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ABSTRACT

Many active learning and search approaches are intractable for industrial settings
with billions of unlabeled examples. Existing approaches, such as uncertainty
sampling or information density, search globally for the optimal examples to la-
bel, scaling linearly or even quadratically with the unlabeled data. However, in
practice, data is often heavily skewed; only a small fraction of collected data will
be relevant for a given learning task. For example, when identifying rare classes,
detecting malicious content, or debugging model performance, positive examples
can appear in less than 1% of the data. In this work, we exploit this skew in large
training datasets to reduce the number of unlabeled examples considered in each
selection round by only looking at the nearest neighbors to the labeled examples.
Empirically, we observe that learned representations can effectively cluster un-
seen concepts, making active learning very effective and substantially reducing
the number of viable unlabeled examples. We evaluate several selection strategies
in this setting on three large-scale computer vision datasets: ImageNet, OpenIm-
ages, and a proprietary dataset of 10 billion images from a large internet company.
For rare classes, active learning methods need as little as 0.31% of the labeled data
to match the average precision of full supervision. By limiting the selection strate-
gies to the immediate neighbors of the labeled data as candidates for labeling, we
process as little as 0.1% of the unlabeled data while achieving similar reductions
in labeling costs as the traditional global approach. This process of expanding the
candidate pool with the nearest neighbors of the labeled set can be done efficiently
and reduces the computational complexity of selection by orders of magnitude.

1 INTRODUCTION

Large-scale unlabeled datasets contain millions or billions of examples spread over a wide variety
of underlying concepts (Chelba et al., 2013; Zhu et al., 2015; Zhang et al., 2015; Wan et al., 2019;
Russakovsky et al., 2015; Kuznetsova et al., 2020; Thomee et al., 2016; Abu-El-Haija et al., 2016;
Caesar et al., 2019; Lee et al., 2019). Often, these massive datasets skew towards a relatively small
number of common concepts, such as cats, dogs, and people (Liu et al., 2019; Zhang et al., 2017;
Wang et al., 2017; Van Horn & Perona, 2017). Rare concepts, such as harbor seals, may only appear
in a small fraction of the data (less than 1%). However, in many settings, performance on these rare
concepts is critical. For example, harmful or malicious content may comprise a small percentage of
user-generated content, but it can have an outsize impact on the overall user experience (Wan et al.,
2019). Similarly, when debugging model behavior for safety-critical applications like autonomous
vehicles, or when dealing with representational biases in models, obtaining data that captures rare
concepts allows machine learning practitioners to combat blind spots in model performance (Karpa-
thy, 2018; Holstein et al., 2019; Ashmawy et al., 2019; Karpathy, 2020). Even a simple prediction
task like stop sign detection can be challenging given the diversity of real-world data. Stop signs
may appear in a variety of conditions (e.g., on a wall or held by a person), be heavily occluded, or
have modifiers (e.g., “Except Right Turns”) (Karpathy, 2020). While large-scale datasets are core to
addressing these issues, finding the relevant examples for these long-tail tasks is challenging.

Active learning and search have the potential to automate the process of identifying these rare, high
value data points significantly, but existing methods become intractable at this scale. Specifically,
the goal of active learning is to reduce the cost of labeling (Settles, 2012). To this end, the learn-
ing algorithm is allowed to choose which data to label based on uncertainty (e.g., the entropy of
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predicted class probabilities) or other heuristics (Settles, 2011; 2012; Lewis & Gale, 1994). Active
search is a sub-area focused on finding positive examples in skewed distributions (Garnett et al.,
2012). Because of a concentrated focus on labeling costs, existing techniques, such as uncertainty
sampling (Lewis & Gale, 1994) or information density (Settles & Craven, 2008), perform multiple
selection rounds and iterate over the entire unlabeled data to identify the optimal example or batch
of examples to label and scale linearly or even quadratically with the size of the unlabeled data.
Computational efficiency is becoming an impediment as the size of datasets and model complexities
have increased (Amodei & Hernandez, 2018). Recent work has tried to address this problem with
sophisticated methods to select larger and more diverse batches of examples in each selection round
and reduce the total number of rounds needed to reach the target labeling budget (Sener & Savarese,
2018; Kirsch et al., 2019; Coleman et al., 2020; Pinsler et al., 2019; Jiang et al., 2018). Neverthe-
less, these approaches still scan over all of the examples to find the optimal examples to label in
each round and can be intractable for large-scale unlabeled datasets. For example, running a single
inference pass over 10 billion images with ResNet-50 (He et al., 2016) would take 38 exaFLOPs.

In this work, we propose Similarity search for Efficient Active Learning and Search (SEALS) to
restrict the candidates considered in each selection round and vastly reduce the computational com-
plexity of active learning and search methods. Empirically, we find that learned representations
from pre-trained models can effectively cluster many unseen and rare concepts. We exploit this la-
tent structure to improve the computational efficiency of active learning and search methods by only
considering the nearest neighbors of the currently labeled examples in each selection round. This
can be done transparently for many selection strategies making SEALS widely applicable. Finding
the nearest neighbors for each labeled example in unlabeled data can be performed efficiently with
sublinear retrieval times (Charikar, 2002) and sub-second latency on billion-scale datasets (Johnson
et al., 2017) for approximate approaches. While constructing the index for similarity search requires
at least a linear pass over the unlabeled data, this computational cost is effectively amortized over
many selection rounds or other applications. As a result, our SEALS approach enables selection
to scale with the size of the labeled data rather than the size of the unlabeled data, making active
learning and search tractable on datasets with billions of unlabeled examples.

We empirically evaluated SEALS for both active learning and search on three large scale computer
vision datasets: ImageNet (Russakovsky et al., 2015), OpenImages (Kuznetsova et al., 2020), and a
proprietary dataset of 10 billion images from a large internet company. We selected 611 concepts
spread across these datasets that range in prevalence from 0.203% to 0.002% (1 in 50,000) of the
training examples. We evaluated three selection strategies for each concept: max entropy uncertainty
sampling (Lewis & Gale, 1994), information density (Settles & Craven, 2008), and most-likely
positive (Warmuth et al., 2002; 2003; Jiang et al., 2018). Across datasets, selection strategies, and
concepts, SEALS achieved similar model quality and nearly the same recall of the positive examples
as the baseline approaches, while improving the computational complexity by orders of magnitude.
On ImageNet with a budget of 2,000 binary labels per concept (˜0.31% of the unlabeled data),
all baseline and SEALS approaches were within 0.011 mAP of full supervision and recalled over
50% of the positive examples. On OpenImages, SEALS reduced the candidate pool to 1% of
the unlabeled data on average while remaining within 0.013 mAP and 0.1% recall of the baseline
approaches. On the proprietary dataset with 10 billion images, SEALS needed an even smaller
fraction of the data, about 0.1%, to match the baseline, which allowed SEALS to run on a single
machine rather than a cluster. To the best of our knowledge, no other works have performed active
learning at this scale. We also applied SEALS to the NLP spoiler detection dataset Goodreads (Wan
et al., 2019), where it achieved the same recall as the baseline approaches while only considering
less than 1% of the unlabeled data. Together, these results demonstrate that SEALS’ improvements
to computational efficiency make active learning and search tractable for even billion-scale datasets.

2 RELATED WORK

Active learning’s iterative retraining combined with the high computational complexity of deep
learning models has led to significant work on computational efficiency (Sener & Savarese, 2018;
Kirsch et al., 2019; Pinsler et al., 2019; Coleman et al., 2020; Yoo & Kweon, 2019; Mayer & Tim-
ofte, 2020; Zhu & Bento, 2017). One branch of recent work has focused on selecting large batches
of data to minimize the amount of retraining and reduce the number of selection rounds necessary
to reach a target budget (Sener & Savarese, 2018; Kirsch et al., 2019; Pinsler et al., 2019). These
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approaches introduce novel techniques to avoid selecting highly similar or redundant examples and
ensure the batches are both informative and diverse. In comparison, our work aims to reduce the
number of examples considered in each selection round and complements existing work on batch
active learning. Many of these approaches sacrifice computational complexity to ensure diversity,
and their selection methods can scale quadratically with the size of the unlabeled data. Combined
with our method, these selection methods scale with the size of the labeled data rather than the
unlabeled data. Outside of batch active learning, other work has tried to improve computational
efficiency by either using much smaller models as cheap proxies during selection (Yoo & Kweon,
2019; Coleman et al., 2020) or by generating examples (Mayer & Timofte, 2020; Zhu & Bento,
2017). Using a smaller model reduces the amount of computation per example, but unlike our ap-
proach, it still requires making multiple passes over the entire unlabeled pool of examples. The
generative approaches (Mayer & Timofte, 2020; Zhu & Bento, 2017), however, enable sub-linear
runtime complexity like our approach. Unfortunately, they struggle to match the label-efficiency of
traditional approaches because the quality of the generated examples is highly variable.

