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ABSTRACT

Object navigation in unknown environments is crucial for deploying embodied
agents in real-world applications. While we have witnessed huge progress due to
large-scale scene datasets, faster simulators, and stronger models, previous studies
mainly focus on limited scene types and target objects. In this paper, we study a
new task of navigating to diverse target objects in a large number of scene types.
To benchmark the problem, we present a large-scale scene dataset, DIVSCENE,
which contains 4,614 scenes across 81 different types. With the dataset, we build
an end-to-end embodied agent, NATVLM, by fine-tuning a Large Vision Lan-
guage Model (LVLM) through imitation learning. The LVLM is trained to take
previous observations from the environment and generate the next actions. We
also introduce CoT explanation traces of the action prediction for better perfor-
mance when tuning LVLMs. Our extensive experiments find that we can build
a performant LVLM-based agent through imitation learning on the shortest paths
constructed by a BFS planner without any human supervision. Our agent achieves
a success rate that surpasses GPT-4o by over 20%. Meanwhile, we carry out vari-
ous analyses showing the generalization ability of our agent.

1 INTRODUCTION

Navigation Instruction:
You are an agent placed in a 3D environment. The step 
length is 0.25 meters, and your rotation degree is 90. The
possible actions are: 1) MoveAhead: Moves the agent…

MoveAhead

RotateRight

…
🤔
💭

Which?

1. My position is…

2. In the view, no...

3. MoveAhead!
🤔
💡

Got it!

Target: floor lamp

Visual observation

Agent Position

LVLM Next 
action

CoT

Figure 1: Illustration of our NATVLM agent. We
build CoT explanation traces to help the LVLM to
better grasp the rationale of object navigation.

Object navigation has long been a challeng-
ing embodied task, where an embodied agent
is required to navigate to target objects in un-
seen environments (Batra et al., 2020; Ander-
son et al., 2018). This task is fundamental to
other navigation-based embodied tasks, as nav-
igating to a target object is the agent’s prelimi-
nary step in interacting with objects in a scene.
As the last few years have witnessed huge
progress with large-scale scene datasets (Chang
et al., 2017) and faster simulators (Kolve et al.,
2017), numerous methods have been proposed
for better navigation, including reinforcement
learning (RL) (Ye et al., 2021), imitation learn-
ing (IL) (Ramrakhya et al., 2022), semantic
maps (Zheng et al., 2022), and others (De Vries
et al., 2018; Chaplot et al., 2020a).

Albeit those methods achieve state-of-the-art performance on existing object navigation tasks, they
only focus on a limited set of target objects and scenes with little variety. For example, the photore-
alistic dataset Matterport-3D (Chang et al., 2017) only considers 21 target object types in 90 private
homes. Similarly, the simulated environment ProcTHOR (Deitke et al., 2022) only considers 16
object types in four types of residential rooms (i.e., bedroom, living room, kitchen, and bathroom).
With this limited scope, models often perform poorly (Zhou et al., 2023) when facing diverse unseen
objects and scenes in real-world applications due to the distribution shifting.

In this paper, we study a new task of building navigational agents capable of generalizing to a wide
range of unseen objects in diverse scenes. We introduce a new dataset, DIVSCENE, that features the
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most comprehensive range of scene types to the best of our knowledge. Specifically, we collect 81
scene types based on MIT Scenes Dataset (Quattoni & Torralba, 2009), which are further catego-
rized into five big groups. Then, we use LLMs to automatically compose diverse house descriptions
by adding attributes to scene types, such as “a bakery with tile patterned walls.” We input these
descriptions into the language-guided framework, Holodeck (Yang et al., 2024), to build houses
automatically with the strong ability of GPT-4 (OpenAI, 2023). Finally, we compile 4,614 houses
across 81 distinct scene types on the AI2THOR platform (Kolve et al., 2017). Since we take advan-
tage of the object assets Objaverse (Deitke et al., 2023), our houses contain over 22K different kinds
of objects, making them ideal for testing navigation to diverse objects.

With DIVSCENE, we proceed to build an embodied agent that can navigate to diverse objects in
diverse types of houses. As aforementioned, existing works, such as RL-based (Maksymets et al.,
2021) and IL-based (Ramrakhya et al., 2022) methods, only focus on learning in-distribution knowl-
edge for limited target objects and scene types. Meanwhile, recent studies (Yu et al., 2023; Zhou
et al., 2023; Dorbala et al., 2023) utilize LLMs as the planning backbone to navigate to diverse
objects in a zero-shot manner, leveraging LLM’s commonsense knowledge for high-level guidance.
However, they still face a substantial domain gap between navigation tasks and the LLM training
corpus (Lin et al., 2024). Moreover, those methods (Chen et al., 2023; Zhu et al., 2024) require
a captioning model to generate textual descriptions of each scene, serving as the perception of the
backbone LLMs. The captioning model might miss crucial information about objects and lead to
suboptimal results, like spatial or color details.

To tackle the challenge, we propose an end-to-end object navigation agent called NATVLM
(Navigational Chain-of-Thought VLM), based on the large vision language model Idefics
2 (Laurençon et al., 2024). As shown in Figure 1, the model is tuned to generate the next action
given the current observation, such as the the egocentric view and the agent’s status. Here, we train
the LVLM with imitation learning (Brohan et al., 2022) using shortest paths from a heuristic plan-
ner. To improve the accuracy, we also manually collect complex CoT explanation traces of each
prediction (Mitra et al., 2023; Ho et al., 2023) to help the LVLM understand the underlying rationale
behind object navigation. By tuning the LVLM, we eliminate the domain gap between navigation
tasks and the pre-training corpus. Meanwhile, our navigation is performed in an end-to-end manner
with perception, circumventing the captioning model.

Existing IL-based works trained their navigational agents on large corpora of human demonstra-
tions (Brohan et al., 2022; Wei et al., 2023), which is incredibly expensive. In contrast, our study
finds that imitating the shortest paths constructed by a heuristic planner can be an effective approach
to training agents based on LVLMs. Specifically, the AI2THOR platform discretizes the environ-
ment into a grid map with a fixed step size. Then, we search for the shortest path from the agent
to the target objects. In total, we collect about 23K shortest-path episodes in the houses from DI-
VSCENE, forming the DIVTRAJ dataset. The dataset contains 5,707 different kinds of target objects,
significantly more than other navigation datasets.

With shortest-path episodes, we perform extensive experiments and analyses to evaluate our
NATVLM agent. First, we introduce several baselines using various LLMs and VLMs (Liu et al.,
2024b; Touvron et al., 2023) to establish baseline performance levels. The evaluation results show
that our proposed agent can navigate to diverse objects more effectively than baselines by a large
margin. We carry out thorough ablation studies to show the efficacy of CoT explanation traces in
action prediction. Moreover, few-shot experiments demonstrate the robustness of our agent. Last
but not least, we validate the generalization ability of our agent on two out-of-distribution datasets:
ProcTHOR (Deitke et al., 2022) and iTHOR (Weihs et al., 2021).

2 RELATED WORK

Recent breakthroughs in large vision language models (LVLMs) have shown success in several
domains (Li et al., 2023b; Wang et al., 2023; Team, 2023; Jiang et al., 2024). Our work first builds
a navigational agent based on LVLMs with the following related areas of study:

Visual Navigation: Visual navigation is a critical task for building intelligent agents imitating hu-
man behavior. Conventional methods depend on an environment map but struggle with the low
generalization ability in unseen houses (Yamauchi, 1997). Recent works (Anderson et al., 2018)
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have studied more forms of the visual navigation task, like PointNav (Wijmans et al., 2019), Im-
ageNav (Zhu et al., 2017), ObjectNav (Chaplot et al., 2020b), RoomNav (Wu et al., 2018), and
visual-language navigation (Huang et al., 2023). In this work, we study the ObjectNav task and
build the first end-to-end navigational agent based on LVLMs.

