ R,
the condition can be easily achieved by training the neural network on the shifted labels y+C (with
appropriate broadcast) where C is a constant such that mini yi + C ≥ 0.

Careful readers may notice that in the proof of Theorem 3.11 in Appendix B, the restricted least
eigenvalue on Rn

+ is always positive even if the data separation is zero. However, we would like
to point out that the generalization bound in Theorem 3.8 is meaningful only when the training is
successful: when the data separation is zero, the limiting NTK is no longer positive definite and the
training loss cannot be minimized toward zero.

3.3 KEY IDEAS IN THE PROOF OF THEOREM 3.8
Since each neuron weight and bias move little from their initialization, a natural approach is to bound
the generalization via localized Rademacher complexity. After that, we can apply appropriate con-
centration bounds to derive generalization. The main effort of our proof is devoted to bounding the
weight movement to bound the localized Rademacher complexity. If we directly take the setting
in Theorem 3.1 and compute the network’s localized Rademacher complexity, we will encounter a
non-diminishing (with the number of samples n) term which can be as large as O(

√
n) since the

network outputs non-zero values at the initialization. Arora et al. (2019) and Song & Yang (2019)
resolved this issue by initializing the neural network weights instead by N (0, κ2I) to force the neu-
ral network output something close to zero at the initialization. The magnitude of κ is chosen to
balance different terms in the Rademacher complexity bound in the end. Similar approach can also
be adapted to our case by initializing the weights by N (0, κ2I) and the biases by κB. However,
the drawback of such an approach is that the effect of κ to all the previously established results
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for convergence need to be carefully tracked or derived. In particular, in order to guarantee con-
vergence, the neural network’s width needs to have a polynomial dependence on 1/κ where 1/κ
has a polynomial dependence on n and 1/λ, which means their network width needs to be larger
to compensate for the initialization scaling. We resolve this issue by symmetric initialization Def-
inition 3.6 which yields no effect (up to constant factors) on previously established convergence
results, see (Munteanu et al., 2022). Symmetric initialization allows us to organically combine the
results derived for convergence to be reused for generalization, which leads to a more succinct anal-
ysis. Further, we replace the ℓ1-ℓ2 norm upper bound by finer inequalities in various places in the
original analysis. All these improvements lead to the following upper bound of the weight matrix
change in Frobenius norm. Further, combining our sparsity-inducing initialization, we present our
sparsity-dependent Frobenius norm bound on the weight matrix change.
Lemma 3.13. Assume the one-hidden layer neural network is initialized by symmetric initialization
in Definition 3.6. Further, assume the parameter settings in Theorem 3.1. Then with probability at
least 1− δ − e−Ω(n) over the random initialization, we have for all t ≥ 0,

∥[W, b](t)− [W, b](0)∥F ≤
√

y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(
n
√
R exp(−B2/2)

λ

)
+

n

λ2
·O

(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

)
where R = Rw +Rb denote the maximum magnitude of neuron weight and bias change.

By Lemma A.9 and Lemma A.11 in the Appendix, we have R = Õ( n
λ
√
m
). Plugging in and setting

B = 0, we get ∥[W, b](t)− [W, b](0)∥F ≤
√
y⊤(H∞)−1y + Õ( n

λm1/4 + n3/2

λ3/2m1/4 + n
λ2

√
m

+

n2

λ3
√
m
). On the other hand, taking κ = 1, (Song & Yang, 2019, Lemma G.6) yields a bound of

∥W (t)−W (0)∥F ≤
√
y⊤(H∞)−1y + Õ(nλ + n7/2 poly(1/λ)

m1/4 ). Notice that the Õ(nλ ) term has no
dependence on 1/m and is removed by symmetric initialization in our analysis and we improve the
upper bound’s dependence on n by a factor of n2.

We defer the full proof of Theorem 3.8 and Lemma 3.13 to Appendix C.

3.4 KEY IDEAS IN THE PROOF OF THEOREM 3.11
In this section, we analyze the smallest eigenvalue λ := λmin(H

∞) of the limiting NTK H∞ with
δ data separation. We first note that H∞ ⪰ Ew∼N (0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
and for a fixed

vector a, we are interested in the lower bound of Ew∼N (0,I)[|a⊤I(Xw ≥ B)|2]. In previous works,
Oymak & Soltanolkotabi (2020) showed a lower bound Ω(δ/n2) for zero-initialized bias, and later
Song et al. (2021a) generalized this result to a lower bound Ω(e−B2/2δ/n2) for non-zero initial-
ized bias. Both lower bounds have a dependence of 1/n2. Their approach is by using an intricate
Markov’s inequality argument and then proving an lower bound of P[|a⊤I(Xw ≥ B)| ≥ c ∥a∥∞].
The lower bound is proved by only considering the contribution from the largest coordinate of a and
treating all other values as noise. It is non-surprising that the lower bound has a factor of 1/n since
a can have identical entries. On the other hand, the diagonal entries can give a exp(−B2/2) upper
bound and thus there is a 1/n2 gap between the two. Now, we give some evidence suggesting the
1/n2 dependence may not be tight in some cases. Consider the following scenario: Assume n ≪ d
and the data set is orthonormal. For a fixed a, we have

a⊤Ew∼N (0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
a

=
∑

i,j∈[n] aiaj P[w⊤xi ≥ B, w⊤xj ≥ B] = p0 ∥a∥22 + p1
∑

i ̸=j aiaj

= p0 − p1 + p1 (
∑

i ai)
2
> p0 − p1

where p0, p1 ∈ [0, 1] are defined such that due to the spherical symmetry of the standard Gaussian
we are able to let p0 = P[w⊤xi ≥ B], ∀i ∈ [n] and p1 = P[w⊤xi ≥ B,w⊤xj ≥ B], ∀i, j ∈
[n], i ̸= j. Notice that p0 > p1. Since this is true for all a ∈ Rn, we get a lower bound of p0 − p1
with no explicit dependence on n and this holds for all n ≤ d. When d is large and n = d/2, this
bound is better than previous bound by a factor of Θ(1/d2). However, it turns out that the product

8
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terms with i ̸= j above creates major difficulties in analyzing the general case. Due to such technical
difficulties, we are only able to prove a better lower bound by utilizing the extra constant factor in
the NTK thanks to the trainable bias, when we restrict the domain to some data-dependent region.
We defer the proof of Theorem 3.11 to Appendix B.

4 EXPERIMENTS

In this section, we study how the activation sparsity patterns of multi-layer neural networks change
during training when the bias parameters are initialized as non-zero.

Settings. We train a 6-layer multi-layer perceptron (MLP) of width 1024 with trainable bias terms
on MNIST image classification (LeCun et al., 2010). The biases of the fully-connected layers are
initialized as 0,−0.5 and −1. For the weights in the linear layer, we use Kaiming Initialization (He
et al., 2015) which is sampled from an appropriately scaled Gaussian distribution. The traditional
MLP architecture only has linear layers with ReLU activation. However, we found out that using the
sparsity-inducing initialization, the magnitude of the activation will decrease geometrically layer-by-
layer, which leads to vanishing gradients and that the network cannot be trained. Thus, we made
a slight modification to the MLP architecture to include an extra Batch Normalization after ReLU
to normalize the activation. Our MLP implementation is based on (Zhu et al., 2021). We train
the neural network by stochastic gradient descent with a small learning rate 5e-3 to make sure the
training is in the NTK regime. The sparsity is measured as the total number of activated neurons
(i.e., ReLU outputs some positive values) divided by total number of neurons, averaged over every
SGD batch. We plot how the sparsity patterns changes for different layers during training.
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Figure 1: Sparsity pattern on different layers across different training iterations for three different
bias initialization. The x and y axis denote the iteration number and sparsity level, respectively.
The models can achieve 97.9%, 97.7% and 97.3% accuracy after training, respectively. Note that,
in Figure (a), the lines of layers 1-5 overlap together except layer 0.

Observation and Implication. As demonstrated at Figure 1, when we initialize the bias with three
different values, the sparsity patterns are stable across all layers during training: when the bias is
initialized as 0 and −0.5, the sparsity change is within 2.5%; and when the bias is initialized as
−1.0, the sparsity change is within 10%. Meanwhile, by increasing the initialization magnitude for
bias, the sparsity level increases with only marginal accuracy dropping. This implies that our theory
can be extended to the multi-layer setting (with some extra care for coping with vanishing gradient)
and multi-layer neural networks can also benefit from the sparsity-inducing initialization and enjoy
reduction of computational cost. Another interesting observation is that the input layer (layer 0) has
a different sparsity pattern from other layers while all the rest layers behave similarly.

5 DISCUSSION

In this work, we study training one-hidden-layer overparameterized ReLU networks in the NTK
regime with its biases being trainable and initialized as some constants rather than zero. We showed
sparsity-dependent results on convergence, restricted least eigenvalue and generalization. A future
direction is to generalize our analysis to multi-layer neural networks. In practice, label shifting
is unnecessary for achieving good generalization. An open problem is whether it is possible to
improve the dependence on the sample size of the lower bound of the infinite-width NTK’s least
eigenvalue, or even whether a lower bound purely dependent on the data separation is possible so
that the generalization bound is no longer vacuous for all labels.
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A CONVERGENCE

Notation simplification. Since the smallest eigenvalue of the limiting NTK appeared in this proof
all has dependence on the bias initialization parameter B, for the ease of notation of our proof, we
suppress its dependence on B and use λ to denote λ := λ(B) = λmin(H

∞(B)).

A.1 DIFFERENCE BETWEEN LIMIT NTK AND SAMPLED NTK

Lemma A.1. For a given bias vector b ∈ Rm with br ≥ 0, ∀r ∈ [m], the limit NTK H∞ and the
sampled NTK H are given as

H∞
ij := Ew∼N (0,I)

[
(⟨xi, xj⟩+ 1)I(w⊤

r xi ≥ br, w
⊤
r xj ≥ br)

]
,

Hij :=
1

m

m∑
r=1

(⟨xi, xj⟩+ 1)I(w⊤
r xi ≥ br, w

⊤
r xj ≥ br).

Let’s define λ := λmin(H
∞) and assume λ > 0. If the network width m = Ω(λ−1n · log(n/δ)),

then

P
[
λmin(H) ≥ 3

4
λ

]
≥ 1− δ.

