
CCIL: Continuity-based Data Augmentation for
Corrective Imitation Learning

Liyiming Ke∗, Yunchu Zhang∗, Abhay Deshpande, Siddhartha Srinivasa, Abhishek Gupta
Paul G. Allen School of Computer Science and Engineering, University of Washington

{kayke,yunchuz,abhayd,siddh,abhgupta}@cs.washington.edu

Abstract:

We present a new technique to enhance the robustness of imitation learning meth-
ods by generating corrective data to account for compounding error and distur-
bances. While existing methods rely on interactive expert labeling, additional
offline datasets, or domain-specific invariances, our approach requires minimal
additional assumptions beyond access to expert data. The key insight is to leverage
local continuity in the environment dynamics to generate corrective labels. Our
method first constructs a dynamics model from the expert demonstration, enforcing
local Lipschitz continuity in the learned model. In locally continuous regions, this
model allows us to generate corrective labels within the neighborhood of the demon-
strations but beyond the actual set of states and actions in the dataset. Training on
this augmented data enhances the agent’s ability to recover from perturbations and
deal with compounding error. We demonstrate the effectiveness of our generated
labels through experiments over a variety of robotics domains.

1 Introduction

Deploying imitation learning for real-world robotics requires a vast amount of data. With sufficient
data coverage, the simple and practical behavior cloning method has shown tremendous success
[1, 2, 3]. However, when robotic policies encounter states not covered in the expert dataset due
to sensor noise, stochastic environments, covariate shift [4, 5], they can act unpredictably and
dangerously. For widespread deployment of robotic applications, we need a solution that ensures the
robustness of imitation learning policies even when encountering unfamiliar states. Many approaches
rely on augmenting the dataset, either through interactive experts [4, 6] or understanding system
invariances [2, 7, 8]. However, these techniques can be costly or infeasible [9, 10], leaving behavior
cloning, which only requires expert demonstrations, as the prevalent choice [3, 9, 11, 12, 13].

For applicability, we propose an augmentation method for robust imitation learning based solely on
expert demonstrations. We identify a crucial feature of dynamic systems that is under-exploited: the
inherent continuity in dynamic systems. Even though system dynamics may have complex transitions
and representations, they need to adhere to the laws of physics and exhibit some level of continuity.
While realistic dynamical systems can contain discontinuity in certain portions of the state space, the
subset of state space or latent space that exhibits local continuity can be a powerful asset.

Armed with this structure, we aim to develop corrective labels to redirect agents from unfamiliar
states back to familiar ones. The structure of local Lipschitz continuity allows an appropriately
regularized dynamics model to be effective even outside the expert data zone. We propose a practical
algorithm, CCIL, leveraging local Continuity in dynamics to generate Corrective labels for Imitation
Learning. It first trains an appropriately-regularized dynamics function and then use it to synthesize
corrective labels, to mitigate compounding errors in imitation learning. In summary, our contributions
are:
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Figure 1: Overview of CCIL. To enhance robustness of imitation learning, we propose to augment the dataset
with synthetic corrective labels. We leverage the local continuity in the dynamics, learn a regularized dynamics
function and generate corrective labels near the expert data support. We provide theoretical guarantees on
the quality of the generated labels. We present empirical evaluations CCIL over 4 distinct robotic domains to
showcase CCIL capability to improve imitation learning agents’ robustness to disturbances.

• Problem Formulation: A formalized concept of corrective labels to enhance robustness for
imitation learning. (Sec. 2.1).

• Practical Algorithm: The CCIL method, leveraging expert demonstrations and dynamics
continuity to generate corrective labels.

• Theoretical Guarantees: Exploration of local continuity’s role in expanding a model’s reach
beyond the expert dataset. Present practical methods to enforce desired local smoothness
while fitting a dynamics function while accommodating discontinuity (Sec. 2.2). Provide a
theoretical bound on the quality of the model in this area and the generated labels (Sec. 2.3).

• Extensive Empirical Validation: Tests over 4 distinct robotic domains across 14 tasks
ranging from classic control, drone navigation, high-dimensional driving, manipulation
and locomotion to showcase our proposal’s ability to enhance the robustness of imitation
learning agents (Sec. 3).

2 Generative Corrective Labels via Continuity in Dynamics

We first define the desired high quality corrective labels to make IL more robust in Sec. 2.1. To
generate the desired labels using learned dynamics function, the dynamics need to exhibit local
continuity and we present a method to train a locally Lipschitz-bounded dynamics model in Sec. 2.2.
In Sec. 2.3, we illustrate how to use a learned model to obtain corrective labels. We instantiate these
insights into a practical algorithm - CCIL, more details in Appendix. D.

2.1 Corrective Labels Formulation

Our goal is to enable IL to be robust to new states it might encounter by generating a set of state-
action-state triplets (sG , aG , snext) that are corrective. Intuitively, if executing action aG in state sG on
the system dynamics f can bring the agent back to a state snext that is in support of the expert data
distribution, then (sG , aG) is a corrective state-action pair. By bringing the agent back to the “known"
expert data distribution, where the policy is likely to be successful, the labels provide corrections
to disturbances. However, the true system dynamics, f , is unknown. Instead, we have only an
approximation of the dynamics function, f̂ . We define corrective labels using an approximate model:

Definition 2.1. [High Quality Corrective Labels under Approximate Dynamic Models].
(sG , aG , snext) is a corrective label if ∥[sG + f̂(sG , aG)] − snext∥ ≤ ϵc, w.r.t. an approximate dy-
namics f̂ . Such a label is “high-quality" if the approximate dynamics function also has bounded error
w.r.t. the ground truth dynamics function at the given state action ∥f(sG , aG)− f̂(sG , aG)∥ ≤ ϵco.

