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ABSTRACT

Research on LLM agents has shown remarkable progress, particularly in planning
methods that leverage the reasoning capabilities of LLMs. However, challenges
such as robustness and efficiency remain in LLM-based planning, with robust-
ness, in particular, posing a significant barrier to real-world applications. In this
study, we propose a framework that incorporates human reasoning abilities into
planning. Specifically, this framework mimics the human ability to break down
complex problems into simpler problems, enabling the decomposition of com-
plex tasks into preconditions and subsequently deriving subtasks. The results of
our evaluation experiments demonstrated that this human-like capability can be
effectively applied to planning. Furthermore, the proposed framework exhibited
superior robustness, offering new perspectives for LLM-based planning methods.

1 INTRODUCTION

The evolution of Large Language Models (LLMs) has been remarkable, extending their influence
to interdisciplinary domains. Among these advancements, the emergence of LLM-powered agent
technology (LLM Agents) has garnered significant attention due to its potential for real-world ap-
plications. These agents leverage the linguistic and reasoning capabilities of LLMs not only for
conversational tasks but also for complex planning and decision-making processes (Liu et al., 2023;
Singh et al., 2023; Wang et al., 2023c).

Planning, in the context of LLM agents, refers to the process of devising a sequence of actions
required to achieve a specific goal. This process inherently relies on the reasoning and decision-
making capabilities of LLMs, which are rooted in their ability to understand, generate, and manip-
ulate natural language. For instance, achieving the goal of brushing one's teeth involves a series of
steps such as heading to the sink, locating toothpaste, picking up the toothbrush, etc. If a subtask,
such as locating toothpaste, fails, the agent must adapt by either setting a new goal (e.g., purchasing
toothpaste) or skipping ahead to the next executable step. While LLMs have demonstrated suc-
cess in planning tasks, challenges remain, particularly in scenarios involving long-horizon goals
or complex sequences of actions. As the number of required actions increases, the accuracy of
LLM-based planning tends to decline significantly (Valmeekam et al., 2024b). This is because
long-horizon tasks expand the search space, and approximate retrieval-based reasoning—typical of
current LLMs—struggles to maintain coherence and robustness over extended sequences.

This issue highlights the need for a framework that enhances the robustness of LLMs in solving
long-horizon tasks within planning scenarios, while also improving their efficiency in utilizing cur-
rent conditions to create effective plans. To tackle this challenge, we draw inspiration from human
cognition, particularly the ability to break down complex problems into simpler, manageable sub-
problems. Cognitive psychology, such as that by Simon & Newell (1971); Chipman et al. (2000)
suggests that humans naturally decompose difficult tasks into smaller, sequential steps, facilitat-
ing reasoning and execution . By mimicking this strategy, LLMs can construct hierarchical plans,
enabling more robust and efficient solutions to complex goals.

In this study, we introduce a planning framework that leverages human-inspired decomposition to
enhance LLMs'planning capabilities. While most prior methods rely on forward reasoning, our
approach is based on backward reasoning, which decomposes goals into subtasks in a top-down
manner. As shown in Figure 1, the framework incorporates Backward Reasoning, a strategy well-
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Figure 1: Overview Diagram of the DRIP Concept (Right). The left side illustrates the structure
of existing methods using forward reasoning, while the right side represents the proposed method
utilizing backward reasoning.

suited to the hierarchical nature of goal decomposition, to achieve both efficiency and robustness in
planning.

The contributions of this paper are as follows:

• We propose a planning framework that mimics human-like hierarchical goal decomposi-
tion, leveraging LLMs'natural language reasoning for task breakdown.

• Improved robustness in planning tasks: Through experiments on BlockWorld and
Minecraft, we demonstrate that the proposed framework enhances the robustness of LLM
agents compared to existing methods.

2 RELATED WORK

2.1 LLM REASONING WITH DECOMPOSE

The ability to simplify complex tasks by breaking them down into smaller, manageable subtasks is
a hallmark of human cognition (Chipman et al., 2000). This concept, deeply rooted in cognitive
psychology (Simon & Newell, 1971) and logic, has inspired recent advancements in multi-step
reasoning using LLMs (Xue et al., 2024; Junbing et al., 2023; Zhou et al., 2023). These studies
commonly employ decomposition strategies, where a complex question is divided into simpler sub-
questions, solved iteratively, and integrated to achieve the final solution. This approach often aligns
with backward reasoning, a process of reasoning from the goal state to the initial state.

