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Abstract

Recently, transformer-based models have demon-
strated state-of-the-art performance across various
computer vision tasks, including image classifica-
tion, detection, and segmentation. However, their
substantial parameter count poses significant chal-
lenges for deployment in resource-constrained
environments such as edge or mobile devices.
Low-rank approximation (LRA) has emerged as
a promising model compression technique, effec-
tively reducing the number of parameters in trans-
former models by decomposing high-dimensional
weight matrices into low-rank representations.
Nevertheless, matrix decomposition inherently
introduces information loss, often leading to a
decline in model accuracy. Furthermore, existing
studies on LRA largely overlook the quantiza-
tion process, which is a critical step in deploy-
ing practical vision transformer (ViT) models. To
address these challenges, we propose a robust
LRA framework that preserves weight informa-
tion after matrix decomposition and incorporates
quantization tailored to LRA characteristics. First,
we introduce a reparameterizable branch-based
low-rank approximation (RB-LRA) method cou-
pled with weight reconstruction to minimize in-
formation loss during matrix decomposition. Sub-
sequently, we enhance model accuracy by inte-
grating RB-LRA with knowledge distillation tech-
niques. Lastly, we present an LRA-aware quan-
tization method designed to mitigate the large
outliers generated by LRA, thereby improving the
robustness of the quantized model. To validate
the effectiveness of our approach, we conducted
extensive experiments on the ImageNet dataset
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using various ViT-based models. Notably, the
Swin-B model with RB-LRA achieved a 31.8%
reduction in parameters and a 30.4% reduction in
GFLOPs, with only a 0.03% drop in accuracy. Fur-
thermore, incorporating the proposed LRA-aware
quantization method reduced accuracy loss by an
additional 0.83% compared to naive quantization.

1. Introduction
Transformer-based models have demonstrated powerful per-
formance in various fields, including computer vision, lan-
guage processing, and speech processing (Vaswani et al.,
2017; Dosovitskiy et al., 2020; Gulati et al., 2020). Specifi-
cally, vision transformer (ViT) models have achieved higher
accuracy than convolutional neural networks (CNNs) (He
et al., 2016; Choi et al., 2019; He et al., 2017) in vision
tasks such as image classification (Touvron et al., 2021; Liu
et al., 2021), detection (Carion et al., 2020), and segmenta-
tion (Strudel et al., 2021). However, ViTs typically involve
more parameters and computational complexity than CNNs,
making them challenging to deploy on mobile and edge de-
vices with limited memory and computing resources, unlike
high-performance GPU servers (Yin et al., 2022; Lee et al.,
2024b). To address these challenges, various compression
methods have been proposed, including quantization (Yuan
et al., 2022), pruning (Jongho & Kim, 2024) and low-rank
approximation (LRA) (Lee et al., 2024a; Kumar, 2022).

LRA is an effective method for reducing model size by de-
composing weights into low-rank matrices (Hajimolahoseini
et al., 2022; Zhang et al., 2023). However, applying LRA
often results in a significant drop in accuracy due to the loss
of weight information. Additionally, as the weights become
shallower than those of the original large-scale model, it
becomes challenging to recover the original accuracy us-
ing standard fine-tuning methods. To address these issues,
previous studies have introduced fine-tuning methods based
on knowledge distillation (KD) (Hinton et al., 2015). For
example, (Guo et al., 2024) proposed a method that regular-
izes the perturbations caused by LRA while simultaneously
applying KD to improve accuracy. (Yu & Wu, 2023) pro-
posed a method that decomposes activations and determines
the appropriate rank for each layer based on sensitivity to
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Figure 1. The overall framework integrating the proposed RB-LRA method with quantization. The framework involves two steps: (a)
Fine-tuning: Construct the RB-LRA layer by initializing the branch weights with discarded matrices from LRA, and apply feature-based
knowledge distillation (KD) to improve performance. (b) Quantization: Create compressed weights by summing the weights of both the
LRA and reparameterizable branches, then apply weight quantization and calculate the quantization error. Layers with errors below the
threshold are processed with WADS to scale activations and apply quantization.

layer-wise perturbations. However, these approaches are
suboptimal in minimizing information loss during weight
decomposition, making it difficult to achieve high accuracy
only using LRA. Therefore, to further improve the perfor-
mance of LRA-based compression methods, a more robust
LRA-oriented approach is needed.

Meanwhile, quantization reduces memory requirements and
computational overhead by representing 32-bit floating point
data as low-bit integers (e.g., INT4, INT8). In resource-
constrained environments, such as mobile and edge devices,
quantization is essential for memory and power-efficient
utilization of ViTs (Choi & Kim, 2022; Kang et al., 2024).

Integrating LRA and quantization methods offers an effec-
tive solution for the practical deployment of ViTs on mo-
bile and edge devices, which are often constrained by lim-
ited computing and memory resources. Specifically, LRA
can reduce the number of parameters and computational
costs, while quantization enables integer-based operations
that enhance inference speed and minimize memory usage.
However, the simultaneous use of these two compression
techniques can lead to severe accuracy degradation. In fact,
we observed substantial outliers in specific channels and
tokens after applying LRA, yet existing LRA studies fail
to take quantization into consideration. Consequently, this
observation highlights the need for a quantization solution
that specifically addresses the effects of LRA.

Based on these motivations, we propose a framework that
integrates robust LRA with quantization to efficiently utilize
large ViT models on mobile and edge devices. Figure 1
illustrates the proposed integrated LRA and quantization
framework. Our contributions are summarized as follows:

• We introduce a robust reparameterizable branch-based
LRA (RB-LRA) and weight reconstruction (WR) meth-
ods that complement conventional LRA. The RB-
LRA method employs a reparameterizable residual
branch to compensate for LRA-induced errors. The
WR method initializes the RB-LRA branch using the
weights removed by LRA, thereby reducing informa-
tion loss. Consequently, RB-LRA significantly miti-
gates accuracy degradation compared to existing LRA
approaches.

