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ABSTRACT

Electromagnetic Inverse Scattering Problems (EISP) seek to reconstruct relative
permittivity from scattered fields and are fundamental to applications like medical
imaging. This inverse process is inherently ill-posed and highly nonlinear, making
it particularly challenging, especially under sparse transmitter setups, e.g., with
only one transmitter. While recent machine learning-based approaches have shown
promising results, they often rely on time-consuming, case-specific optimization
and perform poorly under sparse transmitter setups. To address these limitations,
we revisit EISP from a data-driven perspective. The scarcity of transmitters leads to
an insufficient amount of measured data, which fails to capture adequate physical
information for stable inversion. Accordingly, we propose a fully end-to-end
and data-driven framework that predicts the relative permittivity of scatterers
from measured fields, leveraging data distribution priors to compensate for the
incomplete information from sparse measurements. This design enables data-driven
training and feed-forward prediction of relative permittivity while maintaining
strong robustness to transmitter sparsity. Extensive experiments show that our
method outperforms state-of-the-art approaches in reconstruction accuracy and
robustness. Notably, we demonstrate, for the first time, high-quality reconstruction
from a single transmitter. This work advances practical electromagnetic imaging
by providing a new, cost-effective paradigm to inverse scattering.

1 INTRODUCTION

Electromagnetic waves can penetrate object surfaces, making them essential for non-invasive imag-
ing (Geng et al.} 2024;|0O’Loughlin et al.l [2018). At the core of electromagnetic imaging lies the
Electromagnetic Inverse Scattering Problems (EISP), which seeks to reconstruct an object’s relative
permittivity from measured scattered electromagnetic field (Nikolova, [2011). By solving EISP, we
can accurately recover internal structures without physical intrusion (Song et al., [2005)), enabling a
range of scientific and industrial applications, such as safer and more cost-effective alternatives to
X-rays and MRI scans (Bevacqua et al.,[2021; O’ Loughlin et al., 2018]; [Nikolova, 2011). Typically,
EISP necessitate a large number of transmitters and receivers to acquire sufficient measurement data.
This requirement, however, leads to increased operational time and higher costs, thereby limiting the
practical applicability of electromagnetic imaging techniques (Leigsnering et al.,|2011). In contrast,
reducing the number of transmitters offers significant advantages, including lower costs and easier
deployment in constrained environments.(Baraniuk and Steeghs, [2007} |Anitori et al.,|2010)

However, the inherent ill-posed nature of EISP poses significant challenges to accurate reconstruc-
tion (Pan et al., [2011}|Chen, [2018}; |L1 et al., |2019; [Zhong et al., 2016} |Luo et al., 2024)), particularly
when only a limited number of transmitters are available. The scarcity of transmitters leads to
an insufficient amount of measured data, which fails to capture adequate physical information for
stable inversion. As a result, approaches relying solely on physical mechanisms(Slaney et al.,|1984;
Belkebir et al., 2005} |Chen, 2009} [Zhong and Chen, [2011)) often fail to achieve accurate recon-
struction. Conventional numerical methods such as backpropagation (BP) (Belkebir et al.l [2005),
generally fail to produce reliable reconstructions under such limited-data conditions. Recent machine
learning-based approaches like PGAN (Song et al., 2021 and Physics-Net (Liu et al.,[2022)) often
start with an initial solution derived from numerical methods, i.e., BP, and frame the problem as an
image-to-image translation task. With only a limited number of transmitters available, reliance on BP
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Figure 1: Comparison between our method and the previous state-of-the-art. Left: Img-Interiors
(Luo et al., |2024)) requires case-specific optimization to reconstruct the permittivity. In contrast, our
method is a data-driven framework that operates in an end-fo-end, feed-forward manner for solving
inverse scattering. Right: Our method yields more accurate reconstructions than Img-Interiors (Luo
et al.,|2024). It remains robust even with a single transmitter and achieves real-time inference with
over 70,000 speed-up.

becomes a critical bottleneck. When BP fails, these methods are unable to correct its errors, as they
are not fully end-to-end, ultimately leading to inaccurate reconstructions. The most recent method
Img-Interiors (Luo et al.| 2024)) integrates physical mechanisms into neural networks and performs
case-by-case optimization. However, in limited-transmitter scenarios, even after optimization has
converged, the resulting reconstructions may still diverge substantially from the ground truth (Fig. 2),
underscoring the intrinsic ambiguity of the inverse problem.