Intuitively, the high-quality corrective labels represent the learned dynamics model’s best guess at
bringing the agent back into the support of expert data. However, an approximate dynamics model is
only trustworthy in a certain region of the state space, i.e., where the predictions of f̂ approximately
match the true dynamics of the system.
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Algorithm 1 CCIL: Continuity-based data augmentation for Corrective labels for Imitation Learning

1: Input: D∗ = (s∗i , a
∗
i , s

∗
i+1)

2: Initialize: DG ← ∅
3: Learn a Dynamics Function f̂
4: for i = 1..n do
5: (sGi , a

G
i )← GenLabels (s∗i , a

∗
i , s

∗
i+1)

6: if ||sGi − s∗i || < ϵ then
7: DG ← DG ∪ (sGi , a

G
i )

8: end if
9: end for

10: Function Learn a Dynamics Model f̂
11: Optimize a chosen objective from Sec. 2.2
12: Function Gen DisturbedAction Labels
13: aGi ← a∗i +∆, ∆ ∼ N (0,Σ)

14: sGi ← argminsGi
||sGi + f̂(sGi , a

G)− s∗i+1||
15: Function Gen BackTrack Labels
16: aGi ← a∗i
17: sGi ← argminsGi

||sGi + f̂(sGi , a
G
i )− s∗i ||

2.2 Learning Locally Continuous Dynamics Functions from Data via Slack Variable

Our core insight is to leverage the inherent continuity in dynamic systems. When the dynamics are
locally Lipschitz bounded, small changes in state and actions yield minimal changes in the resulting
transitions. A trained dynamics function that is correspondingly locally smooth would allow us to
extrapolate to the states and actions that are in close proximity to the expert demonstration - a region
that we can trust the learned model.

We follow the framework of model-based reinforcement learning to train our dynamics model using
expert data [14]. Critically, we ensure the learned dynamics model would contain local continuity.
In face of discontinuity, we present a practical approach to fit a dynamics model that (1) enforces
as much local continuity as permitted by the data and (2) discards the discontinuous regions when
generating labels. Inspired by SVM [15], we can explicitly allow for a small amount of discontinuity
in the learned dynamics model in the same way that slack variables are modeled in optimization
problems. We can formulate the dynamics model’s learning objective in App. D.1.

2.3 Generating High Quality Corrective Labels Using Locally Continuous Dynamics Models

By leveraging local continuity, we can use a trained model to confidently navigate unfamiliar states
within a range that exceeds the coverage of expert data. When the local dynamics function is bounded
by a Lipschitz constant w.r.t. the state-action space, we query the dynamics function with a perturbed
state or action from the expert demonstration (e.g., adding noise). The prediction from the dynamics
model can be trusted when the perturbation is small. A perturbed state or action that, according
to the learned model, returns the agent to expert support is a strong candidate for corrective labels.
Specifically, we will perturb the state-action in the neighborhood of s∗ and a∗ to generate corrective
labels. We thus outline two techniques to generate corrective labels.

Technique 1: Backtrack Label. For every expert label s∗t , a
∗
t , we propose to find a different state

sGt−1 that can arrive at s∗t . To do so, we reformulate the optimization problem to use the expert action,
a∗t , and then leverage the Lipschitz continuity on states to find the particular sGt−1:

s∗t − f̂(sGt−1, a
∗
t )− sGt−1 = 0. (1)

Technique 2: Disturbed Action. Given demonstration (s∗t , a
∗
t , s

∗
t+1), we ask: Is there an action aG

that slightly differs from the demonstrated action a∗t , i.e., aG = a∗t +∆, that can bring an unknown
state sG to the same expert state s∗t+1? Formally, we sample a small action noise ∆ and solve for sGt :

sGt + f̂(sGt , a
∗
t +∆)− s∗t+1 = 0. (2)

Both techniques allow us to generate corrective labels with bounded error: executing the generated
labels in the ground truth dynamics has reasonable chance of bringing the agent back to expert states.
We present the bounds and proofs in App. C.1 and C.2. To solve the root-finding equations (Eq. 1
and 2), we turn them into optimization problems (App. D.4). We also use rejection sample to filter
out generated labels that are prone to error App. D.5. We now instantiate a practical version of our
proposal, CCIL (using Continuous dynamics to generate Corrective labels for Imitation Learning),
as shown in Alg 1.
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3 Experiments

We evaluate CCIL over four distinct robotic domains (Fig. 1) over 14 tasks. Our evaluation spans
over classic control, drone navigation that is sensitive to noise disturbance, car racing that employes
high-dimensional Lidar signals as state input, MuJoCo locomotion and MetaWorld manipulation
which contain various forms of contacts and discontinuity. We summarize the highlights from our
experiments and defer to App. E for elaboration and details to reproduce the experiments.