Empirical results from these studies have demonstrated significant improvements in the accuracy
of solving challenging reasoning tasks. For instance, Xue et al. (2024) reported not only enhanced
accuracy but also increased efficiency in reasoning tasks through decomposition. These findings
suggest that decomposition-based reasoning is a promising approach for addressing the limitations
of LLMs in handling complex problems. Building on this foundation, our study extends the appli-
cation of backward reasoning from question-answering tasks to planning tasks.

2.2 REGRESSION PLANNING

Backward reasoning, or regression planning, has long been studied in classical AI planning liter-
ature. It has played a central role in traditional planning algorithms, dating back to early works
such as Waldinger (1977). Regression planning involves reasoning backward from the goal state
to identify the sequence of actions required to achieve it. However, traditional regression planning
methods often rely on symbolic planners, which necessitate predefined causal relationships between
actions (Xu et al., 2019; Silver et al., 2022). This reliance on symbolic representations poses signif-
icant challenges for real-world applications, where the dynamics of the environment are often too
complex or uncertain to be fully captured by static, predefined rules.

In contrast, LLMs offer a unique advantage in their ability to dynamically generate and adapt rules
based on their extensive pre-trained knowledge. This generative capability enables LLMs to over-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

come the rigidity of symbolic approaches, making them more suitable for real-time applications. Our
study leverages this strength of LLMs to implement a regression planning framework that dynami-
cally decomposes goals into sub-goals, addressing the limitations of traditional symbolic methods.

2.3 PLANNING FOR LLM AGENTS

Planning methods for LLM agents have been extensively studied, with various approaches proposed
to enhance their reasoning and decision-making capabilities. According to the taxonomy by Huang
et al. (2024), our study falls under the category of task decomposition, a strategy that has been
widely adopted in LLM-based planning.

Forward reasoning approaches, including Chain-of-Thought (CoT) prompting(Wei et al., 2023; Ko-
jima et al., 2023), Plan-and-Solve framework (Wang et al., 2023b), and ReAct (Yao et al., 2023),
have significantly enhanced planning capabilities by breaking down problems into subtasks. How-
ever, forward reasoning faces inherent challenges in handling complex tasks due to the exponential
growth of the search space (Yu et al., 2023), with advanced models struggling to achieve robust
performance in long-horizon planning tasks (Valmeekam et al., 2024b).

Backward reasoning has recently been explored in the context of LLM agent planning. For exam-
ple, Ren et al. (2024) proposed "flipping" the initial and goal states to simulate backward reasoning.
While promising, this approach encounters limitations in scenarios with multiple goal states or am-
biguous goal representations. For instance, in environments like BlockWorld, a goal such as “The
red block is on top of the blue block” may allow for multiple valid configurations, leading to incon-
sistencies in the generated plans.

To address these challenges, our study proposes a stricter adherence to backward reasoning by ex-
plicitly decomposing the goal into intermediate subtasks. This approach ensures that each subtasks
is well-defined and contributes directly to achieving the final objective. By leveraging the exten-
sive knowledge embedded in LLMs, our framework can handle ambiguous or underspecified goal
representations, enhancing its applicability to diverse and dynamic problem-solving contexts.

3 PLANNING FRAMEWORK:DRIP

Building upon cognitive psychology and logical reasoning, this study introduces DRIP — a frame-
work that integrates hierarchical decomposition with dynamic planning for LLM agents. Inspired
by the theory that humans solve problems by breaking them into subtasks (Simon & Newell, 1971;
Chipman et al., 2000), DRIP operationalizes this mechanism through structured backward reason-
ing. This decomposition process aligns closely with the principles of backward reasoning, enabling
the systematic breakdown of high-level goals into actionable subtasks. A high-level overview of
the algorithm is presented in Algorithm 1, followed by detailed descriptions of each phase in the
subsequent subsections.

3.1 DECOMPOSE

In DRIP, “decomposition” refers to the process where the LLM recursively breaks down a goal into
subtasks by identifying the necessary preconditions. This forms a reasoning tree, where each node
n ∈ N stores a goal or subtask that represents an action or a condition to be achieved. Let the goal
be g00 and the condition be S0, and the others are defined as follows.:

• π(Plan): A list of actions leading from S0 to g00.
• F : The set of nodes currently being processed, i.e., nodes whose executability remains

false. In Figure 2’s example, these are the nodes highlighted with the light blue area.
• Fpending: Temporary set of nodes awaiting execution evaluation. In Figure 2, these are the

nodes in the light orange area.
• Fremaining: Set of nodes that failed executability check in current iteration. In Figure 2, these

are the node in the light green area.
• gdj : Subtasksrequired to achieve the parent node(ndj)'s goal. d represents the depth from

the root node, and j depends on the number of subtasks decomposed by the LLM from the
same parent node.
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Algorithm 1 DRIP Planning Algorithm
Require: Initial condition S0, Goal g00
Ensure: Plan π : a sequence of executable actions
1: Initialize reasoning tree with root node t← 0, St ← S0, n00 = {g00, false}, π ← [ ], F ← n00