To address these limitations, we propose a fully end-to-end and data-driven framework that predicts
the relative permittivity of scatterers from measured fields, leveraging data distribution priors to
compensate for the scarcity of observational data. Specifically, our model takes the measured fields
and the spatial coordinate of a position as input and directly predicts the relative permittivity at that
location using Multilayer Perceptron (MLP)s, and is trained in a fully end-to-end manner against the
ground-truth data. Our approach bypasses traditional numerical methods like BP, thereby avoiding
the inherent constraints associated with conventional inversion techniques in limited-transmitter
scenarios and fully exploiting the advantages of data-driven learning. This simple yet effective design
enables efficient training across datasets and supports fast, feed-forward inference to achieve accurate
and stable reconstruction predictions.

Extensive experiments demonstrate that our method outperforms existing State-of-the-Art (SOTA)
methods on multiple benchmark datasets, especially under the challenging single-transmitter setting,
where all previous methods fail (Fig. 5). It generalizes well to diverse scenarios and can be naturally
extended to 3D scenes while maintaining high reconstruction accuracy. In summary, our contributions
are threefold:

1) We systematically analyze the difficulty of lacking physical information faced by EISP in the
setting of few transmitters, and point out that the missing information can be supplemented by data
distribution priors.

2) Based on our analysis, we propose a fully end-to-end and data-driven model that does not rely on
traditional numerical methods.

3) Extensive experiments show that our method outperforms existing SOTA approaches, especially
under the challenging single-transmitter setting, marking a concrete step toward cost-effective and
practical electromagnetic imaging solutions.
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2 RELATED WORK
2.1 ELECTROMAGNETIC INVERSE SCATTERING PROBLEMS (EISP)

Solving EISP is to determine the relative permittivity of the scatterers based on the scattered field
measured by the receivers, thereby obtaining internal imaging of the object. The primary challenges
of EISP arise from its nonlinearity, ill-posedness, and errors introduced by the discretization (Pan
et al.,|2011; (Chenl, 2018} |L1 et al., [2019; [Zhong et al., 2016} |Luo et al., 2024). Traditional methods
for solving EISP can be categorized into non-iterative (Slaney et al., 1984} |[Devaney, |1981; [Habashy
et al.l 1993 Belkebir et al.l 2005) and iterative (Chen), |2009; Zhong and Chen, 2011} Xu et al., 2017}
Habashy et al., {1994} \van den Berg et al., |1999) approaches. Non-iterative methods, such as the Born
approximation (Slaney et al.| |1984), the Eytov approximation (Devaney, |1981; [Habashy et al.| [1993)),
and the BP method (Belkebir et al., 2005)), solve nonlinear equations through linear approximations,
which inevitably lead to poor quality of the results. For better reconstruction quality, iterative
methods (Zhong and Chen| [2009; Chen, 2009; |Zhong and Chenl 2011} Xu et al., 2017; |Habashy et al.,
1994; jvan den Berg et al.| |1999; |Gao et al.,|2015) such as 2-fold Subspace Optimization Method
(SOM) (Zhong and Chenl 2009) and Gs SOM (Chen, [2009) are proposed. To further overcome the
ill-posedness of EISP, diverse regularization approaches and prior information have been widely
applied (Oliveri et al., ) 2017; |Shen et al., 2014} [Liu et al., |2018; |/Anselmi et al., 2018)). However, all of
these methods are not generalizable and can be time-consuming because of the iterative schemes (Liu
et al., 2022)).