Policy Learning of Object Navigation: Zhu et al. (2017) first proposed a reinforcement learning
(RL) method that used ResNet (He et al., 2016) to encode images. Following them, the RL-based
approaches have gained attention for tackling object navigation (Anderson et al., 2018; Batra et al.,
2020; Savva et al., 2017; Wahid et al., 2021; Yang et al., 2018; Druon et al., 2020; Ehsani et al.,
2021). However, existing works (Ehsani et al., 2023; Guo et al., 2018) show that RL requires ex-
tensive reward shaping and is often too slow and ineffective. Imitation learning (Pomerleau, 1988;
Zhang et al., 2018) presents a compelling alternative to RL as it reframes the task as a supervised
learning problem. RT-1 and RT-2 (Brohan et al., 2022; 2023) scale up the multi-task data, focusing
on object manipulation. Wei et al. (2023) also propose a prompt-guided imitation learning method.
However, these methods face the tremendous cost of human demonstration. While SPOC (Ehsani
et al., 2023) attempts to resolve the issue, they trained a transformer-based agent from scratch, re-
quiring a substantial amount of training data. Meanwhile, their study is still limited to four room
types in ProcTHOR (Deitke et al., 2022). Compared with those works, we fine-tune pre-trained
LVLM to navigate diverse scenes and construct shortest-path trajectories without expensive cost.

LLMs and VLMs for Visual Navigation: With the recent advancement, LLMs and VLMs (Achiam
et al., 2023; Touvron et al., 2023; Lu et al., 2024) have emerged as the foundation for solving em-
bodied tasks (Pan et al., 2023; Majumdar et al., 2024). Researchers also explored their usage for
object navigation. A few methods have employed contrastive VLMs (Radford et al., 2021; Li et al.,
2022), as the visual encoders (Khandelwal et al., 2022; Majumdar et al., 2022) or object-grounding
tools (Gadre et al., 2023; Dorbala et al., 2023). Yu et al. (2023) utilize LLMs as the planning back-
bone for object navigation in a zero-shot manner. LLMs are used as high-level planners with a cap-
tioning model to provide perception. Following them, many improvements have been proposed (Cai
et al., 2024; Chen et al., 2023; Zhou et al., 2023; Shah et al., 2023). However, a substantial domain
gap exists between navigation tasks and the LLM pre-training corpus (Lin et al., 2024). Meanwhile,
using LLMs for navigation might lose important visual details. In contrast, we tune our end-to-end
agent from an LVLM through imitation learning without those drawbacks.

Embodied Environment: Embodied environments are the foundation of embodied research. Ex-
isting environments are typically crafted through the manual labor of 3D artists (Deitke et al., 2020;
Gan et al., 2020; Li et al., 2023a; Khanna et al., 2024; Tang et al., 2023; Xia et al., 2018), hard to
scale up. Many works construct scenes from 3D scans (Savva et al., 2019; Ramakrishnan et al., 2021;
Szot et al., 2021), but the scenes are not interactive. Meanwhile, ProcTHOR (Deitke et al., 2022)
proposes a procedural method but only focuses on four scene types. Recently, Yang et al. (2024) in-
troduced a language-guided system using GPT-4 to automatically generate customized scenes from
textual house descriptions, called Holodeck. In this work, we collect diverse house descriptions with
GPT-4, which are further used in Holodeck to collect houses.

3 TASK DEFINITION

In this paper, we study the object navigation task involving an agent in an environment to
find the target object belonging to a given category. The object category set is denoted by
C = {c0, c1, . . . , cm}, where m is the number of categories. The scenes can be described by
S = {s0, s1, . . . , sn}, and n is the total number of scenes. In each episode, the embodied agent
is initialized at a random position pi with rotation ri in a scene si. Then, the embodied agent is
required to perform instance-level object navigation, where the agent receives a target object within
the category ci at the position oi. Thus, an episode can be represented as Ei = {si, pi, ri, ci, oi}. At
each time step t, the embodied agent observes the environment and predicts the next action at. Fol-
lowing previous work (Yu et al., 2023; Zhu et al., 2024), the observation comprises an RGB image
of the egocentric view and the agent status (i.e., its position and rotation).

Our new houses are all collected on the AI2THOR platform (Kolve et al., 2017), and thus the action
space, signified as A, covers four actions for navigation: MOVEAHEAD, ROTATERIGHT, ROTA-
TERIGHT, and DONE. We adopt the default settings of the AI2THOR platform. The MOVEAHEAD
action moves the agent 25 centimeters, and ROTATELEFT and ROTATERIGHT actions rotate the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Images:

store home leisure work public

81 types from 5 categories

1. Scene Type Collection 2b. House Description

2a. Assign Attributes Value

1. Lighting

2. Objects

3. Other…

bright

small sink

…
GPT-4

1. Dental office

2. small sink,…

A dental office 
with small sink and 

bright lighting…

4. Holodeck Environment Building

Holodeck

Dental 
Office

Add
Attribute

GPT-4

House 
Description

Episode Sampling

Grid Map Floor Lamp

Initial

Actions: MoveAhead, …, Done 

…

Positions: (1.00, 2.25), …

Figure 2: Data collection process. On the left, we show the process of collecting the scene dataset.
We prompt GPT-4 to collect textual house descriptions and use Holodeck to build houses automat-
ically. On the right, we show an episode built in the house. We use BFS to find the shortest path
from the initial position to the target object. Then, actions and observations are collected.

agent 90 degrees. DONE is used when the agent believes it has finished the navigation task. When
the agent takes the DONE action or reaches the max action limit, the episode is considered successful
if the distance to the target object is less than 1.5 meters. According to this setting, an environment
can be formulated as a 0.25 × 0.25-meter grid map of all reachable positions.

4 DATA COLLECTION FOR DIVSCENE AND DIVTRAJ

Existing object navigation studies only focus on limited types of scenes and objects. To fill this gap,
we first curate a large-scale scene dataset DIVSCENE, featuring 81 scene types. We show the details
in Figure 2. Then, 23K episodes with diverse target objects are sampled using a BFS-based planner,
forming the DIVTRAJ dataset.

4.1 SCENE COLLECTION FOR DIVSCENE

We adopt the Holodeck (Yang et al., 2024) framework to build scenes automatically, easing human
labor. Holodeck takes textual house descriptions as input and uses GPT-4 to decide the layout, styles,
and object selections. To collect diverse houses, we first manually compile 81 scene types across
five big groups by supplementing the MIT scene dataset (Quattoni & Torralba, 2009), like music
studio and home office. We present a few houses in Figure 3 and more examples in Appendix E.