Q1: We validate the theoretical contributions on the classic Pendulum problem. We observe the
empirical errors of the generated labels abide by our theoretically derived bound.
Q2, we compare CCIL with classic behavior cloning (BC) and NoisyBC [9]. We evaluate the trained
agent’s robustness by injecting small observation and action disturbances. We observe that, on the
Pendulum, Drone, and Car tasks, CCIL greatly improves BC. On locomotion and manipulation tasks,
CCIL exhibits advantages on 4 of 8 tasks, only losing to NoiseBC on 1 of the 8 tasks.
Q3, we examine how the performance of CCIL would fluctuate facing various forms of disconti-
nuity. We compare CCIL on Pendulum versus Discontinuous Pendulum (by placing a wall). We
observe that for both tasks, CCIL can improve BC’s performance, but the boost was smaller for
discontinuous Pendulum. Noticeably, CCIL could improve BC performance for the racing task with
high-dimensional Lidar-inputs that contains complex forms of discontinuity. Finally, we find that
CCIL was able to achieve at least comparable performance to behavior cloning for tasks with lots of
contacts that make training of dynamics model challenging (e.g., MetaWorld manipulation).

Figure 2: Evaluation on the Driving, Discontinuous Pendulum and Drone Tasks.

Table 1: Evaluation results for Mujoco and Metaworld tasks with noise disturbances. We list the expert scores
in a noise-free setting for reference. In the face of varying discontinuity from contacts, CCIL remains the leading
agent on 4 out of 8 tasks (Hopper, Walker, HalfCheetah, CoffeePull). Comparing CCIL with BC: across all tasks,
CCIL can outperform vanilla behavior cloning or at least achieve comparable performance.

Mujoco Metaworld
Hopper Walker Ant Halfcheetah CoffeePull ButtonPress CoffeePush DrawerClose

Expert 3234.30 4592.30 3879.70 12135.00 4409.95 3895.82 4488.29 4329.34

VanillaBC 1983.98 ± 672.66 1922.55 ± 1410.09 2965.20 ± 202.71 1798.98 ± 791.89 3552.59 ±233.41 3693.02 ± 104.99 1288.19± 746.37 3247.06 ± 468.73
NoiseBC 1563.56 ± 1012.02 2893.21 ± 1076.89 3776.65 ± 442.13 2044.24 ±291.59 3072.86 ± 785.91 3663.44±63.10 2551.11± 857.79 4226.71± 18.90

CCIL 2631.25 ± 303.86 3538.48 ± 573.23 3338.35 ± 474.17 8893.81 ± 472.70 4168.46 ± 192.98 3775.22±91.24 2484.19± 976.03 4145.45± 76.23

4 Conclusion

We propose CCIL to generate corrective labels for imitation learning by leveraging local continuity
in environmental dynamics. Our method uncovers two new ways to produce high-quality labels
for out-of-distribution states and robust imitation learning. While the assumption is that systems
exhibit some local continuity, we’ve confirmed the effectiveness of our method on various simulated
robotics environments, including drones, driving, locomotion and manipulation. Empirically, CCIL
achieves at least comparable results with the baseline IL methods and exhibits clear advantage when
the environmental dynamics is easier to learn.

We believe our approach opens the door for many exciting avenues of future research. To quantify
and capture the local continuity for robot systems’ dynamics can help make imitation learning more
robust. Extending our proposal to real robot and to high-dimensional state (e.g., pixel-based image)
could lead to exciting algorithms to alleviate the data hunger in imitation learning. Examining how
best to fit dynamics models could not only benefit our proposal, but also provide insights to help
other model-based learning algorithms (e.g., model-based reinforcement learning).
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A Related Work

Imitation Learning (IL) and Data Augmentation. With access only to expert demonstrations, be-
havior cloning remains a strong empirical baseline for imitation learning [1]. This method formulates
IL as a supervised learning problem and has a plethora of data augmentation methods. However, pre-
vious augmentation methods mostly leverage expert or some form of invariance [16, 2, 7, 8], which
is a domain-specific property. Ke et al. [9] explored injecting noise to the expert demonstrations,
similar to our approach, but lacked theoretical insights and general guidelines for choosing noise
parameters. In contrast, our proposal leverages the local continuity in the dynamics function, agnostic
to domain-knowledge, and provides theoretical guarantees on the quality of augmented data.

Mitigating Covariate Shift in Imitation Learning. Compounding errors push the agent astray
from expert demonstrations. Prior works addressing the covariate shift often request additional
information. Methods like DAGGER [4], LOLS [17], DART [6] and AggrevateD [18] use interactive
experts, while GAIL [19], SQIL [20] and AIRL [21] sample more transitions in the environment
to minimize the divergence of states distribution between the learner and expert [22, 23]. Offline
Reinforcement Learning methods like IQL [24], MOREL [25] and CQL [26] demand a ground truth
reward function. MILO [27] also learns a dynamics function to mitigate covariate shift in imitation
learning but requires a large batch of sub-optimal offline data to learn a high-fidelity dynamics
function. In contrast, our proposal is designed for learning from demonstration paradigms without
requiring additional data or feedback, complementing existing IL methods.

Locally Lipschitz Continuity in Dynamics. Classical control methods often assume local Lipschitz
continuity in the dynamics to guarantee the existence and uniqueness of solutions to differential
equations. For example, the widely adopted C2 assumption in optimal control theory [28] and
the popular control framework iLQR [29]. This assumption is particularly useful in the context
of nonlinear systems and are prevalent in modern robot applications [30, 31, 32]. However, these
methods require a pre-specified dynamics model, while this work focuses on learning a locally
continuous dynamics model from data.