• We observed large activation outliers when applying
RB-LRA. To mitigate these outliers, we propose a
weight-aware distribution scaling (WADS) method and
suggest that per-token quantization is an effective ap-
proach to minimize accuracy drops caused by these
outliers.

• We applied the proposed RB-LRA and WADS to rep-
resentative ViT-based models (DeiT (Touvron et al.,
2021), and Swin transformer (Liu et al., 2021)). Con-
sequently, the proposed methods not only effectively
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Figure 2. Comparison of Top-1 accuracy drop with various quan-
tization methods and the our proposed compression framework
combining LRA and quantization on the ImageNet dataset for
the DeiT-B model. Detailed numerical results are provided in Ap-
pendix A.5.

enhance the trade-off between memory and accuracy
but also achieve inference acceleration, making them
well-suited for practical deployment on mobile and
edge devices. Additionally, the proposed methods out-
perform existing quantization methods, as shown in
Figure 2, when the DeiT-B model is compressed at a
similar ratio (i.e., INT4 quantization).

2. Related Works
2.1. Low-Rank Approximation

LRA is a method that decomposes a high-dimensional
weight matrix into two low-rank matrices. It is primarily
used to compress the fully connected (FC) layers, which
are key components of transformer models. Among various
methods, singular value decomposition (SVD)-based LRA
(Klema & Laub, 1980) is one of the most frequently adopted
approaches. SVD decomposes a matrix into a left singular
vector matrix, a diagonal singular value matrix, and a right
singular vector matrix. In this process, the matrix is approxi-
mated as a low-rank matrix by removing the smaller singular
values while preserving the larger ones. However, removing
these singular values leads to information loss, which causes
a drop in accuracy. Accordingly, various methods have been
proposed to address accuracy degradation. (Guo et al., 2024)
proposed a method that integrates l∞-norm-based weight
perturbation regularization with feature-based KD. (Yu &
Wu, 2023) used an eigenvalue decomposition for decom-

posing the output feature map. However, (Guo et al., 2024)
could not directly address the fundamental information loss
that occurs during LRA. Instead, it focused on regularizing
weight reconstruction perturbations and achieved improved
performance by applying KD during fine-tuning. Moreover,
(Yu & Wu, 2023) decomposed the output feature map rather
than the weight matrix, also relying on KD. In contrast to
these approaches, we propose a novel method that focuses
on minimizing information loss through the reconstruction
of weights removed during the LRA process.

2.2. Knowledge Distillation

Knowledge distillation (KD) is a method for distilling
knowledge from a large model (i.e., teacher model) to a
smaller model (i.e., student model). KD is typically catego-
rized into two categories: response-based KD and feature-
based KD. Response-based KD involves training the student
model to replicate the probability distribution of the teacher
model’s output. For example, (Hinton et al., 2015) uses soft
labels generated through label smoothing (Szegedy et al.,
2016). This approach enhances generalization performance
by training the student model on a probability distribution
that spans all classes derived from the teacher’s soft labels.
In contrast, feature-based KD trains the student model to
mimic the feature maps from specific layers or blocks of
the teacher model. For instance, (Zagoruyko & Komodakis,
2016) distills attention map features from the teacher model
into the student model. This approach aims to enhance per-
formance by enabling the student model to replicate the
feature distributions of the teacher model. Therefore, since
LRA can significantly change the distribution of the original
model, feature-based KD is an effective method to improve
performance.

2.3. Quantization

Quantization is a technique that reduces memory require-
ments and computational overhead by converting 32-bit
floating-point weights and activations into low-bit precision
(Gholami et al., 2022; Kim & Kim, 2021). The commonly
used uniform symmetric quantization can be expressed as
follows:

Q(x) = X · s, s = 2b − 1

α− β
, (1)

where X represents the input activation, and s is the scal-
ing factor. α and β denote the maximum and minimum
values, respectively. b represents the number of quantiza-
tion bits. Quantization is the process of mapping data from
the range of 32-bit floating-point values into a lower-bit
integer domain. However, when large outliers are present,
the quantization step can become excessively large, leading
to increased quantization error (Ki & Kim, 2022). There-
fore, it is crucial to minimize accuracy degradation by han-
dling these outliers while reducing bit precision. To address
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outliers effectively, (Xiao et al., 2023) used a method for
smoothing outliers in activations. (Kim et al., 2024) intro-
duced quantization-aware distribution scaling (QADS) to
handle outliers in MobileNet (Sandler et al., 2018) blocks.
(Li et al., 2023) introduced a quantization approach lever-
aging a reparameterization-based distribution scaling tech-
nique. However, previous quantization studies do not con-
sider the characteristics of the model after LRA, although
we observed large outliers in specific channels and tokens
after LRA. This means that quantizing activations with out-
liers may severely decrease model performance. To address
these issues, we propose a novel distribution scaling method
and demonstrate that per-token quantization is suitable for
LRA.

3. Proposed Method
3.1. Singular Value Decomposition-based Low-Rank

Approximation

First, we describe an SVD-based LRA. Specifically, the
SVD for FC layers with weight matrix w ∈ Rm×n is ex-
pressed as follows:

w = USV T (2)

The matrix w is decomposed into U ∈ Rm×m , S ∈ Rm×n

, and V ∈ Rn×n. S is a diagonal matrix consisting of
min(m,n) singular values. Matrices U, V represent the left
and right singular vectors, respectively, and are orthonormal
matrices. LRA is performed using only the top r diagonal
elements of the S matrix. The SVD-based LRA can be
expressed as follows:{

U
′
= U[:,:r]S

1/2
[:r,:r]

V
′
= (S

1/2
[:r,:r]V[:r,:])

T
(3)

where U
′ ∈ Rm×r, V

′ ∈ Rn×r are the low-dimensional
decompositions of the matrix w, respectively. In this case,
the total number of parameters changes from O(mn) to
O(r(m+n)). Since r < min(m,n), this results in a signif-
icant reduction in the number of parameters. Consequently,
we obtain the y = wTx ≈ V

′
(U

′Tx).