Then, we build textual house descriptions based on randomly chosen scene types by adding house
attributes. We consider 12 house attributes, such as room style, users of the room, etc. We randomly
sample 1-3 attributes and prompt GPT-4 to assign specific values to them. A house description is
then written by GPT-4, given the scene type and attribute values. Here, we prompt GPT-4 under the
in-context learning setting with the standard instruction-then-exemplar prompt (West et al., 2021):

<INSTRUCTION>
<EX1-IN-TYPE><EX1-IN-ATTR> <EX1-OUT>
. . .
<EXN-IN-TYPE><EXN-IN-ATTR> <EXN-OUT>
<EXN+1-IN-TYPE><EXN+1-IN-ATTR>

where <INSTRUCTION> describes the task of writing house descriptions. <EXi-IN-TYPE> and
<EXi-IN-ATTR> are the selected scene type and attributes, with output <EXi-OUT> being an
exemplar description. Concrete prompts are shown in Appendix A.2, and we provide GPT-4 with
N = 5 exemplars to generate the description for the final test example. Also, we leave the full
details of scene types and attributes in Appendix A.1

To encourage diversity, a new description is included only when its ROUGE-L similarity (Lin, 2004)
with any existing description is less than 0.8. Invalid generations are also identified and filtered out
based on heuristics (e.g., invalid output format). We show more details in Appendix A.3. After we
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collect abundant scene descriptions, we input each of them into the Holodeck framework and build
a dataset of 4,614 scenes named DIVSCENE.

4.2 EPISODE COLLECTION FOR DIVTRAJ

sunroom

wine cellar

school rooms

485 school, 560 wine, 2006 dental office, 25 sunroom

dental office

Figure 3: Examples of houses in DI-
VSCENE with different scene types.

We build a BFS-based planner and design a pipeline to
produce expert trajectories of shortest paths. Our method
has three steps to sample each episode. First, we sam-
ple an initial position and target object. Then, we use our
planner to find the shortest path between them. Finally,
we obtain the action sequence and corresponding envi-
ronment observations. We show an example in Figure 2.

As discussed in Section 3, houses in AI2THOR are dis-
cretized as grid maps of the fixed step size. We randomly
sample an initial position from the grip map for the agent.
Then, a target object is randomly sampled from all avail-
able objects in the environment. To encourage diversity,
objects of the same type as those sampled in previous
episodes are removed from the pool when sampling for
new episodes in the same house. We also impose that the
target objects are between 0.3 m and 2.0 m in height to
ensure they are observable to the agent.

Second, we build a planner capable of navigating multi-
room cluttered environments with various obstacles. The planner stems from the ground truth infor-
mation available in AI2-THOR, like reachable positions and objects’ coordinates. We use Breadth-
First Search (BFS) on the grid map to find the shortest path from the initial position to the target
object. We show more details of BFS in Appendix A.4. We stress that ground truth information is
not available to agents at inference time and is only used to produce expert episodes for training.

With the shortest path, we then derive the sequence of actions needed to achieve navigation. Ba-
sically, between two adjacent positions in the shortest path, we add a MOVEAHEAD action if the
agent’s rotation remains unaltered. Otherwise, we first use ROTATERIGHT or ROTATELEFT to ad-
just the orientation and then add a MOVEAHEAD action (more details in Appendix A.5). Thus, we
obtain an action sequence that can steer the agent to the target object. We execute all actions in
AI2THOR and collect observations at each step, including the agent’s status and egocentric images.

4.3 STATISTICS OF BOTH DATASETS

In DIVSCENE, we collected 4,614 houses across 81 scene types. To the best of our knowledge,
this dataset covers the widest range of scene types. We show the diversity of our collected houses
in Figure 6 by plotting most types under each category. Thanks to Objaverse assets (Deitke et al.,
2023), the collected houses contain objects from 22,696 different types, including very common
objects such as fridges, beds, shelves, and sofas, and rare objects such as multicolored bookshelf
and vintage wooden bench.

Then, we randomly pick one house from each scene type to build a test set of 81 houses. Similarly,
we randomly select 27 houses from distinct scene types as the validation set. Thus, DIVSCENE is
divided into training, validation, and test sets, covering 4506, 27, and 81 houses. On the training
set, we sample five episodes in each scene with different target objects. Four episodes are selected
in each house in evaluation sets to balance the evaluation efficiency and accuracy. In total, the
DIVTRAJ dataset contains 22962 episodes and 5707 different kinds of target objects. More statistics
of the DIVSCENE and DIVTRAJ are shown in Appendix A.6.

5 NATVLM

Figure 1 illustrates the datils of the proposed NATVLM model. Here, we build an end-to-end
agent that imitates shortest path experts in AI2THOR. Our agent is tuned from the LVLM, Idefics
2 (Laurençon et al., 2024), in an end-to-end manner. It takes an environment observation at each
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time step t and generates the next action at, following the same format as instruction tuning. Here,
we discuss the collection of instructions and corresponding responses.

5.1 INSTRUCTIONS COMPILATION

We manually build instructions for each time step in an episode, which contains four parts. First, the
instruction provides a brief introduction to the object navigation task, such as possible actions and
step length. Then, we add the episode-specific information, including the target object, its positions,
the agent’s position and rotation, and visual observation. Third, we provide the agent’s positions
and actions for the recent M = 8 steps, along with the visual observations from the recent K = 4
steps, to help the agent make better decisions. Finally, the instruction asks the model to predict the
next action by considering the agent’s position and visual observation in accordance with the CoT
explanation in the responses. We show the specific instruction template in Appendix B.1.

5.2 RESPONSE COLLECTION WITH COT EXPLANATION TRACES

We tune the LVLM to generate the next action when instructions are given. In the model, we
encode actions as natural language and use the model’s generative capabilities to decode the next
action. Nonetheless, we found that merely requiring LVLMs to output the next action leads to
unsatisfactory results. The model only grasps the surface-level styles of the prompt but misses the
underlying rationales of object navigation.

To enhance the agent’s understanding of navigation rationale, we manually build responses with
CoT explanation traces during the navigation process. The structure of the responses covers three
steps. In the first step, we have the agent compare its current position with the target and determine
whether it needs to move forward or take another action. After this, the agent is asked to check the
obstacles in the visual observation to see whether it needs to rotate. In the last step, the agent gives
the final decision based on the analyses in the first two steps. In contrast to writing explanations
with LLMs (Mitra et al., 2023), we manually write the prompt template of explanation traces for the
MOVEAHEAD and DONE actions, leaving the position information to be filled in with coordinates
at each step. For the rotation actions (i.e., ROTATERIGHT and ROTATELEFT), we identify very
common scenarios during the navigation and design the explanation trace template for each of them.
Then, we introduce a few postprocessing steps, like action balancing and conflict filtering. We show
concrete prompts and postprocessing details in Appendices B.2 and B.3, respectively.

6 EXPERIMENT

In this section, we conduct extensive experiments to compare our framework with various baselines.

6.1 DATASET AND METRICS

We conduct our experiments on DIVTRAJ with the statistics shown in Section 4.3. Our agent
NATVLM and baselines navigate in a given house until the model chooses the DONE action or
reaches the max action limit, 200 in our experiments. We report the metrics Success Rate (SR),
Success weighted by Path Length (SPL (Anderson et al., 2018)), and Success weighted by Episode
Length (SEL (Eftekhar et al., 2023)). An episode is considered successful when the target object
appears in the agent egocentric observation and is less than 1.5 meters away. Specifically, SR and
SPL are computed as 1

N

∑N
i=1 Si and 1

N

∑N
i=1 Si

li
max(li,pi)

, where N is the number of episodes, Si

is the indicator of success, li is the length of the shortest path, and pi is the length of the predicted
trajectory. For SEL, we replace li and pi with the action number of the shortest and predicted paths.