Proof. Let Hr := 1
mX̃(wr)

⊤X̃(wr), where X̃(wr) ∈ R(d+1)×n is defined as

X̃(wr) := [I(w⊤
r x1 ≥ b) · (x1, 1), . . . , I(w⊤

r xn ≥ b) · (xn, 1)],

where (xi, 1) denotes appending the vector xi by 1. Hence Hr ⪰ 0. Since for each entry Hij we
have

(Hr)ij =
1

m
(⟨xi, xj⟩+ 1)I(w⊤

r xi ≥ br, w
⊤
r xj ≥ br) ≤

1

m
(⟨xi, xj⟩+ 1) ≤ 2

m
,

and naively, we can upper bound ∥Hr∥2 by:

∥Hr∥2 ≤ ∥Hr∥F ≤
√
n2

4

m2
=

2n

m
.

Then H =
∑m

r=1 Hr and E[H] = H∞. Hence, by the Matrix Chernoff Bound in Lemma D.2 and
choosing m = Ω(λ−1n · log(n/δ)), we can show that

P
[
λmin(H) ≤ 3

4
λ

]
≤ n · exp

(
− 1

16
λ/(4n/m)

)
= n · exp

(
− λm

64n

)
≤ δ.

Lemma A.2. Assume m = nO(1) and exp(B2/2) = O(
√
m) where we recall that B is the

initialization value of the biases. With probability at least 1 − δ, we have ∥H(0)−H∞∥F ≤

4n exp(−B2/4)
√

log(n2/δ)
m .

Proof. First, we have E[((⟨xi, xj⟩ + 1)Ir,i(0)Ir,j(0))2] ≤ 4 exp(−B2/2). Then, by Bernstein’s
inequality in Lemma D.1, with probability at least 1− δ/n2,

|Hij(0)−H∞
ij | ≤ 2 exp(−B2/4)

√
2
log(n2/δ)

m
+ 2

2

m
log(n2/δ) ≤ 4 exp(−B2/4)

√
log(n2/δ)

m
.

By a union bound, the above holds for all i, j ∈ [n] with probability at least 1− δ, which implies

∥H(0)−H∞∥F ≤ 4n exp(−B2/4)

√
log(n2/δ)

m
.
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A.2 BOUNDING THE NUMBER OF FLIPPED NEURONS

Definition A.3 (No-flipping set). For each i ∈ [n], let Si ⊂ [m] denote the set of neurons that are
never flipped during the entire training process,

Si := {r ∈ [m] : ∀t ∈ [T ] sign(⟨wr(t), xi⟩ − br(t)) = sign(⟨wr(0), xi⟩ − br(0))}.
Thus, the flipping set is Si for i ∈ [n].
Lemma A.4 (Bound on flipping probability). Let B ≥ 0 and Rw, Rb ≤ min{1/B, 1}. Let
W̃ = (w̃1, . . . , w̃m) be vectors generated i.i.d. from N (0, I) and b̃ = (b̃1, . . . , b̃m) = (B, . . . , B),
and weights W = (w1, . . . , wm) and biases b = (b1, . . . , bm) that satisfy for any r ∈ [m],
∥w̃r − wr∥2 ≤ Rw and |b̃r − br| ≤ Rb. Define the event

Ai,r = {∃wr, br : ∥w̃r − wr∥2 ≤ Rw, |br − b̃r| ≤ Rb, I(x⊤
i w̃r ≥ b̃r) ̸= I(x⊤

i wr ≥ br)}.
Then,

P [Ai,r] ≤ c(Rw +Rb) exp(−B2/2)

for some constant c.

Proof. Notice that the event Ai,r happens if and only if |w̃⊤
r xi − b̃r| < Rw + Rb. First, if B > 1,

then by Lemma D.3, we have

P [Ai,r] ≤ (Rw +Rb)
1√
2π

exp(−(B −Rw −Rb)
2/2) ≤ c1(Rw +Rb) exp(−B2/2)

for some constant c1. If 0 ≤ B < 1, then the above analysis doesn’t hold since it is possible that
B−Rw−Rb ≤ 0. In this case, the probability is at most P[Ai,r] ≤ 2(Rw+Rb)

1√
2π

exp(−02/2) =
2(Rw+Rb)√

2π
. However, since 0 ≤ B < 1 in this case, we have exp(−12/2) ≤ exp(−B2/2) ≤

exp(−02/2). Therefore, P[Ai,r] ≤ c2(Rw + Rb) exp(−B2/2) for c2 = 2 exp(1/2)√
2π

. Take c =

max{c1, c2} finishes the proof.

Corollary A.5. Let B > 0 and Rw, Rb ≤ min{1/B, 1}. Assume that ∥wr(t)− wr(0)∥2 ≤ Rw

and |br(t)− br(0)| ≤ Rb for all t ∈ [T ]. For i ∈ [n], the flipping set Si satisfies that

P[r ∈ Si] ≤ c(Rw +Rb) exp(−B2/2)

for some constant c, which implies

P[∀i ∈ [n] : |Si| ≤ 2mc(Rw +Rb) exp(−B2/2)] ≥ 1− n · exp
(
−2

3
mc(Rw +Rb) exp(−B2/2)

)
.

Proof. The proof is by observing that P[r ∈ Si] ≤ P[Ai,r]. Then, by Bernstein’s inequality,

P[|Si| > t] ≤ exp

(
− t2/2

mc(Rw +Rb) exp(−B2/2) + t/3

)
.

Take t = 2mc(Rw +Rb) exp(−B2/2) and a union bound over [n], we have

P[∀i ∈ [n] : |Si| ≤ 2mc(Rw +Rb) exp(−B2/2)] ≥ 1− n · exp
(
−2

3
mc(Rw +Rb) exp(−B2/2)

)
.

A.3 BOUNDING NTK IF PERTURBING WEIGHTS AND BIASES

Lemma A.6. Assume λ > 0. Let B > 0 and Rb, Rw ≤ min{1/B, 1}. Let W̃ = (w̃1, . . . , w̃m) be
vectors generated i.i.d. from N (0, I) and b̃ = (b̃1, . . . , b̃m) = (B, . . . , B). For any set of weights
W = (w1, . . . , wm) and biases b = (b1, . . . , bm) that satisfy for any r ∈ [m], ∥w̃r − wr∥2 ≤ Rw

and |b̃r − br| ≤ Rb, we define the matrix H(W, b) ∈ Rn×n by

Hij(W, b) =
1

m

m∑
r=1

(⟨xi, xj⟩+ 1)I(w⊤
r xi ≥ br, w

⊤
r xj ≥ br).

It satisfies that for some small positive constant c,

14
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1. With probability at least 1− n2 exp
(
− 2

3cm(Rw +Rb) exp(−B2/2)
)
, we have∥∥∥H(W̃ , b̃)−H(W, b)

∥∥∥
F
≤ n · 8c(Rw +Rb) exp(−B2/2),∥∥∥Z(W̃ , b̃)− Z(W, b)

∥∥∥
F
≤
√
n · 8c(Rw +Rb) exp(−B2/2).

2. With probability at least 1− δ − n2 exp
(
− 2

3cm(Rw +Rb) exp(−B2/2)
)
,

λmin(H(W, b)) > 0.75λ− n · 8c(Rw +Rb) exp(−B2/2).

Proof. We have

∥∥∥Z(W, b)− Z(W̃ , b̃)
∥∥∥2
F
=
∑
i∈[n]

 2

m

∑
r∈[m]

(
I(w⊤

r xi ≥ br)− I(w̃⊤
r xi ≥ b̃r)

)2
=
∑
i∈[n]

 2

m

∑
r∈[m]

tr,i


and ∥∥∥H(W, b)−H(W̃ , b̃)

∥∥∥2
F

=
∑

i∈[n], j∈[n]

(Hij(W, b)−Hij(W̃ , b̃))2

≤ 4

m2

∑
i∈[n], j∈[n]

∑
r∈[m]

|I(w⊤
r xi ≥ br, w

⊤
r xj ≥ br)− I(w̃⊤

r xi ≥ b̃r, w̃
⊤
r xj ≥ b̃r)|

2

=
4

m2

∑
i,j∈[n]

∑
r∈[m]

sr,i,j

2

,

where we define

sr,i,j := |I(w⊤
r xi ≥ br, w

⊤
r xj ≥ br)− I(w̃⊤

r xi ≥ b̃r, w̃
⊤
r xj ≥ b̃r)|,

tr,i := (I(w⊤
r xi ≥ br)− I(w̃⊤

r xi ≥ b̃r))
2.

Notice that tr,i = 1 only if the event Ai,r happens (recall the definition of Ai,r in Lemma A.4) and
sr,i,j = 1 only if the event Ai,r or Aj,r happens. Thus,∑

r∈[m]

tr,i ≤
∑
r∈[m]

I(Ai,r),
∑
r∈[m]

sr,i,j ≤
∑
r∈[m]

I(Ai,r) + I(Aj,r).

By Lemma A.4, we have

Ew̃r [sr,i,j ] ≤ Ew̃r [s
2
r,i,j ] ≤ P̃

wr

[Ai,r] + P̃
wr

[Aj,r] ≤ 2c(Rw +Rb) exp(−B2/2).

Define si,j =
∑m

r=1 I(Ai,r) + I(Aj,r). By Bernstein’s inequality in Lemma D.1,

P
[
si,j ≥ m · 2c(Rw +Rb) exp(−B2/2) +mt

]
≤ exp

(
− m2t2/2

m · 2c(Rw +Rb) exp(−B2/2) +mt/3

)
, ∀t ≥ 0.

Let t = 2c(Rw +Rb) exp(−B2/2). We get

P[si,j ≥ m · 4c(Rw +Rb) exp(−B2/2)] ≤ exp

(
−2

3
cm(Rw +Rb) exp(−B2/2)

)
.

15
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Thus, we obtain with probability at least 1− n2 exp
(
− 2

3cm(Rw +Rb) exp(−B2/2)
)
,∥∥∥H(W̃ , b̃)−H(W, b)

∥∥∥
F
≤ n · 8c(Rw +Rb) exp(−B2/2),∥∥∥Z(W̃ , b̃)− Z(W, b)

∥∥∥
F
≤
√

n · 8c(Rw +Rb) exp(−B2/2).