2: for d = 1 to MAX_DEPTH do
3: for all nd−1 do
4: Fpending ← ∅
5: {gd0, gd1, . . . , gdk} ← decompose(nd−1), Fpending ← {gd0, gd1, . . . , gdk}
6: while Fpending ̸= ∅ do
7: Fremaining ← ∅
8: for j = 0 to k do
9: if executability(gdj , St) = true then

10: π ← π ∪ {gdj}, St+1 ← apply(gdj , St), t← t+ 1
11: Add {gdj , true} as child of nd−1 in tree T
12: else
13: Fremaining ← Fremaining ∪ {gdj}
14: end if
15: end for
16: if Fremaining = Fpending then
17: break
18: end if
19: Fpending ← Fremaining
20: Add all {gdj , false} for gdj ∈ Fremaining as children of nd−1 in tree T
21: end while
22: if ∀gdj ∈ {gd0, gd1, . . . , gdk} : executability(gdj , St) = true then

F ← checkParentExec(n0)
23: end if
24: end for
25: if executability(g00, St) = true then
26: break
27: end if
28: F ← F ∪ Fremaining
29: end for
30: return π

Figure 2: Variable relationships in the algorithm.A detailed symbol table is provided in the Appendix
A.1.

At each step, the LLM is prompted to generate subtasks for a given parent node:
{gd1, gd2, . . . , gdk} ← decompose(nd−1)

For readability, we write decompose(nd) as shorthand for decompose_g(subtask(nd)). In other
words, when we write decompose(nd), it means that we decompose the subtasks contained in nodes
at depth level d. For example (Figure 3), consider the following initial condition from the Block-
World dataset(Valmeekam et al., 2023a):
S0: “The yellow block and orange block are clear, the hand is empty. The orange block is on the ta-
ble, the blue block is on top of the red block, and the yellow block is on top of the blue block.”(Initial
condition in Figure 3 (upper right))
g00: “The red block is on top of the orange block and the yellow block is on top of the red
block.”(Goal in Figure 3 (upper left))

As shown in the light gray box of Figure 3, this g00 can be decomposed into the actions “Stack red
orange” and “Stack yellow red”.
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Figure 3: Evaluate subtask executability from the
condition and execute the executable ones. Figure 4: Execute parent nodes when all children

are executable. Repeat until reaching the root to
complete planning.

3.2 EXECUTABILITY

The executability step evaluates whether each subtask can be performed given the current condition.
We define the function:

executability(gdj , St) ∈ {true,false}
The apply function takes a subtask gdj and a condition St as input and returns a new con-
dition St+1. In other words, it represents the execution of a valid action by the actuator.

St+1 ← apply(gdj , St)

Consider the example from Figure 3: initially, “Stack red orange” is executable, but “Stack yellow
red” is not because the red block is not clear. Therefore, as shown in Figure 3, the executability of the
subtasks in the initial condition is labeled as EXECUTABLE and UNEXECUTABLE, respectively.
Upon executing the former, the condition updates, triggering a reevaluation of pending subtasks.
This process is repeated until no executability changes remain.

3.3 RE-DECOMPOSITION AND TERMINATION OF TREE CONSTRUCTION

When executability updates stall, any remaining unexecutable actions are reinterpreted as subtasks
and recursively decomposed. For example, to execute “Stack yellow red”, the LLM infers prerequi-
site subtasks like “Put-down yellow” and “Unstack blocks red”(the bottom light gray box in Figure
4).

A node's decomposition is complete when all its child subtasks become executable. Once this occurs,
executability propagates upward—if all children of a parent node are executable, the parent becomes
executable as well. This process programmatically searches for nodes with all EXECUTABLE
child nodes, traversing from the current depth toward the root node. Upon finding such nodes, it
automatically applies the apply function to update the condition and the node’s executability. This
operation gradually reduces F , ultimately completing the decomposition process. In the algorithm,
this workflow is defined as checkParentExec(). As shown Figure 4, this process continues until the
root node is executable, indicating that the original goal can now be achieved.