3.2. Reparameterizable Branch-based Low-Rank
Approximation

In Eq. (3), the operations of the FC layer involving the
approximated V

′
and U

′
can be expressed in the following

reformulated form:

y = V
′
(U

′T X) + EX

EX = (wT − V
′
U

′T )X
(4)

The matrix E denotes the difference between the founda-
tion model’s weight matrix and the LRA matrix. Although

directly computing the E matrix preserves accuracy, it in-
troduces additional parameters during the inference process,
thereby negating the memory reduction advantages. There-
fore, we design the matrix Ẽ as a low-rank residual branch
and propose the RB-LRA method derived from this design:

y ≈ V
′
(U

′T X) + ẼX = (V
′
+ Ṽ )(U

′T + ŨT )X

where ẼX = (V
′
ŨT + Ṽ U

′T + Ṽ ŨT )X
(5)

In Eq. (5), the structure is formulated as a residual branch
(i.e., Ṽ , Ũ ) relative to the input X, enabling its consolidation
into a single branch via the application of a reparameteriza-
tion technique :

y ≈ V
′
(U

′T X)+ẼX = (V
′
+Ṽ )(U

′T+ŨT )X = A
′
B

′T X
(6)

The problem of finding the optimal Ẽ can be simplified
to finding Ṽ and Ũ . We determine the optimal Ṽ and Ũ
matrices through fine-tuning.

3.3. Initialization Method of Reparameterizable Branch

Since the Ṽ , Ũ matrices are not foundation model-oriented
elements, the initialization method is crucial. Therefore,
we propose WR, which leverages the original weights of
the foundation model that are discarded during LRA ap-
plication, considering the characteristics of the FC layer
operations. In Eq. (3), we remove all submatrices except for
those corresponding to the top r singular values and their
related elements in the U and V matrices. The removed
submatrices are expressed as follows: Udel = U[:,r:]

Sdel = S[r:,r:]

Vdel = V[r:,:]

(7)

We obtain the matrices U, S, and V by applying SVD. The
value r satisfies r < min(m,n). The process of reconstruct-
ing the original FC layer using the removed submatrices and
the LRA matrix is expressed as follows:

y
′
= UT X = Concat(U

′T X, UT
delX)

y = V ST y
′
= V

′
y

′

[:r,:] + (SdelVdel)
T y

′

[r:,:]

(8)

We exploit the property that the (SdelVdel)
T matrix can be

reconstructed via addition, and utilize its value to initial-
ize the Ṽ matrix. Conversely, since the UT

del matrix is con-
structed through concatenation, it is not fully reconstructed.
As a result, the Ũ matrix is initialized to zero and then opti-
mized through fine-tuning. When comparing the sizes of the
weight elements removed after applying the compression
method, the LRA removes O(m2 +n2 − r(m+n)) weight
elements. In contrast, the proposed WR method removes
only O(m(n − r)) weight elements. As a result, the pro-
posed WR method can significantly reduce information loss
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compared to LRA. Consequently, unlike conventional LRA
methods, our method can be fine-tuned to achieve optimal
performance with minimal loss of weight matrix informa-
tion and effectively reduce parameters during inference. In
addition, a theoretical analysis of the proposed RB-LRA
and WR methods is provided in Appendix A.1.

3.4. Block-Level Knowledge Distillation

After applying RB-LRA, we perform fine-tuning using KD
to achieve high accuracy. When applying KD, selecting
the appropriate teacher model and determining which fea-
tures from the teacher model to distill are critical consider-
ations. RB-LRA compresses a large-scale original model
into a shallower model. In this scenario, high accuracy can
be achieved by utilizing the large-scale original model as
the teacher model. Distilling layer-wise feature knowledge
from the teacher model can lead to overfitting during the
fine-tuning process (Liu et al., 2023). Therefore, we apply
encoder block-level KD, with the loss function designed as
follows:

Lkd = MSE(f l
t(xl), f

l
s(xl)) (9)

where f l
t represents the output of the l-th encoder in the

teacher model. f l
s represents the output of the l-th encoder

in the student model, and xl denotes the input to the l-th
encoder. The final loss function considering block-level KD
loss can be expressed as follows:

L = αLce + βLkd (10)

where Lce represents the commonly used cross-entropy loss
(Cox, 1958). α and β denote the scale terms of the loss,
respectively. For simplicity, we set both α and β to 1. Finally,
we use a combination of RB-LRA and block-level KD to
improve accuracy. In particular, unlike previous methods,
the RB-LRA method achieves higher accuracy by applying
block-wise KD while minimizing the loss of information
caused by applying LRA.

3.5. Low-Rank Approximation-Aware Quantization

We use the commonly used configuration of 8-bit per-
channel and per-layer uniform quantization for each of the
weights and activations, respectively, as the baseline (Lin
et al., 2021). In the baseline model, we observed a drop
in accuracy of 2.19% and 1.30% for Swin-T and Swin-B,
respectively, compared to RB-LRA with 32-bit floating-
point precision. To analyze the causes of this accuracy drop,
we measured quantization error per layer. Consequently,
we found that the RB-LRA layer exhibited a significant
quantization error. To identify the cause, we analyzed the
characteristics of the activation distribution by visualizing
the distribution in the RB-LRA layer. Figure 3 shows the
activation distribution of a specific RB-LRA layer in the

Figure 3. Visualization of activation distribution after applying
RB-LRA to the Swin-B model. The x-axis represents the channel
number, the y-axis represents the token number, and the z-axis
represents the absolute value. (a) shows the output activation dis-
tribution after applying RB-LRA to the 11th encoder block. In this
case, outliers become more severe in certain channels. (b) shows
the output activation distribution after applying WADS to the 11th
encoder block, showing a reduction in outliers compared to (a).

Swin-B model. Based on these observations, we identified
two main causes of the decrease in accuracy.

