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Abstract

Multi-modal Large Language Models (LLM) have advanced conversational abilities
but struggle with providing live, interactive step-by-step guidance, a key capability
for future Al assistants. Effective guidance requires not only delivering instructions
but also detecting their successful execution, as well as identifying and alerting
users to mistakes, all of which has to happen in real-time. This requires models
that are not turn-based, but that can react asynchronously to a video stream, as
well as video data showing users performing tasks including mistakes and their
corrections. To this end, we introduce Qualcomm Interactive Cooking, a new
benchmark and dataset built upon CaptainCook4D, which contains user mistakes
during task execution. Our dataset and benchmark features densely annotated,
timed instructions and feedback messages, specifically including mistake alerts
precisely timestamped to their visual occurrence in the video. We evaluate state-of-
the-art multi-modal LLMs on the Qualcomm Interactive Cooking benchmark and
introduce LIVEMAMBA, a streaming multi-modal LLM designed for interactive
instructional guidance. This work provides the first dedicated benchmark and a
strong baseline for developing and evaluating on live, situated coaching.

1 Introduction

Multi-modal Large Language Models (LLMs) have recently advanced, enabling Al systems to interact
with users more naturally, fluently, and in real-time by processing audio, speech, and visual inputs for
conversations about images or videos.

However, to be useful as an Al assistant, multi-modal LLMs should be able to guide a user through a
task — “live” — by providing interactive step-by-step instructions. This encompasses three key abilities,
1) to provide the next instruction, ii) detect if the instruction has been successfully accomplished by
the user, iii) if not, then detect any mistakes made by the user and alert the user as soon as possible.
Consider an example where a multi-modal LLM guides a user while making, e.g., Bruschetta in
Fig. 1. At the stage where the tomatoes are being sliced, an instruction with the desired thickness
the tomatoes needs to be provided. Then the model needs to detect whether the user has sliced the
tomatoes to the desired thickness, and in the case of a mistake, the model needs to alert the user as
soon as it observes the mistake. This calls for the multi-modal LLM to be able to react interactively
to events in the video streams. However, current state-of-the-art multi-modal LLMs are still largely
limited to turn based interactions [25, 39, 53, 54, 62] — they only produce responses when prompted
by the user — or to narration tasks [7, 34].

To address the challenge of live, step-by-step coaching, we introduce the Qualcomm Interactive
Cooking dataset and benchmark, as currently available large-scale vision-language datasets and
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Figure 1: An overview of the step-by-step task guidance scenario in our Qualcomm Interactive
Cooking benchmark and dataset, where the multi-modal LLM provides instructions and feedback
that are sufficient to guide the user towards the goal, e.g., making a tomato mozzarella salad (above).

benchmarks [11, 21, 51] inadequately capture such interactive scenarios. These existing datasets and
benchmarks largely consist of participants recording their daily activities or expert demonstrations,
which are insufficient for effectively assessing multi-modal LLMs’ ability to provide step-by-step
instructions, as they lack the critical scenarios where users make mistakes or diverges from the plan.
Therefore, we construct our Qualcomm Interactive Cooking benchmark and dataset leveraging the
videos from the CaptainCook4D dataset [45], specifically because they contain these vital instances
of user errors. Each video within Qualcomm Interactive Cooking is accompanied by a detailed
step-by-step plan along with instructions and feedback, timed appropriately according to the recipe
and any mistakes made by the user.

Our contributions in detail are, 1. We introduce the Qualcomm Interactive Cooking dataset and
benchmark® by extending the CaptainCook4D dataset [45], with timed instruction and feedback
messages. The instruction messages describe the next recipe step to follow and the feedback messages
are provided to acknowledge successful instruction completions or mistakes made by the user. They
are designed to be sufficient to independently guide the user to complete the given recipe. 2. We
introduce the LIVEMAMBA model, an light-weight multi-modal LLM designed to provide interactive
instructions and feedback in cooking scenarios. 3. We evaluate state of the art multi-modal LLMs
on our Qualcomm Interactive Cooking benchmark, highlighting the strong performance of our
LIVEMAMBA model in such interactive scenarios.

2 Related Work

Datasets for Procedural Activities. We provide an overview of related datasets and benchmarks in
Tab. 1. The Epic-Kitchens [11] dataset consists of ego-centric videos that document unscripted, daily
activities within a kitchen environment. The Ego-Exo4D [22] dataset incorporates a considerably
diverse array of human activities, as performed by subjects exhibiting with a variety of skill levels.
However, the videos in these datasets are not driven by a specific (multi-step) goal (Tab. 1, col 3).
Assembly-101 [48] features videos of people with diverse skill levels assembling and disassembling
101 “take-apart” toy vehicles. HowTol00M [43] and COIN [51] provides narrated instructional
videos, featuring a variety of activities. The YouCook2 [64] dataset contains cooking videos of
diverse recipes. However, the subjects in these datasets are usually experts and the videos do not
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Table 1: Comparison to our Qualcomm Interactive Cooking benchmark and dataset (Ours): where,
Mult-step Goal Driven refers to whether the videos are driven by a specific goal (e.g., cooking a
recipe); Step-by-Step Instructions: whether the videos contain subjects following a set of step-by-step
instructions; and Timed feedback: whether the subjects receive timed feedback per step that are
sufficient to guide the subjects to the goal.

Multi-step Step-by-Step Timed

Dataset Domain Goal Driven Instructions Feedback Length (hrs)
Epic-Kitchens [11] Cooking X X X 100
Ego-4D [21] Daily-life X X X 3670
Ego-Ex04D [22] Daily-life X X X 1422
Assembly-101 [48] Toy Assembly v X X 513
HoloAssist [55] Obj. manip. v X X 166
HowTo100M [43] Diverse v v X 134k
COIN [50] Diverse v v X 512
YouCookv?2 [64] Cooking v v X 176
WTAG [5] Cooking v v X 10
QEVD [44] Fitness X v v 474
Ours Cooking v v v 94

contain mistakes, unlike our Qualcomm Interactive Cooking benchmark and dataset (Tab. 1, col 5).
Finally, HoloAssist [55] and WTAG [5] include videos where subjects are provided live feedback by
tele-operator, that cover certain mistakes or user queries. But unlike Qualcomm Interactive Cooking
benchmark and dataset, these feedback are not sufficient to independently guide the subject towards
completion of the high-level goal.

Multi-modal Large Language Models. Vision language models have seen amazing progress in
recent years following the language modeling breakthroughs. Earlier efforts on contrastive learning of
vision and language representations led to CLIP [47] like architectures [26, 29, 30]. However, more
recent works have reformulated vision tasks as text generation tasks giving rise to a diverse array
of large multi-modal language models [1, 4, 20, 52—54] building on the success of large language
models (LLMs). Early works in this space like Flamingo [2] leveraged pre-trained language models
and vision adapters to align the language and visual representational spaces. Follow up works like
Llava [38], InstructBLIP [10] instruction tuned these models to enable excellent multi-modal dialogue
capabilities. These works were primarily applied to image data which have since been generalized to
videos [3, 27, 32, 35, 42, 61]. While these models can take videos as input, they only enable turn
based interaction, i.e., the models usually answer a question or narrate the whole video lacking the
ability to interactively respond to events in the video unlike our LIVEMAMBA model.

Streaming Video Large Language Models. Many recent works have started to explore online
video understanding with large multi-modal language models. VideoLLM-online [7] proposes a
framework to enable online dialogue over videos with LLMs and use it to train models to narrate long
streaming videos. ReKV [12] proposes a training free approach to enable existing video language
models to solve streaming visual question answering (StreamVQA). Similarly, TimeChat-Online [59],
StreamChat [40], LiveCC [8], Flash Vstream [63], StreamMind [13], LION-FS [34] introduce various
innovations to make multi-modal language models to work on streaming video tasks. This has also
prompted development of many streaming video benchmarks [36, 44, 46, 56, 58]. However, all of the
previous benchmarks deal with different forms of VQA where the model is asked questions paired
with streaming video in natural settings whereas we deal with multi-step interactive videos where the
model needs responds to the visual input without being prompted in a goal-directed setting.