6.2 BASELINE METHODS

We compare our embodied agent with four baselines:

Blind LLMs: The first baseline we test is the text-only LLM agent that simply predicts the next
action based on the textual instruction without considering any visual information. This agent ref-
erences how far we can get solely using prior world knowledge and random guessing. For the LLM

6
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Table 1: Performance of NATVLM and baselines on the validation and test sets of DIVTRAJ. We
also provide the performance on all evaluation data. The highest scores are bolded. In the “LLMs
w/Captions” baseline, we use Llava 1.5 as the captioning model.

Methods Backbone Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

Random - 9.26 8.19 9.26 6.79 5.77 6.79 8.03 6.98 8.03

Blind LLMs

Llama 2 (7B) 8.33 7.26 3.64 9.57 7.63 6.28 8.95 7.45 4.96
Llama 2 (13B) 9.26 7.69 3.12 10.19 8.62 4.14 9.72 8.15 3.63
Llama 3.1 (8B) 11.11 9.40 5.56 12.04 9.50 6.19 11.57 9.45 5.88
Mistral (7B) 8.33 7.16 4.13 9.88 7.89 3.78 9.11 7.53 3.96

LLMs w/ Captions

Llama 2 (7B) 11.11 9.30 5.06 12.96 10.90 8.19 12.04 10.10 6.62
Llama 2 (13B) 9.26 7.56 4.03 12.35 9.93 5.95 10.80 8.74 4.99
Llama 3.1 (8B) 12.96 10.73 2.75 16.67 13.50 6.28 14.82 12.12 4.52
Mistral (7B) 11.11 9.65 3.43 11.76 9.65 2.72 11.43 9.65 3.07

Open LVLMs

Qwen-VL (7B) 10.19 8.75 9.14 7.41 6.05 6.66 8.80 7.40 7.90
Llava 1.5 (7B) 12.04 10.07 9.88 12.35 10.03 10.30 12.20 10.05 10.09
Llava 1.5 (13B) 12.04 10.50 11.05 10.62 8.73 9.75 11.33 9.62 10.40
Idefics 2 (8B) 21.30 17.88 14.31 20.68 17.18 16.49 20.99 17.53 15.40

API LVLMs GPT-4v 33.33 28.79 18.81 32.10 26.39 18.26 32.72 27.59 18.54
GPT-4o 37.04 31.82 29.47 38.27 31.74 27.92 37.66 31.78 28.70

NATVLM (Ours) Idefics 2 (8B) 57.41 47.84 47.90 54.94 44.45 45.83 56.17 46.15 46.86

choice, we evaluate Llama 2 (7B, 13B) (Touvron et al., 2023), Llama 3.1 (8B) (Dubey et al., 2024),
and Mistral (7B) (Jiang et al., 2023).

Socratic LLMs w/ Image Captions: This is the simplest agent that leverages perceptual informa-
tion. Here, we use an image captioning model to convert visual observations into natural language.
These captions provide a language description of egocentric images, allowing LLMs to obtain the
content of perceptual information. Here, we employ Llava 1.5 (Liu et al., 2024a) as the captioning
model while using the same LLMs as those in the “Blind LLM” baseline.

Open-Source LVLMs: The most generic agent for navigation is one that can directly process textual
instructions and visual observations. Thus, we directly test recent open-source LVLMs without any
further tuning, which are capable of processing images in addition to textual queries. Here, the single
image LVLM we test is Llava 1.5 (7B, 13B) (Liu et al., 2024b;a). Meanwhile, we test Qwen-VL
(7B) (Bai et al., 2023) and Idefics 2 (8B) (Laurençon et al., 2024) for handling multiple images.

API-based LVLMs: In addition to open-source LVLMs, we also evaluate closed-source ones, in-
cluding GPT-4v (OpenAI, 2023) and GPT-4o (OpenAI, 2024). They can process multiple images
and achieve state-of-the-art performance in multimodal tasks.

6.3 MAIN EVALUATION

We present the results of our model NATVLM and baselines on the validation and test sets in Ta-
ble 1. We also include the performance of selecting a random action at each step (i.e., Random)
as a reference. In general, our embodied agent NATVLM achieves the best performance on object
navigation, exceeding the performance of all baselines by a large margin. For example, our model
can successfully navigate to 57.41% of episodes on the test set, increasing by about 20% compared
to the GPT-4o baseline. Meanwhile, according to the higher SPL and SEL scores on both test and
validation sets, our model can navigate to target objects with better efficiency.

For the baselines, the blind LLMs achieve performance slightly higher than the random results. For
example, LLama 3.1 (8B) achieves a success rate of 11.57%, about 4 points higher than the random
guess. In the meantime, we observe that the performance of all LLMs only improved marginally
when we added the captioning model to provide additional perceptual information. This result shows
that the captioning model can miss important image content details, leading to unsatisfactory im-
provement. On the other hand, we find that LVLMs can achieve the best results across all baselines.
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Table 2: The ablation study of our agent NATVLM. ∆∗ columns indicate the score difference of
each metric on the test set. We remove the explanation trace and test different methods of position
comparisons. We bold the highest scores except for the gold label test (⋄ w Gold Label).

Methods Valid Test Test Diff
SR SPL SEL SR SPL SEL ∆SR ∆SPL ∆SEL

Ours 57.41 47.84 47.90 54.94 44.45 45.83 - - -

⋄ w/o ET 29.63 25.01 23.18 26.54 22.11 21.42 ↓28.40 ↓22.34 ↓24.41
⋄ w/o ET & w Gold 28.70 24.12 23.38 30.86 25.46 25.58 ↓24.08 ↓18.99 ↓20.25

⋄ w Gold Label 59.26 49.01 51.33 62.96 50.54 54.12 ↑8.02 ↑6.09 ↑8.29
⋄ w Diff-EQ 54.63 45.02 46.48 54.32 43.59 46.84 ↓0.62 ↓0.86 ↑1.01
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(a) Performance of the default prompt.
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(b) Performance of the difference-equation prompt

Figure 4: Design investigation. We provide different numbers of recent visual observations with
the embodied agent. Besides the default prompt we use, we also evaluate the difference-equation
prompt. See scores of all metrics in Appendix C.2

For example, the closed-source VLMs, GPT-4v and GPT-4o, can successfully navigate to target ob-
jects in more than 30% cases. In addition, Idefics 2 (8B) attains success rates exceeding 20% on
both validation and test sets.

6.4 ABLATION STUDY

To better understand the role of CoT explanation traces in our agent NATVLM, we conduct two
ablation studies to analyze its contribution. First, we verify the efficacy of CoT explanation traces.
Then, we analyze different ways to compare the positions of the agent and target object. The results
of experiments are shown in Table 2.

First, we remove the whole explanation traces in the response of the instruction tuning data (⋄ w/o
ET). Thus, we fine-tune the agent to only generate the next action. From the result, we can find that
the performance of our agent drastically drops. This verifies that explanation traces can help the
LVLM to better understand the underlying rationales of object navigation. Subsequently, we further
enhance the agent’s input by providing the gold label indicating the positional difference between
the agent and the target object (⋄ w/o ET & w Gold). As shown in Table 2, we can observe that the
gold labels cannot help much as the performance only fluctuates somewhat.

Then, we study the effects of the position comparison, a crucial component and the initial step in our
explanation traces. The default prompt is to directly generate the position difference: “the difference
to the target object is [position diff]” as shown in Table 10, where [position diff] is a placeholder.
First, we provide the global label of positional differences in the input instructions (⋄w Gold Label).
The results in Table 2 show that providing global labels can improve the performance of our agent.
This observation suggests that our agent may occasionally compute the positional difference with
inaccuracies, as providing the gold label can lead to a performance increase. Next, we test the
difference-equation prompt (⋄ w Diff-EQ), where we fine-tune our agent to generate an equation for
computing the positional difference. However, writing the equation of computation only leads to
small variations in performance. All the abovementioned prompts are shown in Appendix C.1.
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Table 3: Hyperparameter investigation. Our agents receive various numbers of recent actions and
positions within the default prompt. See results of difference-equation prompt in Appendix C.3.