Learning Dynamics using Neural Networks. Fitting a dynamics function from data is an active
area of research [33, 34, 35]. Ensuring local continuity in the trained dynamics can be challenging.
Previous works enforced Lipschitz continuity in training neural networks [36, 37, 38] but not for
dynamics functions with physical implications. Shi et al. [39] learned smooth dynamics functions
via enforcing global Lipschitz bounds and is only demonstrated on the problem of drone landing.
Pfrommer et al. [40] learned a smooth model to accommodate fictional contacts for manipulation.
We provide a novel method to effectively learn locally smooth dynamics functions for generic
environments. Further, Khetarpal et al. [41], Zhang et al. [42], Zhu et al. [43] are actively researching
on learning compact world models from high-dimensional inputs or to capture invariance. Progress
in this direction could enable our proposal to leverage the continuity in the learned latent space and
extend to complex representation of states.

B Generating Corrective Labels with Known Dynamics Function

With a known dynamics function, we show an example algorithm that one can use to generate N
corrective labels (as defined in Sec 2.1). The algorithm first trains a behavior cloning policy, samples
test time roll out trajectories from the learned policy, and then derives labels using a root finding
solver.
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Algorithm 2 Generating Corrective Labels using Dynamics Function

1: Input Expert Data D∗ = (s∗i , a
∗
i , s

∗
i+1).

2: Input Dynamics function f(si+1|si, ai).
3: Input Parameter N .
4: Initialize DG ← ∅,S ′ ← ∅
5: π̂ = argminπ̂ −Es∗i ,a

∗
i ,s

∗
i+1∼D∗ log(π̂(a∗i | s∗i ))

6: for i ∈ 1..N do
7: sG0 ∼ P0, s

G
j+1 ∼ f(sGj , π(s

G
j )), S ′ ← S ′ ∪ {s

G
j }

8: end for
9: for i ∈ 1..N do

10: aGi ← argminaG ||[sGi + f(sGi , a
G
i )]− s∗k||

11: DG ← DG ∪ (sGi , a
G
i )

12: end for
13: return DG

C Proofs

C.1 Quality of backtrack labels

Theorem C.1. When the dynamics model has a bounded training error ϵ on the training data, under
the assumption that the dynamics functions f and f ′ are locally Lipschitz continuous w.r.t. state, then∥∥∥f (

sGt , a
∗
t+1

)
− f̂

(
sGt , a

∗
t+1

)∥∥∥ ≤ ϵ+ (K1 +K2)
∥∥sGt − s∗t+1

∥∥ . (3)

Notation. Let f be the ground truth 1-step residual dynamics model, and let f̂ be the learned
approximation of f .

Assumptions:

1. The estimation error of the learned dynamics model at the training data is bounded.∥∥∥f(s∗t+1, a
∗
t+1)− f̂(s∗t+1, a

∗
t+1)

∥∥∥ ≤ ϵ.

2. f̂ is locally K1-Lipschitz in state around data points:∥∥∥f̂(sGt , a∗t+1)− f̂(s∗t+1, a
∗
t+1)

∥∥∥ ≤ K1

∥∥sGt − s∗t+1

∥∥.

3. f is locally K2-Lipschitz in state around data points:∥∥f(sGt , a∗t+1)− f(s∗t+1, a
∗
t+1)

∥∥ ≤ K2

∥∥sGt − s∗t+1

∥∥.

Proof:∥∥∥f(sGt , a∗t+1)− f̂(sGt , a
∗
t+1)

∥∥∥
=

∥∥∥f(sGt , a∗t+1)− f(s∗t+1, a
∗
t+1) + f(s∗t+1, a

∗
t+1)− f̂(s∗t+1, a

∗
t+1) + f̂(s∗t+1, a

∗
t+1)− f̂(sGt , a

∗
t+1)

∥∥∥
≤

∥∥f(sGt , a∗t+1)− f(s∗t+1, a
∗
t+1)

∥∥+
∥∥∥f(s∗t+1, a

∗
t+1)− f̂(s∗t+1, a

∗
t+1)

∥∥∥+
∥∥∥f̂(s∗t+1, a

∗
t+1)− f̂(sGt , a

∗
t+1)

∥∥∥
≤ ϵ+ (K1 +K2)

∥∥sGt − s∗t+1

∥∥
Remark Our assumption about the error of the learned dynamics model is not a global constraint but
simply requires the model to have prediction small error on the training data. Our proof leverages
simple triangle inequality and is valid only near the expert data support.

C.2 Quality of Noisy Labels

Theorem C.2. Given s∗t+1 − f̂(sGt , a
∗
t +∆)− sGt = ϵ and that the dynamics function f is locally

Lipschitz continuous w.r.t. actions and states with Lipschitz constants K1 and K2, respectively, then

||f(sGt , a∗t +∆)− f̂(sGt , a
∗
t +∆)|| ≤ K1||∆||+ (1 +K2)ϵ. (4)
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Notation. Let f be the ground truth 1-step residual dynamics model, and let f̂ be the learned
approximation of f .

Assumptions

1. f is locally K1-Lipschitz in action:
∥∥f(sGt , a∗t )− f(sGt , a

∗
t +∆)

∥∥ ≤ K1 ∥∆∥.

2. f is locally K2-Lipschitz in state:
∥∥f(sGt , a∗t )− f(s∗t , a

∗
t )
∥∥ ≤ K2

∥∥sGt − s∗t
∥∥.

3. Using rejection sampling, we can enforce
∥∥sGt − s∗t

∥∥ ≤ ϵrej .