First, as shown in Figure 3, we found outliers in certain
channels of the RB-LRA layer activation in certain encoder
blocks. Based on these observations, we propose an activa-
tion scaling method that uses a channel scaling vector to
mitigate the large outliers in specific channels, as follows:

Yq = Q(X/α)Q(αW) (11)

where α and Q(·) represent the channel scaling vector and
the quantization function, respectively. X,W, and Yq rep-
resent the input activation, weight, and output activation,
respectively. The loss function to determine the optimal α
that minimizes the quantization error is expressed as follows
(Kim et al., 2024) :

L(α) =
∥∥Q(X/α)Q(αW)− XW

∥∥2 (12)

where Q(·) represents the quantization function. X repre-
sents the input activation, and W represents the weight. By
using this method, the activation quantization error can be
minimized. However, when applying this method to a model
with RB-LRA, the weight quantization error becomes severe
in certain layers. Therefore, we propose WADS to solve this
problem. First, we measure the quantization loss of all RB-
LRA layer weights. The quantization loss of the weights
can be measured as follows:

L(w) =
∥∥Q(W)− W

∥∥2 (13)

where W and Q(·) represent the weight before quantization
and quantization function, respectively. We only apply acti-
vation scaling for layers with smaller than average values of
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Model Method KD Method Params(M) GFLOPs ACC.(%) Diff.(%)

DeiT-T

Baseline - 5.7 2.2 72.17 -
LRA - 5.2 (-8.8%) 1.8 68.40 -3.77

RB-LRA - 5.2 (-8.8%) 1.8 70.92 -1.25
RB-LRA + KD Feature 5.2 (-8.8%) 1.8 71.70 -0.47

DeiT-B

Baseline - 86.6 33.7 81.85 -
LRA - 44.4 (-45.7%) 17.1 78.76 -3.09

PELA (Guo et al., 2024) Feature 44.1 (-49.1%) 17.0 81.00 -0.85
RB-LRA - 44.4 (-45.7%) 17.1 79.93 -1.92

RB-LRA + KD Feature 44.4 (-45.7%) 17.1 81.12 -0.73

Swin-T

Baseline - 28.3 8.6 81.37 -
LRA - 21.1 (-25.4%) 6.7 77.30 -4.07

RB-LRA - 21.1 (-25.4%) 6.7 80.27 -1.1
RB-LRA + KD Feature 21.1 (-25.4%) 6.7 80.49 -0.88

Swin-B

Baseline - 88.1 30.3 83.47 -
LRA - 60.1 (-31.8%) 21.1 81.75 -1.72

AAFM+GFM (Yu & Wu, 2023) Feature 60.2 (-31.7%) - 82.99 -0.48
PELA (Guo et al., 2024) Feature 62.2 (-29.4%) 21.3 82.50 -0.97

RB-LRA - 60.1 (-31.8%) 21.1 82.88 -0.59
RB-LRA+KD Feature 60.1 (-31.8%) 21.1 83.44 -0.03

Table 1. Comparison of Top-1 Accuracy (%) across various models with RB-LRA applied on ImageNet dataset.

L(w) to reduce the accuracy drop owing to weight quanti-
zation errors. Furthermore, we redesign the loss function to
find the optimal channel scaling vector. The process of de-
termining the optimal channel scaling vector α

′
is expressed

as follows:

α
′
= argmin

α

{
L(α) +

∥∥Q(αW)− W
∥∥2} (14)

where L(α) refers to Eq. (12). This prevents α from be-
coming excessively large during optimization, which may
cause outliers in the weights. The optimal channel scaling
vector is determined using only a subset of the training
dataset, enabling optimization without requiring access to
the full dataset. As a result, by utilizing an activation scal-
ing method that considers the weights quantization errors,
we achieve better performance compared to the previous
activation scaling method.

Meanwhile, we also found that outliers emerged in spe-
cific tokens. If per-layer quantization is applied to activa-
tions with these outliers, the quantization error may be sub-
stantial; however, using a finer granularity than per-layer
quantization can help reduce quantization errors. Therefore,
we propose that per-token quantization is an appropriate
method when considering token outliers and integer domain
FC layer operations. Consequently, the proposed WADS
method and per-token activation quantization effectively
mitigate the accuracy degradation caused by outliers when
applying RB-LRA.

4. Experimental Results
4.1. Comparison Results on Various Networks

RB-LRA for Image Classification Tasks: We evaluated
the performance by applying RB-LRA to the DeiT (Tou-
vron et al., 2021) and Swin transformer (Liu et al., 2021).
Specifically, RB-LRA was applied to all the FC layers
within the encoder blocks of each model. All experiments
used an initial learning rate of 1e-5, the AdamW optimizer
(Loshchilov & Hutter, 2017), and the cosine annealing
scheduler (Loshchilov & Hutter, 2016). Experiments were
conducted on a single A100 GPU within the TiMM (Wight-
man, 2019) environment.

To demonstrate the effectiveness of our proposed method
combining RB-LRA and block-level KD (i.e., RB-
LRA+KD) on image classification tasks, Table 1 compares
its performance with state-of-the-art (SOTA) LRA meth-
ods, including PELA (Guo et al., 2024) and AAFM + GFM
(Yu & Wu, 2023). As the AAFM+GFM method does not
utilize the full dataset, its performance is compared exclu-
sively with that of the Swin-B model, for which full-dataset
performance is reported in the referenced paper.