3  Qualcomm Interactive Cooking Benchmark and Dataset

Here we introduce the Qualcomm Interactive Cooking benchmark and dataset to evaluate the ability
of multi-modal LLMs to provide step-by-step instructions, focusing on the cooking domain. The
Qualcomm Interactive Cooking benchmark and dataset uses the videos from the CaptainCook4D [45]
dataset as it contains actions with mistakes. This allows us to create a setup akin to a “non-reactive
simulation”, where we task the multi-modal LLM to produce the right instruction and feedback at the



Table 2: Dataset statistics: where, the Followed Feedback and Divergent Feedback indicate whether
the action associated with the feedback follows the given instruction or not.

Followed Followed Divergent Divergent
Total Length  Number of = Number of  Success Mistake Success Mistake

Split (hours) Videos Instructions  Feedback Feedback Feedback Feedback
Main Set

Training 52.4 213 2913 2394 686

Validation 15.7 62 861 659 257

Testing 26.4 109 1489 1135 445

Advanced Planning Set

Training 51.5 209 2888 2119 423 244 229
Validation 14.3 57 781 524 133 78 84
Testing 7.8 36 481 123 144 115 119

appropriate time, but the subject is non-compliant. Such a setup still provides us with useful insight
into ability of multi-modal LLMs to provide step-by-step task guidance, as fully reactive setups
are not possible with offline datasets. We provide statistics of the Qualcomm Interactive Cooking
benchmark and dataset in Tab. 2, including the total length in hours, number of videos, and numbers
of instructions and feedback messages.

Instruction and Feedback Protocol. The instructions and feedback are annotated using the following
protocol, starting from a step-by-step plan. The first instruction of the plan occurs at the beginning of
the video. If the user makes a mistake while completing the instruction, our benchmark and dataset
contains a corresponding feedback just after it occurs. If an instruction is completed successfully,
it is acknowledged. As long as the subject tries to complete the given instruction, irrespective of
mistakes, we provide the instruction for the next step. If the user performs actions which are not
aligned with the instruction, e.g., performing recipe steps out of order, we update the step-by-step
plan, e.g., by repeating the instruction (see advanced planning set). Once all the steps are completed,
we acknowledge the completion for the whole plan.

Annotation Process. To generate instructions and feedback we leverage the annotations for temporal
action segments with action descriptions in the CaptainCook4D dataset. We also leverage the
mistake descriptions for the actions containing mistakes. First, we begin by removing noisy mistake
annotations and then we annotate the timestamps where those mistakes occur. This allows us to
annotate timely feedback for each mistake. We do this for all types of mistakes except order
error and missing steps. Those mistakes reflect the cases where the subject ignores the provided
instruction, i.e., they perform a recipe step out of order or ignore the recipe step completely. Such
cases require more complex reasoning from the multi-modal LLM, as the model needs to reason
using the information of the instructions completed in the past and the remaining future steps. Thus,
we propose two sets of our Qualcomm Interactive Cooking benchmark and dataset: Main Set and
Advanced Planning Set. The training, validation, and testing splits within each set follow the original
video recoding split from CaptainCook4D, and the test splits correspond to the Qualcomm Interactive
Cooking benchmark.

Main Set. This set reflect the case where the user largely follows the given instruction. To build
the step-by-step plan for this set we leverage the order of the actions in the video. First we sort the
actions by their start time. Normally one action forms one step in the plan. In cases where actions
are performed in parallel (compound actions), we group those actions into the same step. In this set,
instructions are to be given according to their order in the plan, thus eliminating the need for complex
reasoning to provide the next instruction.

Advanced Planning Set. This set targets scenarios where the user diverges from the prescribed
sequence, such as performing steps out of order. To construct it, we use the graph-structured recipe
for each CaptainCook4D video to determine the correct step order. When the user does not follow the
given instruction, we notify them and identify the action being performed based on the initial plan.
The future instruction sequence is then updated to reflect this action (examples in the supplementary
material). The test split includes only videos where the user diverges from the initial plan at least
once. To reduce complexity, we further restrict the test set to videos without compound actions.



1: Sprinkle mozzarella cheese on top of the tomato throughout the platter.
2: Garnish the platter with Italian seasoning.
3: Add a drizzle of extra-virgin olive oil, about 1 tablespoon, over the entire platter.
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Figure 2: Our LIVEMAMBA model architecture. The input video stream is processed by an InternViT
vision head which produces M tokens, and is then reduced to K tokens by a Q-Former. The language
backbone produces feedback and invokes the Re-planner if necessary before the next instruction.

4 LIVEMAMBA for Step-by-Step Instructions

To deal with the challenge of guiding a user through step-by-step instructions we propose our
LIVEMAMBA model. It is a vision-language model with a vision encoder and language model
backbone to produce step-by-step instructions and feedback at the appropriate time-step. Given
a plan with a set of step-by-step instructions, the LIVEMAMBA model, shown in Fig. 2, provides
the next instruction to the user, waits for the user to complete the instruction or make a mistake
and provide a feedback message. To enable this interactive mode of operation, our LIVEMAMBA
has the following key novel features: 1. It knows “when to speak”, i.e., it is trained to respond at
the appropriate time step when the user has successfully completed the provided instruction or has
made a mistake. 2. To recognize the diverse set of possible mistakes that could be made by the user,
the LIVEMAMBA model is trained using a novel data augmentation scheme during the fine-tuning
phase. 3. To provide the next relevant instruction, the LIVEMAMBA model re-plans using an external
re-planning module, in case the user diverges from the provided instruction and performs a step out
of order. Furthermore, the LIVEMAMBA incorporates a recurrent Mamba-130M [23] language model
backbone to enable efficient training and inference over long video streams. Next, we discuss the
LIVEMAMBA architecture and training details.

4.1 LIVEMAMBA Architecture

The LIVEMAMBA architecture consists of a vision encoder and a light-weight but powerful language
backbone. A key consideration of the architecture of our LIVEMAMBA model is efficiency. For
real-world application of our LIVEMAMBA model, inference using our model should ideally be
possible using compute constrained edge devices such as mobile phones or smart glasses. Reliance
on external servers with larger compute capabilities is both costly and comes with additional latency
issues. A second key consideration is that the cooking activities in the Qualcomm Interactive Cooking
benchmark requires recognition of fine-grained actions and small objects, e.g., adding the correct
amount of salt, coating a cup vs a bowl with oil. Next, we describe these components in more detail.

Vision Encoder. The vision encoder consists of a InternViT-300M-448px-V2_5 [9] head along
with a Q-Former [31] based adapter. As shown in Fig. 2 the InternViT head produces M tokens
per input video frame. As we use a light-weight language backbone, we do not want to offload raw
visual processing to the language backbone and thus employ a powerful Q-Former with multiple
transformer layers. For every input video frame, the Q-Former reduces the M tokens to K tokens
which are then input to the language backbone. To generate these K tokens, the Q-Former uses four



cross attention layers to gradually blend in the important visual information from the input video
frame. These tokens are then used as input to the language backbone, interleaved with the text tokens
corresponding to the step-by-step plan, instructions and feedback.

“When-to-Say”. To respond at the appropriate timestep, following [7, 44] our LIVEMAMBA model
uses two special tokens <vision> and <response>. The <vision> token allows the LIVEMAMBA model
to interactively ask for the next video frame as input, while <response> allows the LIVEMAMBA to
respond with an instruction or a feedback at the appropriate time.

Iterative Re-planning. To determine the next instruction, we employ the following strategy. If
the user executes the current instruction—whether correctly or with errors—the subsequent step
from the original plan is issued. On the other hand, if the user diverges from the prescribed se-
quence and performs an out-of-order step, our LIVEMAMBA invokes an external re-planner (see
Fig. 2). The re-planner receives as input the initial step-by-step plan, the set of completed steps, and
feedback generated by LIVEMAMBA, and then selects the next optimal step to ensure successful
task completion. In yet another scenario, if the intended step is skipped, the re-planner evaluates
whether repeating the current instruction is appropriate given the user’s progress. Similarly, if a
step is completed prematurely, the re-planner determines whether to remove it from the remaining
plan. This iterative and selective re-planning mechanism provides two principal advantages. First, it
enables selective use of large-scale models with enhanced reasoning capabilities only when necessary;
in our implementation, Qwen3-32B [15] serves as the re-planner. Second, it eliminates the need
for LIVEMAMBA to internally store and recall the entire plan, allowing it to focus exclusively on
delivering accurate and timely feedback (more details in the appendix).

4.2 LIVEMAMBA Training

We now provide details of our training scheme, which is composed of two stages.