4. Given that the generated labels come from a root solver:

s∗t+1 − f̂(sGt , a
∗
t +∆)− sGt = ϵopt where ϵopt → 0

s∗t + f(s∗t , a
∗
t )− f̂(sGt , a

∗
t +∆)− sGt = ϵopt

f(s∗t , a
∗
t )− f̂(sGt , a

∗
t +∆) = sGt − s∗t + ϵopt

Proof

∥∥∥f(sGt , a∗t +∆)− f̂(st, a
∗
t +∆)

∥∥∥
=

∥∥∥f(sGt , a∗t +∆)− f(sGt , a
∗
t ) + f(sGt , a

∗
t )− f(s∗t , a

∗
t ) + f(s∗t , a

∗
t )− f̂(st, a

∗
t +∆)

∥∥∥
≤

∥∥f(sGt , a∗t +∆)− f(sGt , a
∗
t )
∥∥+

∥∥f(sGt , a∗t )− f(s∗t , a
∗
t )
∥∥+

∥∥∥f(s∗t , a∗t )− f̂(st, a
∗
t +∆)

∥∥∥
≤ K1 ∥∆∥+K2

∥∥sGt − s∗t
∥∥+

∥∥sGt − s∗t
∥∥+ ||ϵopt||

≤ K1 ∥∆∥+ (1 +K2) · ϵrej + ||ϵopt||

When the root solver yields a solution with ||ϵopt|| = 0, we have ≤ K1 ∥∆∥+ (1 +K2) · ϵrej

D Details for CCIL

Our proposed framework for generating corrective labels, CCIL, takes three steps:

1. Learn a dynamics model: fit a dynamics model f̂ that is locally Lipschitz continuous.
2. Generate labels: solve a root-finding equation in Sec. 2.3 to generate labels.
3. Augment the dataset and train a policy: We use behavior cloning for simplicity to train a

policy.

D.1 Learning a locally Lipschitz continuous dynamics model

There are many function approximators to learn a model. For example, using Gaussian process can
produce smooth dynamics model but might have limited scalability when dealing with large amount
of data. In this paper we demonstrate examples of using a neural network to learn the dynamics
model. In practice, we write down the dynamics learning loss:

argmin
f̂

Es∗j ,a
∗
j ,s

∗
j+1∼D∗ [MSE] , MSE = ∥s∗j+1 − (f̂(s∗j , a

∗
j ) + s∗j )∥. (5)

There are multiple ways to enforce Lipschitz continuity on the learned dynamics function, with
varying levels of strength that trade off theoretical guarantees and learning ability. We discusses
using (1) global spectral normalization, (2) penalty or (3) slack variables to enforce local Lipschitz
continuity.

Global Lipschitz Continuity via Spectral Normalization. Follow [39], using spectral norm with
coefficient L provides the strongest guarantee that the dynamic model is globally L-Lipschitz.
Concretely, spectral normalizat [38] normalizes the weights of the neural network following each
gradient update.

10



argmin
f̂

Es∗j ,a
∗
j ,s

∗
j+1∼D∗

[
MSE while W →W/max(

||W ||2
λ

, 1)

]
(6)

However, spectral normalization enforces global Lipschitz bound. It may hinder the model’s ability
to learn the true dynamics.

Local Lipschitz Continuity via Sampling-based Penalty. Following [44], a simple way to relax the
global Lipschitz continuity constraint is by penalizing any violation of local Lipschitz constraint

argmin
f̂

Es∗j ,a
∗
j ,s

∗
j+1∼D∗

[
MSE + λ · E∆s∼N max

(
f̂ ′(s∗j +∆s, a

∗
j )− L, 0

)]
. (7)

Doing so ensures that the approximate model is mostly L Lipschitz-bounded while being predictive
of the transitions in the expert data. This approximate dynamics model can then be used to generate
corrective labels. The sampling procedure, E∆s∼N max

(
f̂ ′(s∗j +∆s, a

∗
j )− L, 0

)
, is indicative of

whether the local continuity constraint is violated for a given state-action pair.

The sampling-based penalty perturbs the data points by some sampled noise and enforces the Lipschitz
constraint between the perturbed data and the original using a penalty term in the loss function.

We here propose another approach for local continuity:

Local Lipschitz Continuity via Slack-variable. We enforce as much local Lipschitz continuity as
possible and, for parts of the space that are discontinuous (e.g., have a very large Lipschitz constant),
we do not enforce continuity and would not trust the model outside the data support. We can explicitly
allow for a small amount of discontinuity in the learned dynamics model in the same way that slack
variables are modeled in optimization problems, e.g., SVM [15] or max-margin planning with slack
variables [45]. We can reformulate the dynamics model’s learning objective from learning models
that maximize likelihood while minimizing the Lipschitz constant.

argmin
f̂

Es∗j ,a
∗
j ,s

∗
j+1∼D∗ MSE + λj · Lipschitz(s∗j , a∗j ) + ||λj − λ̄||0

where ||λj − λ̄||0 ≈ 1− exp (−β|λj − λ̄|)
and Lipschitz(s∗j , a

∗
j ) = E∆s∼N max

(
f̂ ′(s∗j +∆s, a

∗
j )− L, 0

)
.

(8)

To account for small amounts of discontinuity, we introduce a state dependent variable λj to allow
violation of the continuity constraint. We minimize the number of non-zero entries in the slack
variables (as noted by the L0 norm, ||λj − λ̄||0) to ensure the model is otherwise as smooth as
possible. Our practical approximation for the L0 norm method is inspired by [46] and is similar to
how robust SVMs and max-margin classifiers deal with outliers.

Intuitively, we expect that spectral normalization tends to work better for simpler environments where
the ground truth dynamics are global Lipschitz with some reasonable L, whereas the soft constraint
should be better suited for data regimes with more complicated dynamics and discontinuity.