Active search is a sub-area of active learning that focuses on highly skewed class distributions (Gar-
nett et al., 2012; Jiang et al., 2017; 2018; 2019). Rather than optimizing for model quality, active
search aims to find as many examples from the minority class as possible. Prior work has focused
on applications such as drug discovery, where the dataset sizes are limited, and labeling costs are ex-
ceptionally high. Our work similarly focuses on skewed distributions. However, we consider novel
active search settings in image and text where the available unlabeled datasets are much larger, and
computational efficiency is a significant bottleneck.

k nearest neighbor (k-NN) classifiers are popular models in active learning and search because
they do not require an explicit training phase (Joshi et al., 2012; Wei et al., 2015; Garnett et al.,
2012; Jiang et al., 2017; 2018). The prediction and score for each unlabeled example can be up-
dated immediately after each new batch of labels. In comparison, our SEALS approach uses k-NN
algorithms for similarity search to create and expand the candidate pool and not as a classifier. This
is an important but subtle difference. While prior work avoids expensive training by using k-NN
classifiers, these approaches still require evaluating all of the unlabeled examples, which can still be
prohibitively expensive on large-scale datasets like the ones we consider here. SEALS targets the
selection phase rather than training, presenting a novel and complementary approach.

3 METHODS

In this section, we outline the problems of active learning (Section 3.1) and search (Section 3.2)
formally as well as the selection methods we accelerate using SEALS. For both, we examine the
pool-based setting, where all of the unlabeled data is available at once, and examples are selected in
batches to improve computational efficiency, as mentioned above. Then in Section 3.3, we describe
our SEALS approach and how it further improves computational efficiency in both settings.

3.1 ACTIVE LEARNING

Pool-based active learning is an iterative process that begins with a large pool of unlabeled data
U = {x1, . . . ,xn}. Each example is sampled from the space X with an unknown label from the
label space Y = {1, . . . , C} as (xi, yi). We additionally assume a feature extraction function Gz to
embed each xi as a latent variable Gz(xi) = zi and that the C concepts are unequally distributed.
Specifically, there are one or more valuable rare concepts R ⊂ C that appear in less than 1%
of the unlabeled data. For simplicity, we frame this as |R| binary classification problems solved
independently rather than 1 multi-class classification problem with |R| concepts. Initially, each
rare concept has a small number of positive examples and several negative examples that serve as a
labeled seed set L0

r . The goal of active learning is to take this seed set and select up to a budget of T
examples to label that produce a model ATr that achieves low error. For each round t in pool-based
active learning, the most informative examples are selected according to the selection strategy φ
from a pool of candidate examples Pr in batches of size b and labeled, as shown in Algorithm 1.

For the baseline approach, Pr = {Gz(x) | x ∈ U}, meaning that all the unlabeled examples are
considered to find the global optimal according to φ. Between each round, the model Atr is trained
on all of the labeled data Ltr, allowing the selection process to adapt.
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In this paper, we considered max entropy (MaxEnt) uncertainty sampling (Lewis & Gale, 1994):

φMaxEnt(z) = −
∑
ŷ

P (ŷ|z;Ar) logP (ŷ|z;Ar)

and information density (ID) (Settles & Craven, 2008):

φID(z) = φMaxEnt(z)×

 1

|Pr|
∑

zp∈Pr

sim(z, zp)

β

where sim(z, zp) is the cosine similarity of the embedded examples and β = 1. Note that for bi-
nary classification, max entropy is equivalent to least confidence and margin sampling, which are
also popular criteria for uncertainty sampling (Settles, 2009). While max entropy uncertainty sam-
pling only requires a linear pass over the unlabeled data, ID scales quadratically with |U | because
it weights each example’s informativeness by its similarity to all other examples. To improve com-
putational performance, the average similarity score for each example can be cached after the first
selection round, so subsequent rounds scale linearly. This optimization only works whenGz is fixed
and would not apply to dynamic similarity calculations like those in Sener & Savarese (2018).

We explored the greedy k-centers approach from Sener & Savarese (2018) but found that it never
outperformed random sampling for our experimental setup. Unlike MaxEnt and ID, k-centers does
not consider the predicted labels. It tries to achieve high coverage over the entire candidate pool, of
which rare concepts make up a small fraction by definition, making it ineffective for our setting.

Algorithm 1 BASELINE APPROACH

Input: unlabeled data U , labeled seed set
L0
r , feature extractor Gz , selection strategy

φ(·), batch size b, labeling budget T

1: Lr = {(Gz(x), y) | (x, y) ∈ L0
r}

2: Pr = {Gz(x) | x ∈ U and (x, ·) 6∈ L0
r}

3: repeat
4: Ar = train(Lr)
5: for 1 to b do
6: z∗ = argmaxz∈Pr

φ(z)

7: Lr = Lr ∪ {(z∗, label(x∗))}
8: Pr = Pr \ {z∗}
9: end for

10: until |Lr| = T

Algorithm 2 SEALS APPROACH

Input: unlabeled data U , labeled seed set
L0
r , feature extractor Gz , selection strategy

φ(·), batch size b, labeling budget T , k-
nearest neighbors implementation N (·, ·)

1: Lr = {(Gz(x), y) | (x, y) ∈ L0
r}

2: Pr = ∪(z,y)∈Lr
N (z, k)

3: repeat
4: Ar = train(Lr)
5: for 1 to b do
6: z∗ = argmaxz∈Pr

φ(z)

7: Lr = Lr ∪ {(z∗, label(x∗))}
8: Pr = (Pr \ {z∗}) ∪N (z∗, k)
9: end for

10: until |Lr| = T

3.2 ACTIVE SEARCH

Active search is closely related to active learning, so much of the formalism from Section 3.1 carries
over. The critical difference is that rather than selecting examples to label that minimize error, the
goal of active search is to maximize the number of examples from the target concept r, expressed
with the natural utility function u(Lr) =

∑
(x,y)∈Lr

1{y = r}). As a result, different selection
strategies are favored, but the overall algorithm is the same as Algorithm 1.

In this paper, we consider an additional selection strategy to target the active search setting, most-
likely positive (MLP) (Warmuth et al., 2002; 2003; Jiang et al., 2018):

φMLP(z) = P (r|z;Ar)

Because active learning and search are similar, we evaluate all the selection criteria from Sections 3.1
and 3.2 in terms of both the error the model achieves and the number of positive examples.

4



Under review as a conference paper at ICLR 2021

3.3 SIMILARITY SEARCH FOR EFFICIENT ACTIVE LEARNING AND SEARCH (SEALS)

In this work, we propose SEALS to accelerate the inner loop of active learning and search by
restricting the candidate pool of unlabeled examples. To apply SEALS, we use an efficient method
for similarity search of the embedded examples (Charikar, 2002; Johnson et al., 2017) and make two
modifications to the baseline approach, as shown in Algorithm 2:

1. The candidate pool Pr is restricted to the nearest neighbors of the labeled examples.

2. After every example is selected, we find its k nearest neighbors and update Pr.

Computational savings. Restricting the candidate pool Pr to the k nearest neighbors of the labeled
examples means we only apply the selection strategy to at most k|Lr| examples. This can be done
transparently for many selection strategies making it applicable to a wide range of active learning
and search methods, even beyond the ones considered here. Finding the k nearest neighbors for each
newly labeled example adds overhead, but this can be calculated efficiently with sublinear retrieval
times (Charikar, 2002) and sub-second latency on billion-scale datasets (Johnson et al., 2017) for
approximate approaches. As a result, the computational complexity of each selection round scales
with the size of the labeled dataset rather than the unlabeled dataset. Excluding the retrieval times
for the k nearest neighbors, the computational savings from SEALS are directly proportional to
the pool size reduction for φMaxEnt and φMLP, which is lower bounded by |U |/k|Lr|. For φID, the
average similarity score for each example only needs to be computed once when the example is first
selected. This caching means the first round scales quadratically with |U | and subsequent rounds
scale linearly for the baseline approach. With SEALS, each selection round scales according to
O((1 + bk)|Pr|) because the similarity scores are calculated as examples are selected rather than
all at once. The resulting computational savings of SEALS varies with the labeling budget T as the
upfront cost of the baseline amortizes. Nevertheless, for large-scale datasets with millions or billions
of examples, performing that first quadratic round for the baseline is prohibitively expensive.

Index construction. Generating the embeddings and indexing the data can be expensive and slow,
requiring at least a linear pass over the unlabeled data. However, this cost is effectively amortized
over many selection rounds, concepts, or other applications. Similarity search is a critical workload
for information retrieval and powers many applications, including recommendation. Increasingly,
embeddings from deep learning models are being used (Babenko et al., 2014; Babenko & Lempitsky,
2016; Johnson et al., 2017). As a result, the embeddings and index can be generated once using a
generic model trained in a weak-supervision or self-supervision fashion and reused, making our
approach just one of many applications using the index. Alternatively, if the data has already been
passed through a predictive system (for example, to tag or classify uploaded images), the embedding
could be captured and indexed at inference to avoid additional costs.