2.2 MACHINE LEARNING FOR EISP

Recent studies shift to leverage neural networks to solve this problem and demonstrate promising
results (Geng et al.,|2021} |Li et al.,2024)). Some work (Wei and Chenl 2019; |Li et al., 2019} Zhang
et al., [2020; | Xu et al.L |2021; Sanghvi et al., 2019; Song et al., [2021}; |Liu et al., [2022) adopt a two-stage
strategy: they use non-iterative methods such as BP (Belkebir et al.,[2005) to generate initial estimates,
which are then refined using image-to-image neural networks. While these approaches offer a degree
of generalization, they are not end-to-end and remain dependent on BP initialization (Belkebir et al.,
2005), which becomes their bottleneck. When physical data are too insufficient to reconstruct the
scatterer, especially under single-transmitter settings, these approaches tend to “hallucinate” outputs
according to unreliable initialization rather than predict the scatterer based on measured field (see
. A more recent approach, Img-Interiors (Luo et al.,|[2024), integrates scattering mechanisms
into the network architecture and achieves accurate reconstructions. However, it requires case-specific
optimization, limiting generalization and making it vulnerable to local minima, often leading to
failure in complex settings (see and[6). Moreover, it fails under a single transmitter setting
even when the optimization may have already converged because of ambiguity. While our method
is also learning-based, it is an end-to-end feed-forward framework that simultaneously achieves
generalization through data-driven learning. As a result, it consistently outperforms SOTA methods,
particularly in the challenging single-transmitter setting where previous approaches fail.

3 REVISITING EISP

In this section, we revisit EISP and uncover its fundamental challenge: the inherent ill-posedness
stemming from information scarcity.

Preliminary. In the forward process, the transmitters produce incident electromagnetic field E! to the
scatterer, generating scattered electromagnetic field E°. EISP is the inverse problem of the forward
process. That is, for an unknown scatterer, we apply certain incident field E' to it, and measure the
scattered field E® as our input. Our goal is to reconstruct the relative permittivity €, throughout the
scatterer. For a detailed background introduction of the physical model of EISP, please refer to our

supplementary material (Appx. B).

Specifically, the incident field E' excites the induced current J. Using the method of moments (Pe-
terson et al.,|1998)), the total field E! for a given transmitter can be expressed as (Colton and Kress,
2013):

E'=E +G!.7J, 1)
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Figure 2: Difficulties that previous methods faced under a single-transmitter setting. (a) BP
cannot reconstruct the scatterer. (b) Physics-Net makes incorrect guesses. (c) Although the reconstuc-
tion result of Img-Interiors is consistent with the measured field, the reconstructed scatterer itself is
completely different from the ground truth.

where E! is a vector of length M2, and GY is a constant M? x M? matrix representing the discrete
free-space Green’s function in D. The induced current field J satisfies:

J = Diag(¢) - EY 2

where £ = €, — 1, Diag(&) represents a diagonal matrix whose leading diagonal consists of £. Then
J serves as a new source to emit E’. For NNV, receivers, the scattered field E* can be got through
E’ = G* - J, where G? is a constant N, x M? matrix representing the discrete Green’s function.
Since N, < M? in practice, reconstructing the induced current J from the scattered field E® is
ill-posed.

Reduction of measured data. EISP is fundamentally challenged by nonlinearity and ill-posedness,
especially when the amount of measured data is significantly reduced, such as under single-transmitter
settings. We divide previous work into three categories and systematically analyze the difficulties they
faced under this setting. (a) Conventional numerical approaches, such as BP (Belkebir et al.| 2005),
employ linear approximations, which limit their reconstruction quality. As shown in[Fig. 2| BP cannot
even reconstruct a rough shape of the scatterer. (b) Machine learning methods based on conventional
numerical approaches [Song et al.|(2021); Liu et al.|(2022)), such as Physics-Net. Although Physics-
Net can leverage data-driven training to compensate for missing physical information, its strong
dependency on BP initialization becomes a critical bottleneck. When BP fails, the model cannot
correct the error of BP because it is not fully end-to-end, resulting inaccurate reconstructions, as
shown in[Fig. 2] (c) Machine learning methods based on implicit functions, such as Img-Interiors (Luo
et al.,[2024). Img-Interiors reconstructs a scatterer through case-by-case optimization. As shown in
we use the scatterer reconstructed by Img-Interiors to simulate the scattered field, and the
result closely matches the measured field. However, the scatterer itself deviates significantly from
the ground truth, which shows the intrinsic ambiguity of the inverse problem. The core conclusion
is that the severe information deficit makes a direct solution to the inverse problem fundamentally
intractable. Consequently, any such attempt is bound to be fragile, highlighting the need for an
alternative paradigm.

4 METHOD
4.1 OVERVIEW

To address the aforementioned limitations, we introduce our end-to-end, data-driven framework
for EISP, as illustrated in Our method employs an MLP that takes space coordinates x and
corresponding scattered field measurements E* as input, and directly outputs the relative permittivity
€, at the specified locations. This approach effectively learns the mapping between scattered field E®
and relative permittivity €, through training on diverse scattering scenarios, thereby incorporating
essential data distribution priors to compensate for the lack of physical information caused by
insufficient measurements.