Pre-training. This stage aligns the Q-Former’s vision embeddings with the language backbone’s text
embeddings by training only the Q-Former adapter. We use a diverse set of image and video datasets
to instill two key visual skills: First, for object grounding, LIVEMAMBA is trained on image datasets
like LVIS [24] (for diverse household objects) and on video data using VISOR annotations from
EPIC-KITCHENS [11]. Tasks include image/video captioning, object recognition, and bounding box
prediction. Second, for fine-grained action understanding, LIVEMAMBA learns action recognition
from SSv2 [19] and video narration from EPIC-KITCHENS and Ego4D. Narration helps ground the
model to actions in these large-scale egocentric datasets, particularly cooking activities.

Fine-tuning. During the fine-tuning phase the LIVEMAMBA model is trained to provide the ap-
propriate instructions and feedback at the appropriate time, using the <vision> and <feedback>
special tokens as described above. At this stage, both the Q-Former’s based adapter and the language
backbone is trained. The LIVEMAMBA needs to recognize the successful completion of instructions
and mistakes. To this end, in addition to training on the step-by-step instructions and feedbacks from
our Qualcomm Interactive Cooking dataset, we apply several augmentations as described below.

4.3 LIVEMAMBA Augmentation

We now provide details of our data augmentation scheme during the fine-tuning phase.

Temporal Augmentation. To maintain temporal accuracy of feedbacks while dealing with long
videos in the Qualcomm Interactive Cooking benchmark, we introduce temporal jittering during train-
ing. Specifically, we jitter the starting timestamp of each instruction by a constant K seconds. This
temporal jittering deals that fact that predictions by autoregressive models, e.g., our LIVEMAMBA,
can accumulate errors. Jittering the starting timestamp of an instruction ensures that the LIVEMAMBA
can successfully predict feedbacks irrespective of the previous accumulated error. In practice, we
find K = 30 to work well.

Instruction Completion Augmentation. To help the LIVEMAMBA recognize the successful comple-
tion of instructions, we augment our training set by converting videos from the EPIC-KITCHENS
and Ego4D datasets to the step-by-step instruction and feedback format of our Qualcomm Interactive
Cooking dataset. In detail, we consider the action descriptions in the EPIC-KITCHENS dataset and



Table 3: Zero-shot evaluation on the main set of the Qualcomm Interactive Cooking benchmark.

Instruction Mistake
Method IC-Acct Prec.t Rec.t F11 BERTt ROUGE-Lt
LLaVA-NeXT [39] 1.4 0.00 0.00 0.00 0.000 0.000
Video-ChatGPT [42] 1.6 0.00 0.00 0.00 0.000 0.000
VideoChat2 [33] 1.6 0.00 0.00 0.00 0.000 0.000
Video-LLaVA [65, 37] 2.0 0.00 0.00 0.00 0.000 0.000
VideoLLaMA3-7B [60] 1.8 0.00 0.00 0.00 0.000 0.000
Videollm-online [7] 0.03 0.02 0.98 0.04 0.332 0.248
Qwen2-VL-7B [54] 6.3 0.02 0.69 0.05 0.377 0.256
Qwen2.5-VL-7B [18] 18.9 0.18 0.01 0.02 0.299 0.219

the Ego4D Goal-Step datasets and use a Qwen2.5-8B model [14] to convert these action descriptions
to instructions. We provide the instruction at the action start time and feedback message at the action
end timestamp. As these datasets do not contain any mistakes, the feedback messages acknowledge
the successful completion of the instruction.

Counterfactual Mistake Augmentation. Recognizing mistakes and providing timely feedback is
a key challenge of our Qualcomm Interactive Cooking benchmark. To this end, we formulate a
novel data augmentation scheme to generate (counterfactual) mistakes in the EPIC-KITCHENS and
Ego4D datasets. First, we convert the action description to plausible grounded counterfactual action
descriptions. These grounded counterfactual action descriptions are used to generate instructions
and thus construct scenarios where the user tries to follow the given instruction but makes a mistake
(more details in the appendix). To help recognize divergent mistakes, where the user does not follow
the provided instruction, we augment the fine-tuning dataset by swapping instructions between
recipe steps. The feeback is constructed to explicitly state that the user did not follow the provided
instruction and instead performed a different action. This format of feedback triggers the re-planning
module during the inference stage (more details in the appendix).

5 Experiments

We begin with an introduction to the metrics used to evaluate models for interactive step-by-step task
guidance followed by the experimental results.

5.1 Evaluation Metrics.

We use the following metrics to measure both the ability of the models to detect successfully
completed instructions and to provide feedback when mistakes occur.

Instruction Completion Accuracy (IC-Acc). IC-Acc measures the proportion of instructions that
the model correctly detects as successfully completed by the user. Specifically, this requires that the
model provides the correct instruction, the user completes it, and the model identifies this completion.
To mitigate temporal annotation noise, we consider a prediction correct if it falls within a small
window centered on the ground-truth completion time. In practice, a 30-second window is sufficient:
it typically spans the last ~25% of the current step and the first ~25% of the next step in the
Qualcomm Interactive Cooking benchmark, balancing robustness to noise with accuracy.

Mistake Detection Precision (Prec.), Recall (Rec.) and F1. To calculate mistake detection Precision,
Recall, and F1 scores in our interactive streaming setup, we define: * Mistake True Positive: A mistake
detected by the model within a small temporal window centered on the timestamp of a ground truth
mistake. ® Mistake False Negative: A ground truth mistake that the model fails to detect within this
temporal window. * Mistake False Positive: A mistake detected by the model when no corresponding
ground truth mistake occurs within the temporal window. ® Mistake True Negative: An instruction
correctly followed by the user (no ground truth mistake) where the model correctly detects no mistake.
We use the same temporal window size as in the IC-Acc metric.



Table 4: Evaluation of fine-tuned models on the Qualcomm Interactive Cooking benchmark
(Tindicates models fine-tuned by us).

Instruction Mistake
Method 1C-Acct Prec.t Rec.t F17 BERTt+ ROUGE-Lt
Main Set
Videollm-online’ [7] 7.6 0.04 0.01 0.01 0.434 0.412
LIVEMAMBA (w/0-ICAug) 7.8 0.05 0.01 0.01 0.605 0.542
LIVEMAMBA (w/o-CFAug) 14.3 0.12 0.03 0.05 0.558 0.511
LIVEMAMBA (Ours) 294 0.15 0.07 0.10 0.650 0.613
Advanced Planning Set
LIVEMAMBA (w/o-reP) 10.1 0.33 0.12 0.17 0911 0.903
LIVEMAMBA (Ours) 14.2 0.35 0.15 0.21 0.920 0.906

Table 5: Turn-based evaluation of on the main set of the Qualcomm Interactive Cooking benchmark.

Instruction Mistake
Method IC-Acct Prec.t Rec.t F171 BERTt ROUGE-L?t
VideoLLaMA3-7B [60] 17.8 0.08 0.61 0.15 0.406 0.346
Qwen2-VL-7B [54] 194 0.06 0.46 0.11 0.398 0.293
Qwen2.5-VL-7B [18] 38.9 0.11 0.04 0.06 0.348 0.230
LIVEMAMBA' (Ours) 64.7 0.66 0.10 0.18 0.601 0.556

Mistake Feedback Fluency (BERT and ROUGE-L). To measure the fluency of the models in
providing appropriate feedback, we use the ROUGE-L and BERT scores. We only consider the
fluency of feedback provided in case true positive mistake detections. That is, when the feedback is
provided within the temporal window of a ground truth feedback as described above. Importantly,
these scores are only meaningful when comparing models with similar true positive detection rates,
since differences in detection accuracy can confound fluency comparisons. This is because models
with lower detection rates produce fewer feedback instances, which can skew the distribution of
ROUGE and BERT scores and make fluency appear artificially higher or lower.

5.2 Zero-Shot Evaluation

Most state of the art open source multi-modal LLMs are limited to turn-based interactions. Applying
such models to the streaming setup of the Qualcomm Interactive Cooking benchmark is thus highly
challenging. Therefore, we need to employ a special online prompting strategy. This strategy involves
prompting the model at regular intervals to detect both successful completions of instructions and
mistakes. However prompting after every input frame is not computationally feasible. To balance
accuracy and compute requirements, we prompt the models at an interval of 5 seconds. We provide
details of the prompts in the appendix.