4 RESULTS

We applied SEALS to three selection strategies and performed active learning and search on three
datasets: ImageNet (Russakovsky et al., 2015), OpenImages (Kuznetsova et al., 2020), and a propri-
etary dataset of 10 billion images. Section 4.1 details the experimental setup for each dataset and the
inputs used for both the baseline approach (Algorithm 1) and our proposed method, SEALS (Algo-
rithm 2). Sections 4.2 and 4.3 present the empirical results for active learning and search. Section 4.4
explores the structure of the concepts through the nearest neighbor graphs and embeddings.

Across selection strategies, datasets, and concepts, SEALS using ResNet-50 (He et al., 2016) em-
beddings performed similarly to the baseline while only considering a fraction of the unlabeled data
U in the candidate pool for each concept Pr. For MLP and MaxEnt, the smaller candidate pool from
SEALS sped-up the selection runtime by over 180× on OpenImages. This allowed us to run active
learning and search efficiently on an industrial scale dataset with 10 billion images. The improve-
ments were even larger for information density. On ImageNet, SEALS dropped the time for the
first selection round from over 75 minutes to 1.5 seconds, over a 3000× improvement. On OpenIm-
ages, the baseline for information density ran for over 24 hours without completing a single round,
while SEALS took less than 3 minutes to perform 19 rounds. We observed similar results with self-
supervised embeddings using SimCLR (Chen et al., 2020) for ImageNet (Appendix A.3) and using
SentenceBERT (Reimers & Gurevych, 2019) for Goodreads spoiler detection (Appendix A.8).
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Table 1: Summary of datasets

Number of
Concepts (|R|)

Embedding
Model (Gz)

Number of
Examples (|U |)

Fraction Positive(∑
1{y=r}
|U |

)
ImageNet (Russakovsky et al., 2015) 450 ResNet-50 (He et al., 2016)

(500 classes) 639,906 0.114-0.203%

OpenImages (Kuznetsova et al., 2020) 153 ResNet-50 (He et al., 2016)
(1000 classes) 6,816,296 0.002-0.088%

10B images (proprietary) 8 ResNet-50 (He et al., 2016)
(1000 classes) 10,094,719,767 -

4.1 EXPERIMENTAL SETUP

Across all datasets and selection strategies, we followed the same general procedure for both active
learning and search. Because we are interested in rare concepts, we kept the number of initial pos-
itive examples small. We evaluated three settings, with 5, 20, and 50 positives, but only included
the results with the smallest size in this section. The others are shown in Appendix A.1. For each
setting, negative examples were randomly selected at a ratio of 19 negative examples to every posi-
tive example to form the seed set L0

r . The slightly higher number of negatives in the initial seed set
improved average precision on the validation set across all three datasets. The batch size b for each
selection round was the same as the size of the initial seed set. For the seed set of 5 positive and 95
negative examples shown below, b was 100, and the labeling budget T was 2,000 examples.

As the binary classifier for each concept Ar, we used logistic regression trained on the embedded
examples. For active learning, we calculated average precision on the test data for each binary
concept classifier after each selection round. For active search, we count the number of positive
examples labeled so far. We take the mean average precision (mAP) and number of positives across
concepts, run each experiment 5 times, and report the mean and standard deviation.

For similarity search, we used locality-sensitive hashing (LSH) (Charikar, 2002) implemented in
Faiss (Johnson et al., 2017) with Euclidean distance for all datasets aside from the 10 billion images
dataset. This simplified our implementation, so the index could be created quickly and independently
for each concept and configuration, allowing experiments to run in parallel trivially. However, re-
trieval times for this approach were not as fast as Johnson et al. (2017) and made up a larger part of
the overall active learning loop. In practice, the search index can be heavily optimized and tuned for
the specific data distribution, leading to computational savings closer to the improvements described
in Section 3.3 and differences in the “Selection” portion of the runtimes in Table 2.

We split the data, selected concepts, and created embeddings as detailed below and summarized in
Table 1. Note that our approach does not constrain the choice ofGz , which allows for many network
architectures. As representations continue to improve with new self-supervision, generative, or
transfer learning techniques, SEALS is still applicable and performance will also likely improve.

ImageNet (Russakovsky et al., 2015) has 1.28 million training images spread over 1000 classes.
To simulate rare concepts, we split the data in half, using 500 classes to train the feature extractor
Gz and treating the other 500 classes as unseen concepts. For Gz , we used ResNet-50 but added a
bottleneck layer before the final output to reduce the dimension of the embeddings to 256. We kept
all of the other training hyperparameters the same as in He et al. (2016). We extracted features from
the bottleneck layer and applied l2 normalization. In total, the 500 unseen concepts had 639,906
training examples that served as the unlabeled pool. We used 50 concepts for validation, leaving the
remaining 450 concepts for our final experiments. The number of examples for each concept varied
slightly, ranging from 0.114-0.203% of |U |. The 50,000 validation images were used as the test set.

OpenImages (Kuznetsova et al., 2020) has 7.34 million images with human-verified labels spread
over 19,958 classes, taken as an unbiased sample from Flickr. However, only 6.82 million images
were still available in the training set at the time of writing. As a feature extractor, we took ResNet-
50 pre-trained on all of ImageNet and used the l2 normalized output from the bottleneck layer.
As rare concepts, we randomly selected 200 classes with between 100 to 6,817 positive training
examples. We reviewed the selected classes and removed 47 classes that overlapped with ImageNet.
The remaining 153 classes appeared in 0.002-0.088% of the data. We used the same hyperparameters
as the ImageNet experiments and the OpenImages predefined test split for evaluation.
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Figure 1: Active learning and search on ImageNet (top) and OpenImages (bottom). Across datasets
and strategies, SEALS with k = 100 performed similarly to the baseline approach in terms of both
the error the model achieved for active learning (left) and the recall of positive examples for active
search (right), while only considering a fraction of the data U (middle).

10 billion (10B) images from a large internet company were used to test SEALS’ scalability. For the
feature extractor, we used the same pre-trained ResNet-50 model as the OpenImages experiments.
We also selected 8 additional classes from OpenImages as rare concepts: rat, sushi, bowling, beach,
hawk, cupcake, and crowd. This allowed us to use the predefined test split from OpenImages for
evaluation. Unlike the other datasets, we hired annotators to label images as they were selected and
used a proprietary index to achieve low latency retrieval times to capture a real-world setting.

4.2 ACTIVE LEARNING

Across datasets and selection strategies, SEALS performed similarly to the baseline approaches that
considered all of the unlabeled data in the candidate pool, as shown in Figures 1 and 2.

ImageNet. With a labeling budget of 2,000 examples per concept (˜0.31% of |U |), all baseline and
SEALS approaches (k = 100) were within 0.011 mAP of the 0.699 mAP achieved with full supervi-
sion. In contrast, random sampling (Random-All) only achieved 0.436 mAP. MLP-All, MaxEnt-All,
and ID-All achieved mAPs of 0.693, 0.695, and 0.688, respectively, while the SEALS equivalents
were all within 0.001 mAP at 0.692, 0.695, and 0.688 respectively and considered less than 7% of
the unlabeled data. The resulting selection runtime for MLP-SEALS and MaxEnt-SEALS dropped
by over 25×, leading to a 3.6× speed-up overall (Table 2). The speed-up was even larger for ID-
SEALS, ranging from about 45× at 2,00 labels to 3000× at 200 labels. Even at a per-class level, the
results were highly correlated with Pearson correlation coefficients of 0.9998 or more (Figure 10a
in the Appendix). The reduced skew from the nearest neighbor expansion of the initial seed set only
accounted for a small part of the improvement, as Random-SEALS achieved an mAP of 0.498.

OpenImages. The gap between the baseline approaches and SEALS widened slightly for OpenIm-
ages. At 2,000 labels per concept (˜0.029% of |U |), MaxEnt-All and MLP-All achieved 0.399 and
0.398 mAP, respectively, while MaxEnt-SEALS and MLP-SEALS both achieved 0.386 mAP and
considered less than 1% of the data. This sped-up the selection time by over 180× and the total time
by over 3×. Increasing k to 1,000 significantly narrowed this gap for MaxEnt-SEALS and MLP-
SEALS, improving mAP to 0.395, as shown in the Appendix (Figure 7). Moreover, SEALS made
ID tractable on OpenImages by reducing the candidate pool to 1% of the unlabeled data, whereas
ID-All ran for over 24 hours in wall-clock time without completing a single round (Table 2).
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Table 2: Wall clock runtimes for varying selection strategies on ImageNet and OpenImages. The last
3 columns break the total time down into 1) the time to apply the selection strategy to the candidate
pool, 2) the time to find the k nearest neighbors (k-NN) for the newly labeled examples, and 3)
the time to train logistic regression on the currently labeled examples. Despite using a simple LSH
index for similarity search, SEALS substantially improved runtimes across datasets and strategies.