In the following, we detail our model architecture (Sec. 4.2), and the training losses (Sec. 4.3).
4.2 MODEL ARCHITECTURE

Based on the forward formulation of EISP in where the scattered field measurements serve as
input and the relative permittivity distribution represents the output, we design an end-to-end learning
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Figure 3: Overview of our method. Our pipeline is built around a MLP that serves as the inverse
solver. Given the scattered field measurements E* from all transmitters and receivers, along with
a spatial query x, the MLP directly predicts thee relative permittivity €,.(x). To enhance spatial
expressiveness, we apply positional encoding +(x) to the query position. During training, dashed
lines indicate the supervision signals applied.

framework that directly learns this complex nonlinear mapping. As illustrated in our approach
employs an MLP that approximates the inverse mapping from spatial coordinates and scattered field
data to the relative permittivity values, formulated as:

€-(x) = Fp(E*,v(x1)), x; € R?, A3

where x; represents the spatial coordinate, EE* denotes the scattered field measured by all receivers,
Fy(-) is an MLP with trainable parameters, and €,.(x;) is the predicted relative permittivity at the
corresponding position. Recall that in for a single transmitter, the scattered field E® is
discretized as a real-valued vector of dimension 2NV,., containing the real and imaginary parts of the
measurements from all IV, receivers. In the multiple transmitter configuration, E® is constructed by
combining the complex measurement data from all /V transmitters, resulting in a real-valued vector
of dimension 2N - N,. that represents the wave propagation and scattering behavior under diverse
illumination conditions provided by transmitters at different locations.

To enhance the model’s capacity to represent high-frequency features, we apply positional encoding to
the spatial coordinates x;, mapping them into a higher-dimensional Fourier feature space using the en-
coding function: y(x) = [sin(z), cos(z), .. .,sin(221z), cos(2~1z)], where the hyperparameter
Q) controls the spectral bandwidth.

The complete relative permittivity distribution €,. is reconstructed by sampling the MLP at all grid
points {x; ffl € = {FQ(ES,’Y(Xi)}gi.

4.3 TRAINING

Our training objective is defined by a single loss function designed to directly supervise the recon-
struction accuracy of the relative permittivity distribution. The loss is formulated as: £ = ||€, — €,.||%.
where €, denotes the predicted relative permittivity and €, represents the ground truth. By minimizing
this Mean Squared Error (MSE) loss between the predicted and true permittivity values, the model
learns to infer the material properties directly from the scattered field measurements, effectively
leveraging the data distribution priors to overcome the ill-posedness of the inverse problem. This
simplified loss function ensures stable and efficient training.

5 EXPERIMENTS

5.1 SETUP

Datasets. We train and test our method on standard benchmarks used for EISP following previous
work (Wei and Chen, |2019; Song et al., 2021} [Liu et al., [2022)). To enhance training efficiency and
model robustness, datasets that share identical transmitter and receiver configurations are combined
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Table 1: Quantitative comparison results with SOTA methods. For Circular and MNIST datasets,
we report results under two noise levels: 5% and 30%. The best results are shown in bold, and the
second-best results are underlined.

Method MNIST (5%) MNIST (30%) Circular (5%) Circular (30%) IF
MSE | SSIM 1 PSNR 1|MSE | SSIM 1 PSNR t|MSE | SSIM 1PSNR 1|MSE | SSIM 1PSNR 1/MSE | SSIM 1 PSNR 1
Number of Transmitters: N = 16 N =8/18
BP (2005) 0.177 0.719 16.43 |0.178 0.716 16.38 |0.052 0.905 27.41 |0.053 0.904 27.42 |0.190 0.779 16.19