Number Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

4 steps 46.30 38.66 39.82 45.99 37.45 39.60 46.14 38.05 39.71
8 steps 57.41 47.84 47.90 54.94 44.45 45.83 56.17 46.15 46.86
12 steps 42.59 35.92 36.43 50.93 41.15 43.20 46.76 38.53 39.81
16 steps 51.85 43.01 42.72 53.40 43.03 44.08 52.62 43.02 43.40

Table 4: Few-shot learning ability. We test our agent with different proportions of training data.
Besides the default prompt, we also evaluate the difference-equation prompt in Appendix C.4.

% Data Valid Test Test Diff w GPT-4o
SR SPL SEL SR SPL SEL ∆SR ∆SPL ∆SEL

20 37.04 30.86 30.22 38.89 31.40 32.13 ↑0.62 ↓0.34 ↑4.21
40 33.33 27.95 27.13 38.27 31.00 30.79 ↓0.00 ↓0.74 ↑2.87
60 49.07 40.68 42.01 52.12 42.25 44.40 ↑13.85 ↑10.51 ↑16.48
80 50.00 41.46 43.36 49.69 40.26 42.49 ↑11.42 ↑8.52 ↑14.57
100 57.41 47.84 47.90 54.94 44.45 45.83 ↑16.67 ↑12.71 ↑17.91

6.5 DESIGN INVESTIGATION

In this experiment, we thoroughly investigate a few design decisions regarding the image number
and step number of recent positions and actions. Besides the default prompt structure, we also
conduct experiments with the difference-equation prompt, which is introduced as “⋄ w Diff-EQ” in
the ablation study.

The default design provides NATVLM with four images. In addition, we test the agent’s perfor-
mance using different numbers of input images, including 2, 6, and 8 images. The results are plotted
in Figure 4. First, we observe a decline in the agent’s performance when provided with only two im-
ages, showing that using fewer images leads to worse performance. For instance, our agent finishes
the navigation successfully only 50% of the time, underperforming the 4-image baseline. Moreover,
increasing the number of images to 6 or 8 does not result in further performance variations. Thus,
we choose to provide our agent with four images for the tradeoff between accuracy and efficiency.

We also investigate the effect of recent positions and actions on navigation performance. By default,
we provide the agent with information about the recent 8 steps. Then, we test the performance when
we provided the positions and actions of 4, 12, and 16 steps. As illustrated in Table 3, a substantial
performance improvement is evident when increasing the number of steps from 4 to 8. However,
further increases in step count yield limited returns. Thus, we provide our agent with 8 steps.

6.6 FEW-SHOT LEARNING ABILITY

Our agent undergoes instruction tuning with an extensive training dataset, DIVTRAJ. To assess its
generalization capabilities, we design a few-shot experiment to confirm its ability to generalize with
fewer data. While the original training data contains five episodes per house, we train the model
with only 1, 2, 3, and 4 episodes, representing 20%, 40%, 60%, and 80% of the full data. The
results are shown in Table 4. For clarity, we also compare our models with the GPT-4o baseline.
We can find that our agent has strong few-shot learning abilities. With only 20% percent training
data, our agent can perform similarly to GPT-4o and generalize well on unseen houses. Meanwhile,
the results demonstrate a gradual performance improvement as we incrementally increase the data
volume, with performance gains plateauing at approximately 80% of the full dataset.

6.7 ZERO-SHOT TRANSFER LEARNING

To further verify the generalization ability of NATVLM, we test it on other house datasets with lim-
ited scene types: iTHOR (Weihs et al., 2021) and ProcTHOR (Deitke et al., 2022). Both datasets
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Table 5: Performance of zero-shot transfer learning on iTHOR and ProcTHOR. NATVLM outper-
forms all baselines by a large margin.

Models iTHOR ProcTHOR
SR SPL SEL SR SPL SEL

Qwen-VL (7B) 23.67 19.96 19.27 10.83 9.04 6.28
Llava 1.5 (7B) 24.12 20.32 20.34 16.04 13.53 14.02
Llava 1.5 (13B) 19.47 16.21 17.48 13.12 11.07 11.85
Idefics 2 (8B) 28.54 23.39 18.49 17.29 14.33 11.05

NATVLM ⋄ w/o ET 38.27 32.15 31.43 31.25 26.87 26.20

NATVLM 72.79 59.34 59.28 53.12 44.37 43.04
NATVLM ⋄ w Diff-EQ 72.32 58.98 62.35 54.59 45.53 46.80

encompass four distinct scene types: bedrooms, living rooms, kitchens, and bathrooms. There are
30 rooms in iTHOR for each scene type, which is designed by professional 3D artists. Meantime,
ProcTHOR is a procedural house-generation system that constructs 10,000 unique houses automat-
ically. Similar to iTHOR, we sample 30 houses for each scene type from ProcTHOR. Four episodes
are sampled in each house to evaluate our agent.

4269-6

Ground

Truth

Real

Prediction

start

end

Figure 5: Error analysis. The agent
needs to find a soda can in the
lower right corner of a game room.

We directly use NATVLM tuned on the DIVTRAJ dataset to
test this zero-shot transferring ability. Since we do not tune
hyper-parameters on these datasets, we treat each dataset as
a test set without any validation set. The results are shown in
Table 5. We also report the performance of open-source VLMs
and some ablated models as baselines. The results show that
our agent surpasses all the baselines on both datasets. Such
improvements indicate that our framework has a strong ability
to generalize in other environments.

6.8 CASE STUDY

In Figure 5, we provide an example of error analysis of our
agent. The upper image shows the predicted path in the real
scene, and the lower image shows the ground truth in the cor-
responding grid map. Here, the agent needs to find a soda can
after walking through the whole game room. There are 46 ac-
tions in the shortest path. Instead of heading towards the goal,
the agent just meanders in a limited area. This shows that our
agent cannot finish the navigation with a long trajectory. One
possible explanation could be the constraint of only providing
the agent with recent historical information.

7 CONCLUSION

In this paper, we study a new task of building navigational agents capable of generalizing to a wide
range of unseen objects in diverse scenes. For benchmarking, we collect a large-scale scene dataset,
DIVSCENE, featuring 81 different scene types. Then, we build the end-to-end agent, NATVLM,
which is fine-tuned from an LVLM. The agent is trained through imitation learning on the shortest
paths generated by a BFS-based planner. With the planner, we collect over 22K episodes to form
the DIVTRAJ dataset. In the training data, we also build CoT explanation traces to help the agent
better grasp the underlying rationale of navigation. Extensive experiments show that our agent can
navigate to diverse objects in diverse scenes significantly better than baselines. We also conduct
various analyses to show the generalization ability of our agent. For future work, a promising
direction is to expand the memory capacity of LVLMs to enable navigation over longer horizons.
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ETHICS STATEMENT

Our scene dataset DIVSCENE is built upon the publicly available AI2THOR platform (Kolve et al.,
2017) and the Holodeck framework (Yang et al., 2024). Then, we further extend our experiments
on iTHOR (Weihs et al., 2021) and ProcTHOR (Deitke et al., 2022), both of which are open-source
datasets.