Time Breakdown (seconds)

Dataset Budget T Strategy φ mAP/AUC Recall
(%)

Pool Size
(%)

Total Time
(seconds) Selection k-NN Training

ImageNet 2,000 MaxEnt-All 0.695 57.2 100.0 45.23 44.65 - 0.59
MaxEnt-SEALS 0.695 56.9 6.6 12.49 1.73 10.27 0.50
MLP-All 0.693 74.5 100.0 43.32 42.75 - 0.57
MLP-SEALS 0.692 74.2 6.0 12.03 1.48 9.94 0.63
ID-All 0.688 50.8 100.0 4654.59 4653.55 - 1.05
ID-SEALS 0.688 50.9 6.9 104.57 94.22 9.76 0.60

1,000 ID-All 0.646 26.3 100.0 4620.04 4619.78 - 0.28
ID-SEALS 0.654 27.8 4.7 36.66 31.95 4.56 0.17

500 ID-All 0.586 12.5 100.0 4602.64 4602.57 - 0.09
ID-SEALS 0.601 13.5 3.2 9.75 7.75 1.95 0.05

200 ID-All 0.506 4.7 100.0 4588.76 4588.73 - 0.04
ID-SEALS 0.511 4.8 2.0 1.53 1.03 0.49 0.02

OpenImages 2,000 MaxEnt-All 0.399 35.0 100.0 295.20 294.78 - 0.42
MaxEnt-SEALS 0.386 35.1 0.8 80.61 1.56 78.63 0.43
MLP-All 0.398 35.1 100.0 285.27 284.88 - 0.40
MLP-SEALS 0.386 35.1 0.8 82.18 1.48 80.27 0.44
ID-All - - 100.0 >24 hours >24 hours - -
ID-SEALS 0.359 29.3 0.9 129.79 48.98 80.40 0.41

10B images. Despite the unprecedented scale and limited pool size, SEALS performed similarly
to the baseline approaches that scanned all 10 billion images. At a budget of 1,500 labels, MaxEnt-
SEALS (k=10K) achieved a similar mAP to the baseline (0.504 vs. 0.508 mAP), while considering
only about 0.1% of the data. This reduction allowed MaxEnt-SEALS to finish selection rounds
in seconds on a single 24-core machine, while MaxEnt-All took minutes on a cluster with tens of
thousands of cores. MLP-SEALS performed poorly at this scale because, for any image, there are
likely many redundant or near-duplicate examples that provide little additional value.
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Figure 2: Active learning and search on a proprietary dataset of 10 billion images. Across strategies,
SEALS with k = 10, 000 performed similarly to the baseline approach in terms of both the error
the model achieved for active learning (left) and the recall of positive examples for active search
(right), while only considering a fraction of the data U (middle).

4.3 ACTIVE SEARCH

As shown in Figures 1 and 2, SEALS recalled nearly the same number of positive examples as the
baseline approaches did for all of the considered concepts, datasets, and selection strategies.

ImageNet. Unsurprisingly, MLP-All and MLP-SEALS significantly outperformed all of the other
selection strategies for active search. At 2,000 labeled examples per concept, both approaches re-
called over 74% of the positive examples for each concept at 74.5% and 74.2% recall, respectively.
MaxEnt-All and MaxEnt-SEALS had a similar gap of 0.3%, labeling 57.2% and 56.9% of posi-
tive examples, while ID-All and ID-SEALS were even closer with a gap of only 0.1% (50.8% vs.
50.9%). Nearly all of the gains in recall are due to the selection strategies rather than the reduced
skew in the initial seed, as Random-SEALS increased the recall by less than 1.0% over Random-All.
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(a) ImageNet
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(b) OpenImages

Figure 3: Measurements of the latent structure of unseen concepts in ImageNet (left) and OpenIm-
ages (right). Across datasets, the k-nearest neighbor graph of unseen concepts was well connected,
forming large connected components (top) for even moderate values of k. The components were
tightly packed, leading to short paths between examples (bottom).

OpenImages. The gap between the baseline approaches and SEALS was even closer on OpenIm-
ages despite considering a much smaller fraction of the overall unlabeled pool. MLP-All, MLP-
SEALS, MaxEnt-SEALS, and MaxEnt-All were all within 0.1% with ˜35% recall at 2,000 labels
per concept. ID-SEALS had a recall of 29.3% but scaled nearly as well as the linear approaches.

10B images. SEALS performed as well as the baseline approach despite considering less than 0.1%
of the data and collected 2 orders of magnitude more positive examples than random sampling.

4.4 LATENT STRUCTURE OF UNSEEN CONCEPTS

To better understand why and when SEALS works, we analyzed the nearest neighbor graph across
concepts and values of k. Figure 3 shows the cumulative distribution functions (CDF) for the largest
connected component within each concept and the average shortest paths between examples in that
component. The 10B images dataset was excluded because only a few thousand examples were
labeled. The largest connected component gives a sense of how much of the concept SEALS can
reach, while the average shortest path serves as a proxy for how long it will take to explore.

In general, SEALS performed better for concepts that formed larger connected components and had
shorter paths between examples (Figure 11 in the Appendix). For most concepts in ImageNet, the
largest connected component contained the majority of examples, and the paths between examples
were very short. These tight clusters explain why so few examples were needed to learn accurate
binary concept classifiers, as shown in Section 4.2, and why SEALS recovered ˜74% of positive
examples on average while only labeling ˜0.31% of the data. If we constructed the candidate pool
by randomly selecting examples, mAP and recall would drop for all strategies (Appendix A.5). The
concepts were so rare that the randomly chosen examples were not close to the decision boundary.
For OpenImages, rare concepts were more fragmented, but each component was fairly tight, leading
to short paths between examples. On a per-class level, concepts like “monster truck” and “black-
berry” performed much better than generic concepts like “electric blue” and “meal” that were more
scattered (Appendix A.6 and A.7). This fragmentation partly explains the gap between SEALS and
the baselines in Section 4.2, and why increasing k closed it. However, even for small values of k,
there were significant gains over random sampling, as shown in Figures 6 and 7 in the Appendix.

5 CONCLUSION

In this work, we introduced Similarity search for Efficient Active Learning and Search (SEALS)
as a simple approach to accelerate active learning and search that can be applied to a wide range of
existing algorithms. SEALS restricted the candidate pool for labeling to the nearest neighbors of the
currently labeled set instead of scanning over all of the unlabeled data. Across three large datasets,
three selection strategies, and 611 concepts, we found that SEALS achieved similar model quality
and recall of positive examples while improving computational efficiency by orders of magnitude.
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Improving fairness in machine learning systems: What do industry practitioners need? In Pro-
ceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–16, 2019.

Shali Jiang, Gustavo Malkomes, Geoff Converse, Alyssa Shofner, Benjamin Moseley, and Roman
Garnett. Efficient nonmyopic active search. In Doina Precup and Yee Whye Teh (eds.), Proceed-
ings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pp. 1714–1723, International Convention Centre, Sydney, Australia,
06–11 Aug 2017. PMLR. URL http://proceedings.mlr.press/v70/jiang17d.
html.

Shali Jiang, Gustavo Malkomes, Matthew Abbott, Benjamin Moseley, and Roman Garnett. Efficient
nonmyopic batch active search. In Advances in Neural Information Processing Systems, pp. 1099–
1109, 2018.

10

https://blog.openai.com/ai-and-compute/
https://blog.openai.com/ai-and-compute/
https://eng.uber.com/searchable-ground-truth-atg/
https://eng.uber.com/searchable-ground-truth-atg/
http://arxiv.org/abs/1312.3005
https://openreview.net/forum?id=HJg2b0VYDr
https://openreview.net/forum?id=HJg2b0VYDr
http://proceedings.mlr.press/v70/jiang17d.html
http://proceedings.mlr.press/v70/jiang17d.html


Under review as a conference paper at ICLR 2021

Shali Jiang, Roman Garnett, and Benjamin Moseley. Cost effective active search. In H. Wallach,
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Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. arXiv
preprint arXiv:1702.08734, 2017.

Ajay J Joshi, Fatih Porikli, and Nikolaos Papanikolopoulos. Coverage optimized active learning
for k-nn classifiers. In 2012 IEEE International Conference on Robotics and Automation, pp.
5353–5358. IEEE, 2012.

Andrej Karpathy. Train ai 2018 - building the software 2.0 stack, 2018. URL https://vimeo.
com/272696002.

Andrej Karpathy. Ai for full-self driving, 2020. URL https://youtu.be/hx7BXih7zx8.

Andreas Kirsch, Joost van Amersfoort, and Yarin Gal. Batchbald: Efficient and diverse batch acqui-
sition for deep bayesian active learning. In Advances in Neural Information Processing Systems,
pp. 7024–7035, 2019.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan Krasin, Jordi Pont-Tuset, Shahab
Kamali, Stefan Popov, Matteo Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari.
The open images dataset v4: Unified image classification, object detection, and visual relationship
detection at scale. IJCV, 2020.