On the other hand, open-source streaming multi-modal LLMs such as Videollm-online [7] are
targeted at providing online narrations of input video streams. Such models are therefore not directly
applicable to our Qualcomm Interactive Cooking benchmark. Thus, to evaluate such models, we first
ask the model to generate online narrations for the whole video. We then feed these narrations in
an online manner to a “helper” LLM that given the narrations and the action instruction, predicts if
the action is completed or not. If “yes”, we move on to the next instruction. If “not”, we ask the
“helper” LLM to predict if the narrations suggest a mistake has been made and provide feedback for
correction. We use Phi-3-mini-4k-Instruct [17] as the “helper” LLM.

We report the zero-shot evaluation results in Tab. 3 for the main set of the Qualcomm Interactive
Cooking benchmark. Overall, Qwen2.5-VL-7B-Instruct [18] performs best. It can recognize 15.2%
of instructions being successfully completed by the user. Models such as VideoLLaMA3-7B [60],
Video-LLaVA [37, 65], VideoChat2 [33], Video-ChatGPT [42], LLaVA-NeXT [39] have trouble
following instructions. Even when prompted to detect if the person has completed a given instruction



these models tend to answer “yes” too early. This highlights a gap in understanding scenes as they
unfold in a streaming setup. This is likely an artifact of the question-answer style training scheme
of these models where the entire video is always available to the model. Furthermore, Videollm-
online [7] predicts narrations which are not fully informative of the action and therefore a mistake
is detected very often leading to a very high mistake recall and a very low instruction completion
detection accuracy.

Overall, when it comes to mistake detection, none of the zero-shot approaches performs well. Qwen2-
VL-7B-Instruct [54] overestimates the occurrence of mistakes, leading to higher recall but low
precision. Qwen2.5-VL-7B-Instruct [18] on the other hand is more precise in detecting mistakes,
but with low overall F1 score. This weak performance can be attributed to the fact that detecting
mistakes in the Qualcomm Interactive Cooking benchmark is very challenging due to a variety of
reasons. First is the fine-grained nature of many mistakes, i.e., taking 1 teaspoon vs 1 tablespoon
or 2 teaspoons of sugar, spilling flour on the kitchen counter etc, requires both fine-grained object
recognition and action-recognition abilities. This is made additionally challenging by the fact that the
model needs to look out of a diverse set of possible mistakes. Secondly, mistakes need to be detected
as soon as they occur (similar to the instruction completions). This again exposes the limitations of
current models in understanding scenes as they unfold in a streaming setup.

5.3 Evaluation of Fine-tuned Models

Here we evaluate our LIVEMAMBA model fine-tuned on the Qualcomm Interactive Cooking dataset.
Unlike the zero-shot baselines such as Qwen2.5-VL-7B-Instruct [18] in Tab. 3, our LIVEMAMBA
model is fully interactive, i.e., it can decide “when to say” to point out successful completion of
instructions and mistakes after every input frame. Thus, it does not require expensive prompting
strategies. We also consider two ablations of our LIVEMAMBA model on the main benchmark set:
1. without instruction completion augmentation (w/o-ICAug), 2. without counterfactual augmentation
(w/o-CFAug), In case of the advanced planning set, we consider an ablation without an external
re-planning module (w/o-rP).

Firstly, in Tab. 4 we see that our LIVEMAMBA model significantly improves performance over the
zero-shot models in Tab. 3. We show example predictions of our model in Fig. 3. The weaker
performance of the fine-tuned Videollm-online model shows that pre-training only on narration data
is not sufficient. Furthermore, the use of our efficient Mamba-130M backbone [23] allows us to
use a higher number of embedding tokens per frame (32 vs 10) at similar memory costs compared
to transformer based models such as Videollm-online. In addition to the pre-training data, the key
reasons for the improved performance of the LIVEMAMBA model is our data augmentation scheme
during the fine-tuning phase. The addition of instruction completion augmentation (ICAug) leads to a
significant improvement in IC-Acc from 7.8% to 14.3% in the main set along with an improvement
in mistake F1 scores. The improvement in mistake F1 score is particularly interesting, as correctly
recognizing successful completion of instructions helps the LIVEMAMBA more precisely point out
mistakes. Furthermore, the addition of counterfactual mistake augmentation (CFAug) significantly
boosts the mistake F1 score from 0.05 to 0.10 in the main set, along with a significant jump in
feedback fluency. The significant jump in mistake detection accuracy shows that the curation of high
quality mistake data is a promising direction for future research. Furthermore, we see that the use
of the external re-planning module leads to better performance on the advanced planning set. The
external re-planning module helps the LIVEMAMBA select the next instruction in case of divergent
mistakes over the complex graph structured recipes in the Qualcomm Interactive Cooking benchmark
from CaptainCook4D. Also note that, our counterfactual (divergent) mistake augmentation scheme
significantly boosts the mistake detection scores in this set. Overall, providing the correct instruction
in the advanced planning set remains highly challenging, as shown by the lower IC-Acc scores. Note
that, the majority of the mistakes in the advanced planning set are divergent: they point out the
intended action given the instruction and the divergent action. Furthermore, the mistake detection
scores are calculated only when the provided instruction matches with the groundtruth instruction.
Thus, the mistake detection scores are not comparable across the main and advanced planning sets.

In terms of throughput, on a consumer Nvidia H100 GPU, our LiveMamba model has a real-time
factor of 4 on average: it can process input data four times as fast at 8.1 frames per second as it
becomes available at 2 frames per second. In terms of latency, that is time to generate the first token, is
1.1 seconds on average. Re-planning using the Qwen3-32B[15] model takes 6.1 seconds on average.
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Figure 3: Our LIVEMAMBA is able to successfully recognize the person has added the black pepper
as instructed and points out when the person should heat the oil in a non-stick frying pan, in the
Qualcomm Interactive Cooking benchmark.

5.4 Turn-based Evaluation

The streaming evaluation in Tabs. 3 and 4 tested models on multi-step user guidance, a setup
inherently challenging due to error propagation; for instance, failing to detect instruction completion
renders subsequent predictions incorrect. While this reflects real-world scenarios where accurate
completion detection is vital for task guidance, such difficulty can make it more challenging to
measure progress on the Qualcomm Interactive Cooking benchmark. Therefore, we also propose a
turn-based evaluation, where models are assessed on each recipe step independently.

We report the results in Tab. 5 on the main set of the Qualcomm Interactive Cooking benchmark.
Overall we observe much higher IC-Acc scores compared to the streaming setup of Tabs. 3 and 4. Most
significantly, we observe higher mistake precision, recall, F1 scores of our fine-tuned LIVEMAMBA
model compared to the zero-shot models. This again shows that fine-tuning on our Qualcomm
Interactive Cooking dataset along with our data augmentation scheme during fine-tuning allows
our LIVEMAMBA model to better recognize mistakes compared to zero-shot baselines. Thus, the
turn-based evaluation in Tab. 5 along with the streaming setup in Tabs. 3 and 4 together provide a
more detailed picture of progress on the Qualcomm Interactive Cooking benchmark.

6 Conclusion

We address the challenge of enabling multi-modal LLMs to provide live, interactive step-by-step
guidance. To this end, we introduce Qualcomm Interactive Cooking dataset and benchmark, featuring
densely annotated, timed instructions and feedback, including for mistakes, timestamped to visual
occurrences. We also propose LIVEMAMBA, a novel streaming multi-modal LLM designed for this
task. LIVEMAMBA utilizes a lightweight Mamba backbone, a "when-to-say" mechanism, novel data
augmentation for mistake recognition, and iterative re-planning for adaptive delivery. Evaluations
show existing multi-modal LLMs struggle with live task guidance, whereas LIVEMAMBA, establishes
a strong baseline, significantly outperforming others in diverse metrics.

Limitations. Our work is focused on the cooking domain through Qualcomm Interactive Cooking.
While LIVEMAMBA establishes a strong baseline, detecting subtle mistakes and robustly handling
complex scenarios, particularly those involving order errors or missed steps in the advanced planning
set, remains challenging, for all state of the art open-source models.

Broader Impacts. Language models can produce harmful and biased content, make incorrect claims
and produce wrongful advice. This needs to be taken into account when interacting with, deploying or
building on these models, particularly in domains where incorrect advice may lead to physical harm.
It also has to be taken into account that any computer vision model processing visual information
about human subjects could in principle extract information beyond what is required for the use-case,
such as biometric information.
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Appendix

A Overview

In the following we provide details of the annotation process of our Qualcomm Interactive Cooking
dataset and benchmark, details of the re-planner used in the LIVEMAMBA model, training details of
our LIVEMAMBA model, additional qualitative results from our LIVEMAMBA model, and details of
the prompts used for zero-shot evaluation.