2-fold SOM (2009) |0.154 0.757 20.93 |0.156 0.738 20.84 |0.031 0.917 3223 |0.038 0.889 30.63 | - -
Gs SOM (2009)  [0.072 0.923 28.31 |0.081 0.901 27.13 |0.023 0.946 35.40 |0.024 0.937 34.89 |0.184 0.790 17.00
BPS (2019} 0.093 0.909 25.00 |0.105 0.891 23.90 |0.027 0.963 33.00 [0.029 0.956 32.42 |0310 0.664 17.05
PGAN (2021} 0.084 0916 25.80 |0.091 0.910 2531 |0.026 0.966 35.56 |0.032 0.947 33.91 |0.121 0.926 24.78
Physics-Net (2022} [0.075 0.932 26.17 |0.093 0.906 24.58 |0.027 0.934 32.72 |0.030 0.927 32.08 |0.170 0.788 18.48
Img-Interiors (2024} 0.200 0.863 26.41 |0.336 0.760 19.01 |0.036 0.947 35.05 |0.047 0.932 32.62 |0.153 0.837 23.26

Ours 0.039 0.978 32.11 |0.050 0.966 29.91 | 0.020 0.965 36.92 |0.024 0.954 35.19 [0.094 0.916 24.89
Number of Transmitters: N = 1
BP (2005) 0.194 0.698 15.40 |0.194 0.696 15.40 |0.065 0.892 2530 |0.065 0.892 25.30 {0.199 0.770 16.29

2-fold SOM (2009) |0.432 0.556 12.49 | 0.828 0.382 9.45 |0.060 0.859 26.63 |0.157 0.639 20.07 - -
Gs SOM (2009) 0.460 0.598 15.31 |0.404 0.557 14.91 |0.046 0.888 29.62 |0.051 0.862 28.77 |0.192 0.779 16.66
BPS (2019) 0.189 0.774 18.75 |0.205 0.744 17.97 | 0.045 0.891 29.29 | 0.055 0.862 27.68 |0.348 0.669 16.18
PGAN (2021) 0.133 0.867 21.69 |0.153 0.830 20.41 |0.033 0.932 32.02 |0.040 0.914 29.94 |0.248 0.680 16.85
PhysicsNet (2022) |0.137 0.798 19.98 | 0.152 0.783 19.38 | 0.055 0.887 26.60 |0.056 0.890 26.48 |0.175 0.771 17.45
Img-Interiors (2024) 0.305 0.604 16.06 | 0.467 0.484 12.47 |0.096 0.855 26.19 |0.153 0.806 20.90 |0.305 0.705 17.34
Ours 0.085 0.921 26.09 | 0.127 0.862 22.56 |0.031 0.931 33.18 | 0.038 0.914 31.38 |0.128 0.908 24.19

into a unified training set. 1) Synthetic Circular-cylinder dataset (Circular) (Luo et al., 2024) is
synthetically generated comprising images of cylinders with random relative radius, number, and
location and permittivity. 2) Synthetic MNIST dataset (MNIST) (Deng, [2012)) contains grayscale
images of handwritten digits. For the two synthetic datasets, we follow previous work(Luo et al.|
2024; Deng|, |2012), we evaluate two levels of noise: 5% and 30%. 3) Real-world Institut Fresnel’s
database (IF) (Geffrin et al.,|2005)) contains three different dielectric scenarios, namely FoamDielExt,
FoamDiellnt, and FoamTwinDiel. 4) Synthetic 3D MNIST dataset (3D MNIST) (de la Iglesia Castro)
contains 3D data of handwritten digits. 5) 3D ShapeNet dataset (3D ShapeNet) (Wu et al., 2015)
contains 3D data of various shapes. For more details about datasets, please refer to[Appx. Cl

Baselines and Metrics. We maintain the same settings as in previous studies (Wei and Chen, 2019;
Song et al.| 2021 Sanghvi et al., |2019) to ensure a fair comparison. We compare our method with
three traditional methods and four deep learning-based approaches: 1) BP (Belkebir et al.,[2005): A
traditional non-iterative inversion algorithm. 2) 2-fold SOM (Zhong and Chen 2009): A traditional
iterative minimization scheme by using SVD decomposition. 3) Gs SOM (Chenl 2009): A traditional
subspace-based optimization method by decomposing the operator of Green’s function. 4) BPS (Wei
and Chen,2019): A CNN-based image translation method with an initial guess from the BP algorithm.
5) Physics-Net (Liu et al.l [2022): A CNN-based approach that incorporates physical phenomena
during training. 6) PGAN (Song et al.,2021): A CNN-based approach using a generative adversarial
network. 7) Img-Interiors (Liu et al.|2022)): An implicit approach optimized by forward calculation.
Following previous work (Liu et al.;[2022)), we evaluate the quantitative performance of our method
using PSNR (Wang and Bovik, [2009), SSIM (Wang et al.}|2004), and Relative Root-Mean-Square
Error (MSE) (Song et al., [2021}).