For the second result, by Lemma A.1, P[λmin(H(W̃ , b̃)) ≥ 0.75λ] ≥ 1− δ. Hence, with probability
at least 1− δ − n2 exp

(
− 2

3cm(Rw +Rb) exp(−B2/2)
)
,

λmin(H(W, b)) ≥ λmin(H(W̃ , b̃))−
∥∥∥H(W, b)−H(W̃ , b̃)

∥∥∥
≥ λmin(H(W̃ , b̃))−

∥∥∥H(W, b)−H(W̃ , b̃)
∥∥∥
F

≥ 0.75λ− n · 8c(Rw +Rb) exp(−B2/2).

A.4 TOTAL MOVEMENT OF WEIGHTS AND BIASES

Definition A.7 (NTK at time t). For t ≥ 0, let H(t) be an n× n matrix with (i, j)-th entry

Hij(t) :=

〈
∂f(xi; θ(t))

∂θ(t)
,
∂f(xj ; θ(t))

∂θ(t)

〉
=

1

m

m∑
r=1

(⟨xi, xj⟩+ 1)I(wr(t)
⊤xi ≥ br(t), wr(t)

⊤xj ≥ br(t)).

We follow the proof strategy from (Du et al., 2018). Now we derive the total movement of weights
and biases. Let f(t) = f(X; θ(t)) where fi(t) = f(xi; θ(t)). The dynamics of each prediction is
given by

d

dt
fi(t) =

〈
∂f(xi; θ(t))

∂θ(t)
,
dθ(t)

dt

〉
=

n∑
j=1

(yj − fj(t))

〈
∂f(xi; θ(t))

∂θ(t)
,
∂f(xj ; θ(t))

∂θ(t)

〉
=

n∑
j=1

(yj − fj(t))Hij(t),

which implies

d

dt
f(t) = H(t)(y − f(t)). (4)

Lemma A.8 (Gradient Bounds). For any 0 ≤ s ≤ t, we have∥∥∥∥∂L(W (s), b(s))

∂wr(s)

∥∥∥∥
2

≤
√

n

m
∥f(s)− y∥2 ,∥∥∥∥∂L(W (s), b(s))

∂br(s)

∥∥∥∥
2

≤
√

n

m
∥f(s)− y∥2 .

Proof. We have:∥∥∥∥∂L(W (s), b(s))

∂wr(s)

∥∥∥∥
2

=

∥∥∥∥∥ 1√
m

n∑
i=1

(f(xi;W (s), b(s))− yi)arxiI(wr(s)
⊤xi ≥ br)

∥∥∥∥∥
2

≤ 1√
m

n∑
i=1

|f(xi;W (s), b(s))− yi|

≤
√

n

m
∥f(s)− y∥2 ,

where the first inequality follows from triangle inequality, and the second inequality follows from
Cauchy-Schwarz inequality.

Similarly, we also have:∥∥∥∥∂L(W (s), b(s))

∂br(s)

∥∥∥∥
2

=

∥∥∥∥∥ 1√
m

n∑
i=1

(f(xi;W (s), b(s))− yi)arI(wr(s)
⊤xi ≥ br)

∥∥∥∥∥
2

16
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≤ 1√
m

n∑
i=1

|f(xi;W (s), b(s))− yi|

≤
√

n

m
∥f(s)− y∥2 .

A.4.1 GRADIENT DESCENT

Lemma A.9. Assume λ > 0. Assume ∥y − f(k)∥22 ≤ (1−ηλ/4)k ∥y − f(0)∥22 holds for all k′ ≤ k.
Then for every r ∈ [m],

∥wr(k + 1)− wr(0)∥2 ≤
8
√
n ∥y − f(0)∥2√

mλ
:= Dw,

|br(k + 1)− br(0)| ≤
8
√
n ∥y − f(0)∥2√

mλ
:= Db.

Proof.

∥wr(k + 1)− wr(0)∥2 ≤ η

k∑
k′=0

∥∥∥∥∂L(W (k′))

∂wr(k′)

∥∥∥∥
2

≤ η

k∑
k′=0

√
n

m
∥y − f(k′)∥2

≤ η

k∑
k′=0

√
n

m
(1− ηλ/4)k

′/2 ∥y − f(0)∥2

≤ η

k∑
k′=0

√
n

m
(1− ηλ/8)k

′
∥y − f(0)∥2

≤ η

∞∑
k′=0

√
n

m
(1− ηλ/8)k

′
∥y − f(0)∥2

≤ 8
√
n√

mλ
∥y − f(0)∥2 ,

where the first inequality is by Triangle inequality, the second inequality is by Lemma A.8, the third
inequality is by our assumption and the fourth inequality is by (1− x)1/2 ≤ 1− x/2 for x ≥ 0.

The proof for b is similar.

A.4.2 GRADIENT FLOW

Lemma A.10. Suppose for 0 ≤ s ≤ t, λmin(H(s)) ≥ λ0

2 > 0. Then we have ∥y − f(t)∥22 ≤
exp(−λ0t) ∥y − f(0)∥22 and for any r ∈ [m], ∥wr(t)− wr(0)∥2 ≤

√
n∥y−f(0)∥2√

mλ0
and |br(t) −

br(0)| ≤
√
n∥y−f(0)∥2√

mλ0
.

Proof. By the dynamics of prediction in Equation (4), we have

d

dt
∥y − f(t)∥22 = −2(y − f(t))⊤H(t)(y − f(t))

≤ −λ0 ∥y − f(t)∥22 ,

which implies

∥y − f(t)∥22 ≤ exp(−λ0t) ∥y − f(t)∥22 .
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Now we bound the gradient norm of the weights∥∥∥∥ d

ds
wr(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − fi(s))
1√
m
arxiI(wr(s)

⊤xi ≥ b(s))

∥∥∥∥∥
2

≤ 1√
m

n∑
i=1

|yifi(s)| ≤
√
n√
m

∥y − f(s)∥2 ≤
√
n√
m

exp(−λ0s) ∥y − f(0)∥2 .

Integrating the gradient, the change of weight can be bounded as

∥wr(t)− wr(0)∥2 ≤
∫ t

0

∥∥∥∥ d

ds
wr(s)

∥∥∥∥
2

ds ≤
√
n ∥y − f(0)∥2√

mλ0
.

For bias, we have∥∥∥∥ d

ds
br(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

(yi − fi(s))
1√
m
arI(wr(s)

⊤xi ≥ b(s))

∥∥∥∥∥
2

≤ 1√
m

n∑
i=1

|yi − fi(s)| ≤
√
n√
m

∥y − f(s)∥2 ≤
√
n√
m

exp(−λ0s) ∥y − f(0)∥2 .

Now, the change of bias can be bounded as

∥br(t)− br(0)∥2 ≤
∫ t

0

∥∥∥∥ d

ds
wr(s)

∥∥∥∥
2

ds ≤
√
n ∥y − f(0)∥2√

mλ0
.

A.5 GRADIENT DESCENT CONVERGENCE ANALYSIS

A.5.1 UPPER BOUND OF THE INITIAL ERROR

Lemma A.11 (Initial error upper bound). Let B > 0 be the initialization value of the biases and all
the weights be initialized from standard Gaussian. Let δ ∈ (0, 1) be the failure probability. Then,
with probability at least 1− δ, we have

∥f(0)∥22 = O(n(exp(−B2/2) + 1/m) log3(mn/δ)),

∥f(0)− y∥22 = O
(
n+ n

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
.

Proof. Since we are only analyzing the initialization stage, for notation ease, we omit the depen-
dence on time without any confusion. We compute

∥y − f∥22 =

n∑
i=1

(yi − f(xi))
2

=

n∑
i=1

(
yi −

1√
m

m∑
r=1

arσ(w
⊤
r xi −B)

)2

=

n∑
i=1

y2i − 2
yi√
m

m∑
r=1

arσ(w
⊤
r xi −B) +

1

m

(
m∑
r=1

arσ(w
⊤
r xi −B)

)2
 .

Since w⊤
r xi ∼ N (0, 1) for all r ∈ [m] and i ∈ [n], by Gaussian tail bound and a union bound over

r, i, we have

P[∀i ∈ [n], j ∈ [m] : w⊤
r xi ≤

√
2 log(2mn/δ)] ≥ 1− δ/2.

Let E1 denote this event. Conditioning on the event E1, let

zi,r :=
1√
m

· ar ·min
{
σ(w⊤

r xi −B),
√
2 log(2mn/δ)

}
.
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Notice that zi,r ̸= 0 with probability at most exp(−B2/2). Thus,

Ear,wr [z
2
i,r] ≤ exp(−B2/2)

1

m
2 log(2mn/δ).

By randomness in ar, we know E[zi,r] = 0. Now apply Bernstein’s inequality in Lemma D.1, we
have for all t > 0,

P

[∣∣∣∣∣
m∑
r=1

zi,r

∣∣∣∣∣ > t

]
≤ exp

(
−min

(
t2/2

4 exp(−B2/2) log(2mn/δ)
,

√
mt/2

2
√

2 log(2mn/δ)

))
.

Thus, by a union bound, with probability at least 1− δ/2, for all i ∈ [n],∣∣∣∣∣
m∑
r=1

zi,r

∣∣∣∣∣ ≤√2 log(2mn/δ) exp(−B2/2)2 log(2n/δ) + 2

√
2 log(2mn/δ)

m
log(2n/δ)

≤
(
2 exp(−B2/4) + 2

√
2/m

)
log3/2(2mn/δ).

Let E2 denote this event. Thus, conditioning on the events E1, E2, with probability 1− δ,

∥f(0)∥22 =

n∑
i=1

(
m∑
r=1

zi,r

)2

= O(n(exp(−B2/2) + 1/m) log3(mn/δ))

and

∥y − f(0)∥22

=

n∑
i=1

y2i − 2

n∑
i=1

yi

m∑
r=1

zi,r +

n∑
i=1

(
m∑
r=1

zi,r

)2

≤
n∑

i=1

y2i + 2

n∑
i=1

|yi|
(
2 exp(−B2/4) + 2

√
2/m

)
log3/2(2mn/δ)

+

n∑
i=1

((
2 exp(−B2/4) + 2

√
2/m

)
log3/2(2mn/δ)

)2
= O

(
n+ n

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
,

where we assume yi = O(1) for all i ∈ [n].