In addition, to demonstrate the mitigation of information
loss in the LRA method, we compared the performance of
RB-LRA with that of the conventional LRA (i.e., naive SVD-
based LRA) without applying the KD method. The experi-
mental results show that applying RB-LRA and block-level
KD enables the DeiT-T and DeiT-B models to reduce param-
eters by 8.8% and 45.7% and giga floating-point operations
(GFLOPs) by 18.2% and 49.3%, with only 0.47% and 0.73%
accuracy drop, respectively. For the Swin-T and Swin-B
models, RB-LRA+KD achieved parameter reductions of
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Model Method Prec. Size(MB) ACC.(%) Diff.(%)

DeiT-T

Baseline(RB-LRA) FP32 20.8 71.70 -
NaivePTQ 70.90 -0.80

SmoothQuant (Xiao et al., 2023) 71.43 -0.27
Repq-ViT (Li et al., 2023) INT8 5.2 71.38 -0.32
QADS (Kim et al., 2024) 71.40 -0.30

WADS 71.52 -0.18

DeiT-B

Baseline(RB-LRA) FP32 177.6 81.12 -
NaivePTQ 79.62 -1.50

SmoothQuant (Xiao et al., 2023) 80.26 -0.86
Repq-ViT (Li et al., 2023) INT8 44.4 80.37 -0.75
QADS (Kim et al., 2024) 79.82 -1.30

WADS 80.56 -0.56

Swin-T

Baseline(RB-LRA) FP32 84.4 80.49 -
NaivePTQ 78.30 -2.19

SmoothQuant (Xiao et al., 2023) 80.00 -0.49
Repq-ViT (Li et al., 2023) INT8 21.1 80.08 -0.41
QADS (Kim et al., 2024) 80.04 -0.45

WADS 80.20 -0.29

Swin-B

Baseline(RB-LRA) FP32 240.4 83.44 -
NaivePTQ

INT8 60.1

82.14 -1.30
SmoothQuant (Xiao et al., 2023) 82.76 -0.68

QADS (Kim et al., 2024) 82.37 -1.07
WADS 82.97 -0.47

Table 2. Comparison of size (MB) and accuracy between naive quantization, previous quantization methods, and proposed WADS.

25.4% and 31.8%, respectively, along with GFLOPs reduc-
tions of 22.1% and 30.4%. These reductions were achieved
with minimal accuracy drops of only 0.88% and 0.03%, re-
spectively. As a result, the proposed method demonstrated
higher accuracy and greater robustness compared to conven-
tional LRA approaches. Furthermore, we demonstrate that
our method performs well on tiny networks.

Quantization: In this subsection, we analyze the perfor-
mance of 8-bit naive post-training quantization (NaivePTQ)
and the proposed WADS after applying RB-LRA. We also
compare WADS with the SmoothQuant (Xiao et al., 2023),
Repq-ViT (Li et al., 2023), and QADS (Kim et al., 2024)
methods to demonstrate WADS effectiveness. The proposed
method applies WADS to models trained using both RB-
LRA and block-level KD. According to the previous anal-
ysis, per-token quantization is applied to activations, and
per-channel quantization is applied to weights. We applied
static quantization and performed calibration using 32 data
samples to determine the optimal scaling factor. Subse-
quently, we conducted WADS optimization using the same
dataset. This process is performed layer by layer for RB-
LRA, finding the optimal channel scaling vector that min-
imizes quantization loss through 300 iterations of scaling
vector updates. As shown in Table 2, WADS significantly
mitigates accuracy drops across all ViT-based models un-
der the same model size. In particular, DeiT-B and Swin-B
achieved 0.94% and 0.83% higher accuracy, respectively,
compared to NaivePTQ. In addition, our proposed method
achieved the highest accuracy across all models compared to

all other methods. This indicates that WASD, which consid-
ers the weight quantization error, is the optimal method for
combination with RB-LRA. Furthermore, a comprehensive
analysis of the variations in quantization error due to the
application of WADS is provided in Appendix A.3, while
the analysis of performance variations across different quan-
tization methods (i.e., WADS, per-token) is discussed in
A.4.

4.2. Performance Comparison with SOTA Compression
Methods

We evaluate the proposed framework on the Swin-B model,
comparing its performance against SOTA methods in both
quantization and LRA. Since these approaches differ in
their original baseline accuracies, we report accuracy degra-
dation relative to each method’s respective baseline to en-
sure fair comparison. As shown in Table 3, our method
achieves an accuracy of 82.97%, while simultaneously ap-
plying LRA and quantization—two compression techniques
that are typically challenging to integrate without significant
accuracy loss. Compared to existing LRA-based methods
such as PELA and AAFM+GFM, this result demonstrates a
highly competitive trade-off between model size and accu-
racy. Furthermore, compared to existing quantization meth-
ods, our approach minimizes accuracy degradation even
with a smaller model size of 6.1 MB. These results demon-
strate that the proposed framework achieves competitive
performance compared to both SOTA LRA methods and
other representative compression methods.
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Method LRA Quant Train Model Size(MB) Baseline Acc. (%) Acc. (%)
PTQ4ViT (Yuan et al., 2022)

-

✓ -
66.1 85.27

84.18 (-1.09)
APQ-ViT (Ding et al., 2022) ✓ 84.01 (-1.26)

QDrop (Wei et al., 2022) ✓ ✓ 84.33 (-0.94)
I&S-ViT (Zhong et al., 2023) ✓ ✓ 84.94 (-0.33)

PELA (Guo et al., 2024) ✓ - ✓ 248.8
83.47

82.50 (-0.97)
AAFM+GFM (Yu & Wu, 2023) ✓ ✓ 240.8 82.68 (-0.79)

Ours ✓ ✓ ✓ 60.1 82.97 (-0.5)

Table 3. Comparison of size (MB) and Top-1 accuracy on the ImageNet dataset between the proposed framework and SOTA compression
methods using the Swin-B Model.

Model Method Prec. Size(MB) Android(ms) Xavier(ms)

DeiT-B
Baseline FP32 346.4 275.6 150.7
RB-LRA FP32 177.6 153.2 73.6

RB-LRA + WADS INT8 44.4 86.7 59.4

Swin-T
Baseline FP32 113.2 98.5 61.1
RB-LRA FP32 84.4 83.6 38.6

RB-LRA + WADS INT8 21.1 67.3 27.4

Swin-B
Baseline FP32 352.4 287.4 140.5
RB-LRA FP32 240.4 226.3 102.2

RB-LRA + WADS INT8 60.1 155.3 96.2

Table 4. Latency (ms) comparison across methods for executing the DeiT and Swin Transformer models on mobile and edge devices.