REPRODUCIBILITY

To reproduce our experiments, we add a copy of the code with readme and data examples in the
supplemental materials. The datasets and models developed in this study will be released upon
acceptance, including DIVSCENE, DIVTRAJ, and NATVLM. Meanwhile, we provide the full im-
plementation details of our NATVLM agent and baselines in Appendix D, including the learning
rate, batch size, hard device, API access, etc. Meanwhile, we show the whole data postprocessing
details in Appendices A.3 and B.3.
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Table 6: The categories and scene types used in our DIVSCENE dataset. In total, there are 5 cate-
gories and 81 scene types in our dataset.

Category Scene Type

Store
(16 types)

bakery, grocery store, clothing store, deli, laundromat, jewellery shop, bookstore, video
store, florist shop, shoe shop, toy store, furniture store, electronics store, craft store, music
store, sporting goods store

Home
(21 types)

bedroom, nursery, closet, pantry, children room, lobby, dining room, corridor, living
room, bathroom, kitchen, wine cellar, garage, sunroom, cabinet, study room, apartment,
home office, basement, attic, laundry room

Public spaces
(9 types)

prison cell, library, waiting room, museum, locker room, town hall, community center,
convention center, recreation center

Leisure
(14 types)

buffet, fast-food restaurant, restaurant, bar, game room, casino, gym, hair salon, arcade,
spa, concert hall, ski lodge, lounge, club

Working place
(21 types)

hospital room, kindergarten, restaurant kitchen, art studio, classroom, laboratory, music
studio, operating room, office, computer room, warehouse, greenhouse, dental office, TV
studio, meeting room, school room, conference room, factory floor, call center, reception
area, nursing station

Table 7: The 12 attributes we used to collect house descriptions. We also provide an example value
of each attribute.

Attribute Example Value Attribute Example Value

Room Style victorian, rustic Flooring soft and cushioned, hard
Objects in the Room computers, desks, chairs, servers Theme industrial, contemporary
Number of Rooms single room Lighting bright, warm ambient
Configurations individual cubicles Window small, slightly slanted
Users of the Room children of various ages Room Size spacious, medium-sized
Era contemporary, modern Wall Treatment artistic paintings, calming color

A DIVSCENE AND DIVTRAJ DETAILS

A.1 SCENE TYPE DETAILS AND ATTRIBUTE LIST

This section lists all scene types we collected by complementing the MIT scene dataset. In total,
there are 81 scene types across five different categories, as shown in Table 6.

To collect diverse house descriptions, we add various attributes to a randomly sampled scene type.
Here, we consider 12 different attributes as shown in Table 7. We ask GPT-4 to assign a value to
each attribute and write a house description.

A.2 TEXTUAL HOUSE DESCRIPTION PROMPT

We use in-context learning to prompt the GPT-4 to write textual house descriptions of 81 different
scene types. Here, we show the concrete prompt we used in Table 8. We randomly sample 1-3 house
attributes and ask GPT-4 to assign a value to them. Then, a house description is written based on the
given scene type and attribute values. We use five exemplars in the in-context learning setting.

A.3 POSTPROCESSING OF TEXTUAL HOUSE DESCRIPTION

After we collect textual house descriptions from GPT-4, we also introduce three filters to ensure
their diversity and quality. First, we introduce a ROUGE-L filter. A new textual description is added
only when its ROUGE-L similarity with any existing description is below 0.8, following previous
works (Wang et al., 2022; 2024). Second, if we cannot find the values of given attributes in the first
step of the output, we remove the example. Third, if we cannot find the house description in the
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Table 8: The prompt we used to collect textual house descriptions using GPT-4. Here, we use 5
exemplars in the in-context learning. We show one example here for saving space.

Task Instruction: Create a detailed and fluent description for a house based on the given scene type and
features in two steps. Step 1: provide the value of each feature. Step 2: write a short phrase to describe the
scene type with the values.

Exemplar1 Input: The given house type is “arcade.” The feature list is: “(1) Objects in the room.”
Exemplar1 Output: Step 1: (1) a pool table\n Step 2: An arcade with a pool table

Following Exemplars: Exemplar 2, ..., Exmplar 5

Testing Input: The given house type is “office.” The feature list is: “(1) Number of Rooms (2) Users of
the Room (3) Configurations.”

second step in the output from GPT-4, we remove the example. The last two steps mean that the
output does not follow the output format specified in the instructions and exemplars (see Table 8).

A.4 BFS-BASED PLANNER

We use a BFS-based planner to find the shortest path from the initial position to a target point on
the grid map. Notice that the target object is not necessarily anchored to a point on the grid map for
realism. Thus, we find the grid point nearest to the target object as the destination of the navigation.

The algorithm is shown in Algorithm 1, which is based on a priority queue. We design the BFS-
based planner to pick the path with the fewest rotations to make it easier for LLMs to imitate. In
detail, we add more costs when rotation changes since the agent needs one more rotation action
before moving ahead, as shown at the 12th line in Algorithm 1.

Algorithm 1 BFS Search for Shortest Paths

1: procedure BFS SEARCH(reachable pos, start point, end point, start rotation)
2: Initialize priority queue Q, distance map d map, and parent map p map
3: Enqueue (0, start point, start rotation) to Q
4: while Q not empty do
5: (cost, current, rotation)← Dequeue from Q
6: if current = end point then
7: return ReconstructPath(p map, current)
8: end if
9: for r in {North, East, South, West} do ▷ Four cardinal directions

10: neighbor ← GetNeighbor(current, r)
11: if neighbor ∈ reachable pos then
12: newCost← cost+ (1 if r = rotation else 2) ▷ More cost if rotation changed
13: if neighbor not visited or newCost < d map[neighbor] then
14: d map[neighbor] = newCost ▷ Update distance
15: p map[neighbor] = current ▷ Update parent
16: Enqueue (newCost, neighbor, r) to Q
17: end if
18: end if
19: end for
20: end while
21: return No path found
22: end procedure

A.5 ACTION DERIVATION ALGORITHM

We show the action derivation algorithm in Algorithm 2. Between two adjacent positions in the
shortest path, we add a MOVEAHEAD action if the agent’s rotation remains unaltered. Otherwise,
we first use ROTATERIGHT or ROTATELEFT to adjust the orientation and then add a MOVEAHEAD
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Figure 6: The top 10 most common room types
(outer circle) under each room category (inner
circle) in the collected houses.
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Figure 7: The top 15 most common scene types
(inner cycle) and their top 5 target object types
(outer cycles).

action. After reaching the target object, we then rotate the agent so that the object is approximately
centered in the agent’s egocentric view.

A.6 DATA DIVERSITY

To study what types of scenes are gathered under each category, we identify the category-type struc-
ture of houses in DIVSCENE. We plot the top 10 most common scene types under each category in
Figure 6. Then, we study the diversity of target objects in the episodes we sampled in DIVTRAJ.
We plot the top 15 most common scene types and their top 5 target object types in Figure 7. Overall,
we see quite diverse scenes and target objects in our datasets.