A.5.2 ERROR DECOMPOSITION

We follow the proof outline in (Song & Yang, 2019; Song et al., 2021a) and we generalize it to
networks with trainable b. Let us define matrix H⊥ similar to H except only considering flipped
neurons by

H⊥
ij (k) :=

1

m

∑
r∈Si

(⟨xi, xj⟩+ 1)I(wr(k)
⊤xi ≥ br(k), wr(k)

⊤xj ≥ br(k))

and vector v1, v2 by

v1,i :=
1√
m

∑
r∈Si

ar(σ(⟨wr(k + 1), xi⟩ − br(k + 1))− σ(⟨wr(k), xi⟩ − br(k))),

v2,i :=
1√
m

∑
r∈Si

ar(σ(⟨wr(k + 1), xi⟩ − br(k + 1))− σ(⟨wr(k), xi⟩ − br(k))).

Now we give out our error update.
Claim A.12.

∥y − f(k + 1)∥22 = ∥y − f(k)∥22 +B1 +B2 +B3 +B4,
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where

B1 := −2η(y − f(k))⊤H(k)(y − f(k)),

B2 := 2η(y − f(k))⊤H⊥(k)(y − f(k)),

B3 := −2(y − f(k))⊤v2,

B4 := ∥f(k + 1)− f(k)∥22 .

Proof. First we can write

v1,i =
1√
m

∑
r∈Si

ar

(
σ

(〈
wr(k)− η

∂L

∂wr
, xi

〉
−
(
br(k)− η

∂L

∂br

))
− σ(⟨wr(k), xi⟩ − br(k))

)
=

1√
m

∑
r∈Si

ar

(〈
−η

∂L

∂wr
, xi

〉
+ η

∂L

∂br

)
I(⟨wr(k), xi⟩ − br(k) ≥ 0)

=
1√
m

∑
r∈Si

ar

η
1√
m

n∑
j=1

(yj − fj(k))ar(⟨xj , xi⟩+ 1)I(wr(k)
⊤xj ≥ br(k))

 I(⟨wr(k), xi⟩ − br(k) ≥ 0)

= η

n∑
j=1

(yj − fj(k))(Hij(k)−H⊥
ij (k))

which means

v1 = η(H(k)−H⊥(k))(y − f(k)).

Now we compute

∥y − f(k + 1)∥22 = ∥y − f(k)− (f(k + 1)− f(k))∥22
= ∥y − f(k)∥22 − 2(y − f(k))⊤(f(k + 1)− f(k)) + ∥f(k + 1)− f(k)∥22 .

Since f(k + 1)− f(k) = v1 + v2, we can write the cross product term as

(y − f(k))⊤(f(k + 1)− f(k))

= (y − f(k))⊤(v1 + v2)

= (y − f(k))⊤v1 + (y − f(k))⊤v2

= η(y − f(k))⊤H(k)(y − f(k))

− η(y − f(k))⊤H⊥(k)(y − f(k)) + (y − f(k))⊤v2.

A.5.3 BOUNDING THE DECREASE OF THE ERROR

Lemma A.13. Assume λ > 0. Assume we choose Rw, Rb, B where Rw, Rb ≤ min{1/B, 1} such
that 8cn(Rw+Rb) exp(−B2/2) ≤ λ/8. Denote δ0 = δ+n2 exp(− 2

3cm(Rw+Rb) exp(−B2/2)).
Then,

P[B1 ≤ −η5λ ∥y − f(k)∥22 /8] ≥ 1− δ0.

Proof. By Lemma A.6 and our assumption,

λmin(H(W )) > 0.75λ− n · 8c(Rw +Rb) exp(−B2/2) ≥ 5λ/8

with probability at least 1− δ0. Thus,

(y − f(k))⊤H(k)(y − f(k)) ≥ ∥y − f(k)∥22 5λ/8.
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A.5.4 BOUNDING THE EFFECT OF FLIPPED NEURONS

Here we bound the term B2, B3. First, we introduce a fact.
Fact A.14. ∥∥H⊥(k)

∥∥2
F
≤ 4n

m2

n∑
i=1

|Si|2.

Proof.

∥∥H⊥(k)
∥∥2
F
=
∑

i,j∈[n]

 1

m

∑
r∈Si

(x⊤
i xj + 1)I(wr(k)

⊤xi ≥ br(k), wr(k)
⊤xj ≥ br(k))

2

≤
∑

i,j∈[n]

(
1

m
2|Si|

)2

≤ 4n

m2

n∑
i=1

|Si|2.

Lemma A.15. Denote δ0 = n exp(− 2
3cm(Rw +Rb) exp(−B2/2)). Then,

P[B2 ≤ 8ηnc(Rw +Rb) exp(−B2/2) · ∥y − f(k)∥22] ≥ 1− δ0.

Proof. First, we have

B2 ≤ 2η ∥y − f(k)∥22
∥∥H⊥(k)

∥∥
2
.

Then, by Fact A.14, ∥∥H⊥(k)
∥∥2
2
≤
∥∥H⊥(k)

∥∥2
F
≤ 4n

m2

n∑
i=1

|Si|2.

By Corollary A.5, we have

P[∀i ∈ [n] : |Si| ≤ 2mc(Rw +Rb) exp(−B2/2)] ≥ 1− δ0.

Thus, with probability at least 1− δ0,∥∥H⊥(k)
∥∥
2
≤ 4nc(Rw +Rb) exp(−B2/2).

Lemma A.16. Denote δ0 = n exp(− 2
3cm(Rw +Rb) exp(−B2/2)). Then,

P[B3 ≤ 4cηn(Rw +Rb) exp(−B2/2) ∥y − f(k)∥22] ≥ 1− δ0.

Proof. By Cauchy-Schwarz inequality, we have B3 ≤ 2 ∥y − f(k)∥2 ∥v2∥2. We have

∥v2∥22 ≤
n∑

i=1

 η√
m

∑
r∈Si

∣∣∣∣〈 ∂L

∂wr
, xi

〉∣∣∣∣+ ∣∣∣∣ ∂L∂br
∣∣∣∣
2

≤
n∑

i=1

η2

m
max
i∈[n]

(∣∣∣∣〈 ∂L

∂wr
, xi

〉∣∣∣∣+ ∣∣∣∣ ∂L∂br
∣∣∣∣)2

|Si|2

≤ n
η2

m

(
2

√
n

m
∥f(k)− y∥2 2mc(Rw +Rb) exp(−B2/2)

)2

= 16c2η2n2 ∥y − f(k)∥22 (Rw +Rb)
2 exp(−B2),

where the last inequality is by Lemma A.8 and Corollary A.5 which holds with probability at least
1− δ0.
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A.5.5 BOUNDING THE NETWORK UPDATE

Lemma A.17.

B4 ≤ 4η2n2 ∥y − f(k)∥22 .
new result:

B4 ≤ C2
2η

2n2 ∥y − f(k)∥22 exp(−B2).

for some constant C2.

Proof.

∥f(k + 1)− f(k)∥22 ≤
n∑

i=1

(
η√
m

m∑
r=1

∣∣∣∣〈 ∂L

∂wr
, xi

〉∣∣∣∣+ ∣∣∣∣ ∂L∂br
∣∣∣∣
)2

≤ 4η2n2 ∥y − f(k)∥22 .

New Proof. Recall that the definition that Son(i, t) = {r ∈ [m] : wr(t)
⊤xi ≥ br(t)}, i.e., the set of

neurons that activates for input xi at the t-th step of gradient descent.

∥f(k + 1)− f(k)∥22 ≤
n∑

i=1

 η√
m

∑
r:r∈Son(i,k+1)∪Son(i,k)

∣∣∣∣〈 ∂L

∂wr
, xi

〉∣∣∣∣+ ∣∣∣∣ ∂L∂br
∣∣∣∣
2

≤ n
η2

m
(|Son(i, k + 1)|+ |Son(i, k)|)2 max

i∈[n]

(∣∣∣∣〈 ∂L

∂wr
, xi

〉∣∣∣∣+ ∣∣∣∣ ∂L∂br
∣∣∣∣)2

≤ n
η2

m

(
C2m exp(−B2/2) ·

√
n

m
∥y − f(k)∥2

)2

≤ C2
2η

2n2 ∥y − f(k)∥22 exp(−B2).

where the third inequality is by Lemma A.19 for some C2.

A.5.6 PUTTING IT ALL TOGETHER

Theorem A.18 (Convergence). Assume λ > 0. Let η ≤ λ/(64n2) η ≤ λ exp(B2)
5C2

2n
2 , B ∈

[0,
√
0.5 logm] and

m ≥ Ω̃
(
λ−4n4

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

Assume λ = λ0 exp(−B2/2) for some constant λ0. Then,

P
[
∀t : ∥y − f(t)∥22 ≤ (1− ηλ/4)t ∥y − f(0)∥22

]
≥ 1− δ − e−Ω(n).

Proof. From Lemma A.13, Lemma A.15, Lemma A.16 and Lemma A.17, we know with probability
at least 1− 2n2 exp(− 2

3cm(Rw +Rb) exp(−B2/2))− δ, we have

∥y − f(k + 1)∥22 ≤ ∥y − f(k)∥22 (1− 5ηλ/8 + 12ηnc(Rw +Rb) exp(−B2/2) + 4η2n2).

∥y − f(k + 1)∥22 ≤ ∥y − f(k)∥22 (1− 5ηλ/8 + 12ηnc(Rw +Rb) exp(−B2/2) + C2
2η

2n2 ∥y − f(k)∥22 exp(−B2)).

By Lemma A.9, we need

Dw =
8
√
n ∥y − f(0)∥2√

mλ
≤ Rw,

Db =
8
√
n ∥y − f(0)∥2√

mλ
≤ Rb.
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By Lemma A.11, we have

P[∥f(0)− y∥22 = O
(
n+ n

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
] ≥ 1− δ.

Let R = min{Rw, Rb}, D = max{Dw, Db}. Combine the results we have

R > Ω(λ−1m−1/2n

√
1 + (exp(−B2/2) + 1/m) log3(2mn/δ)).

Lemma A.13 requires

8cn(Rw +Rb) exp(−B2/2) ≤ λ/8

⇒ R ≤ λ exp(B2/2)

128cn
.

which implies a lower bound on m

m ≥ Ω
(
λ−4n4

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

Lemma A.1 further requires a lower bound of m = Ω(λ−1n · log(n/δ)) which can be ignored.

Lemma A.6 further requires R < min{1/B, 1} which implies

B <
128cn

λ exp(B2/2)
,

m ≥ Ω̃
(
λ−4n4

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

From Theorem F.1 in (Song et al., 2021a) we know that λ = λ0 exp(−B2/2) for some λ0 with
no dependence on B and λ exp(B2/2) ≤ 1. Thus, by our constraint on m and B, this is always
satisfied.