5.2 COMPARISON WITH SOTAS
5.2.1 MULTIPLE TRANSMITTER EVALUATION

We begin by comparing our method against prior approaches under the multiple-transmitter setting,
using both synthetic and real datasets for comprehensive evaluation. As shown in the upper part
of our method achieves comparable or superior performance to the SOTA in most cases,
demonstrating how our end-to-end training framework successfully leverage the data prior across
diverse data domains.

In addition, we present a qualitative comparison, as shown in[Fig. 4] Traditional methods such as
BP(Belkebir et al., 2005)), Gs SOM (Chen, [2009), and 2-fold SOM (Chen, |2009) are only capable
of recovering the coarse shape of the scatterer. BPS (Chen| [2018)) produces sharp edges, but the
reconstructed shapes are often inaccurate. PGAN (Song et al. 2021) achieves accurate shape
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Figure 4: Qualitative comparison under the multiple-transmitter setting. The results are obtained
with N = 16 transmitters and a noise level of 5%. Colors represent the values of the relative
permittivity.
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Figure 5: Qualitative comparison under the single-transmitter setting. Results are obtained with
N =1 transmitter and noise level of 5%. Colors represent the values of the relative permittivity.

recovery, yet introduces noticeable background artifacts. Img-Interiors (Luo et all [2024) can
generate high-quality reconstructions, but occasionally fails due to local optima, as it is based on an
iterative optimization process (see the last row). In contrast, our method produces accurate and clean
reconstructions across all cases, demonstrating both visual fidelity and robustness.

5.2.2 SINGLE TRANSMITTER EVALUATION

Furthermore, we investigate a highly challenging and practically important setting that has been
largely underexplored in previous work: performing EISP with a minimal number of transmitters.
Specifically, we consider the most extreme case, using only a single transmitter. As shown in the
lower part of our method significantly outperforms all previous approaches across all datasets
and noise levels. This remarkable performance under such constrained conditions underscores the
efficacy of our end-to-end training framework, which successfully encodes and leverages rich data
priors to achieve state-of-the-art results across diverse domains.
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Table 2: Ablation study of noise levels Table 3: Ablation study on training data size under
effects on MNIST under the multiple- the mutiple-transmitter setting. Noise levels (5%
transmitter setting. and 30%) in parentheses.
Noise Level MSE | SSIM?T PSNR® Data Size MNIST (5%) MNIST (30%)
5% 0.039 0978 32.11 MSE | SSIMt PSNR1|MSE | SSIMt PSNR+
10% 0.039 0.978 32.18 100% 0.039 0.978 32.11 [ 0.050 0.966 29.91
15% 0.043 0.973 31.30 75% 0.043 0974 31.63 | 0.059 0.956 28.77
20% 0.043 0974 31.34 50% 0.048 0.968 30.68 | 0.068 0.944 27.69
25% 0.046 0.970 30.59 25% 0.064 0.948 28.89 | 0.101 0.902 25.44
30% 0.050 0.966 29.91

To better understand this phenomenon, we present qualitative comparisons in Traditional meth-
ods such as BP(Belkebir et al.| [2005), Gs SOM (Chenl 2009), and 2-fold SOM (Chen} 2009) produce
only blurry reconstructions. Deep learning-based methods like BPS (Chenl, 2018), Physics-Net (Liu
et al.| 2022), and PGAN (Song et al.||2021) tend to “hallucinate” the digit, resulting in wrong shape
on the MNIST dataset. Img-Interiors (Luo et al.| 2024) fails to capture the fundamental morphology
of the scatterer, resulting in structurally inaccurate representations that deviate significantly from the
ground truth. Among all the methods, only ours can still produce reasonably accurate reconstructions
of the relative permittivity under such an extreme condition.

2-fold SOM Gs SOM Physics-Net PGAN Img-Interiors Ours GT

/21017

EEEEEE EE

Figure 6: Qualitative comparison under high noise setting. The results are obtained with N = 16
transmitters and a noise level of 30%. Colors represent the values of the relative permittivity.