Kevin Lee, Vijay Rao, and William Christie Arnold. Accelerating facebook’s in-
frastructure with application-specific hardware. https://engineering.fb.com/
data-center-engineering/accelerating-infrastructure/, 3 2019.

David D Lewis and William A Gale. A sequential algorithm for training text classifiers. In Pro-
ceedings of the 17th annual international ACM SIGIR conference on Research and development
in information retrieval, pp. 3–12. Springer-Verlag New York, Inc., 1994.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-scale
long-tailed recognition in an open world. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2537–2546, 2019.

Christoph Mayer and Radu Timofte. Adversarial sampling for active learning. In The IEEE Winter
Conference on Applications of Computer Vision, pp. 3071–3079, 2020.

Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-Lobato. Bayesian
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Jia-Jie Zhu and José Bento. Generative adversarial active learning. arXiv preprint
arXiv:1702.07956, 2017.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba, and
Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
movies and reading books. In Proceedings of the IEEE international conference on computer
vision, pp. 19–27, 2015.

12

http://proceedings.mlr.press/v16/settles11a.html
http://proceedings.mlr.press/v16/settles11a.html
http://dx.doi.org/10.1145/2812802
http://dx.doi.org/10.1145/2812802
https://doi.org/10.18653/v1/p19-1248


Under review as a conference paper at ICLR 2021

A APPENDIX

A.1 NUMBER OF INITIAL POSITIVES
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Figure 4: Active learning and search with 20 positive seed examples and a labeling budget of
10,000 examples on ImageNet (top) and OpenImages (bottom). Across datasets and strategies,
SEALS with k = 100 performs similarly to the baseline approach in terms of both the error the
model achieves for active learning (left) and the recall of positive examples for active search (right),
while only considering a fraction of the unlabeled data U (middle).
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Figure 5: Active learning and search with 50 positive seed examples and a labeling budget of
10,000 examples on ImageNet (top) and OpenImages (bottom). Across datasets and strategies,
SEALS with k = 100 performs similarly to the baseline approach in terms of both the error the
model achieves for active learning (left) and the recall of positive examples for active search (right),
while only considering a fraction of the unlabeled data U (middle).
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A.2 IMPACT OF k ON SEALS
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Figure 6: Impact of increasing k on ImageNet (|U |=639,906). Larger values of k help to close
the gap between SEALS and the baseline approach that considers all of the unlabeled data for both
active learning (top) and active search (middle). However, increasing k also increases the candidate
pool size (bottom), presenting a trade-off between labeling efficiency and computational efficiency.
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Figure 7: Impact of increasing k on OpenImages (|U |=6,816,296). Larger values of k help to
close the gap between SEALS and the baseline approach that considers all of the unlabeled data
for both active learning (top) and active search (middle). However, increasing k also increases the
candidate pool size (bottom), presenting a trade-off between labeling efficiency and computational
efficiency.
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A.3 SELF-SUPERVISED EMBEDDINGS (SIMCLR) ON IMAGENET
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Figure 8: Active learning and search on ImageNet with self-supervised embeddings from Sim-
CLR (Chen et al., 2020). Because the self-supervised training for the embeddings did not use the
labels, results are average across all 1,000 classes and |U |=1,281,167. To compensate for the larger
unlabeled pool, we extended the total labeling budget to 4,000 compared to the 2,000 used in Fig-
ure 1. Across strategies, SEALS with k = 100 substantially outperforms random sampling in terms
of both the mAP the model achieves for active learning (left) and the recall of positive examples for
active search (right), while only considering a fraction of the data U (middle). For active learning,
the gap between the baseline and SEALS approaches is slightly larger than in Figure 1, which is
likely due to the larger pool size and increased average shortest paths (see Figure 9).
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Figure 9: Measurements of the latent structure of unseen concepts in ImageNet with self-supervised
embeddings from SimCLR (Chen et al., 2020). In comparison to Figure 3a, the k-nearest neighbor
graph for unseen concepts was still well connected, forming large connected components (left) for
even moderate values of k, but the average shortest path between examples was slightly longer
(right). The increased path length is not too surprising considering the fully supervised model still
outperformed the linear evaluation of the self-supervised embeddings in Chen et al. (2020).
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A.4 PER CLASS AP CORRELATION
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Figure 10: The per-class APs of SEALS were highly correlated to the baseline approaches (*-All)
for active learning on ImageNet (right) and OpenImages (left). On OpenImages with k = 100 and a
budget of 2,000 labels, the Pearson’s correlation (ρ) between the baseline and SEALS for the average
precision of individual classes was 0.986 for MaxEnt and 0.987 for MLP. The least-squares fit had a
slope of 0.99 and y-intercept of -0.01. On ImageNet, the correlations were even higher.
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Figure 11: SEALS achieved higher APs for classes that formed larger connected components (left)
and had shorter paths between examples (right) in ImageNet (top) and OpenImages (bottom).
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A.5 COMPARISON TO POOL OF RANDOMLY SELECTED EXAMPLES

Full Supervision
MaxEnt-RandPool (1%)

MaxEnt-All
MaxEnt-RandPool (5%)

MaxEnt-SEALS
MaxEnt-RandPool (10%)

500 1000 1500 2000
Number of Labels

0.4

0.5

0.6

0.7

m
AP

500 1000 1500 2000
Number of Labels

2

4

6

8

10

Po
ol

 S
iz

e 
(%

)

500 1000 1500 2000
Number of Labels

0

20

40

60

Re
ca

ll 
(%

)

(a) ImageNet (|U |=639,906)
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(b) OpenImages (|U |=6,816,296)

Figure 12: MaxEnt-SEALS (k = 100) versus MaxEnt applied to a candidate pool of randomly
selected examples (RandPool). Because the concepts we considered were so rare, as is often the
case in practice, randomly chosen examples are unlikely to be close to the decision boundary, and a
much larger pool is required to match SEALS. On ImageNet (top), MaxEnt-SEALS outperformed
MaxEnt-RandPool in terms of both the error the model achieves for active learning (left) and the
recall of positive examples for active search (right) even with a pool containing 10% of the data
(middle). On Openimages (bottom), MaxEnt-RandPool needed at least 5× as much data to match
MaxEnt-SEALS for active learning and failed to achieve similar recall even with 10× the data.
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(a) ImageNet (|U |=639,906)
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(b) OpenImages (|U |=6,816,296)

Figure 13: MLP-SEALS (k = 100) versus MLP applied to a candidate pool of randomly selected
examples (RandPool). Because the concepts we considered were so rare, as is often the case in
practice, randomly chosen examples are unlikely to be close to the decision boundary, and a much
larger pool is required to match SEALS. On ImageNet (top), MLP-SEALS outperformed MLP-
RandPool in terms of both the error the model achieves for active learning (left) and the recall of
positive examples for active search (right) even with a pool containing 10% of the data (middle). On
Openimages (bottom), MLP-RandPool needed at least 5× as much data to match MLP-SEALS for
active learning and failed to achieve similar recall even with 10× the data.
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(a) ImageNet (|U |=639,906)

500 1000 1500 2000
Number of Labels

0.2

0.3

0.4

0.5

m
AP

500 1000 1500 2000
Number of Labels

0

2

4

6

8

10

Po
ol

 S
iz

e 
(%

)

500 1000 1500 2000
Number of Labels

0

10

20

30

Re
ca

ll 
(%

)

(b) OpenImages (|U |=6,816,296)

Figure 14: ID-SEALS (k = 100) versus ID applied to a candidate pool of randomly selected exam-
ples (RandPool). Because the concepts we considered were so rare, as is often the case in practice,
randomly chosen examples are unlikely to be close to the decision boundary, and a much larger pool
is required to match SEALS. On ImageNet (top), ID-SEALS outperformed ID-RandPool in terms
of both the error the model achieves for active learning (left) and the recall of positive examples for
active search (right) even with a pool containing 10% of the data (middle). On Openimages (bot-
tom), ID-RandPool needed at least 5× as much data to match ID-SEALS for active learning and
failed to achieve similar recall even with 10× the data.
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A.6 ACTIVE LEARNING ON EACH SELECTED CLASS FROM OPENIMAGES

Table 3: Top 1
3 of classes from Openimages for active learning. (1 of 3) Average precision and

measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MaxEnt-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MaxEnt
(SEALS)

MaxEnt
(All)