4 EXPERIMENT

4.1 BLOCKWORLD

The BlockWorld task involves stacking blocks to achieve a specified goal state, making it a widely
studied problem in classical planning. For this study, we utilized the BlockWorld_hard dataset
(Valmeekam et al., 2023b; 2024a), which includes scenarios with stacking tasks involving between
6 and 15 blocks. This dataset is particularly challenging due to the increased complexity of the goal
states and the number of actions required to achieve them. Detailed statistics regarding the number
of blocks and configurations in the dataset are provided in Appendix A.2.1.

4.1.1 EXPERIMENT SETUP

We adapted the experimental setting to create a more challenging planning scenario. While main-
taining the core BlockWorld dynamics, we made two key modifications: (1) consolidated the action
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Table 1: Performance comparison on BlockWorld dataset. P-values computed using Fisher’s exact
test against DRIP.

Methods Claude 3.7 Sonnet1 GPT-4o(OpenAI et al., 2024)
Accuracy 95% CI p-value Odds Ratio Accuracy 95% CI p-value Odds Ratio

DRIP 40.9% 31.7-50.1% - - 16.4% 9.5-23.3% - -(45/110) (18/110)
CoT

(Kojima et al., 2023)
23.6% 15.7-31.6% p < 0.01 2.24 13.6% 7.2-20.0% p > 0.05 1.24(26/110) (15/110)

ReAct
(Yao et al., 2023)

9.1% 3.7-14.5% p < 0.001 6.92 1.8% 0.0-4.3% p < 0.001 37.4(10/110) (2/110)

P-values from Fisher’s exact test comparing each method to DRIP within the same model.Numbers in
parentheses indicate (successful instances / total instances).

Figure 5: Experimental results.The horizontal axis represents the number of blocks, while the ver-
tical axis indicates the accuracy for each block count. The blue is DRIP (GPT-4o), the red is DRIP
(Claude), the green is CoT (GPT-4o), the yellow is CoT (Claude), the cyan is ReAct (GPT-4o), and
the brown is ReAct (Claude). The dotted lines indicate the overall accuracy for each method.

space to three essential operations: “Stack [blockA] [blockB],” “Put-down [block],” and “Unstack
blocks [block],” and (2) modified the single-block holding constraint to allow simultaneous manipu-
lation of multiple blocks. The latter modification substantially expands the search space by increas-
ing the number of valid actions available at each planning step, thereby creating a more demanding
test of planning robustness compared to the standard constrained setting. The experimental settings,
including the prompts used for the LLM, are fully described in Appendix A.2.3. All experiments
were conducted in Japanese.

4.1.2 BENCHMARK

We evaluated DRIP against baseline methods summarized in Table 1. For comparison, we include
CoT (Kojima et al., 2023) and ReAct (Yao et al., 2023), which alternates between reasoning and
acting. These methods represent fundamental approaches to forward reasoning-based planning,
making them ideal baselines for evaluating our backward reasoning framework. By comparing
against these established forward reasoning techniques, we aim to investigate whether the robustness
advantages of backward reasoning observed in prior research in reasoning extend to LLM-based
planning tasks, particularly in complex scenarios where forward search may encounter exponential
branching challenges. We employed GPT-4o and Claude 3.7 Sonnet2 as our models.

Additionally, we include Manual versions where humans execute the proposed actions while LLMs
handle only the planning component. These conditions isolate pure planning capabilities from ex-
ecution errors, allowing us to evaluate the theoretical upper bounds of each approach and assess
whether performance differences stem from planning quality or implementation limitations.Detailed
methodology for the manual execution experiments is provided in the Appendix A.2.2.

4.1.3 RESULTS

The experimental results are summarized in Table 1 and Figure 5. DRIP demonstrates statistically
significant improvements over baseline methods, with performance varying substantially across dif-

2https://www.anthropic.com/claude/Sonnet
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Figure 6: The difference in the number of actions included in the planning. The left side shows CoT
vs DRIP, and the right side shows ReAct vs DRIP. In both cases, orange represents DRIP and blue
represents the comparison method. The horizontal axis represents the instance numbers correctly
solved by both methods, while the vertical axis represents the number of actions included.A lower
action count indicates more efficient planning.

ferent language models. Using Claude 3.7 Sonnet, DRIP achieved 40.9% accuracy, significantly
outperforming CoT (23.6%, p < 0.01, odds ratio = 2.24) and ReAct (9.1%, p < 0.001, odds ratio =
6.92). With GPT-4o, DRIP maintained its advantage over ReAct (16.4% vs 1.8%, p < 0.001, odds
ratio = 37.4), though the difference with CoT was not statistically significant (16.4% vs 13.6%, p >
0.05).