4.3. Latency Analysis on Mobile and Edge Devices

We validate the practical efficiency of our proposed method
by measuring latency on real mobile and edge devices.
Specifically, latency measurements were conducted on an
Android smartphone for the mobile device and on the
NVIDIA Jetson Xavier platform for the edge device. In par-
ticular, latency on the Android smartphone was measured
using the 3.36 GHz Cortex-X3 main core, while the Ten-
sorRT engine was employed for latency measurements on
the NVIDIA Jetson Xavier platform. Table 4 shows that the
model incorporating both RB-LRA and WADS achieved in-
ference speedups ranging from 1.9× to 3.2× on mobile de-
vices and from 1.5× to 2.5× on edge devices. These results
validate that the proposed RB-LRA and WADS-based quan-
tization method not only optimizes the trade-off between
accuracy and memory usage but also delivers significant
acceleration benefits, making it practical for deployment in
mobile and edge device environments.

4.4. Ablation Studies

Evaluation on detection and segmentation tasks: To
demonstrate the effectiveness of our proposed method, we
conducted performance evaluations for detection and seg-
mentation tasks using the MSCOCO dataset (Lin et al.,
2014). Specifically, we used an ImageNet pre-trained Swin-
T model as the backbone network for the Mask-RCNN
model. We then applied RB-LRA to the backbone network
before training. Experiments were conducted in the MMDe-

tection (Chen et al., 2019) environment. For a comprehen-
sive analysis, we compared the performance of the proposed
method with CNN-based ResNet (He et al., 2016) and ViT-
based PVT (Wang et al., 2021) backbone networks. As
shown in Table 5, our method achieves outstanding perfor-
mance even on these downstream tasks. In the detection task,
we achieved an average precision (AP) of 42.5 with a 15.1%
reduction in parameters and a 6.1% reduction in GFLOPs.
This represents only a 0.2 AP drop compared with the Swin-
T backbone network. Additionally, our method outperforms
the ResNet-50 backbone network by 2.5 AP while using 3.8
M fewer parameters. In the segmentation task, our method
achieved an AP of 39.0, which is equivalent to the accuracy
of the PVT-M backbone network. However, it offers a bet-
ter parameter-accuracy trade-off, reducing both parameters
and computational cost (GFLOPs) by 36.5% and 31.3%,
respectively.

To further demonstrate the generalizability of our approach
to diverse applications, we evaluate its effectiveness on the
pose estimation task. In particular, we integrate RB-LRA
into the ViTPose-B (Xu et al., 2022), followed by fine-tuning
and evaluation on the MSCOCO Keypoint dataset. As shown
in Table 6, applying RB-LRA achieves a 25.7% reduction
in model size, with only a 0.9% and 0.6% drop in AP and
average recall (AR), respectively. These results highlight the
effectiveness of our method in preserving performance while
significantly reducing model complexity, even in structurally
distinct vision tasks.
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Backbone Params(M) GFLOPs AP box APmask

ResNet-50 (He et al., 2016) 44.4 250.2 40.0 36.1
PVT-M (Wang et al., 2021) 63.9 351.2 42.0 39.0
Swin-T (Liu et al., 2021) 47.8 256.8 42.7 39.3

Swin-T + RB-LRA 40.6 241.2 42.5 39.0

Table 5. Performance comparison of Mask-RCNN models with various backbone networks on the COCO validation dataset.

Model Method Params(M) AP AR

ViTPose-B Baseline 89.9 75.9 81.0
RB-LRA 66.8 (-25.7%) 75.0 80.4

Table 6. Performance of ViTPose with RB-LRA on the COCO
Keypoint Dataset.

Model Init. Method Acc.(%) Diff.(%)

Swin-T
Baseline 81.37 -
Random 79.54 -1.83

WR 80.49 -0.88

Swin-B
Baseline 83.47 -
Random 82.65 -0.82

WR 83.44 -0.03

Table 7. Comparison of Top-1 Accuracy (%) on the ImageNet
dataset under varying initialization methods for the Ṽ branch.

Analysis of performance variations based on initializa-
tion methods: We conduct a performance analysis of the
WR initialization method. Specifically, after integrating RB-
LRA into the Swin-T and Swin-B models, the Ṽ branch
weights are initialized using either the WR method or a
random initialization approach. In this process, random
initialization weights W ∼ N (0, 1) are utilized. Subse-
quently, fine-tuning is performed using the same KD method.
As shown in 7, the WR method achieves higher accuracy
compared to the random initialization method. This demon-
strates that fine-tuning with the WR method, which reduces
information loss, is an effective approach for achieving op-
timal accuracy. A more detailed analysis is provided in
Appendix A.2.

Evaluation of generalization capability across diverse
modalities

To assess the cross-domain generalizability of the proposed
RB-LRA method beyond computer vision tasks, we evalu-
ate its effectiveness on both language and speech processing
tasks. For language modeling, we apply RB-LRA to the
GPT-2 Medium (Radford et al., 2019) and measure per-
plexity (PPL) on the Wikitext-103 dataset (Merity, 2016).
For speech recognition, we integrate RB-LRA into the
Conformer-L (Gulati et al., 2020) and evaluate word error
rate (WER) on the LibriSpeech test-clean dataset (Panayotov
et al., 2015). In both cases, fine-tuning is performed using

Model Method Params(M) PPL WER

GPT-2 Medium Baseline 354.8 18.72 -
RB-LRA 249.4 (-29.7%) 19.51 -

Conformer-L Baseline 116.8 - 5.4
RB-LRA 86.2(-26.3%) - 5.6

Table 8. Evaluation of PPL on the Wikitext-103 dataset for GPT-2
Medium and WER on the LibriSpeech dataset for Conformer-L,
with RB-LRA applied.

the training split of the respective datasets. As shown in Ta-
ble 8, despite achieving a compression ratio of 26%∼30%,
the proposed method incurs less than a 1% increase in PPL
and WER. Ultimately, these results demonstrate that our
method extends beyond computer vision tasks, exhibiting
strong generalizability and scalability across diverse modal-
ities.