Full
Supervision

Citrus 796 65 3.34 0.34 0.87 0.87 0.87
Cargo ship 219 84 2.85 0.70 0.83 0.83 0.86
Blackberry 245 87 2.64 0.67 0.80 0.80 0.79
Galliformes 674 82 3.98 0.72 0.80 0.82 0.92
Rope 618 59 3.48 0.29 0.80 0.81 0.74
Hurdling 269 92 2.48 0.26 0.80 0.79 0.80
Roman temple 345 89 2.72 0.63 0.79 0.79 0.82
Monster truck 286 84 2.84 0.41 0.79 0.80 0.81
Pasta 954 91 3.21 0.42 0.75 0.75 0.79
Chess 740 83 3.39 0.53 0.73 0.74 0.86
Bowed string instrument 728 78 3.05 0.72 0.72 0.74 0.79
Parrot 1546 89 2.85 0.59 0.72 0.76 0.92
Calabaza 870 82 3.15 0.50 0.71 0.75 0.81
Superhero 968 58 5.28 0.17 0.70 0.70 0.67
Drums 741 69 3.30 0.52 0.70 0.72 0.83
Shooting range 189 57 3.06 0.38 0.69 0.69 0.68
Ancient roman architecture 589 76 3.34 0.61 0.68 0.70 0.77
Cupboard 898 88 3.41 0.53 0.68 0.69 0.75
Ibis 259 93 2.53 0.29 0.68 0.69 0.66
Cattle 5995 93 3.22 0.37 0.67 0.68 0.74
Galleon 182 74 2.54 0.45 0.66 0.66 0.61
Kitchen knife 360 63 3.52 0.32 0.66 0.65 0.66
Grapefruit 506 83 3.06 0.50 0.65 0.65 0.69
Deacon 341 80 2.80 0.48 0.64 0.64 0.67
Rye 128 75 2.63 0.51 0.64 0.64 0.65
Chartreux 147 91 2.59 0.50 0.63 0.63 0.69
San Pedro cactus 318 76 3.32 0.17 0.62 0.63 0.71
Skateboarding Equipment 862 57 5.92 0.20 0.62 0.66 0.66
Electric piano 345 56 4.15 0.24 0.61 0.60 0.48
Straw 547 65 2.85 0.33 0.61 0.62 0.61
Berry 874 82 3.78 0.30 0.61 0.61 0.69
East-european shepherd 206 86 2.16 0.61 0.61 0.62 0.65
Ring 676 75 3.87 0.15 0.61 0.64 0.64
Rat 1151 94 2.50 0.32 0.60 0.60 0.61
Coral reef fish 434 90 3.07 0.51 0.60 0.64 0.79
Concert dance 357 61 3.91 0.37 0.60 0.60 0.70
Whole food 708 73 3.66 0.18 0.58 0.60 0.57
Modern pentathlon 772 43 2.59 0.13 0.58 0.47 0.51
Gymnast 235 77 2.39 0.39 0.57 0.59 0.65
California roll 368 84 3.49 0.05 0.56 0.56 0.58
Shrimp 907 85 3.82 0.07 0.56 0.56 0.58
Log cabin 448 70 3.62 0.44 0.55 0.55 0.62
Formula racing 351 88 3.38 0.33 0.55 0.54 0.60
Herd 648 75 3.88 0.42 0.54 0.55 0.67
Embroidery 356 81 3.41 0.32 0.53 0.53 0.60
Shelving 810 66 3.41 0.27 0.53 0.53 0.51
Downhill 194 84 2.64 0.42 0.53 0.51 0.59
Daylily 391 87 3.25 0.20 0.51 0.50 0.49
Automotive exterior 1060 23 2.74 0.65 0.49 0.54 0.69
Ciconiiformes 426 88 3.47 0.33 0.49 0.51 0.48
Monoplane 756 81 4.70 0.13 0.48 0.43 0.48

20



Under review as a conference paper at ICLR 2021

Table 4: Middle 1
3 of classes from Openimages for active learning. (2 of 3) Average precision and

measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MaxEnt-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MaxEnt
(SEALS)

MaxEnt
(All)

Full
Supervision

Seafood boil 322 85 2.73 0.31 0.48 0.49 0.51
Landscaping 789 32 4.71 0.26 0.48 0.51 0.63
Skating 561 77 4.04 0.17 0.48 0.43 0.40
Floodplain 567 50 4.81 0.61 0.47 0.52 0.66
Knitting 409 71 3.10 0.61 0.46 0.50 0.73
Elk 353 84 2.40 0.15 0.46 0.48 0.45
Bilberry 228 75 3.77 0.10 0.45 0.45 0.32
Goat 1190 88 3.72 0.17 0.44 0.45 0.61
Fortification 287 66 3.96 0.43 0.44 0.46 0.52
Annual plant 677 38 6.07 0.39 0.44 0.43 0.58
Mcdonnell douglas f/a-18 hornet 160 88 3.51 0.11 0.44 0.47 0.37
Tooth 976 49 4.77 0.16 0.44 0.48 0.56
Briefs 539 78 3.68 0.15 0.43 0.44 0.46
Sirloin steak 297 60 4.97 0.14 0.42 0.42 0.46
Smoothie 330 78 3.22 0.15 0.41 0.41 0.38
Glider 393 82 3.94 0.08 0.40 0.40 0.48
Bathroom cabinet 368 95 2.39 0.29 0.40 0.39 0.37
White-tailed deer 238 87 3.24 0.34 0.40 0.43 0.43
Bird of prey 712 78 3.81 0.76 0.40 0.50 0.91
Egg (Food) 1193 85 4.31 0.14 0.40 0.37 0.63
Soldier 1032 74 3.80 0.62 0.40 0.41 0.72
Cranberry 450 63 4.10 0.13 0.39 0.39 0.37
Estate 667 51 4.03 0.47 0.39 0.40 0.54
Chocolate truffle 288 58 5.47 0.10 0.39 0.40 0.42
Town square 617 58 3.69 0.31 0.38 0.36 0.47
Bakmi 191 76 3.34 0.27 0.37 0.37 0.36
Trail riding 679 90 3.15 0.21 0.37 0.37 0.38
Aerial photography 931 63 3.99 0.39 0.37 0.37 0.66
Lugger 103 62 3.14 0.35 0.37 0.37 0.42
Paddy field 468 70 4.02 0.17 0.36 0.36 0.43
Pavlova 195 86 2.60 0.19 0.36 0.36 0.34
Steamed rice 580 75 4.54 0.10 0.35 0.37 0.48
Pancit 385 86 3.16 0.21 0.33 0.33 0.31
Factory 333 61 5.59 0.17 0.33 0.34 0.35
Fur 834 42 4.31 0.08 0.33 0.33 0.31
Stallion 598 70 3.58 0.32 0.33 0.40 0.64
Optical instrument 649 79 3.91 0.15 0.33 0.33 0.28
Thumb 895 26 4.18 0.07 0.32 0.39 0.41
Meal 1250 60 5.68 0.52 0.32 0.38 0.59
American shorthair 2084 94 3.32 0.12 0.32 0.32 0.24
Bracelet 770 46 4.13 0.09 0.31 0.33 0.24
Vehicle registration plate 5697 76 5.89 0.28 0.31 0.33 0.53
Ice 682 50 4.87 0.23 0.30 0.32 0.55
Lamian 257 80 3.57 0.23 0.29 0.32 0.28
Multimedia 741 46 4.12 0.45 0.29 0.31 0.53
Belt 467 41 3.26 0.06 0.29 0.31 0.31
Prairie 792 44 3.92 0.37 0.29 0.26 0.57
Boardsport 673 62 4.08 0.26 0.29 0.29 0.53
Asphalt 1026 40 4.53 0.23 0.29 0.29 0.45
Costume design 818 52 3.44 0.07 0.26 0.26 0.28
Cottage 670 51 4.13 0.36 0.26 0.36 0.61

21



Under review as a conference paper at ICLR 2021

Table 5: Bottom 1
3 of classes from Openimages for active learning. (3 of 3) Average precision and

measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MaxEnt-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MaxEnt
(SEALS)

MaxEnt
(All)