Finally, to require

12ηnc(Rw +Rb) exp(−B2/2) + 4η2n2 ≤ ηλ/4,

12ηnc(Rw +Rb) exp(−B2/2) + C2
2η

2n2 exp(−B2) ≤ ηλ/4,

we need η ≤ λ/(64n2) η ≤ λ exp(B2)
5C2

2n
2 . By our choice of m,B, we have

2n2 exp(−2

3
cm(Rw +Rb) exp(−B2/2)) = e−Ω(n).

A.6 BOUNDING THE NUMBER OF ACTIVATED NEURONS PER ITERATION

First we define the set of activated neurons at iteration t for training point xi to be

Son(i, t) = {r ∈ [m] : wr(t)
⊤xi ≥ br(t)}.

Lemma A.19 (Number of Activated Neurons at Initialization). Assume the choice of m in Theo-
rem A.18. With probability at least 1− e−Ω(n) over the random initialization, we have

|Son(i, t)| = O(m · exp(−B2/2)),

for all 0 ≤ t ≤ T and i ∈ [n]. And As a by-product,

∥Z(0)∥2F ≤ 8n exp(−B2/2).

Proof. First we bound the number of activated neuron at the initialization. We have P[w⊤
r xi ≥

B] ≤ exp(−B2/2). By Bernstein’s inequality,

P[|Son(i, 0)| ≥ m exp(−B2/2) + t] ≤ exp

(
− t2

m exp(−B2/2) + t/3

)
.
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Take t = m exp(−B2/2) we have

P[|Son(i, 0)| ≥ 2m exp(−B2/2)] ≤ exp
(
−m exp(−B2/2)/4

)
.

By a union bound over i ∈ [n], we have

P[∀i ∈ [n] : |Son(i, 0)| ≤ 2m exp(−B2/2)] ≥ 1− n exp
(
−m exp(−B2/2)/4

)
.

Notice that

∥Z(0)∥2F ≤ 4

m

m∑
r=1

n∑
i=1

Ir,i(0) ≤ 8n exp(−B2/2).

Lemma A.20 (Number of Activated Neurons per Iteration). Assume the parameter settings in The-
orem A.18. With probability at least 1− e−Ω(n) over the random initialization, we have

|Son(i, t)| = O(m · exp(−B2/2))

for all 0 ≤ t ≤ T and i ∈ [n].

Proof. By Corollary A.5 and Theorem A.18, we have

P[∀i ∈ [n] : |Si| ≤ 4mc exp(−B2/2)] ≥ 1− e−Ω(n).

Recall Si is the set of flipped neurons during the entire training process. Notice that |Son(i, t)| ≤
|Son(i, 0)|+ |Si|. Thus, by Lemma A.19

P[∀i ∈ [n] : |Son(i, t)| = O(m exp(−B2/2))] ≥ 1− e−Ω(n).

B BOUNDING THE RESTRICTED SMALLEST EIGENVALUE WITH DATA
SEPARATION

Theorem B.1. Let X = (x1, . . . , xn) be points in Rd with ∥xi∥2 = 1 for all i ∈ [n] and w ∼
N (0, Id). Suppose that there exists δ ∈ [0,

√
2] such that

min
i ̸=j∈[n]

(∥xi − xj∥2 , ∥xi + xj∥2) ≥ δ.

Let B ≥ 0. Recall the limit NTK matrix H∞ defined as

H∞
ij := Ew∼N (0,I)

[
(⟨xi, xj⟩+ 1)I(w⊤xi ≥ B,w⊤xj ≥ B)

]
.

Define p0 = P[w⊤x1 ≥ B] and pij = P[w⊤xi ≥ B, w⊤xj ≥ B] for i ̸= j. Define the (data-
dependent) region R = {a ∈ Rn :

∑
i ̸=j aiajpij ≥ mini′ ̸=j′ pi′j′

∑
i̸=j aiaj} and let λ :=

min∥a∥2=1, a∈R a⊤H∞a. Then, λ ≥ max(0, λ′) where

λ′ ≥ p0 −min
i̸=j

pij

≥ max

(
1

2
− B√

2π
,

(
1

B
− 1

B3

)
e−B2/2

√
2π

)
− e−B2/(2−δ2/2)

π − arctan

(
δ
√

1−δ2/4

1−δ2/2

)
2π

.

Proof. Define ∆ := maxi ̸=j | ⟨xi, xj⟩ |. Then by our assumption,

1−∆ = 1−max
i̸=j

| ⟨xi, xj⟩ | =
mini ̸=j(∥xi − xj∥22 , ∥xi + xj∥22)

2
≥ δ2/2

⇒ ∆ ≤ 1− δ2/2.
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Further, we define

Z(w) := [x1I(w⊤x1 ≥ B), x2I(w⊤x2 ≥ B), . . . , xnI(w⊤xn ≥ B)] ∈ Rd×n.

Notice that H∞ = Ew∼N (0,I)

[
Z(w)⊤Z(w) + I(Xw ≥ B)I(Xw ≥ B)⊤

]
. We need to lower

bound

min
∥a∥2=1,a∈R

a⊤H∞a = min
∥a∥2=1,a∈R

a⊤Ew∼N (0,I)

[
Z(w)⊤Z(w)

]
a

+ a⊤Ew∼N (0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
a

≥ min
∥a∥2=1,a∈R

a⊤Ew∼N (0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
a.

Now, for a fixed a,

a⊤Ew∼N (0,I)

[
I(Xw ≥ B)I(Xw ≥ B)⊤

]
a =

n∑
i=1

a2i P[w⊤xi ≥ B] +
∑
i̸=j

aiaj P[w⊤xi ≥ B, w⊤xj ≥ B]

= p0 ∥a∥22 +
∑
i ̸=j

aiajpij ,

where the last equality is by P[w⊤x1 ≥ B] = . . . = P[w⊤xn ≥ B] = p0 which is due to spherical
symmetry of standard Gaussian. Notice that maxi ̸=j pij ≤ p0. Since a ∈ R,

Ew∼N (0,I)

[
(a⊤I(Xw ≥ B))2

]
≥ (p0 −min

i ̸=j
pij) ∥a∥22 + (min

i ̸=j
pij) ∥a∥22 + (min

i̸=j
pij)

∑
i ̸=j

aiaj

= (p0 −min
i ̸=j

pij) ∥a∥22 + (min
i ̸=j

pij)

(∑
i

ai

)2

.

Thus,

λ ≥ min
∥a∥2=1,a∈R

Ew∼N (0,I)

[
(a⊤I(Xw ≥ B))2

]
≥ min

∥a∥2=1,a∈R
(p0 −min

i ̸=j
pij) ∥a∥22 + min

∥a∥2=1,a∈R
(min
i ̸=j

pij)

(∑
i

ai

)2

≥ p0 −min
i ̸=j

pij .

Now we need to upper bound

min
i ̸=j

pij ≤ max
i ̸=j

pij .

We divide into two cases: B = 0 and B > 0. Consider two fixed examples x1, x2. Then, let
v = (I − x1x

⊤
1 )x2/

∥∥(I − x1x
⊤
1 )x2

∥∥ and c = | ⟨x1, x2⟩ | 1.

Case 1: B = 0. First, let us define the region A0 as

A0 =

{
(g1, g2) ∈ R2 : g1 ≥ 0, g1 ≥ −

√
1− c2

c
g2

}
.

Then,

P[w⊤x1 ≥ 0, w⊤x2 ≥ 0] = P[w⊤x1 ≥ 0, w⊤(cx1 +
√
1− c2v) ≥ 0]

= P[g1 ≥ 0, cg1 +
√
1− c2g2 ≥ 0]

= P[A0]

=
π − arctan

(√
1−c2

|c|

)
2π

1Here we force c to be positive. Since we are dealing with standard Gaussian, the probability is exactly the
same if c < 0 by symmetry and therefore, we force c > 0.

25



Under review as a conference paper at ICLR 2023

≤
π − arctan

(√
1−∆2

|∆|

)
2π

,

where we define g1 := w⊤x1 and g2 := w⊤v and the second equality is by the fact that since x1

and v are orthonormal, g1 and g2 are two independent standard Gaussian random variables; the last
inequality is by arctan is a monotonically increasing function and

√
1−c2

|c| is a decreasing function
in |c| and |c| ≤ ∆. Thus,

min
i ̸=j

pij ≤ max
i ̸=j

pij ≤
π − arctan

(√
1−∆2

|∆|

)
2π

.

Case 2: B > 0. First, let us define the region

A =

{
(g1, g2) ∈ R2 : g1 ≥ B, g1 ≥ B

c
−

√
1− c2

c
g2

}
.

Then, following the same steps as in case 1, we have

P[w⊤x1 ≥ B, w⊤x2 ≥ B] = P[g1 ≥ B, cg1 +
√
1− c2g2 ≥ B] = P[A].

Let B1 = B and B2 = B
√

1−c
1+c . Further, notice that A = A0 + (B1, B2). Then,

P[A] =

∫∫
(g1,g2)∈A

1

2π
exp

{
−g21 + g22

2

}
dg1 dg2

=

∫∫
(g1,g2)∈A0

1

2π
exp

{
− (g1 +B1)

2 + (g2 +B2)
2

2

}
dg1 dg2

= e−(B2
1+B2

2)/2

∫∫
(g1,g2)∈A0

1

2π
exp {−B1g1 −B2g2} exp

{
−g21 + g22

2

}
dg1 dg2.

Now, B1g1 + B2g2 = Bg1 + B
√

1−c
1+cg2 ≥ 0 always holds if and only if g1 ≥ −

√
1−c
1+cg2. Define

the region A+ to be

A+ =

{
(g1, g2) ∈ R2 : g1 ≥ 0, g1 ≥ −

√
1− c

1 + c
g2

}
.

Observe that √
1− c

1 + c
≤

√
1− c2

c
=

√
(1− c)(1 + c)

c
⇔ c ≤ 1 + c.

Thus, A0 ⊂ A+. Therefore,

P[A] ≤ e−(B2
1+B2

2)/2

∫∫
(g1,g2)∈A0

1

2π
exp

{
−g21 + g22

2

}
dg1 dg2

= e−(B2
1+B2

2)/2 P[A0]

= e−(B2
1+B2

2)/2
π − arctan

(√
1−c2

|c|

)
2π

≤ e−B2/(1+∆)
π − arctan

(√
1−∆2

|∆|

)
2π

.