Algorithm 2 Get a Sequence of Actions from a Shortest Path

1: procedure GET ACTION SEQUENCE(shortest path, start rotation, target object)
2: agent rotation← start rotation
3: Initialize empty action list
4: prior p← shortest path[0]
5: for each current p in shortest path[1 :] do
6: path rotation← compute path rotation(current p, prior p)
7: if path rotation ̸= agent rotation then
8: Append appropriate rotation action(s) to action list ▷ RotateRight or RotateLeft
9: agent rotation← path rotation

10: end if
11: Append “MoveAhead” to action list
12: end for
13: object rotation← compute object rotation(target object, shortest path[−1])
14: if object rotation ̸= agent rotation then
15: Append final rotation action(s) to action list ▷ Adjust the view for the target object
16: end if
17: Append “Done” to action list
18: return action list
19: end procedure
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Table 9: Instruction Template we used to fine-tune the LVLM: Idefics 2. There are four steps
in the template, and we leave step-wise and episode information with placeholders. [obj type]
and [obj pos] are the type of target object and its location. On the grid map, we also provide the
nearest point on the grid map [grid obj pos] with a rotation [grid obj rotation]. [agent pos] and
[agent rotation] are the agent’s position and rotation. There are also placeholders for the recent
status: [recent agent pos], [recent agent rotation], [recent agent image], and [recent action].
Notice that we provide the information of the recent 8 steps and only provide the recent 4 images
for inference efficiency.

1. Brief Introduction: You are an agent placed in a 3D environment. Your step length is 0.25 meters, and
your rotation degree is 90.
The possible actions are:
1. MoveAhead: Moves the agent forward by 0.25 meters in the direction it is currently facing. For example,
if the agent is at (x, y) facing 0 degrees (north), MoveAhead will result in (x, y + 0.25). If the agent is
facing 90 degrees (east), MoveAhead will result in (x + 0.25, y). If the agent is facing 180 degrees (south),
MoveAhead will result in (x, y - 0.25). If the agent is facing 270 degrees (west), MoveAhead will result in
(x - 0.25, y).
2. RotateRight: Rotate right for 90 degrees (clockwise).
3. RotateLeft: Rotate left for 90 degrees. (counterclockwise).
4. Done: Indicate that you are near to the target object and finish the task.

2. Episode-Specific Information: You need to find a [obj type] at the position [obj pos]. To achieve this,
we recommend you move to the position [grid obj pos] with a rotation of [grid obj rotation].
Currently, you are at [agent pos] with a rotation of [agent rotation].

3. Status of Recent Steps: The history of recent states are:
Position: [recent agent pos], Rotation: [recent agent rotation], Action: [recent action]
. . .
Position: [recent agent pos], Rotation: [recent agent rotation], Current View: [recent agent image],
Action: [recent action]

4. Prediction Steps: Please generate the next step given the above states with the following steps: 1)
Consider your rotation and position. 2) Check the images to see obstacles or the target object. 3) Decide
the action.

B NATVLM INSTRUCTION DATA

In this section, we give the concrete prompts used in fine-tuning the LVLM, Idefics2.

B.1 INSTRUCTION TEMPLATE

We show the instruction template we used in the Table 9. There are four parts in the instruction
template, including a brief task introduction, episode-specific information, the status of recent steps,
and the prediction steps that need to be considered. We leave a lot of placeholders for the episode
and step information.

B.2 RESPONSE TEMPLATE

Previous works usually collect explanation traces using GPT-4 (Mitra et al., 2023; Mukherjee et al.,
2023; Ho et al., 2023). In contrast, we collect explanation traces with manually written templates.
The templates and examples are shown in Tables 10 and 12. For ROTATERIGHT and ROTATELEFT,
we identified the three most common scenarios for rotation based on heuristic rules. Then, we wrote
the template for each of them. The first scenario is that the distance difference between the agent
and the target object becomes zero in the agent’s rotation. Thus, the agent needs to navigate in the
other direction. The second scenario involves the presence of obstacles in the agent’s current path,
necessitating a rotation to navigate around them. The final scenario involves adjusting the agent’s
rotation to center the target within its field of view, occurring at the end of the navigation process.
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Table 10: Response templates we used to build CoT explanation traces for MOVEAHEAD and
DONE.

MOVEAHEAD

Template:
1) In the direction of my rotation, [agent rotation] degrees ([cardinal direction]), the difference to the
target object is [position diff] m. I need to move further [cardinal direction].
2) There is no obstacle in front of me in recent images.
3) MoveAhead

Example:
1) In the direction of my rotation, 90 degrees (east), the difference to the target object is 0.5m. I need to
move further east.
2) There is no obstacle in front of me in recent images.
3) MoveAhead

DONE

Template:
1) My position and rotation are equal to the recommended one.
2) I can see the target [obj type] in the image of the current state.
3) Done

Example:
1) My position and rotation are equal to the recommended one.
2) I can see the target label marker in the image of the current state.
3) Done

Table 11: The distribution of collected actions before and after post-processing. The original dataset
is very imbalanced since most of the actions are MOVEAHEAD. Then, we downsample the MOVEA-
HEAD actions with a rate of 0.25. We also filtered the conflicting data.

Action w/o Postproc w/ Postproc
# Num % Prop # Num % Prop

MOVEAHEAD 221,598 77.94% 57,760 49.32%
ROTATELEFT 19,596 6.89% 18,412 15.72%
ROTATERIGHT 19,527 6.87% 18,403 15.72%
DONE 23,610 8.30% 22,529 19.24%

B.3 DATA POSTPROCESSING

Directly using all actions in every trajectory to conduct imitation learning brings about an extremely
imbalanced dataset. As shown in Table 11, 77.94% actions are MOVEAHEAD. Then we down-
sampled MOVEAHEAD actions in the instruction dataset. We only retain 25% of the MOVEAHEAD
actions resulting in a more balanced dataset.

Then, we also remove conflicting data. We find that steps from different trajectories within the same
house occasionally exhibit conflicting information. They have the exact same input information but
different action predictions. This happens when two overlapped trajectories diverge at some point
due to different target objects. Those conflicting data can confuse the fine-tuned LVLM and lead to
worse performance. Thus, we remove those conflicting data from our dataset.

We show the final distribution of our dataset in Table 11 (w/ Postproc).

C SUPPLEMENTARY EXPERIMENT DETAILS

In this section, we provide supplementary experiment results and show the prompt details.

C.1 ABLATION STUDY PROMPT

We change the prompt templates for tuning our agent NATVLM in the ablation studies.
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Table 12: Response templates we used to build CoT explanation traces for three common rotation
scenarios.

First scenario: distance difference becomes zero

Template:
1) In the direction of my rotation, [agent rotation] degrees ([cardinal direction]), the difference to the
recommended position is 0.00m. Thus, I need to move in another direction, where the difference is
[other position diff] m, and the rotation is [other agent rotation] degrees.
2) Obstacles don’t affect rotation.
3) RotateRight/RotateLeft

Example:
1) In the direction of my rotation, 180 degrees (south), the difference to the recommended position is
0.00m. Thus, I need to move in another direction, where the difference is 1.25m, and the rotation is 90
degrees.
2) Obstacles don’t affect rotation.
3) RotateLeft

Second scenario: Obstacles

Template:
1) In the direction of my rotation, [agent rotation] degrees ([cardinal direction]), the difference com-
pared to the target object is [position diff] m.
2) There are obstacles in front of me, as shown in current images. I need to rotate in another direction.
In the other direction, the difference is [other position diff] m, and the rotation is [other agent rotation]
degrees.
3) RotateRight/RotateLeft

Example:
1) In the direction of my rotation, 180 degrees (south), the difference compared to the target object is
1.50m.
2) There are obstacles in front of me, as shown in current images. I need to rotate in another direction. In
the other direction, the difference is 1.25m, and the rotation is 270 degrees.
3) RotateRight

Third scenario: View Adjustion

Template:
1) My position is the same as the recommended one: [grid obj pos]. However, my rotation is
[agent rotation] degrees, facing [cardinal direction]. I need to adjust the rotation to center the target
within its field of view.
2) Obstacles don’t affect rotation.
3) RotateRight/RotateLeft

Example:
1) My position is the same as the recommended one: (0.50, 1.25). However, my rotation is 90 degrees,
facing east. I need to adjust the rotation to center the target within its field of view.
2) Obstacles don’t affect rotation.
3) RotateRight

(1) For adding the gold label of position difference (⋄ w/o ET & w Gold and ⋄ w Gold Label),
we append a new sentence “The difference to the target object is [position diff]” to the end of the
Episode-Specific Information part of the instruction template.