Full
Supervision

Stele 450 70 3.74 0.12 0.26 0.25 0.35
Mode of transport 1387 24 4.50 0.15 0.26 0.16 0.54
Temperate coniferous forest 328 59 4.23 0.30 0.26 0.29 0.40
Bumper 985 37 6.65 0.49 0.25 0.38 0.64
Interaction 924 15 6.05 0.04 0.24 0.25 0.37
Plumbing fixture 2124 89 3.19 0.31 0.24 0.27 0.38
Shorebird 234 80 2.76 0.32 0.23 0.26 0.37
Icing 1118 74 4.20 0.13 0.23 0.25 0.46
Wilderness 1225 30 4.12 0.29 0.23 0.24 0.39
Construction 515 63 4.99 0.13 0.23 0.26 0.34
Carpet 644 50 6.98 0.05 0.23 0.28 0.43
Maple 2301 90 4.19 0.06 0.22 0.21 0.36
Rural area 921 41 4.63 0.33 0.22 0.28 0.50
Singer 604 56 4.06 0.12 0.21 0.21 0.40
Delicatessen 196 52 2.80 0.14 0.21 0.22 0.27
Canal 726 62 4.78 0.22 0.21 0.26 0.46
Organ (Biology) 1156 25 3.80 0.23 0.19 0.07 0.44
Laugh 750 19 6.22 0.06 0.18 0.17 0.26
Plateau 452 37 3.88 0.41 0.18 0.24 0.46
Algae 426 57 4.52 0.15 0.18 0.19 0.26
Cactus 377 51 4.11 0.05 0.17 0.18 0.22
Engine 656 82 3.43 0.16 0.17 0.17 0.26
Marine mammal 2954 91 3.58 0.19 0.16 0.15 0.21
Frost 483 60 4.73 0.20 0.15 0.21 0.47
Paper 969 23 3.18 0.16 0.15 0.14 0.41
Cirque 347 29 5.77 0.43 0.15 0.40 0.55
Pork 464 64 4.44 0.06 0.14 0.14 0.15
Antenna 545 73 3.66 0.10 0.14 0.13 0.29
Portrait 2510 67 6.38 0.23 0.13 0.18 0.43
Flooring 814 38 3.87 0.10 0.13 0.14 0.20
Cycling 794 63 5.00 0.53 0.13 0.28 0.66
Chevrolet silverado 115 62 4.82 0.05 0.09 0.08 0.12
Tool 1549 64 4.51 0.08 0.09 0.10 0.13
Liqueur 539 51 5.98 0.26 0.09 0.14 0.38
Pleurotus eryngii 140 84 3.10 0.11 0.08 0.08 0.14
Organism 1148 21 3.49 0.05 0.07 0.13 0.26
Pelecaniformes 457 85 3.96 0.30 0.07 0.09 0.32
Icon 186 15 3.26 0.05 0.07 0.07 0.16
Stadium 1654 77 5.77 0.35 0.06 0.10 0.48
Space 1006 23 4.63 0.03 0.06 0.03 0.14
Performing arts 1030 29 6.97 0.12 0.05 0.06 0.53
Mural 649 41 5.24 0.13 0.05 0.07 0.34
Brown 1427 16 3.49 0.02 0.05 0.07 0.20
Wall 1218 27 3.13 0.11 0.05 0.05 0.27
Tournament 841 47 9.90 0.15 0.05 0.07 0.16
White 1494 3 2.79 0.02 0.03 0.01 0.10
Mitsubishi 511 37 5.14 0.01 0.02 0.02 0.04
Exhibition 513 40 3.87 0.03 0.02 0.02 0.14
Scale model 667 45 5.64 0.05 0.02 0.02 0.13
Teal 975 16 4.08 0.01 0.01 0.01 0.04
Electric blue 1180 19 3.70 0.01 0.00 0.01 0.06
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A.7 ACTIVE SEARCH ON EACH SELECTED CLASS FROM OPENIMAGES

Table 6: Top 1
3 of classes from Openimages for active search. (1 of 3) Recall (%) of positives and

measurements of the largest component (LC) for each selected class (153 total) from OpenImages
with a labeling budget of 2,000 examples. Classes are ordered based on MLP-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MLP
(SEALS)

MLP
(All)

Chartreux 147 91 2.59 3.5 83.9 84.6
Ibis 259 93 2.53 2.0 83.9 83.9
Hurdling 269 92 2.48 1.9 83.5 86.2
East-european shepherd 206 86 2.16 2.4 78.2 78.3
Blackberry 245 87 2.64 2.0 77.5 78.5
Bathroom cabinet 368 95 2.39 1.4 76.8 77.1
Rat 1151 94 2.50 0.5 75.1 75.2
Rye 128 75 2.63 3.9 74.7 74.5
Elk 353 84 2.40 1.5 73.4 74.3
Pavlova 195 86 2.60 2.6 70.8 71.3
Seafood boil 322 85 2.73 1.6 70.4 70.6
Roman temple 345 89 2.72 1.5 69.2 68.3
Monster truck 286 84 2.84 1.7 68.1 67.8
Downhill 194 84 2.64 2.6 67.2 69.0
Shorebird 234 80 2.76 2.1 66.8 66.4
Mcdonnell douglas f/a-18 hornet 160 88 3.51 3.2 66.0 67.9
San Pedro cactus 318 76 3.32 1.6 65.8 64.9
Pleurotus eryngii 140 84 3.10 3.6 65.7 66.1
California roll 368 84 3.49 1.4 65.3 68.0
Gymnast 235 77 2.39 2.2 64.0 64.0
Galleon 182 74 2.54 2.7 62.4 61.5
Cargo ship 219 84 2.85 2.3 61.1 61.7
Trail riding 679 90 3.15 0.8 59.7 60.7
Daylily 391 87 3.25 1.3 59.4 59.5
Grapefruit 506 83 3.06 1.0 59.4 60.4
Bilberry 228 75 3.77 2.2 58.9 55.2
Smoothie 330 78 3.22 1.5 58.0 59.8
Embroidery 356 81 3.41 1.5 57.6 57.2
Deacon 341 80 2.80 1.5 57.1 57.9
Shooting range 189 57 3.06 2.6 56.3 55.6
Glider 393 82 3.94 1.3 55.8 57.6
White-tailed deer 238 87 3.24 2.2 55.8 55.9
Coral reef fish 434 90 3.07 1.3 54.8 54.9
Chevrolet silverado 115 62 4.82 4.3 54.1 54.6
Lugger 103 62 3.14 4.9 53.8 53.8
Pancit 385 86 3.16 1.3 52.8 53.1
Chess 740 83 3.39 0.7 51.9 50.9
Bakmi 191 76 3.34 2.6 51.8 51.2
Kitchen knife 360 63 3.52 1.5 50.9 53.9
Straw 547 65 2.85 1.0 50.3 51.0
Ancient roman architecture 589 76 3.34 0.8 48.5 47.1
Lamian 257 80 3.57 1.9 47.8 48.2
Antenna 545 73 3.66 1.0 47.4 48.0
Calabaza 870 82 3.15 0.6 46.0 45.8
Ring 676 75 3.87 0.7 45.2 45.4
Ciconiiformes 426 88 3.47 1.2 45.2 45.2
Log cabin 448 70 3.62 1.1 44.9 45.7
Bowed string instrument 728 78 3.05 0.7 44.4 44.7
Pasta 954 91 3.21 0.5 43.7 43.8
Knitting 409 71 3.10 1.3 43.5 42.8
Rope 618 59 3.48 0.8 43.0 42.8

23



Under review as a conference paper at ICLR 2021

Table 7: Middle 1
3 of classes from Openimages for active search. (2 of 3) Recall (%) of positives

and measurements of the largest component (LC) for each selected class (153 total) from OpenIm-
ages with a labeling budget of 2,000 examples. Classes are ordered based on MLP-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MLP
(SEALS)

MLP
(All)

Formula racing 351 88 3.38 1.4 42.6 41.4
Paddy field 468 70 4.02 1.1 42.6 44.2
Engine 656 82 3.43 0.8 41.7 40.6
Electric piano 345 56 4.15 1.5 40.9 42.1
Shrimp 907 85 3.82 0.6 40.4 40.8
Goat 1190 88 3.72 0.4 39.6 39.6
Chocolate truffle 288 58 5.47 1.8 39.6 39.9
Cupboard 898 88 3.41 0.6 39.6 39.6
Citrus 796 65 3.34 0.7 39.3 39.6
Parrot 1546 89 2.85 0.4 39.2 38.8
Delicatessen 196 52 2.80 2.6 38.2 39.0
Berry 874 82 3.78 0.6 37.8 37.6
Briefs 539 78 3.68 1.0 37.1 37.2
Concert dance 357 61 3.91 1.4 36.6 36.1
Modern pentathlon 772 43 2.59 0.6 35.9 32.6
Fortification 287 66 3.96 1.7 35.7 37.6
Stallion 598 70 3.58 0.9 35.7 36.3
Belt 467 41 3.26 1.1 35.2 34.9
Sirloin steak 297 60 4.97 1.8 33.9 32.7
Stele 450 70 3.74 1.1 33.9 32.7
Galliformes 674 82 3.98 0.7 33.9 33.9
Algae 426 57 4.52 1.2 33.8 33.1
Herd 648 75 3.88 0.8 33.5 33.7
Pelecaniformes 457 85 3.96 1.1 33.4 37.5
Cactus 377 51 4.11 1.3 33.4 35.2
Shelving 810 66 3.41 0.7 33.2 33.3
Drums 741 69 3.30 0.7 32.9 32.7
Cranberry 450 63 4.10 1.2 32.9 33.7
Factory 333 61 5.59 1.5 32.0 31.7
Costume design 818 52 3.44 0.6 30.9 30.6
Optical instrument 649 79 3.91 0.8 30.3 32.8
Construction 515 63 4.99 1.0 30.1 31.1
Temperate coniferous forest 328 59 4.23 1.5 30.1 27.6
Skating 561 77 4.04 1.0 28.8 30.4
Egg (Food) 1193 85 4.31 0.4 28.8 28.6
Steamed rice 580 75 4.54 0.9 28.1 30.2
Plumbing fixture 2124 89 3.19 0.3 27.9 27.9
Whole food 708 73 3.66 0.7 27.7 27.5
Boardsport 673 62 4.08 0.8 26.8 26.5
Pork 464 64 4.44 1.1 26.3 26.6
Aerial photography 931 63 3.99 0.6 25.8 26.1
Town square 617 58 3.69 0.8 25.7 26.1
Estate 667 51 4.03 0.9 24.8 25.9
Maple 2301 90 4.19 0.2 24.3 24.4
Cattle 5995 93 3.22 0.1 23.8 23.6
Superhero 968 58 5.28 0.6 23.4 23.3
Bracelet 770 46 4.13 0.6 23.2 24.8
Frost 483 60 4.73 1.0 23.1 22.5
Scale model 667 45 5.64 0.8 22.9 23.7
Plateau 452 37 3.88 1.1 22.7 19.1
Bird of prey 712 78 3.81 0.7 22.4 22.0
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Table 8: Bottom 1
3 of classes from Openimages for active search. (3 of 3) Recall (%) of positives