Finally, we need to lower bound p0. This can be done in two ways: when B is small, we apply
Gaussian anti-concentration bound and when B is large, we apply Gaussian tail bounds. Thus,

p0 = P[w⊤x1 ≥ B] ≥ max

(
1

2
− B√

2π
,

(
1

B
− 1

B3

)
e−B2/2

√
2π

)
.

Combining the lower bound of p0 and upper bound on maxi ̸=j pij we have

λ ≥ p0 −min
i ̸=j

pij ≥ max

(
1

2
− B√

2π
,

(
1

B
− 1

B3

)
e−B2/2

√
2π

)
− e−B2/(1+∆)

π − arctan
(√

1−∆2

|∆|

)
2π

.

Applying ∆ ≤ 1− δ2/2 and noticing that H∞ is positive semi-definite gives our final result.
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C GENERALIZATION

C.1 RADEMACHER COMPLEXITY

In this section, we would like to compute the Rademacher Complexity of our network. Rademacher
complexity is often used to bound the deviation from empirical risk and true risk (see, e.g. (Shalev-
Shwartz & Ben-David, 2014).)
Definition C.1 (Empirical Rademacher Complexity). Given n samples S, the empirical
Rademacher complexity of a function class F , where f : Rd → R for f ∈ F , is defined as

RS(F) =
1

n
Eϵ

[
sup
f∈F

n∑
i=1

ϵif(xi)

]
where ϵ = (ϵ1, . . . , ϵn)

⊤ and ϵi is an i.i.d Rademacher random variable.
Theorem C.2 ((Shalev-Shwartz & Ben-David, 2014)). Suppose the loss function ℓ(·, ·) is bounded
in [0, c] and is ρ-Lipschitz in the first argument. Then with probability at least 1− δ over sample S
of size n:

sup
f∈F

LD(f)− LS(f) ≤ 2ρRS(F) + 3c

√
log(2/δ)

2n
.

In order to get meaningful generalization bound via Rademacher complexity, previous results, such
as (Arora et al., 2019; Song & Yang, 2019), multiply the neural network by a scaling factor κ to
make sure the neural network output something small at the initialization, which requires at least
modifying all the previous lemmas we already established. We avoid repeating our arguments by
utilizing symmetric initialization to force the neural network to output exactly zero for any inputs at
the initialization. 2

Definition C.3 (Symmetric Initialization). For a one-hidden layer neural network with 2m neurons,
the network is initialized as the following

1. For r ∈ [m], initialize wr ∼ N (0, I) and ar ∼ Uniform({−1, 1}).

2. For r ∈ {m+ 1, . . . , 2m}, let wr = wr−m and ar = −ar−m.

It is not hard to see that all of our previously established lemmas hold including expectation and
concentration. The only effect this symmetric initialization brings is to worse the concentration by
a constant factor of 2 which can be easily addressed. For detailed analysis, see (Munteanu et al.,
2022).

In order to state our final theorem, we need to use Definition 3.7. Now we can state our theorem for
generalization.
Theorem C.4. Fix a failure probability δ ∈ (0, 1) and an accuracy parameter ϵ ∈ (0, 1). Suppose
the training data S = {(xi, yi)}ni=1 are i.i.d. samples from a (λ, δ, n)-non-degenerate distribution
D. Assume the settings in Theorem A.18 except now we let

m ≥ Ω̃
(
λ−4n6

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

Consider any loss function ℓ : R × R → [0, 1] that is 1-Lipschitz in its first argument. Then with
probability at least 1−2δ−e−Ω(n) over the symmetric initialization of W (0) ∈ Rm×d and a ∈ Rm

and the training samples, the two layer neural network f(W (k), b(k), a) trained by gradient descent
for k ≥ Ω( 1

ηλ log n log(1/δ)
ϵ ) iterations has population loss LD(f) = E(x,y)∼D[ℓ(f(x), y)] upper

bounded as

LD(f(W (k), b(k), a)) ≤
√

y⊤(H∞)−1y · 32 exp(−B2/2)

n
+ Õ

(
1

n1/2

)
.

2While preparing the manuscript, the authors notice that this can be alternatively solved by reparam-
eterized the neural network by f(x;W ) − f(x;W0) and thus minimizing the following objective L =
1
2

∑n
i=1(f(xi;W ) − f(xi;W0) − yi)

2. The corresponding generalization is the same since Rademacher
complexity is invariant to translation. However, since the symmetric initialization is widely adopted in theory
literature, we go with symmetric initialization here.
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Proof. First, we need to bound LS . After training, we have ∥f(k)− y∥2 ≤ ϵ < 1, and thus

LS(f(W (k), b(k), a)) =
1

n

n∑
i=1

[ℓ(fi(k), yi)− ℓ(yi, yi)]

≤ 1

n

n∑
i=1

|fi(k)− yi|

≤ 1√
n
∥f(k)− y∥2

≤ 1√
n
.

By Theorem C.2, we know that

LD(f(W (k), b(k), a)) ≤ LS(f(W (k), b(k), a)) + 2RS(F) + Õ(n−1/2)

≤ 2RS(F) + Õ(n−1/2).

Then, by Theorem C.5, we get that for sufficiently large m,

RS(F) ≤
√

y⊤(H∞)−1y · 8 exp(−B2/2)

n
+ Õ

(
exp(−B2/4)

n1/2

)
≤
√

y⊤(H∞)−1y · 8 exp(−B2/2)

n
+ Õ

(
1

n1/2

)
,

where the last step follows from B > 0.

Therefore, we conclude that:

LD(f(W (k), b(k), a)) ≤
√

y⊤(H∞)−1y · 32 exp(−B2/2)

n
+ Õ

(
1

n1/2

)
.

Theorem C.5. Fix a failure probability δ ∈ (0, 1). Suppose the training data S = {(xi, yi)}ni=1 are
i.i.d. samples from a (λ, δ, n)-non-degenerate distribution D. Assume the settings in Theorem A.18
except now we let

m ≥ Ω̃
(
λ−6n6

(
1 +

(
exp(−B2/2) + 1/m

)
log3(2mn/δ)

)
exp(−B2)

)
.

Denote the set of one-hidden-layer neural networks trained by gradient descent as F . Then with
probability at least 1 − 2δ − e−Ω(n) over the randomness in the symmetric initialization and the
training data, the set F has empirical Rademacher complexity bounded as

RS(F) ≤
√

y⊤(H∞)−1y · 8 exp(−B2/2)

n
+ Õ

(
exp(−B2/4)

n1/2

)
.

Note that the only extra requirement we make on m is the (n/λ)6 dependence instead of (n/λ)4
which is needed for convergence. The dependence of m on n is significantly better than previous
work (Song & Yang, 2019) where the dependence is n14. We take advantage of our initialization
and new analysis to improve the dependence on n.

Proof. Let Rw (Rb) denotes the maximum distance moved any any neuron weight (bias), the same
role as Dw (Db) in Lemma A.9. From Lemma A.9 and Lemma A.11, and we have

max(Rw, Rb) ≤ O

n
√
1 + (exp(−B2/2) + 1/m) log3(2mn/δ)

√
mλ

 .
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The rest of the proof depends on the results from Lemma C.6 and Lemma C.8. Let R :=
∥[W, b](k)− [W, b](0)∥F . By Lemma C.6 we have

RS(FRw,Rb,R) ≤ R

√
8 exp(−B2/2)

n
+ 4c(Rw +Rb)

2
√
m exp(−B2/2)

≤ R

√
8 exp(−B2/2)

n
+O

(
n2(1 + (exp(−B2/2) + 1/m) log3(2mn/δ)) exp(−B2/2)√

mλ2

)
.

Lemma C.8 gives that

R ≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(
n
√
(Rw +Rb) exp(−B2/2)

λ

)

+
n

λ2
·O

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
.

Combining the above results and using the choice of m,R,B in Theorem A.18 gives us

R(F) ≤
√

y⊤(H∞)−1y · 8 exp(−B2/2)

n
+O

(√
n exp(−B2/2)

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(√
n(Rw +Rb)

λ exp(B2/2)

)
+

√
n

λ2
·O

(
exp(−B2/2)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−3B2/4)

)

+O

(
n2(1 + (exp(−B2/2) + 1/m) log3(2mn/δ)) exp(−B2/2)√

mλ2

)
.

Now, we analyze the terms one by one by plugging in the bound of m and Rw, Rb and show that
they can be bounded by Õ(exp(−B2/4)/n1/2). For the second term, we have

O

(√
n exp(−B2/2)

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

= O

(√
λ exp(−B2/8) log1/4(n/δ)

n

)
.

For the third term, we have

O

(√
n(Rw +Rb)

λ exp(B2/2)

)
= O

( √
n

λ exp(B2/2)

√
n(1 + (exp(−B2/2) + 1/m) log3(2mn/δ))1/4

m1/4λ1/2

)
= O

(
n

exp(B2/2)n6/4 exp(−B2/4)

)
= O

(
exp(−B2/4)

n1/2

)
.

For the fourth term, we have
√
n

λ2
·O

(
exp(−B2/2)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−3B2/4)

)

= O

(
λ
√
log(n/δ)

n2.5

)
+O

(
exp(−B2/4)

n1.5

)
.

For the last term, we have

O

(
n2(1 + (exp(−B2/2) + 1/m) log3(2mn/δ)) exp(−B2/2)√

mλ2

)

= O

λ
√
1 + (exp(−B2/2) + 1/m) log3(2mn/δ)

n

 .

Recall our discussion on λ in Section 3.4 that λ = λ0 exp(−B2/2) ≤ 1 for some λ0 independent
of B. Putting them together, we get the desired upper bound for R(F), and the theorem is then
proved.
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Lemma C.6. Assume the choice of Rw, Rb,m in Theorem A.18. Given R > 0, with probability at
least 1− e−Ω(n) over the random initialization of W (0), a, the following function class

FRw,Rb,R = {f(W,a, b) : ∥W −W (0)∥2,∞ ≤ Rw, ∥b− b(0)∥∞ ≤ Rb,

∥vec([W, b]− [W (0), b(0)])∥ ≤ R}
has empirical Rademacher complexity bounded as

RS(FRw,Rb,R) ≤ R

√
8 exp(−B2/2)

n
+ 4c(Rw +Rb)

2
√
m exp(−B2/2).