5. Conclusion
In this paper, we propose a compression solution aimed
at enabling memory- and power-efficient deployment of
ViT models in resource-constrained environments, such as
mobile and edge devices. The proposed RB-LRA method in-
troduces a reparameterizable branch specifically optimized
to address errors induced by LRA. Furthermore, the WR
method initializes the weights of the RB-LRA branch using
the weights discarded during the LRA process, effectively
minimizing information loss. Additionally, by combining
RB-LRA with block-level KD, we effectively balance the
trade-off between compression ratio and accuracy. Subse-
quently, we applied optimized quantization that considers
the characteristics of LRA. We observed large outliers in
certain channels and tokens of the RB-LRA output activa-
tions. Based on these observations, we proposed WADS to
mitigate these outliers. Through various experiments, we
demonstrated that WADS significantly reduces accuracy
loss. Additionally, we found that the per-token quantization
method effectively handles token outliers making it suitable
for quantizing LRA layers. Consequently, our approach,
which integrates RB-LRA with our proposed quantization
techniques, significantly reduces model size while maintain-
ing high accuracy compared to the baseline. As a result,
this solution enables the efficient deployment of various
transformer-based models in mobile and edge environments.
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A. Additional Analysis of the Proposed Method
A.1. Theoretical Analysis of RB-LRA and WR

We conduct a theoretical analysis of the proposed RR-LRA and WR methods. Specifically, we begin by reconstructing the
LRA matrix and subsequently evaluate the reconstruction error as follows:

Wr :=

r∑
i=1

σiuiv
T
i , ∥W −Wr∥2F =

∥∥∥∥∥∥
min(m,n)∑
i=r+1

σiuiv
T
i

∥∥∥∥∥∥
2

F

=

min(m,n)∑
i=r+1

σ2
i (15)

Here, Wr ∈ Rm×n represents the reconstructed LRA matrix. Eq. (15) follows from the Eckart–Young–Mirsky Theo-
rem (Eckart & Young, 1936), and the formulation involving the error matrix E is expressed as follows:

∥W − (Wr + E)∥2F =

∥∥∥∥∥∥
min(m,n)∑
i=r+1

σiuiv
T
i − E

∥∥∥∥∥∥
2

F

(16)

That is, the optimal error matrix E satisfying the following condition can be obtained in a closed form:

min
E

∥W − (Wr + E)∥2F (17)

However, the error matrix E directly derived from Eq. (17) has a parameter size of O(mn), and incorporating it into
the model increases the total parameter size to O(2mn), thereby undermining the primary objective of applying LRA.
Accordingly, we propose a reparameterizable error matrix Ẽ, formulated using a low-rank residual-branch structure to
preserve the efficiency of LRA as follows:

Ẽ =
(
V ŨT + Ṽ UT + Ṽ ŨT

)
(18)

When the proposed RB-LRA and WR are applied, the error matrix Ẽ can be formulated as follows:

Ẽ = V U
′
≈

r+l∑
i=r+1

σiuiv
T
i , with l < min(m,n)− r (19)

Consequently, the reconstruction error resulting from the application of the proposed WR method is formulated as follows:

WWR = Wr + Ẽ ≈
r+l∑
i=1

σiuiv
T
i (20)

Consequently, Eq. (16) leads to the following expression:

∥W − (Wr + Ẽ)∥2F < ∥W −Wr∥2F =

min(m,n)∑
i=r+1

σ2
i (21)

As demonstrated in Eq. (21), the proposed RB-LRA and WR methods achieve a more effective reduction in reconstruction
error compared to the conventional SVD-based LRA. This implies that the proposed approach minimizes information loss,
thereby playing a critical role in accelerating convergence and achieving optimal accuracy during the fine-tuning process.

A.2. Analysis of the Impact of Branch Initialization Method on Activation

We analyze the impact of the initialization method for the Ṽ branch on the output activations of the FC layer. Specifically,
we apply both the WR initialization and random initialization methods to the Ṽ branch, and visualize the output activations
of the FC layer to analyze their impact on the activation patterns. Additionally, we visualize the output activations of the FC
layer with the SVD-based LRA method applied, in order to compare its effects with those of the WR initialization method.
Figure 4 illustrates the FC layer activations based on the initialization method of the Ṽ matrix. We employed the DeiT-B
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Figure 4. Visualization of the FC layer activations in the DeiT-B model with RB-LRA applied. The x-axis represents the dimension index,
while the y-axis corresponds to the token index.

model with RB-LRA applied and conducted comparisons without fine-tuning. Furthermore, to improve the visibility of
the visualizations, the data was normalized within the range of [−2, 2]. First, by comparing the activation visualization
results of the WR method and the random initialization method, we observe that the WR method generates output similar to
that of the full-rank model. In contrast, the use of the random initialization method leads to noise, causing the activation
characteristics of the full-rank model to be lost. Ultimately, the presence of noise-like activations in the FC layer suggests
that they hinder the attainment of optimal accuracy during the fine-tuning process. Additionally, when compared to the
SVD-based LRA method, the WR method is found to better preserve the activation characteristics of the full-rank model.
This can be attributed to the effectiveness of the WR method in reducing weight information loss. Consequently, the use of
the WR initialization method promotes better retention of the full-rank model characteristics, ultimately contributing to the
attainment of optimal accuracy.

A.3. Impact of WADS on Activation Quantization Error

To assess the effect of WADS on reducing activation quantization error, we perform visualization and analysis of activation
quantization errors in both the DeiT and Swin transformer models. Figure 5 shows the activation quantization error for the
top 20 layers exhibiting the highest activation quantization errors in the DeiT and Swin Transformer models, as visualized
after normalization. As shown in Figure 5, the application of WADS leads to a reduction in activation quantization error
across all layers. These visualizations and analyses collectively demonstrate that the WADS method effectively mitigates
outliers and minimizes quantization error.