and measurements of the largest component (LC) for each selected class (153 total) from OpenIm-
ages with a labeling budget of 2,000 examples. Classes are ordered based on MLP-SEALS.

Display
Name

Total
Positives

Size of
the LC

(%)

Average
Shortest
Path in
the LC

Random
(All)

MLP
(SEALS)

MLP
(All)

Canal 726 62 4.78 0.7 22.4 20.9
Exhibition 513 40 3.87 1.0 21.9 23.1
Carpet 644 50 6.98 0.8 21.9 22.7
Monoplane 756 81 4.70 0.7 21.8 20.1
Ice 682 50 4.87 0.8 21.6 23.1
Fur 834 42 4.31 0.6 21.2 17.3
Icing 1118 74 4.20 0.4 20.5 20.1
Flooring 814 38 3.87 0.6 20.4 16.9
Icon 186 15 3.26 2.7 19.9 17.2
Prairie 792 44 3.92 0.6 19.0 19.2
Tooth 976 49 4.77 0.5 18.6 18.0
Skateboarding Equipment 862 57 5.92 0.6 18.1 19.3
Automotive exterior 1060 23 2.74 0.5 17.7 11.9
Cottage 670 51 4.13 0.7 17.6 17.3
Soldier 1032 74 3.80 0.5 17.3 16.8
Marine mammal 2954 91 3.58 0.2 17.3 17.2
Tool 1549 64 4.51 0.3 17.0 16.9
Multimedia 741 46 4.12 0.7 16.8 17.1
American shorthair 2084 94 3.32 0.3 16.5 16.7
Asphalt 1026 40 4.53 0.5 15.1 11.5
Singer 604 56 4.06 0.9 14.6 13.6
Floodplain 567 50 4.81 0.9 14.6 14.0
Rural area 921 41 4.63 0.6 14.2 13.2
Mitsubishi 511 37 5.14 1.0 12.6 11.8
Organ (Biology) 1156 25 3.80 0.5 12.1 15.9
Paper 969 23 3.18 0.5 12.0 14.8
Annual plant 677 38 6.07 0.7 11.8 10.7
Electric blue 1180 19 3.70 0.5 11.5 9.4
Stadium 1654 77 5.77 0.3 10.8 9.3
Mural 649 41 5.24 0.8 10.4 10.3
Teal 975 16 4.08 0.5 9.9 10.4
Cirque 347 29 5.77 1.5 9.9 9.8
Wall 1218 27 3.13 0.4 9.3 12.0
Thumb 895 26 4.18 0.6 9.3 13.8
Landscaping 789 32 4.71 0.7 9.2 9.3
Vehicle registration plate 5697 76 5.89 0.1 8.7 8.3
Meal 1250 60 5.68 0.4 8.5 9.1
Wilderness 1225 30 4.12 0.4 8.5 9.8
Liqueur 539 51 5.98 1.0 8.0 12.8
Space 1006 23 4.63 0.5 7.8 6.3
Cycling 794 63 5.00 0.6 7.3 7.8
Brown 1427 16 3.49 0.4 7.2 2.6
Organism 1148 21 3.49 0.4 6.8 2.0
Laugh 750 19 6.22 0.7 6.6 8.6
Bumper 985 37 6.65 0.5 5.9 8.3
Portrait 2510 67 6.38 0.2 5.8 5.3
Mode of transport 1387 24 4.50 0.4 5.1 3.6
Interaction 924 15 6.05 0.6 4.5 4.6
Tournament 841 47 9.90 0.6 4.3 5.1
Performing arts 1030 29 6.97 0.5 2.3 2.5
White 1494 3 2.79 0.3 2.0 0.5
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A.8 SELF-SUPERVISED EMBEDDING (SENTENCE-BERT) ON GOODREADS

We followed the same general procedure described in Section 4.1, aside from the dataset specific
details below. Goodreads spoiler detection (Wan et al., 2019) had 17.67 million sentences with
binary spoiler annotations. Spoilers made up 3.224% of the data, making them much more common
than the rare concepts we evaluated in the other datasets. Following Wan et al. (2019), we used 3.53
million sentences for testing (20%), 10,000 sentences as the validation set, and the remaining 14.13
million sentences as the unlabeled pool. We also switched to the area under the ROC curve (AUC)
as our primary evaluation metric for active learning to be consistent with Wan et al. (2019). For
Gz , we used a pre-trained Sentence-BERT model (SBERT-NLI-base) (Reimers & Gurevych, 2019),
applied PCA whitening to reduce the dimension to 256, and performed l2 normalization.

A.8.1 ACTIVE SEARCH

SEALS achieved the same recall as the baseline approaches, but only considered less than 1% of
the unlabeled data in the candidate pool, as shown in Figure 15. At a labeling budget of 2,000, MLP-
ALL and MLP-SEALS recalled 0.15 ± 0.02% and 0.17 ± 0.05%, respectively, while MaxEnt-All
and MaxEnt-SEALS achieved 0.14 ± 0.04% and 0.11 ± 0.06% recall respectively. Increasing the
labeling budget to 50,000 examples, increased recall to ˜3.7% for MaxEnt and MLP but maintained a
similar relative improvement over random sampling, as shown in Figure 16. ID-SEALS performed
worse than the other strategies. However, all of the active selection strategies outperformed random
sampling by up to an order of magnitude.
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Figure 15: Active learning and search on Goodreads with Sentence-BERT embeddings. Across
datasets and strategies, SEALS with k = 100 performs similarly to the baseline approach in terms
of both the error the model achieves for active learning (left) and the recall of positive examples for
active search (right), while only considering a fraction of the data U (middle).

A.8.2 ACTIVE LEARNING

At a labeling budget of 2,000 examples, all the selection strategies were indistinguishable from
random sampling. Increasing the labeling budget did not help, as shown in Figure 16. Unlike
ImageNet and OpenImages, Goodreads had a much higher fraction of positive examples (3.224%),
and the examples were not tightly clustered as described in Section A.8.3.
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Figure 16: Active learning and search on Goodreads with a labeling budget of 100,000 examples.
Across strategies, SEALS with k = 100 performed similarly to the baseline approach in terms of
both the error the model achieved for active learning (left) and the recall of positive examples for
active search (right), while only considering a fraction of the data U (middle). ID was excluded
because of the growing pool size and computation. For active search, MaxEnt and MLP continued
to improve recall. For active learning, all the selection strategies (both with and without SEALS)
performed worse than random sampling despite the larger labeling budget. This gap was likely due
to spoilers being book specific and the higher fraction of positive examples in the unlabeled pool,
causing relevant examples to be spread almost uniformly across the space (see Section A.8.3).

A.8.3 LATENT STRUCTURE

The large number of positive examples in the Goodreads dataset limited the analysis we could per-
form. We could only calculate the size of the largest connected component in the nearest neighbor
graph (Figure 17). For k = 10, only 28.4% of the positive examples could be reached directly,
but increasing k to 100 improved that dramatically to 96.7%. For such a large connected compo-
nent, one might have expected active learning to perform better in Section A.8.2. By analyzing the
embeddings, however, we found that examples are spread almost uniformly across the space with
an average cosine similarity of 0.004. For comparison, the average cosine similarity for concepts
in ImageNet and OpenImages was 0.453 ± 0.077 and 0.361 ± 0.105 respectively. This uniformity
was likely due to the higher fraction of positive examples and spoilers being book specific while
Sentence-BERT is trained on generic data. As a result, even if spoilers were tightly clustered within
each book, the books were spread across a range of topics and consequently across the embedding
space, illustrating a limitation and opportunity for future work.
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Figure 17: Cumulative distribution function (CDF) for the largest connected component in the
Goodreads dataset with varying values of k.
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