B Qualcomm Interactive Cooking Annotation Details

Our Qualcomm Interactive Cooking dataset and benchmark is built upon the CaptainCook4D
dataset [45]. The CaptainCook4D dataset contains 384 videos in total. Each video records a
person preparing a dish given a recipe, such as breakfast burritos and tomato mozzarella salad, from
an egocentric view. Each video is associated with a graph-structured recipe’, and annotated with
temporal action segments: action descriptions with the corresponding starting time and ending time.
If an action contains a mistake, then there is a description of the mistake. However, there is no
timestamp annotation for the mistake. The average duration of action segments in CaptainCook4D is
about 52.78 seconds , which is about 106 frames if using frame rate as 2. This also motivates us to
use a light-weight Mamba based model to encode more frames given the hardware constraint.

The CaptainCook4D dataset includes 7 categories of mistakes: preparation error, technique
error, measurement error, temperature error, timing error, order error, and
missing steps. We annotate the timestamps of the mistakes when they just happened. We
remove some noisy mistake annotations in CaptainCook4D, and annotate for all mistake categories
except for order error and missing steps. Tab. 6 shows the numbers of mistake instances
per mistake category. Note, we show the mistake statistics here for a complete description of the
Qualcomm Interactive Cooking dataset and benchmark. This mistake category information is not
used in our experiments presented in the paper.

Our Qualcomm Interactive Cooking features with a step-by-step plan, and timestamped instructions
and feedback for each video recording. In what follows, we describe how we obtain those for the
main set and advanced planning set respectively.

B.1 Main Set

In the main set (Fig. 4), we assume that the user always tries to follow the given instruction. That
is, there is no action order error. Given a video, we first sort the actions by their starting time in
ascending order (primary key) and ending time in descending order (secondary key). Based on this
order, we build the step-by-step plan. Usually one action description forms one step in the plan. In
cases where one action is temporally contained in another action (actions performed in parallel), we
group those action descriptions into one step. Accordingly, we create action groups, where one step
in the plan corresponds to one action group. The first step in the plan provides the contents for the
next instruction to be given.

Given a video, we treat the first action’s starting time as the video starting time and the first instruction
is given at that time. Once an action finishes, its description is removed from the step-by-step plan.
Once all the actions in the current action group finish, the current step in the plan will be empty.
We remove the empty step in the plan and give the instruction for the next step. The instruction
is a sentence containing all the information in the action descriptions in the step. Once an action
finishes successfully, we acknowledge the success via summarizing the description of the just finished
action, and using the words like successfully, correctly, properly, and etc. This type of feedback is
given at the action’s ending time. If an action contains a mistake, we give the feedback regarding the
mistake at our annotated timestamp. The feedback is a sentence pointing out the mistake based on
the mistake description given in CaptainCook4D. Once all the steps in the initial plan are completed,
we output the feedback “You have finished all the steps.” to acknowledge the completion.
Fig. 4 shows data samples from the main set. Whenever an action finishes, it is removed from the

SExamples can be found at https://captaincook4d.github.io/captain-cook/recipe.html.
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Table 6: Mistake category statistics.

Split Preparation Err.  Technique Err.  Measurement Err.  Temperature Err.  Timing Err.
Main Set
Training 198 224 159 27 78
Validation 63 79 68 10 37
Testing 110 156 113 17 49
Advanced Planning Set
Training 182 216 152 27 75
Validation 54 66 55 10 32
Testing 68 85 74 10 26

Table 7: Re-plan statistics on the advanced planning set (averaged over videos requiring re-planning
in each split).

Number of Videos Average Video Average Number of ~ Average Number of
Split Requiring Re-planning  Length (minutes) Instructions Re-plan Steps
Training 94 12.8 13.2 4.3
Validation 29 13.2 13.6 4.8
Testing 36 12.9 13.4 6.1

step-by-step plan. The examples show that recognizing mistakes requires fine-grained understanding
of user actions and objects in the scene across long time-horizons.

B.2 Advanced Planning Set

In the advanced planning set (Figs. 5 and 6), we include cases where the user performs an action
diverging from the instruction. Given a video with its associated graph-structured recipe, we append
the actions that are not performed in the video (missing steps) to the ordered actions from the main
set. We then topologically sort the actions using the Kahn’s algorithm [28]. We discard some videos
which can not be topologically sorted, because there exist actions in the video but absent from the
recipe graph. This (newly) sorted action order is used to build the step-by-step plan. Normally one
action description forms one step in the plan. We group consecutive action descriptions into the same
step only if there exists a step in the main set’s plan containing the exact same action descriptions.
Note that the action groups remain consistent with the main set. An important difference to the main
set is that, it is possible to have divergence between a step in the plan and the corresponding action
group, in case the user does not follow the given instruction.

As in the main set, once the user finishes an action, we remove its description from the plan and
remove any empty step; and once all the actions in the current action group are finished, we provide
the instruction for the next step. If the action group matches the corresponding step, that is, the
user performs actions following the given instruction, we follow the same convention as in the main
set. If the user performs an action diverging from the given instruction, we notify the user in the
feedback. Specifically, if the action is performed without mistakes but does not follow the instruction,
the feedback is given at the action’s end time, starting with the sentence “You did not follow
the instruction.” and describing the action that is performed. If the action performed contains
mistakes, the feedback is given when the mistake occurs, starting with the sentence “You are not
following the instruction.”, describing the action that the user is trying to perform based on
the initial plan, and pointing out the mistake.

In cases where the current step is not empty after all actions in the current action group finish, that is,
the instruction is not followed at all or partially completed, we manually decide whether to keep or
remove the current step in the plan based on the actions that the user has performed. This corresponds
to the cases that require re-planning as the set of future steps need to be updated. Tab. 7 shows
the “re-plan” statistics in our advanced planning set. As can be seen from the table, re-planning is
required for about every 2.7 instructions or every 2.6 minutes on average. Figs. 5 and 6 show data
samples from the advanced planning set. Note, in Figs. 5 and 6, “Plan” means that the action follows
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the instruction, and thus once the current step is finished, it is removed from the step-by-step plan.
“Re-plan” means that the action diverges from the instruction, and when giving the next instruction,
we need to decide whether to (re)instruct the user about the current step or not.

C L1IVEMAMBA Re-planner

The re-planner is invoked (during inference) whenever the user does not follow the given instruc-
tion. This only occurs in the advanced planning set of the Qualcomm Interactive Cooking bench-
mark. To identify such cases, we train the LIVEMAMBA to add a “You are not following the
instruction.” or “You did not follow the instruction.” prefix to feedback messages in
case the user does the follow the given instruction. Note that, during training, the LIVEMAMBA
model is trained using the ground truth sequence of instructions (as the LIVEMAMBA model is trained
on a single recipe step at a time) and the re-planner is not used. During inference as we do have have
the ground truth sequence of instructions, we use the re-planner to update the step-by-step instruction
plan and provide the correct instructions (and feedbacks). We do this in two steps.

First, the re-planner uses the Qwen3-32B [15] model to extract the recipe step performed instead of
the instructed recipe step using the following prompt:

Retrieve the performed action

You are an expert cooking instructor. You are observing a user cooking a given recipe step by
step.

##INSTRUCTIONS:

Here are the recipe steps: [recipe_steps].

The last instruction that you provided to the person is: [last_instruction]. The person did
not follow your instruction and performed a different recipe step by mistake which did
not correspond to the provided instruction. So you provided this feedback to the person:
[last_feedback]. Which recipe step did the person likely perform instead of the step in the
last instruction. RETURN THE RECIPE STEP AS A PYTHON STRING. ENSURE THAT
YOU OUTPUT A RECIPE STEP AND DO NOT OUTPUT ANYTHING OTHER THAN A
RECIPE STEP.

Secondly, the re-planner determines if the current instruction needs to be repeated, based on the
recipe steps and the past steps completed by the person. We use the following prompt for the
Qwen3-32B [15] model:

Decide whether repeating the last instruction

You are an expert cooking assistant. You are helping a user to make [recipe_name], according
to the following recipe steps: [recipe_steps].