Proof. We need to upper bound RS(FRw,Rb,R). Define the events

Ar,i = {|wr(0)
⊤xi − br(0)| ≤ Rw +Rb}, i ∈ [n], r ∈ [m]

and a shorthand I(wr(0)
⊤xi −B ≥ 0) = Ir,i(0). Then,

n∑
i=1

ϵi

m∑
r=1

arσ(w
⊤
r xi − br)−

n∑
i=1

ϵi

m∑
r=1

arIr,i(0)(w⊤
r xi − br)

=

n∑
i=1

m∑
r=1

ϵiar
(
σ(w⊤

r xi − br)− Ir,i(0)(w⊤
r xi − br)

)
=

n∑
i=1

m∑
r=1

I(Ar,i)ϵiar
(
σ(w⊤

r xi − br)− Ir,i(0)(w⊤
r xi − br)

)
=

n∑
i=1

m∑
r=1

I(Ar,i)ϵiar
(
σ(w⊤

r xi − br)− Ir,i(0)(wr(0)
⊤xi − br(0))− Ir,i(0)((wr − wr(0))

⊤xi − (br − br(0)))
)

=

n∑
i=1

m∑
r=1

I(Ar,i)ϵiar
(
σ(w⊤

r xi − br)− σ(wr(0)
⊤xi − br(0))− Ir,i(0)((wr − wr(0))

⊤xi − (br − br(0)))
)

≤
n∑

i=1

m∑
r=1

I(Ar,i)2(Rw +Rb),

where the second equality is due to the fact that σ(w⊤
r xi − br) = Ir,i(0)(w⊤

r xi − br) if r /∈ Ar,i.
Thus, the Rademacher complexity can be bounded as

RS(FRw,Rb,R)

=
1

n
Eϵ

 sup
∥W−W (0)∥2,∞≤Rw, ∥b−b(0)∥∞≤Rb,

∥vec([W,b]−[W (0),b(0)])∥≤R

n∑
i=1

ϵi

m∑
r=1

ar√
m
σ(w⊤

r xi − br)



≤ 1

n
Eϵ

 sup
∥W−W (0)∥2,∞≤Rw, ∥b−b(0)∥∞≤Rb,

∥vec([W,b]−[W (0),b(0)])∥≤R

n∑
i=1

ϵi

m∑
r=1

ar√
m
Ir,i(0)(w⊤

r xi − br)

+
2(Rw +Rb)

n
√
m

n∑
i=1

m∑
r=1

I(Ar,i)

=
1

n
Eϵ

[
sup

∥vec([W,b]−[W (0),b(0)])∥≤R

vec([W, b])⊤Z(0)ϵ

]
+

2(Rw +Rb)

n
√
m

n∑
i=1

m∑
r=1

I(Ar,i)

=
1

n
Eϵ

[
sup

∥vec([W,b]−[W (0),b(0)])∥≤R

vec([W, b]− [W (0), b(0)])⊤Z(0)ϵ

]
+

2(Rw +Rb)

n
√
m

n∑
i=1

m∑
r=1

I(Ar,i)

≤ 1

n
Eϵ[R ∥Z(0)ϵ∥2] +

2(Rw +Rb)

n
√
m

n∑
i=1

m∑
r=1

I(Ar,i)

≤ R

n

√
Eϵ[∥Z(0)ϵ∥22] +

2(Rw +Rb)

n
√
m

n∑
i=1

m∑
r=1

I(Ar,i)
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=
R

n
∥Z(0)∥F +

2(Rw +Rb)

n
√
m

n∑
i=1

m∑
r=1

I(Ar,i),

where we recall the definition of the matrix

Z(0) =
1√
m

 I1,1(0)a1[x⊤
1 ,−1]⊤ . . . I1,n(0)a1[x⊤

n ,−1]⊤

...
...

Im,1(0)am[x⊤
1 ,−1]⊤ . . . Im,n(0)am[x⊤

n ,−1]⊤

 ∈ Rm(d+1)×n.

By Lemma A.19, we have ∥Z(0)∥F ≤
√

8n exp(−B2/2) and by Corollary A.5, we have

P

[
∀i ∈ [n] :

m∑
r=1

I(Ar,i) ≤ 2mc(Rw +Rb) exp(−B2/2)

]
≥ 1− e−Ω(n).

Thus, with probability at least 1− e−Ω(n), we have

RS(FRw,Rb,R) ≤ R

√
8 exp(−B2/2)

n
+ 4c(Rw +Rb)

2
√
m exp(−B2/2).

C.2 ANALYSIS OF RADIUS

Theorem C.7. Assume the parameter settings in Theorem A.18. With probability at least 1 − δ −
e−Ω(n) over the initialization we have

f(k)− y = −(I − ηH∞)ky ± e(k),

where

∥e(k)∥2 = k(1− ηλ/4)(k−1)/2ηn3/2 ·O

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
.

Proof. Before we start, we assume all the events needed in Theorem A.18 succeed, which happens
with probability at least 1− δ − e−Ω(n).

Recall the no-flipping set Si in Definition A.3. We have

fi(k + 1)− fi(k) =
1√
m

m∑
r=1

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)
⊤xi − br(k))]

=
1√
m

∑
r∈Si

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)
⊤xi − br(k))]

+
1√
m

∑
r∈Si

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)
⊤xi − br(k))]︸ ︷︷ ︸

ϵi(k)

.

(5)

Now, to upper bound the second term ϵi(k),

|ϵi(k)| =

∣∣∣∣∣∣ 1√
m

∑
r∈Si

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)
⊤xi − br(k))]

∣∣∣∣∣∣
≤ 1√

m

∑
r∈Si

|wr(k + 1)⊤xi − br(k + 1)− (wr(k)
⊤xi − br(k))|

≤ 1√
m

∑
r∈Si

∥wr(k + 1)− wr(k)∥2 + |br(k + 1)− br(k)|
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=
1√
m

∑
r∈Si

∥∥∥∥∥∥ η√
m
ar

n∑
j=1

(fj(k)− yj)Ir,j(k)xj

∥∥∥∥∥∥
2

+

∣∣∣∣∣∣ η√
m
ar

n∑
j=1

(fj(k)− yj)Ir,j(k)

∣∣∣∣∣∣
≤ 2η

m

∑
r∈Si

n∑
j=1

|fj(k)− yj |

≤ 2η
√
n|Si|
m

∥f(k)− y∥2

⇒ ∥ϵ∥2 =

√√√√ n∑
i=1

4η2n|Si|2
m2

∥f(k)− y∥22 ≤ ηnO((Rw +Rb) exp(−B2/2)) ∥f(k)− y∥2 (6)

where we apply Corollary A.5 in the last inequality. To bound the first term,
1√
m

∑
r∈Si

ar[σ(wr(k + 1)⊤xi − br(k + 1))− σ(wr(k)
⊤xi − br(k))]

=
1√
m

∑
r∈Si

arIr,i(k)
(
(wr(k + 1)− wr(k))

⊤xi − (br(k + 1)− br(k))
)

=
1√
m

∑
r∈Si

arIr,i(k)


− η√

m
ar

n∑
j=1

(fj(k)− yj)Ir,j(k)xj

⊤

xi −
η√
m
ar

n∑
j=1

(fj(k)− yj)Ir,j(k)


=

1√
m

∑
r∈Si

arIr,i(k)

− η√
m
ar

n∑
j=1

(fj(k)− yj)Ir,j(k)(x⊤
j xi + 1)


= −η

n∑
j=1

(fj(k)− yj)
1

m

∑
r∈Si

Ir,i(k)Ir,j(k)(x⊤
j xi + 1)

= −η

n∑
j=1

(fj(k)− yj)Hij(k) + η

n∑
j=1

(fj(k)− yj)
1

m

∑
r∈Si

Ir,i(k)Ir,j(k)(x⊤
j xi + 1)

︸ ︷︷ ︸
ϵ′i(k)

(7)

where we can upper bound |ϵ′i(k)| as

|ϵ′i(k)| ≤
2η

m
|Si|

n∑
j=1

|fj(k)− yj | ≤
2η

√
n|Si|
m

∥f(k)− y∥2

⇒ ∥ϵ′∥2 =

√√√√ n∑
i=1

4η2n|Si|2
m2

∥f(k)− y∥22 ≤ ηnO((Rw +Rb) exp(−B2/2)) ∥f(k)− y∥2 .

(8)

Combining Equation (5), Equation (6), Equation (7) and Equation (8), we have

fi(k + 1)− fi(k) = −η

n∑
j=1

(fj(k)− yj)Hij(k) + ϵi(k) + ϵ′i(k)

⇒ f(k + 1)− f(k) = −ηH(k)(f(k)− y) + ϵ(k) + ϵ′(k)

= −ηH∞(f(k)− y) + η(H∞ −H(k))(f(k)− y) + ϵ(k) + ϵ′(k)︸ ︷︷ ︸
ζ(k)

⇒ f(k)− y = (I − ηH∞)k(f(0)− y) +

k−1∑
t=0

(I − ηH∞)tζ(k − 1− t)

= −(I − ηH∞)ky + (I − ηH∞)kf(0) +

k−1∑
t=0

(I − ηH∞)tζ(k − 1− t)︸ ︷︷ ︸
e(k)

.
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Now the rest of the proof bounds the magnitude of e(k). From Lemma A.2 and Lemma A.6, we
have

∥H∞ −H(k)∥2 ≤ ∥H(0)−H∞∥2 + ∥H(0)−H(k)∥2

= O

(
n exp(−B2/4)

√
log(n2/δ)

m

)
+O(n(Rw +Rb) exp(−B2/2)).

Thus, we can bound ζ(k) as

∥ζ(k)∥2 ≤ η ∥H∞ −H(k)∥2 ∥f(k)− y∥2 + ∥ϵ(k)∥2 + ∥ϵ′(k)∥2

= O

(
ηn

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

))
∥f(k)− y∥2 .

Notice that ∥H∞∥2 ≤ Tr(H∞) ≤ n since H∞ is symmetric. By Theorem A.18, we pick η =

O(λ/n2) ≪ 1/ ∥H∞∥2 and, with probability at least 1− δ− e−Ω(n) over the random initialization,
we have ∥f(k)− y∥2 ≤ (1− ηλ/4)k/2 ∥f(0)− y∥2.