D.2 Generating corrective labels

In Sec. 2.3 we discuss two techniques to generate corrective labels. Depending on the structure of the
application domain, one can choose to generate labels either by backtrack or by disturbed actions.
Both techniques require solving root-finding equations (Eq. 1 and Eq. 2). To solve them, we can
transform the objective to an optimization problem and apply gradient descent.

Eq. 1 specifies the root finding problem for backtrack labels.

s∗t − f̂(sGt−1, a
∗
t )− sGt−1 = 0.

11



Given s∗t , a
∗
t and the learned dynamics function f̂ , we need to solve for sGt that satisfies the equation.

We can instead optimize for

argmin
sGt−1

||s∗t − f̂(sGt−1, a
∗
t )− sGt−1|| (9)

Similarly, we can transform Eq. 2 to become

argmin
sGt

||sGt + f̂(sGt , a
∗
t +∆)− s∗t+1|| (10)

With access to the trained model f̂ and its gradient ∂f̂

∂sGt
, one can use any optimizer. For simplicity, we

use the Backward Euler solver that apply an iterative update sGt ← sGt − s · ∂f̂

∂sGt
where s is a step size.

We repeat the update until the objective is within a threshold ||sGt + f̂(sGt , a
∗
t +∆)− s∗t+1|| ≤ ϵopt.

D.3 Using the generated labels

There are multiple ways to use the generated corrective labels. We can augment the dataset with the
generated labels and treat them as if they are expert demonstrations. For example, for all experiments
conducted in this paper, we train behavior cloning agent using the augmented dataset. Optionally,
one can favor the original expert demonstrations by assigning higher weights to their training loss.
We omit this step for simplicity in this paper.

Alternatively, one can query a trained imitation learning policy with the generated labels and measure
the difference between our generated action and the policy output. This difference can be used as an
alternative metrics to evaluate the robustness of imitation learning agents when encountered a subset
of out-of-distribution states. However, for a query state, our proposal does not necessarily recover all
possible corrective actions. We defer exploring alternatives way of leveraging the generated labels to
future work.

D.4 Solving root-finding equation in Generating Labels

To generate corrective labels, both of our techniques need to solve root-finding equations (Eq. 1
and 2). We turn this to an optimization problem: argminsG ||sG + f̂(sG , aG) − s∗|| given aG , s∗.
Given f̂ , there are many ways to solve this optimization problem (e.g., gradient descent or Newton’s
method). For simplicity, we choose a fast-to-compute and conceptually simple solver, Backward
Euler, widely adopted in modern simulators; this lets us use the gradient of the next state to recover
the earlier state without iteration. To generate data given aG , s∗, Backward Euler solves a surrogate
equation iteratively: sG ← s∗ − f̂(s∗, aG).

D.5 Rejection Sample

We can reject the generated labels if the root solver returns an answer that would result in a large
error bound, i.e., ∥s∗t − sGt ∥ > ϵ, where ϵ is a hyper-parameter. Rejecting labels that are outside a
chosen region lets us directly control the size of the resulting error bound.

E Experimental Details

We here elaborate on our experiments results over 4 disctinct robotic domains and 14 tasks.

E.1 The Classic Control: Pendulum and Our Discontinuous Pendulum

We consider the classic control task, the pendulum, where we have access to the ground truth
dynamics. We also create a variant, The Discontinuous Pendulum, by inserting a wall that would
revert the velocity to bounce the ball back, as shown in Fig. 3a.
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(a) The Discontinuous Pendulum (b) Example generated labels (c) Performance Comparison

Figure 3: Evaluation on the Pendulum and Discontinuous Pendulum Task.

Verifying the quality of the generated labels (Q1). We visualize a subset of generated labels in
Fig. 3b. Note the generated states (red) are slightly outside the expert support (blue) and that the
generated actions are torque control signals, which could be challenging for invariance-based data
augmentation methods to generate. To quantify the quality of the generated labels, we use the ground
truth dynamics and measure how close our labels can bring the agent to the expert. We observed
an average L2 norm distance of 0.02367 which validates our derived theoretical bound of 0.065:
K1|δ|+ (1 +K2)|ϵ| = 12 ∗ 0.0001 + 13 ∗ 0.005 (Equation 3).

The Impact of Local Lipschitz Continuity Assumption (Q2) To highlight how discontinuity in
the dynamics affects CCIL, we compare CCIL performance in the continuous and discontinuous
pendulum in Fig. 3c: CCIL improved behavior cloning performance even when discontinuity is
present, albeit with a smaller boost for discontinuous Pendulum. For ablation, we also tried generating
labels using a naive dynamics model (without explicitly assuming Lipschitz continuity) which
performed slightly better than vanilla behavior cloning but worse than CCIL, highlighting the
importance of enforcing local Lipschitz continuity in training dynamics function for our proposal.

CCIL improved the performance of imitation learning agent (Q3). For both the Pendulum and
the discontinuous Pendulum, CCIL outperformed behavior cloning, shown in Fig. 3c.

E.2 Drone Navigation: High-Frequency Control Task and Sensitive to Noises

Drone navigation is a high-frequency control task and can be very sensitive to noise, making it an
appropriate testbed for robustness [39]. We consider an open-source quadcopter simulator, gym-
pybullet-drone [47] and design three tasks: hover, circle, fly-through-gate, as shown in Fig. 4.

CCIL improved performance for imitation learning agent and robustness to noises (Q2). On
all three tasks, CCIL outperformed behavior cloning by a large margin, achieving near-expert
performance across 3 random seeds. We injected observation and action noises to further evaluate
the robustness of the learner agent and observed that CCIL achieved consistent performance despite
the injected disturbance whereas the default behavior cloning method suffered from high variance of
performance.