##INSTRUCTIONS:

The user has already completed [past_completed_step_counts] steps: [past_completed_steps].
Decide whether it is appropriate now to ask the user to [last_instructed_action], considering
the effect of all the steps that the user performed. Your answer must begin with *Yes’ or "No’,
followed by an explanation.

If the answer is “No”, that is, the last instruction is not to be repeated, we find all parent actions of the
last action that the user performed from the corresponding recipe graph, and remove those actions
from the step-by-step plan if they exist. Otherwise, we do not further update the step-by-step plan.

D LIVEMAMBA: Training Details

D.1 Pre-training Data

As discussed in the main paper, for object grounding, LIVEMAMBA is trained on image datasets,
i.e., LVIS [24] (for diverse household objects) and on video data using VISOR annotations from
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EPIC-KITCHENS [11]. The data follows a question answer format, where the questions are of the
following format (following [38]):

LVIS / EPIC-KITCHENS: Grounding Questions

* Please provide the bounding box coordinates for the , Al
* Where is the
* What are the coordinates of the bounding box encompassing the 7, A:

located in the image?,A: It is located at

 Can you pinpoint the
A: Yes,itisat

* Where is the

in the image by giving me its bounding box coordinates?,

in the image? Give me the bounding box coordinates., A:

* I need the top-left and bottom-right corners of the <1>’s bounding box. What are
they?, A:

* Could you identify the in the image and tell me its location using bounding
box coordinates?, A: Yes, it is at

* Describe the image concisely., A:
* Provide a brief description of the given image., A: .

* Offer a succinct explanation of the picture presented., A: .

e Summarize the visual content of the image., A:
* Give a short and clear explanation of the subsequent image., A: ___.

» Share a concise interpretation of the image provided., A;

* Present a compact description of the photo’s key features., A: __.

* Relay a brief, clear account of the picture shown., A;

* Render a clear and concise summary of the photo., A: .
* Write a terse but informative summary of the picture., A:

» Create a compact narrative representing the image presented., A:

For action recognition tasks on SSv2 [19], we use the following format:

SSv2: Action Recognition Questions

* Describe the action I performed in this video in detail and name the objects that the I
interacts with?, A:

* Can you provide a step-by-step description of the action in the video which includes
the specific objects that I touched or manipulated?, A:

* Tell me a description of the action performed by me in the video that includes the
names of any items that I interact with., A:

* What action happens in the video and what objects are involved in the action?, A:

* Describe my actions and the objects that I come across., A:

For narration tasks on EPIC-KITCHENS we convert the action descriptions to second person format,
e.g., “‘pick up plate” to ““You picked up a plate.” For Ego4D, we employ the narrations used by [7].

D.2 Fine-tuning Data

As mentioned in the main paper, EPIC-KITCHENS and Ego4D datasets included in the fine-tuning
phase do not include instances of mistakes. Therefore, we formulate a novel data augmentation
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scheme to generate (counterfactual) mistakes. First, we describe the process used on Ego4D to
generate counterfactual action descriptions in detail.

Counterfactual Mistake Augmentation. To this end, we utilize the Ego4D goalstep annotations
[49] and the FHO annotations [16]. The FHO annotations largely include fine-grained short duration
actions while the goalstep annotations include longer-ranged actions more closely aligned with
the recipe steps in our Qualcomm Interactive Cooking benchmark. To create temporally localized
counterfactual mistakes, we first find the FHO actions that are included within each goalstep action.
Then we ask Qwen-2.5-32B-Instruct [14] identify the “critical” FHO action for each goalstep
action, e.g., for the goalstep action wash green beans in water, the critical FHO identified
by Qwen-2.5-32B-Instruct is washes green bean (from the following FHO actions within the
goalstep action: collects green bean, puts green beans on the chopping board, puts
green beans in cooking pan,...,picks green beans, opens tap, washes green bean,
...). We then ask the Qwen-2.5-32B-Instruct to construct two counterfactual actions. Firstly,
by changing the noun to an alternative noun in the scene, i.e., washes green bean to washes
carrots. The list of nouns in the scene is generated by identifying objects in the scene using
DETR [6]. Secondly, by proposing an alternative verb, i.e., washes green bean to mash green
bean. Then we use this counterfactual action to create an instruction and feedback pair. We use the
point-of-no-return timestamp [16] for the mistake feedback.

In case of the EPIC-KITCHENS dataset, most actions are of short duration (<10 seconds long). We
directly use Qwen-2.5-32B-Instruct to construct two counterfactual actions by using an alternative
noun in the scene and by an alternative verb as described above. As the actions are short we use the
end of action timestamp to generate the (mistake) feedback.

D.3 Training and Inference Hyperparameters.

We use input video resolution of 448 x 448 at 2 fps. The InternViT-300M-448px-V2_5 vision head
produces N = 1025 tokens (including the CLS token) per input frame. We use the mechanism
outlined in VisionZip [57] to reduce the number of tokens to 256. Then, our Q-Former reduces this
further to K = 32 tokens.

In addition to the vision features, the Mamba-130M language backbone of the LIVEMAMBA model
is prompted with the following prompt:

LIVEMAMBA: Interactive Inference (Language Backbone)

You are an expert cooking assistant that is helping a person cook the following step by step
recipe: [recipe_steps].

You just provided the following instruction to the person: [last_instruction].

Now watch the video and provide the appropriate success or failure messages.

The LIVEMAMBA model is trained using 8 Nvidia H100 GPUs. We use the AdamW [41] optimizer.
During the pre-training phase, we train only the Q-Former and the LIVEMAMBA model is trained
using a learning rate of 1 x 107> for 200k iterations. We again use a learning rate of 1 x 10~°, for
120k iterations. During the fine-tuning phase, we train on single recipe steps and clip the maximum
length to 3 minutes. During inference, we re-initialize the LIVEMAMBA model after every recipe
step.

E LIVEMAMBA Results

In Fig. 7, we show additional qualitative examples of predictions by our LIVEMAMBA model from
the main set of the Qualcomm Interactive Cooking benchmark. In the top two rows we see that our
LIVEMAMBA model is able to successfully recognize that the user has completed complex steps
from the step-by-step plans, e.g., rinsing a tomato and cutting tofu into large cubes. In the third row
we show an example where the user incorrectly coats a big cup instead of a 6-0z. cup with cooking
spray. Our LIVEMAMBA model is able to provide timely feedback in this case.
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F Zero-shot Evaluation

Here we provide the prompts used for zero-shot evaluation. We begin with a more detailed description
of the prompting strategy in Section 5.2 of the main paper.

Promoting Strategy. This strategy involves prompting the model at regular intervals to detect both
successful completions of instructions and mistakes. However prompting after every input frame is
not computationally feasible. To balance accuracy and compute requirements, we prompt the models
at an interval of 5 seconds. First, the model is asked if the user has completed the current instruction
(obtained from the recipes in the Qualcomm Interactive Cooking benchmark). We use the following
prompt for the Qwen2.5-VL-7B-Instruct [18], Qwen2-VL-7B-Instruct [54], VideoLLaMA3-7B [60]
models:

Qwen2x-VL-7B-Instruct / VideoLLaMA3-7B: Check if instruction complete

You are an expert cooking assistant helping a person cook. The person is provided with an
instruction and your task is to check if the instruction has been completed.

##INSTRUCTIONS:

The person has been instructed to: [instruction].

If the person has completed the instruction answer “yes” else answer “no”. DO NOT OUTPUT
ANY OTHER TEXT.

In case of VideoChat2 [33] model, we use the following prompt:

VideoChat2: Check if instruction complete

You are an expert cooking assistant helping a person cook. The person is provided with an
instruction and your task is to check if the instruction has been completed. You must check
the video content very closely and confirm if the instruction has been completely followed
and finished.

##INSTRUCTIONS:

The person has been instructed to: [instruction].

If the person has completed the instruction answer “yes” else answer “no”. Answer “yes”
ONLY IF the instructed action is completed in the video, otherwise answer “no”.

In case of the Video-LLaVA [65, 37], Video-ChatGPT [42], LLaVA-NeXT [39] as they do not accept
system messages we use the following simplified prompt:

Video-LLaVA / Video-ChatGPT / LLaVA-NeXT : Check if instruction complete

The person has been instructed to: [instruction].
If the person has completed the instruction answer “yes” else answer “no”.