Figure 5. Analysis of Activation Quantization Error Changes with WADS Application. The x-axis represents the layer number, while the
y-axis represents quantization error. The visualization compares the error for the top-20 layers with the highest quantization error.
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A.4. Analysis of the performance impact of each proposed quantization method

To analyze the impact of our proposed LRA-aware quantization methods (i.e., WADS and per-token quantization), we
performed a step-by-step classification performance evaluation on the ImageNet dataset. As shown in Table 9, applying
per-token quantization to the DeiT-B and Swin-B models improved accuracy by 0.52% and 0.51%, respectively, compared
to the NaivePTQ method. These improvements are attributed to the quantization process, which effectively addresses the
impact of outliers on specific tokens after applying RB-LRA. Additionally, the WADS resulted in accuracy improvements
of 0.42% and 0.32%, respectively. This improvement is due to WADS effectively mitigating outliers in activation-specific
channels while minimizing weight quantization error. These results demonstrate that both the per-token quantization method
and the WADS are effective when combined with LRA and RB-LRA, significantly improving classification performance.

Model Method Per-Token WADS ACC.(%)

DeiT-B
NaivePTQ X X 79.62
LRA-aware ✓ X 80.14
LRA-aware ✓ ✓ 80.56

Swin-B
NaivePTQ X X 82.14
LRA-aware ✓ X 82.65
LRA-aware ✓ ✓ 82.97

Table 9. Performance comparison of different quantization methods at each step for the RB-LRA models.

A.5. Comparative Analysis with Existing SOTA Quantization Methods

Accuracy Comparison with Various SOTA PTQ Methods: We evaluate the performance of the proposed compression
platform, which combines RB-LRA and WADS, in comparison to existing SOTA quantization methods. Table 10 presents a
comparative analysis of the performance of various SOTA quantization methods and the proposed platform, using the FP32
DeiT-B model without LRA and quantization as the baseline. Consequently, the proposed method, which combines RB-LRA
and WADS, exhibits the best performance in balancing model size and accuracy. For instance, the existing state-of-the-art
method, IGQ-ViT, successfully reduced the size of the DeiT-B model to 43.3MB with 4-bit quantization, but incurred
a relatively significant accuracy drop of -2.62%. In contrast, our method compressed the model to a comparable size of
44.4MB, while incurring only a minimal accuracy decrease of -1.29%. This demonstrates that the integration of LRA and
quantization is highly effective in achieving model compression while maintaining accuracy. Moreover, it underscores that
the proposed compression platform provides a practical and efficient alternative to existing methods.

Method Prec. Size(MB) ACC.(%) Diff.(%)
BaseLine FP32 346.4 81.85 -

FQ-ViT (Lin et al., 2021)

INT4 43.3

64.39 -17.46
APQ-ViT (Ding et al., 2022) 67.48 -14.37
RepQ-ViT (Li et al., 2023) 75.61 -6.24
AdaLog (Wu et al., 2025) 78.03 -3.82

ADFQ-ViT (Jiang et al., 2024) 78.75 -3.10
IGQ-ViT (Moon et al., 2024) 79.23 -2.62

RB-LRA FP32 177.6 81.12 -0.73
RB-LRA+WADS INT8 44.4 80.56 -1.29

Table 10. Comparison of Top-1 Accuracy (%) on the ImageNet dataset across various existing SOTA quantization methods and the
proposed method, evaluated on the DeiT-B.

Comparison of Training Cost, Accuracy, and Latency Trade-offs Between SOTA PTQ Methods and the Proposed
Framework: We further compare the trade-offs between training cost, accuracy, and latency of the proposed framework
against existing SOTA PTQ methods. Table 11 presents the performance of our method, FQ-ViT (Lin et al., 2021), RepQ-
ViT (Li et al., 2023), and AdaLog (Wu et al., 2025) on the DeiT-B model. Latency is measured on the NVIDIA Jetson
Xavier platform, while GPU time denotes the optimization time evaluated on a single A100 GPU. In terms of accuracy,
the proposed method achieves the highest Top-1 accuracy of 80.56% Although it incurs a training time of 5 hours and
56 minutes, this cost is justified by the substantial accuracy improvement over existing PTQ methods. Next, in terms of
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latency, existing methods fail to achieve meaningful acceleration despite applying 4-bit quantization. This is primarily
because support for true 4-bit integer operations remains limited across current edge devices. In most commercial edge
hardware, even when 4-bit quantization is applied at the software level, the actual computations are executed using 8-bit
integer operations. Consequently, it is difficult to realize the theoretical speedup benefits of 4-bit quantization in practical
deployment scenarios. In contrast, the proposed method integrates 8-bit quantization with LRA, effectively reducing
both computational complexity and model size. As a result, it achieves the shortest inference latency of 59.4ms. This
demonstrates that combining widely supported 8-bit integer operations with structural compression methods such as LRA
can yield significant optimization benefits. These results suggest that the proposed method offers excellent practicality and
computational efficiency, particularly in realistic edge deployment scenarios.

Method Prec. Latency (ms) Model Size (MB) GPU Time Acc.(%)
FQ-ViT (Lin et al., 2021)

INT4
110.9

43.3
77 s 64.39

RepQ-ViT (Li et al., 2023) 96.8 247 s 75.61
AdaLog (Wu et al., 2025) 113.8 2h 47m 78.03

Ours INT8 59.4 44.4 5h 56m 80.56

Table 11. Comparison of training cost, latency, and accuracy between SOTA PTQ methods and the proposed framework on the DeiT-B.

A.6. Differences with Low-Rank Adapter-Based Parameter Efficient Fine-Tuning

Recent research has focused extensively on adapter-based methods for parameter-efficient fine-tuning (PEFT) of large
Transformer models. Notably, LoRA (Hu et al., 2021) utilizes low-rank adapters to update only a limited subset of
parameters, thereby significantly reducing GPU memory consumption while preserving the accuracy of full fine-tuning.
QLoRA (Dettmers et al., 2024) combines LoRA with the quantization of foundation models, effectively reducing GPU
memory consumption during the fine-tuning process. However, while these methods focus on reducing GPU memory usage
during the fine-tuning process, they do not address the reduction of parameters in the foundation model during inference. In
contrast, our approach applies LRA to the foundation model for efficient inference on mobile and edge devices, concurrently
utilizing quantization to effectively reduce both the number of parameters and memory usage.
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