E.3 Driving with Lidar: High-dimensional state input

Figure 5: F1tenth Figure 6: LiDar POV

Method Succ. Rate Avg. Score

Expert 100.0% 1.00

BC 31.9% 0.58 ± 0.25
NoiseBC 39.2% 0.63 ± 0.27
CCIL 56.4% 0.75 ± 0.25

Table 2: Performance on Racing

We apply CCIL to high-dimensional input states with complex discontinuities and conduct experi-
ments in the F1tenth simulator employing a LiDAR sensor as input (Fig. 5). We design a racing track
such that, at the beginning of each trajectory, the car is placed at a random location on the track. It

13



(a) The Drone Hover (b) The Drone Fly Circle (c) The Drone Fly Through Gate

Figure 4: The Drone Navigation Tasks and Evaluation Results

Table 3: Evaluation results for Mujoco and Metaworld tasks with noise disturbances. In the face of varying
discontinuity from contacts, CCIL can still outperform vanilla behavior cloning or at least achieve comparable
performance. It is the leading agent on 4 out of 8 tasks. NoiseBC is the winner on 1 task (Ant). The rest 3 tasks
(ButtonPress, CoffeePush, DrawerClose) observe ties between CCIL and NoiseBC.

Mujoco Metaworld
Hopper Walker Ant Halfcheetah CoffeePull ButtonPress CoffeePush DrawerClose

Expert 3234.30 4592.30 3879.70 12135.00 4409.95 3895.82 4488.29 4329.34

VanillaBC 2902.78 ± 689.64 3810.63 ± 828.23 1646.24 ± 202.71 3872.82 ± 460.09 3552.59 ±233.41 3693.02 ± 104.99 1288.19± 746.37 2809.56±439.70
NoiseBC 1563.56 ± 1012.02 2893.21 ± 1076.89 3160.51± 48.68 2044.24 ±291.59 3072.86 ± 785.91 3663.44±63.10 2551.11± 857.79 4226.71± 18.90

CCIL 3102.25 ± 309.25 4605.26 ± 129.02 2073.60 ± 217.97 4182.15 ± 501.44 4168.46 ± 192.98 3775.22±91.24 2484.19± 976.03 4145.45± 76.23

needs to use the LiDAR input to decide on speed and steering, earning scores for driving faster or
failing by crashing. We evaluate each agent over 100 trajectories multiplied by 10 random seeds.

CCIL could improve the performance of imitation learning agent for high-dimensional state
inputs (Q2). Table. 2 shows that CCIL demonstrated an empirical advantage over all other agents,
achieving fewer crashes and higher scores.

E.4 Locomotion and Manipulation: Diverse Scenes with Varying Discontinuity

Manipulation and locomotion tasks commonly involve complex forms of contacts, raising consider-
able challenges for learning dynamics models and for our proposal. We evaluate the applicability
of CCIL in such domains: we consider 4 tasks from the MuJoCo locomotion suites: Hopper,
Walker2D, Ant, HalfCheetah and 4 tasks from the MetaWorld manipulation suites: CoffeePull,
ButtonPress, CoffeePush, DrawerClose. During evaluation, we add a small amount of randomly
sampled Gaussian noise to the sensor (observation state) and the actuator (action) to simulate the
real-world conditions of robotics controllers and to test the robustness of the agents.

CCIL outperforms vanilla behavior cloning or at least achieves comparable performance
even when varying form of discontinuity is present (Q3). On 4 out of 8 tasks in MuJoCo
and MetaWorld, CCIL outperforms all other baselines. Across all tasks, CCIL at least achieves
comparable results to vanilla behavior cloning, shown in Table. 3.

E.5 Summary

Through our extensive evaluations, we answered Q1 by validating the theoretical bounds we derived
on the classic control problem of Pendulum; Q2 by evaluating over classic control task, drone
navigation and high-dimensional driving tasks. We observed that CCIL consistently boosted the
performance and robustness of behavior cloning agents; Q3 by running ablation studies on the
Pendulum and including experiments in domains that have complicated dynamics. We found that
discontinuity in the dynamics would add challenge to training dynamics function and to our proposal.
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However, CCIL could still improve behavior cloning agent with a appropriately-trained dynamics
model or, in the worst case, achieves comparable performance to vanilla behavior cloning.

E.6 Reproducing our experiments

We provide details to reproduce our experiments, including environment specification, expert data,
parameter tuning for our proposal and details about the baselines. We will also open source the code
and the configuration we use for each experiment, once the proposal is published.

E.7 Environment and Task Design

We conduct experiments on 4 different domains and 8 robots, including the pendulum, a drone, a car,
four robots for locomotion and one robot arm for manipulation. We consider 18 tasks: the pendulum,
a modified pendulum swing task with discontinuity, three drone navigation tasks (fly-through, circle,
hover), one LiDar racing task on F1tenth, four MuJoCo tasks (Hopper, HalfCheetah, Ant, Walker2D)
and 8 MetaWorld tasks (coffee-pull, coffee-push, button-press-topdown, drawer-close, drawer-open,
window-close, push, soccer). The drone, F1tenth, MuJoCo and Metaworld environments are from
open source implementations. We will describe how we set up the Pendulum environment and how
we modify it for testing our method with discontinuity.

Pendulum Formulation. The pendulum environment asks a policy to swing a pendulum up to the
vertical position by applying torque. The properties of the system are controlled by the constants g,
the gravitational acceleration, and l, the length of the pendulum. In all experiments we take g = 9.81
and l = 1.