If the model answers “yes”, then we move on to the next instruction in the recipe. If not, then we ask
the model to check for mistakes.

For VideoLLM-Online — since the model is trained to narrate videos, it can not detect completion
and mistakes out of the box. Therefore, we use a helper LLM (Phi-3-mini-4k-Instruct) to help detect
completion and mistakes given narrations. We use the following prompts,
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VideoLLM-Online: Check if instruction is complete

VideoLLM-Online: Please narrate the video in real-time.

Helper-LLM (Phi-3-mini-4k-Instruct): You are an intelligent chatbot that is judging another
system which narrates human cooking videos. Given a high level action instruction and a list
of narrations generated from the system, your job is to decide if the narration is correct and
shows completion of the instruction. Answer ’yes’ if the instruction is completed otherwise
output ‘no’.

Instruction: [instruction]

Narrations: [videollm-online narrations]

In the offline (turn-based) evaluation scheme used in CaptainCook4D [45], multi-modal LLMs are
prompted with sequence of questions per error category to detect mistakes. However, such a scheme
is infeasible in case of streaming setups due to high computational costs. Therefore, to enable mistake
detection in a single inference step, we design a prompt that concisely explains the possible mistakes
that are possible while following a given instruction. The model can then use this information to
recognize possible mistakes. In detail, for a given instruction we find similar instructions in the
training set and use Qwen-2.5-32B-Instruct [14] to summarize the possible mistakes. The following
are some examples:

Instruction: Now place 8-inch flour tortilla on cutting board.

When guiding the user through this step, the cooking instructor should watch out for these
potential mistakes:

1. Users might toast or heat the tortilla before placing it on the cutting board.
2. Users may place the tortilla on a plate instead of a cutting board.
3. Users could use an unclean surface instead of a clean cutting board.

Instruction: Now add 1/4 tsp salt to a bowl.

When guiding the user through this step, the cooking instructor should watch out for these
potential mistakes:

1. Spilling salt while measuring or adding it.

2. Adding too much salt, specifically 1/2 tsp instead of the required 1/4 tsp.
3. Confusing 1/3 tablespoon with 1/3 teaspoon.

4. Accidentally adding the salt to the pan rather than the bowl.

We then use these “mistake summaries” to prompt the multi-modal LLM. For Qwen2.5-VL-7B-
Instruct [18], Qwen2-VL-7B-Instruct [54], VideoLLaMA3-7B [60], VideoChat2 [33] we use the
following prompts:

Qwen2x-VL-7B-Instruct / VideoLLLaMA3-7B/ VideoChat2: Check if instruction com-
plete

You are an expert cooking assistant who is observing a person who is provided with step by
step instructions for cooking. You should look out for mistakes made by the person.

##INSTRUCTIONS:

The person is trying to complete the following instruction: [instruction].

This is how you can check for mistakes: [mistake summary].

Your task is to check if the person has already made a mistake.

Note that the person may not have completed the provided instruction, that is, the person may
have only partially completed the provided instruction.

The answer should be “yes” or “no”. In case of yes, please provide a concise feedback to the
person describing the mistake (i.e. Yes. <feedback>.). Directly address the person.
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In case of Video-LLaVA [65, 37], Video-ChatGPT [42], LLaVA-NeXT [39] models, they do not
support complex prompts as they were mainly designed for question answering tasks. They we
employ an alternative strategy where we ask the model to narrate the video in 30 second chunks.
Then we use the (concatenated) past narrations since the last instruction completion to prompt the
model to look for mistakes.

Video-LLaVA / Video-ChatGPT / LLaVA-NeXT : Check if instruction complete

The person has been instructed to: [instruction].

ill now the person has done the following: [past_narrations].

Your task is to check if the person has made a mistake.

The answer should be “yes” or “no”. In case of “yes”, please provide a feedback to the user
describing the mistake. Directly address the person.

For VideoLLM-Online, we use a similar strategy as done in completion detection. We feed VideoLLM-
Online’s narration to a helper LLM to get mistake detection. We use the following prompts,

VideoLLM-Online: Check if instruction is complete

VideoLL.M-Online: Please narrate the video in real-time.

Helper-LLM (Phi-3-mini-4k-Instruct): You are an intelligent chatbot that is judging another
system which narrates human cooking videos. Given a high level action instruction and a list
of narrations generated from the system, your job is to decide if a mistake has been made.
The user has be instructed to do the following: [instruction]

Till now the person has done the following: [videollm-online narrations]

Your task is to check if the person has made a mistake.

The answer should be yes or no. In case of yes, please provide a feedback to the user
describing the mistake. Directly address the person.
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Plan. 1: Chop 1 scallion. 2: Drain excess water from the can. 3: Take 1 ripe
avocado. 4: Cut the avocado into thin slices. 5: Add the chopped scallion to the
bowl. 6: Add 1/4 cup of mayonnaise to the bowl. 7: Add 1 teaspoon of sriracha
sauce to the bowl. 8: Lay out 2 large lettuce leaves. 9: Add 1 can of drained tuna
to the bowl. 10: Mix the contents of the bowl. 11: Place the avocado slices on
each leaf. 12: Season the bowl with 1/4 teaspoon of salt. 13: ...

Instruction: Now chop 1 scallion.

170.69s

Feedback: You chopped 2 scallions instead of 1
scallion.

251175

Plan. 1: Drain excess water from the can. 2:
Take 1 ripe avocado. 3: Cut the avocado into
thin slices. 4: ...

257.54s
Instruction: Now drain excess water from the
can.

Feedback: You didn't drain the excess water
completely.
=

Streaming Video

275.99s

Plan. 1: Take 1 ripe avocado. 2: Cut the avocado
. 1 into thin slices. 3: Add the chopped scallion to
the bowl. 4: ...

Instruction: Now take 1 ripe avocado.

Feedback: You took the ripe avocado
335.00s successfully.

Plan. 1: Cut the avocado into thin slices. 2: Add
the chopped scallion to the bowl. 3: Add 1/4 cup
of mayonnaise to the bowl. 4: ...

336.00s
Instruction: Now cut the avocado into thin

b. slices.

347.50s
L} L] L}

Plan. 1: Fill a microwave-safe mug with skimmed milk. 2: Add 1 teaspoon of
white sugar to the mug. 3: Microwave the contents of the mug for 1 minute. 4:
Add 1/5 teaspoon of cinnamon to the mug. 5: Mix the contents of the mug. 6:
Add 2 pieces of chocolate to the mug. 7: Heat the contents of the mug for 1
minute and serve.

Instruction: Now fill a microwave-safe mug
with skimmed milk.

Feedback: You should fill the mug completely.

Feedback: You spilled some milk while filling
the mug.

Plan. 1: Add 1 teaspoon of white sugar to the
mug. 2: Microwave the contents of the mug for
1 minute. 3: Add 1/5 teaspoon of cinnamon to
the mug. 4: ...

o
3 Instruction: Now add 1 teaspoon of white sugar
= to the mug.

o0
g

g

5]

o

p=}

7] 122.00s

Feedback: You added a tabl n, not a

teaspoon, of sugar.

Plan. 1: Microwave the contents of the mug for
1 minute. 2: Add 1/5 teaspoon of cinnamon to
the mug. 3: Mix the contents of the mug. 4: ...

Instruction: Now microwave the contents of the
mug for 1 minute.

Feedback: You should microwave for 1 minute.

Plan. 1: Add 1/5 teaspoon of cinnamon to the
mug. 2: Mix the contents of the mug. 3: Add 2
pieces of chocolate to the mug. 4:

224.46s
L] L} L]

Instruction: Now add 1/5 teaspoon of cinnamon
to the mug.

Figure 4: Data samples from the main set. Left: the user prepares spicy tuna avocado wraps. Right:
the user prepares spiced hot chocolate.
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Plan. 1: Slice 1/4 medium onion into pieces. 2: Put all the vegetables in a
microwave-safe bowl. 3: Add the noodles to the bowl. 4: Cover the noodles with
water. 5: Cover with a lid (or paper towel) to prevent splattering. 6: Microwave
the ramen for 4 minutes. 7: Add chopped cilantro to the bowl. 8: Let the noodles
sit for about 1 minute after the microwave stops. 9: Add basil to the bowl. 10:
Mix the flavour packet into the bowl. 11: ...

Instruction: Now slice 1/4 medium onion into
pieces.

Feedback: You did not follow the instruction.
You put all the vegetables in a microwave-safe
bowl.