(2) For removing the explanation traces, the Prediction Steps part of the instruction template is
replaced with one shorter sentence, “Please generate the next step given the above states.”

(3) For the difference-equation prompt in the ⋄ w Diff-EQ experiment, we replace [position diff]
in all explanation traces with the equation: [grid obj pos] - [agent pos] = [position diff].

C.2 FULL RESULTS OF THE IMAGE NUMBER EXPERIMENT

We provide the full results of the image number experiment of all metrics in Table 15.
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Table 13: Hyperparameter investigation. We provide different numbers of recent actions and po-
sitions to the embodied agent. We use the difference-equation prompt in this table. The best
performance is bolded.

Number Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

4 steps 45.37 37.76 40.04 52.47 42.87 46.45 48.92 40.31 43.25
8 steps 54.63 45.02 46.48 54.94 44.04 47.40 54.78 44.53 46.94
12 steps 51.85 42.80 44.06 60.19 48.10 51.63 56.02 45.45 47.84
16 steps 56.48 46.39 47.89 59.26 47.52 50.82 57.87 46.95 49.36

Table 14: The evaluation of the few-shot learning ability of our agent NATVLM. We test our agent
with different proportions of sampled episodes in each room. We compare the results with the GPT-
4o and test the difference-equation prompt in this table.

% Data Valid Test Test Diff w GPT-4o
SR SPL SEL SR SPL SEL ∆SR ∆SPL ∆SEL

20 37.96 32.01 36.72 32.10 26.45 31.15 ↓6.17 ↓5.29 ↑3.23
40 38.89 32.76 38.14 33.33 27.07 31.94 ↓4.94 ↓4.67 ↑4.02
60 62.96 51.47 52.19 58.95 47.34 49.53 ↑20.68 ↑15.60 ↑21.61
80 57.41 46.79 45.73 57.10 45.98 46.58 ↑18.83 ↑14.24 ↑18.66
100 54.63 45.02 46.48 54.94 44.04 47.40 ↑16.67 ↑12.30 ↑19.48

Table 15: The investigation of the hyperparameter: image number. We provide different numbers
of recent visual observations of the embodied agent. Besides the default prompt we use, we also
evaluate the difference-equation prompt. We bold the best performance.

(a) Performance of the default prompt.

Number Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

2 images 50.00 41.64 40.23 50.00 40.71 41.03 50.00 41.17 40.63
4 images 57.41 47.84 47.90 54.94 44.45 45.83 56.17 46.15 46.86
6 images 45.37 37.61 35.37 50.31 40.88 38.70 47.84 39.25 37.03
8 images 49.07 40.82 41.52 54.01 43.61 46.22 51.54 42.22 43.87

(b) Performance of the difference-equation prompt.

Number Valid Test All
SR SPL SEL SR SPL SEL SR SPL SEL

2 images 46.30 38.54 38.93 52.16 42.13 44.76 49.23 40.34 41.84
4 images 54.63 45.02 46.48 54.94 44.04 47.40 54.78 44.53 46.94
6 images 49.07 40.82 38.88 51.23 41.56 40.20 50.15 41.19 39.54
8 images 55.56 45.81 43.40 57.41 46.39 44.40 56.48 46.10 43.90

C.3 COMPLEMENTARY RESULTS OF THE ACTION NUMBER EXPERIMENT

While we provide the results of the action number experiment with the default prompt in Table 3,
we also provide the results with the difference-equation prompt in Table 13. The prompt is used as
“⋄ w Diff-EQ” in the ablation study.

C.4 COMPLEMENTARY RESULTS OF THE FEW-SHOT EXPERIMENT

While we provide the results of the few-shot learning with the default prompt in Table 4, we also
provide the results with the difference-equation prompt in Table 14. The prompt is used as “⋄ w
Diff-EQ” in the ablation study.
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D IMPLEMENTATION DETAILS

We train our agent NATVLM from Idefics 2 on 8 NVIDIA A100 GPUs using the Megation-LM
framework (NVIDIA, 2021). All parts of the Idefices 2 are fine-tuned, including the LLM, vision
encoder, and modality projector. We load the model in BF16 and fine-tune it for one epoch with the
learning rate and batch size of 2e-5 and 64, respectively. The best checkpoint is selected according
to the sum of all metrics on the validation set. The image size sampled from the AI2THOR is
300 × 300. For the baselines, we use the same instructions as our agent and ask them to predict
the next action directly. Similarly, we also provide the history of the recent 8 steps (i.e., actions
and agent positions) and the visual observation of the recent 4 steps. The exceptions are blind
LLMs and Llava 1.5, which can handle zero and one image, respectively. We access the closed-
source LVLMs via the OpenAI API1 with the specific versions of gpt-4-vision-preview and
gpt-4o-2024-08-06.

E MORE HOUSE EXAMPLES

In this section, we present more houses built in our DIVSCENE dataset in Figure 8.

(a) a warehouse with large win-
dows

(b) a meeting room with artistic
paintings

(c) a toy store with a magical
kingdom theme.

(d) an operating room used by
surgeons and nurses featuring
light-colored tiles on the walls. (e) an industrial locker room

(f) a community center with a
versatile and inclusive theme fea-
turing a spacious room size.

Figure 8: Examples of different houses in DIVSCENE.

1https://platform.openai.com/docs/api-reference
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(a) a community center with versatile flooring (b) a house from ProcTHOR

Figure 9: Comparing our houses with ProcTHOR.

E.1 COMPARISON WITH PROCTHOR

In Figure 9, we compare houses from our dataset and ProcTHOR with the same number of rooms (8
rooms). Obviously, our scene is more complex with more objects. Quantitively, our scene contains
466, and the scene from ProcTHOR contains only 74 objects.

25


	Introduction
	Related Work
	Task Definition
	Data Collection for DivScene and DivTraj
	Scene Collection for DivScene
	Episode Collection For DivTraj
	Statistics of Both Datasets

	NatVLM
	Instructions Compilation
	Response Collection with CoT Explanation Traces

	Experiment
	Dataset and Metrics
	Baseline Methods
	Main Evaluation
	Ablation Study
	Design Investigation
	Few-shot Learning Ability
	Zero-shot Transfer Learning
	Case Study

	Conclusion
	DivScene and DivTraj Details
	Scene Type Details and Attribute List
	Textual House Description Prompt
	Postprocessing of Textual House Description
	BFS-Based Planner
	Action Derivation Algorithm
	Data Diversity

	NatVLM Instruction Data
	Instruction Template
	Response Template
	Data Postprocessing

	Supplementary Experiment Details
	Ablation Study Prompt
	Full Results of the Image Number Experiment
	Complementary Results of the Action Number Experiment
	Complementary Results of the Few-Shot Experiment

	Implementation Details
	More House Examples
	Comparison with ProcTHOR