A pendulum’s state is characterized by θ, the current angle, and θ̇, the current angular velocity. To
avoid any issues regarding angle representation, we do not directly store θ in the state representation;
instead, we parameterize the state as s =

[
sin θ cos θ θ̇

]T
. A policy can control the system by

applying torque to the pendulum, which we represent as a scalar a, which is clamped to the range
[−3, 3].

The continuous time dynamics function is given by:

ds

dt
= f(s, a) =

 θ̇ cos θ

−θ̇ sin θ
− g

l sin θ + a

 .

This continuous dynamics model is then discretized to a timestep of 0.02 seconds using RK4. Addi-
tionally, although not required by the algorithms we study, we create the following reward function.
where θ is the normalized pendulum angle in the range [0, 2π) to metricize policy performance:

r(s, a) = −1

2

∥∥∥∥[θ − π

θ̇

]∥∥∥∥2
2

− 1

2
a2.

Expert Formulation for Pendulum. We formulate the expert policy using a combination of LQR
and energy shaping control, where LQR is applied when the pendulum is near the top and energy-
shaping is applied everywhere else. Note that the LQR gains were calculated by linearizing the
dynamics around θ = π, along with the cost function c(s, a) = −r(s, a). So, the expert policy has
the form:

πe(s) =

{
−20.11(θ − π)− 7.08θ̇ if |θ − π| < 0.1

−θ̇
(

1
2 θ̇

2 − 9.81 cos θ − 9.81
)

otherwise.

Discontinuous Pendulum . We create a fixed wall in the Pendulum environment to create local
discontinuity. When the ball hits the wall, we revert the sign of its velocity, creating a discontinuity
in the dynamics.
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Environment Trajectories
Pendulum 50

Discontinuous Pendulum 500
F1tenth Racing 1

Drone, all three tasks 5000
MuJoCo - Ant 10

MuJoCo - Walker2D 20
MuJoCo - Hopper 25

MuJoCo - HalfCheetah 50
MetaWorld, all tasks 50

Table 4: Number of expert demonstration trajectories used in our experiments. We limit the amount
of expert data to avoid making the task trivially solvable by naive behavior cloning.

E.8 Demonstration Data

To feed expert data to train imitation learning agents, we design expert policies for the pendulum. For
all other environments, we use the expert data from the D4RL dataset [48]. For drone environments,
we first generate a bunch of via points alongside the target trajectories and then use a low-level PID
controller to hit the via points one by one.

We note that it is possible to solve most tasks with naive behavior cloning if we feed them with a
sufficient number of demonstrations. We thus limit the number of demonstrations we use for all tasks,
as shown in Table. 4.

E.9 Parameter Tuning.

Our proposal first trains a dynamics model and has hyperparameters: L̄ (desired local Lipschitz
smoothness per NN layer), λ (weight of the Lipschitz penalty) and σ (size of perturbation for
estimating local Lipschitz continuity). We first fit a dynamics model without enforcing any Lipschitz
smoothness, to obtain an average prediction error for reference. To enforce local Lipschitz continuity,
we then adopt the sampling-based penalty and train a series of dynamics models by sweeping
parameters, L̄ = [2, 3, 5, 10], soft dynamics λ = [0.3, 0.5] and σ = [0.0001, 0.0003, 0.0005]. In
environments with many discontinuities (MuJoCo and MetaWorld tasks), we use the slack variable to
train the dynamics model. Following Eq. 8, we introduce an additional learnable variable, the slack
variable. We choose a relatively smaller β (in our case we choose 0.1), to avoid the explosion on
gradients of zero norm estimation. The slack variable is a state-conditioned network that could be
easily modeled as a two-layer MLPs(64,32). As to the baseline number λ̄, we choose it to be 0.1.

To choose a dynamics model for generating labels, we will follow Theorem. C.1 and Theorem. C.2.
We note that the local Lipschitz bound of a neural network is the product of the Lipschitz bound
of each layer. Given that we are using two-layer NN to train our dynamics model, L = L̄2. We
denote the empirical prediction error on the validation set for each trained dynamics model as ϵ. We
choose the best dynamics model that has the smallest error bound. For Theorem. C.1, we optimize
for ϵ+ 2L · ||C|| where C is a constant that we pick to be the average s∗t+1 − s∗t across the training
data. For Theorem. C.2, we optimize for 0.001 · L+ (1 + L)ϵ.

To generate corrective labels, we pick the dynamics model, the size of the perturbation (Sigma) and
the rejection threshold (Epsilon). Empirically, Sigma = 0.00001 and Epsilon = 0.01 worked for all
our environments. It is also possible to fine-tune Epsilon, the rejection threshold, for each task and
each trained dynamics model to optimize the error bound. In our experiments, we omit this step for
simplicity.

After generating corrective labels, we use two-layer MLPs (64,64) plus ReLu activation to train a
Behavior Cloning agent with both original and augmented data.
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E.10 Baselines

We evaluate the following algorithms to gain a thorough understanding of how our proposal compares
to relevant baselines.

• EXPERT: For reference we plot the theoretical upper bound of our performance, which is
the score achieved by an expert during data collection.

• BC: a naive behavior cloning agent that minimizes the KL divergence on a given dataset.
• NOISEBC: a modification to naive behavior cloning that injects a small disturbance noise to

the input state and reuses the action label, as described in [9].
• CCIL: our proposal to generate high-quality corrective labels.
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