A
281.00s

Re-plan. 1: Slice 1/4 medium onion into pieces.
2: Add the noodles to the bowl. 3: Cover the
noodles with water. 4: ...

283.00s
Instruction: Now slice 1/4 medium onion into
pieces.

Feedback: You did not follow the instruction.
You added the noodles to the bowl.

Streaming Video

Re-plan. 1: Cover the noodles with water. 2:
Cover with a lid (or paper towel) to prevent
splattering. 3: Microwave the ramen for 4
minutes. 4: ...

Instruction: Now cover the noodles with water.

321.50s

Feedback: You covered the noodles with water
properly.

Plan. 1: Cover with a lid (or paper towel) to
prevent splattering. 2: Microwave the ramen for
4 minutes. 3: Add chopped cilantro to the bowl.
4.

Instruction: Now cover with a lid (or paper
towel) to prevent splattering.

342.00s
L} L] L}

Plan. 1: Add 1/3 teaspoon of salt to the pan. 2: Saute the onions on medium heat
until they are soft and translucent. 3: Add the chilli to the pan. 4: Add the garlic
to the pan. 5: Cook for 1 minute, mixing everything. 6: Add 1/8 tsp of turmeric to
the pan. 7: Add the tomatoes to the pan. 8: Cook covered for 1 minute or until the
tomatoes soften. 9: Slowly pour the whisked eggs into the pan. 10: Mix with a
spatula for 3 minutes or until the eggs are almost cooked. 11: ...

m Instruction: Now add 1/3 teaspoon of salt to the
- pan.

409.07s

Sy
t

Feedback: You are not following the
instruction. It looks like you are trying to chop
1/4 tomato. But you chopped 1/2 tomato instead
of 1/4 tomato.

Re-plan. 1: Add 1/3 teaspoon of salt to the pan.
2: Saute the onions on medium heat until they
are soft and translucent. 3: Add the chilli to the
pan. 4: ...

473.56s
Instruction: Now add 1/3 teaspoon of salt to the

pan.

Feedback: You did not follow the instruction.
You chopped 1 green chilli.

Re-plan. 1: Add 1/3 teaspoon of salt to the pan.
2: Saute the onions on medium heat until they
are soft and translucent. 3: Add the chilli to the
pan. 4: ...

Streaming Video

Instruction: Now add 1/3 teaspoon of salt to the
pan.

Feedback: You added 1/2 teaspoon of salt
instead of 1/3 teaspoon.

542.89s

Plan. 1: Saute the onions on medium heat until
they are soft and translucent. 2: Add the chilli to
the pan. 3: Add the garlic to the pan. 4: ...

)\
549.43s )
Instruction: Now saute the onions on medium

heat until they are soft and translucent.

Feedback: You did not follow the instruction.
You added the tomatoes to the pan.

Re-plan. 1: Saute the onions on medium heat
until they are soft and translucent. 2: Add the
chilli to the pan. 3: Add the garlic to the pan. 4:

574.72s
L] L} L]

Instruction: Now saute the onions on medium
heat until they are soft and translucent.

Figure 5: Data samples from the advanced planning set. Left: the user is making ramen. Right: the

user is preparing scrambled eggs.
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Plan. 1: Extract lime juice from 1/3 lime. 2: Measure 2 cups of frozen corn. 3:
Thaw the frozen corn by putting it in a sieve and running it under cold water. 4:

Add the corn to a microwave-safe bowl. 5: Microwave the corn for 2 minutes. 6:

Add 1 teaspoon of softened butter. 7: Add 1 teaspoon of pepper powder to the
bowl. 8: Stir the bowl. 9: Microwave the corn for 3 more minutes. 10: Add the
lime juice to the bowl. 11: Add 1 teaspoon of salt to the bowl. 12: ...

41.48s

Streaming Video

128.00s

139.50s

260.05s
L} L]

Instruction: Now extract lime juice from 1/3
lime.

Feedback: You are not following the
instruction. It looks like you are trying to thaw
the frozen corn by putting it in a sieve and
running it under cold water. But you spilled
some corn while rinsing.

Re-plan. 1: Extract lime juice from 1/3 lime. 2:

Measure 2 cups of frozen corn. 3: Add the corn
to a microwave-safe bowl. 4: ...

Instruction: Now extract lime juice from 1/3
lime.

Feedback: You are not following the
instruction. It looks like you are trying to add
the corn to a microwave-safe bowl. But you
spilled some corn while adding it to the bowl.

Re-plan. 1: Microwave the corn for 2 minutes.
2: Add 1 teaspoon of softened butter. 3: Add 1
teaspoon of pepper powder to the bowl. 4: ...

Instruction: Now microwave the corn for 2
minutes.

Feedback: You microwaved the corn
successfully.

Plan. 1: Add 1 teaspoon of softened butter. 2:
Add 1 teaspoon of pepper powder to the bowl.
3: Stir the bowl. 4: ...

Instruction: Now add 1 teaspoon of softened
butter.

Plan: 1: Transfer the water to a kettle. 2: Grind the coffee beans until the coffee
grounds are the consistency of coarse sand, about 20 seconds. 3: Boil the water;
while the water is boiling, assemble the filter cone. 4: Check the temperature of
the water once the water has boiled; the water should be between 195 to 205
degrees fahrenheit or between 91 to 96 degrees celsius; if the water is too hot, let
it cool briefly. 5: Place the dripper on top of a coffee mug. 6: ...

Streaming Video

293.00s

346.00s

416.31s
L}

Instruction: Now transfer the water to a kettle.

Feedback: You transferred the water to the
kettle successfully.

Plan. 1: Grind the coffee beans until the coffee
grounds are the consistency of coarse sand,
about 20 seconds. 2: Boil the water ... 3: Check
the temperature of the water ... 4: ...

Instruction: Now grind the coffee beans until
the coffee grounds are the consistency of coarse
sand, about 20 seconds.

Feedback: You did not follow the instruction.
You placed the paper filter in the dripper.

Re-plan. 1: Grind the coffee beans until the
coffee grounds are the consistency of coarse
sand, about 20 seconds. 2: Boil the water .
Check the temperature of the water ... 4: ...

3:

Instruction: Now grind the coffee beans until
the coffee grounds are the consistency of coarse
sand, about 20 seconds.

Feedback: You are not following the
instruction. It looks like you are trying to spread
the filter in the dripper to create a cone.
However, you did not form the filter into a cone
shape.

Re-plan. 1: Grind the coffee beans until the
coffee grounds are the consistency of coarse
sand, about 20 seconds. 2: Boil the water .
Check the temperature of the water ... 4: ...

83

Instruction: Now grind the coffee beans until
the coffee grounds are the consistency of coarse
sand, about 20 seconds.

Feedback: You should grind the coffee beans
for about 20 seconds.

Plan. 1: Boil the water; while the water is
boiling, assemble the filter cone. 2: Check the
temperature of the water ... 3: Place the dripper
on top of a coffee mug. 4: ...

Instruction: Now boil the water; while the
water is boiling, assemble the filter cone.

Figure 6: Data samples from the advanced planning set. Left: the user is preparing butter corn cup.
Right: the user is making coffee.
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Figure 7: Predictions from our LIVEMAMBA from the main set of the Qualcomm Interactive Cooking

benchmark.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly states that the main contributions of the
paper are a novel method: LIVEMAMBA and a dataset: Qualcomm Interactive Cooking.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the “Limitations” section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: There are no theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Yes, experimental details are included in the main paper and appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer:

Justification: The Qualcomm Interactive Cooking dataset released at https://
huggingface.co/qualcomm/qualcomm-interactive-cooking-dataset.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The details are provided in the main paper and the appendix.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: While a full statistical analysis of the performance of multi-modal LLMs are
computationally prohibitive, our initial analysis suggest limited variance of results on the
Qualcomm Interactive Cooking benchmark.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Yes, the details are provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We include a "Broader Impacts" section.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our model and data is strictly applicable only to cooking scenarios from an
ego-centric viewpoint.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All licenses are respected.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The Qualcomm Interactive Cooking dataset released at https://
huggingface.co/qualcomm/qualcomm-interactive-cooking-dataset.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper

include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The Qualcomm Interactive Cooking dataset and benchmark was not collected
by crowd sourcing. The annotations were generated by the authors themselves.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: Yes, all uses of LLMs are clearly described.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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