Since we are using symmetric initialization, we have (I − ηH∞)kf(0) = 0.

Thus,

∥e(k)∥2 =

∥∥∥∥∥
k−1∑
t=0

(I − ηH∞)tζ(k − 1− t)

∥∥∥∥∥
2

≤
k−1∑
t=0

∥I − ηH∞∥t2 ∥ζ(k − 1− t)∥2

≤
k−1∑
t=0

(1− ηλ)tηnO

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
∥f(k − 1− t)− y∥2

≤
k−1∑
t=0

(1− ηλ)tηnO

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
· (1− ηλ/4)(k−1−t)/2 ∥f(0)− y∥2

≤ k(1− ηλ/4)(k−1)/2ηnO

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
∥f(0)− y∥2

≤ k(1− ηλ/4)(k−1)/2ηn3/2O

((
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)

·
(√

1 + (exp(−B2/2) + 1/m) log3(2mn/δ)

))

= k(1− ηλ/8)k−1ηn3/2O

(
exp(−B2/4)

√
log(n2/δ)

m
+ (Rw +Rb) exp(−B2/2)

)
.

Lemma C.8. Assume the parameter settings in Theorem A.18. Then with probability at least 1 −
δ − e−Ω(n) over the random initialization, we have for all k ≥ 0,

∥[W, b](k)− [W, b](0)∥F ≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(
n
√
R exp(−B2/2)

λ

)

+
n

λ2
·O

(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

)

33



Under review as a conference paper at ICLR 2023

where R = Rw +Rb.

Proof. Before we start, we assume all the events needed in Theorem A.18 succeed, which happens
with probability at least 1− δ − e−Ω(n).

vec([W, b](K))− vec([W, b](0))

=

K−1∑
k=0

vec([W, b](k + 1))− vec([W, b](k))

= −
K−1∑
k=0

Z(k)(u(k)− y)

=

K−1∑
k=0

ηZ(k)((I − ηH∞)ky − e(k))

=

K−1∑
k=0

ηZ(k)(I − ηH∞)ky −
K−1∑
k=0

ηZ(k)e(k)

=

K−1∑
k=0

ηZ(0)(I − ηH∞)ky︸ ︷︷ ︸
T1

+

K−1∑
k=0

η(Z(k)− Z(0))(I − ηH∞)ky︸ ︷︷ ︸
T2

−
K−1∑
k=0

ηZ(k)e(k)︸ ︷︷ ︸
T3

. (9)

Now, by Lemma A.6, we have ∥Z(k)− Z(0)∥F ≤ O(
√
nR exp(−B2/2)) which implies

∥T2∥2 =

∥∥∥∥∥
K−1∑
k=0

η(Z(k)− Z(0))(I − ηH∞)ky

∥∥∥∥∥
2

≤
K−1∑
k=0

η ·O(
√
nR exp(−B2/2)) ∥I − ηH∞∥k2 ∥y∥2

≤ η ·O(
√
nR exp(−B2/2))

K−1∑
k=0

(1− ηλ)k
√
n

= O

(
n
√
R exp(−B2/2)

λ

)
. (10)

By ∥Z(k)∥2 ≤ ∥Z(k)∥F ≤
√
2n, we get

∥T3∥2 =

∥∥∥∥∥
K−1∑
k=0

ηZ(k)e(k)

∥∥∥∥∥
2

≤
K−1∑
k=0

η
√
2n

(
k(1− ηλ/8)k−1ηn3/2O

(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

))

=
n

λ2
·O

(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

)
. (11)

Define T = η
∑K−1

k=0 (I − ηH∞)k. By Lemma A.2, we know ∥H(0)−H∞∥2 ≤

O(n exp(−B2/4)
√

log(n/δ)
m ) and this implies

∥T1∥22 =

∥∥∥∥∥
K−1∑
k=0

ηZ(0)(I − ηH∞)ky

∥∥∥∥∥
2

2

= ∥Z(0)Ty∥22
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= y⊤TZ(0)⊤Z(0)Ty

= y⊤TH(0)Ty

≤ y⊤TH∞Ty + ∥H(0)−H∞∥2 ∥T∥
2
2 ∥y∥

2
2

≤ y⊤TH∞Ty +O

(
n exp(−B2/4)

√
log(n/δ)

m

)(
η

K−1∑
k=0

(1− ηλ)k

)2

n

= y⊤TH∞Ty +O

(
n2 exp(−B2/4)

λ2

√
log(n/δ)

m

)
.

Let H∞ = UΣU⊤ be the eigendecomposition. Then

T = U

(
η

K−1∑
k=0

(I − ηΣ)k

)
U⊤ = U((I − (I − ηΣ)K)Σ−1)U⊤

⇒ TH∞T = U((I − (I − ηΣ)K)Σ−1)2ΣU⊤ = U(I − (I − ηΣ)K)2Σ−1U⊤ ⪯ UΣ−1U⊤ = (H∞)−1.

Thus,

∥T1∥22 =

∥∥∥∥∥
K−1∑
k=0

ηZ(0)(I − ηH∞)ky

∥∥∥∥∥
2

≤

√√√√y⊤(H∞)−1y +O

(
n2 exp(−B2/4)

λ2

√
log(n/δ)

m

)

≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)
. (12)

Finally, plugging in the bounds in Equation (9), Equation (12), Equation (10), and Equation (11),
we have

∥[W, b](K)− [W, b](0)∥F
= ∥vec([W, b](K))− vec([W, b](0))∥2

≤
√
y⊤(H∞)−1y +O

(
n

λ

(
exp(−B2/2) log(n/δ)

m

)1/4
)

+O

(
n
√
R exp(−B2/2)

λ

)

+
n

λ2
·O

(
exp(−B2/4)

√
log(n2/δ)

m
+R exp(−B2/2)

)
.

D PROBABILITY

Lemma D.1 (Bernstein’s Inequality). Assume Z1, . . . , Zn are n i.i.d. random variables with
E[Zi] = 0 and |Zi| ≤ M for all i ∈ [n] almost surely. Let Z =

∑n
i=1 Zi. Then, for all t > 0,

P[Z > t] ≤ exp

(
− t2/2∑n

j=1 E[Z2
j ] +Mt/3

)
≤ exp

(
−min

{
t2

2
∑n

j=1 E[Z2
j ]
,

t

2M

})
which implies with probability at least 1− δ,

Z ≤

√√√√2

n∑
j=1

E[Z2
j ] log

1

δ
+ 2M log

1

δ
.
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Lemma D.2 (Matrix Chernoff Bound, (Tropp et al., 2015)). Let X1, . . . , Xm ∈ Rn×n be m inde-
pendent random Hermitian matrices. Assume that 0 ⪯ Xi ⪯ L · I for some L > 0 and for all
i ∈ [m]. Let X :=

∑m
i=1 Xi. Then, for ϵ ∈ (0, 1], we have

P [λmin(X) ≤ ϵλmin(E[X])] ≤ n · exp(−(1− ϵ)2λmin(E[X])/(2L)).

Lemma D.3 ((Li & Shao, 2001, Theorem 3.1) with Improved Upper Bound for Gaussian)). Let
b > 0 and r > 0. Then,

exp(−b2/2) P
w∼N (0,1)

[|w| ≤ r] ≤ P
w∼N (0,1)

[|x− b| ≤ r] ≤ 2r · 1√
2π

exp(−(max{b− r, 0})2/2).

Proof. To prove the upper bound, we have

P
w∼N (0,1)

[|x− b| ≤ r] =

∫ b+r

b−r

1√
2π

exp(−x2/2) dx ≤ 2r · 1√
2π

exp(−(max{b− r, 0})2/2).

Lemma D.4 (Anti-concentration of Gaussian). Let Z ∼ N (0, σ2). Then for t > 0,

P[|Z| ≤ t] ≤ 2t√
2πσ

.

E THE BENEFIT OF CONSTANT INITIALIZATION OF BIASES

In short, the benefit of constant initialization of biases lies in inducing sparsity in activation and thus
reducing the per step training cost. This is the main motivation of our work on studying sparsity
from a deep learning theory perspective. Since our convergence shows that sparsity doesn’t change
convergence rate, the total training cost is also reduced.

To address the width’s dependence on B, our argument goes like follows. In practice, people
set up neural network models by first picking a neural network of some pre-chosen size and then
choose other hyper-parameters such as learning rate, initialization scale, etc. In our case, the hyper-
parameter is the bias initialization. Thus, the network width is picked before B. Let’s say we want
to apply our theoretical result to guide our practice. Since we usually don’t know the exact data
separation and the minimum eigenvalue of the NTK, we don’t have a good estimate on the exact
width needed for the network to converge and generalize. We may pick a network with width that
is much larger than needed (e.g. we pick a network of width Ω(n12) whereas only Ω(n4) is needed;
this is possible because the smallest eigenvalue of NTK can range from [Ω(1/n2), O(1)]). Also, it
is an empirical observation that the neural networks used in practice are very overparameterized and
there is always room for sparsification. If the network width is very large, then per step gradient
descent is very costly since the cost scales linearly with width and can be improved to scale linearly
with the number of active neurons if done smartly. If the bias is initialized to zero (as people usually
do in practice), then the number of active neurons is O(m). However, since we can sparsify the
neural network activation by non-zero bias initialization, the number of active neurons can scale
sub-linearly in m. Thus, if the neural network width we choose at the beginning is much larger than
needed, then we are indeed able to obtain total training cost reduction by this initialization. The
above is an informal description of the result proven in (Song et al., 2021a) and the message is spar-
sity can help reduce the per step training cost. If the network width is pre-chosen, then the lower
bound on network width m ≥ Ω̃(λ−4

0 n4 exp(B2)) in Theorem 3.1 can be translated into an upper

bound on bias initialization: B ≤ Õ(

√
log

λ4
0m
n4 ) if m ≥ Ω̃(λ−4

0 n4). This would be a more appro-
priate interpretation of our result. Note that this is different from how Theorem 3.1 is presented:
first pick B and then choose m; since m is picked later, m can always satisfy B ≤

√
0.5 logm and

m ≥ Ω̃(λ−4
0 n4 exp(B2)). Of course, we don’t know the best (largest) possible B that works but as

long as we can get some B to work, we can get computational gain from sparsity.

In summary, sparsity can reduce the per step training cost since we don’t know the exact width
needed for the network to converge and generalize. Our result should be interpreted as an upper
bound on B since the width is always chosen before B in practice.
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