5.3 ABLATION STUDY

Noise Robustness. To simulate real-world sensor noise and related perturbations, we evaluate the
robustness of the models by adding noise to the scattered field. Moving beyond simple binary testing,
we systematically assess the model’s performance across multiple noise levels ranging from 5% to
30% to examine its behavior in various noisy environments. The quantitative results presented in
demonstrate that our model exhibits smooth and gradual performance degradation as the noise
level increases, maintaining excellent reconstruction capability even under strong noise interference as
high as 30%. Qualitative visualizations in show that most baseline methods exhibit noticeable
artifacts or even complete failure under severe noise conditions, while our method remains robust and
preserves the essential structure of the target.

Ablation on Training Data Size. To investigate the dependency of model performance on training
data volume, we trained our model on varying scales of data from 100% down to 25% and evaluated
them on a complete test set. The quantitative results are presented in First, our model
demonstrates remarkable data efficiency, maintaining strong performance even when trained on
partial datasets. Second, the performance degradation becomes substantially more pronounced under
high-noise conditions. The performance penalty for data reduction is markedly severer in high-noise
scenarios. This pronounced contrast underscores that sufficient training data is crucial for the model
to learn robust features capable of countering strong noise interference.
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Figure 7: Qualitative comparison under the single-transmitter setting for 3D reconstruction on
3D MNIST dataset. The results are obtained with a single transmitter (N = 1). The voxel colors
represent the values of the relative permittivity.

________________________________________________________________________________________________________________________________________

Figure 8: Qualitative comparison under the single-transmitter setting for 3D reconstruction on
3D ShapeNet dataset. The results are obtained with a single transmitter (/N = 1). The voxel colors
represent the values of the relative permittivity.

5.4 RECONSTRUCTION ON 3D DATA

Setup and Metrics. Our method can be naturally extended to 3D scenarios. Following previous
work (Luo et al.,[2024), we employ the Synthetic 3D MNIST (de la Iglesia Castro) and extend to
3D ShapeNet (Wu et al., |2015) for training and testing. For evaluation, we adopt 3D versions of the
MSE (Song et al.l [2021) and Intersection over Union (IoU) as our metrics. Further details on the

datasets are provided in[Appx. C|

Results. We evaluate our method and Img-Interiors under limited-transmitter settings. Quantitative
results demonstrate the superiority of our approach: on 3D MNIST, our method achieves an MSE
of 0.120 and IoU of 0.769 with N = 1 transmitter, significantly outperforming Img-Interiors which
obtains an MSE of 0.372 and IoU of 0.094 under the same conditions. With NV = 6 transmitters, our
results further improve to MSE of 0.094 and IoU of 0.834. For the more complex 3D ShapeNet dataset
under N = 1 configuration, our method obtains an MSE of 0.064 and IoU of 0.762, showcasing
its generalization capability to diverse 3D structures. [Fig. T| provides a comprehensive comparison
of reconstruction quality and runtime between the two methods for both N = 1 and N = 6
configurations. [Fig. 7] and [Fig. 8| provide visual comparisons of additional 3D reconstruction results
on the 3DMNIST and 3DShapeNet datasets. These results show that our method maintains robustness
and generalizes effectively across geometrically complex 3D structures, representing significant
progress towards practical applications.

6 CONCLUSION

In this work, we propose a fully end-to-end data-driven framework for electromagnetic inverse
scattering that directly predicts relative permittivity from scattered field measurements. By leveraging
data distribution priors to compensate for the lack of physical information, our method demonstrates
state-of-the-art reconstruction accuracy and robustness, particularly in challenging single-transmitter
scenarios where existing methods fail. This work highlights the potential of data-driven approaches
to overcome the ill-posedness of inverse problems and provides a practical path toward cost-effective
electromagnetic imaging.

Limitations. While our method effectively handles sparse transmitter settings, it cannot deal with
different locations of receivers or transmitters, which remains an important direction for future work.
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7 STATEMENT

Ethics statement. This work does not involve any human subjects, or the use of sensitive data.
Therefore, no ethical approval was required for this study.

Reproducibility statement. We are committed to ensuring the reproducibility of our results. The
source code and all generated datasets used in this work will be released upon acceptance. Details
of the data generation process, experimental setup, hardware specifications and full hyperparameter
configurations are provided in To account for randomness, we report the mean and standard
deviation of performance metrics across multiple runs with different random seeds, as shown in
With the released code, data, and configuration files, all reported results can be reproduced
within a small variance.
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