To assess planning efficiency, we analyzed the number of actions used by DRIP (Claude) compared
to baseline methods in successful cases (Figure 6). DRIP consistently demonstrated superior effi-
ciency, requiring on average 4.29 fewer steps than CoT (Claude) and 4.67 fewer steps than ReAct
(Claude). This efficiency advantage stems from DRIP's backward reasoning approach, which de-
composes goals only when necessary and avoids the exhaustive step generation characteristic of
forward reasoning methods.

To isolate pure planning capabilities from execution errors, we evaluated manual execution condi-
tions where humans performed the actions proposed by GPT-4o. DRIP (Manual) achieved 82.7%
accuracy compared to ReAct(Manual) at 31.8%, confirming that the performance advantages stem
from superior planning quality rather than implementation artifacts. The main reason why DRIP
(Claude) could not match the performance of DRIP (Manual) lies in the difficulty of accurately
describing block conditions using natural language such as “block X is clear” or “block Y is on
block Z.” The decline highlights a key limitation: as task complexity grows, condition descriptions
become verbose and ambiguous, leading LLMs to misjudge action executability. This suggests that
while DRIP's planning framework is sound, future improvements may require multimodal inputs or
formal representations like PDDL.

4.1.4 ERROR ANALYSIS

Table 2: Details of DRIP (Manual) 's error type.
Error type Number of datasets

Errors in decomposition by LLMs 14
Errors in the Framework 5

total 19

We analyzed the 19 cases (17.3% of the total) where DRIP (Manual) failed, summarized in Table
2. Of these, 14 errors stemmed from incorrect decomposition by the LLM. Despite the structured
nature of BlockWorld and clear prompts, the model occasionally generated invalid action sequences,
especially in configurations with ambiguous or complex block relationships.

The remaining 5 errors were found to be caused by fundamental limitations of the current frame-
work. These errors highlight scenarios where the framework's reliance on goal-based reasoning
alone is insufficient. For example, consider a goal is: “block a is on top of block j, block b is on top
of block d, block c is on top of block b, block d is on top of block a, block f is on top of block i, block g
is on top of block f, block i is on top of block c, block j is on top of block h” (i.e., ‘g-f-i-c-b-d-a-j-h’).
Suppose the current condition is: ‘c-b-d-a-j-h-e-g-f-i’. In this case, the remaining action to achieve
the goal is “stack i c”. Decomposing this action requires clearing block ‘c’ and moving it to create a
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separate tower with ‘i’ and ‘c’. However, creating such a separate tower is not feasible because the
goal condition (‘c-d-b-a-j-h’) has already been partially achieved. Moving block ‘c’ would violate
the goal condition, making it impossible to proceed without undoing previously achieved subtasks.
This example illustrates a key limitation of the current framework: it considers actions solely based
on the goal state and does not account for the constraints imposed by the current condition. In
certain scenarios, achieving the goal requires reasoning that integrates both the goal state and the
current condition, as well as the ability to dynamically adjust the plan to avoid conflicts between
intermediate subtasks.

4.2 MINECRAFT

In the previous section, it was demonstrated that our framework can be applied to planning by uti-
lizing classical planning problems. However, real-world tasks are far more dynamic and underspec-
ified. To explore DRIP's applicability in such settings, we conducted experiments in Minecraft3.
Minecraft is an open-world 3D sandbox game that enables flexible and complex tasks similar to
those in the real world, such as diamond mining and farming. Agents can be controlled through
JavaScript code4, and it has been utilized in numerous studies as a platform for evaluating agent
performance (Fan et al., 2022; Wang et al., 2023a; Zhao et al., 2024; Wang et al., 2023d).

4.2.1 EXPERIMENT SETUP

We conducted experiments using DRIP, ReAct, and CoT as planners. We used Claude 3.5 Sonnet
from the Claude series, which showed good results in BlockWorld The task is specified as “diffi-
cult” in the Minedojo dataset, which involves mining diamonds from barehand conditions. ReAct
repeatedly provides the goal "mine diamond" while having the LLM output the next subtask based
on successfully completed subtasks and current observation information, then the agent acts on that
subtask. After completing an action, it repeats the loop of considering the next subtask again A
maximum of 70 iterations is performed, and if diamond can be mined during this period, the task
is considered successful. For CoT, we conducted experiments using a Plan-and-Solve(Wang et al.,
2023b) approach where the system is made to think of a plan necessary for the "mine diamond" task
and then execute that plan sequentially.
For agent action generation, we used Claude Sonnet 3.5 to generate JavaScript code. Following
Voyager(Wang et al., 2023a)’s approach, we utilized code from Voyager’s Skill Library directory
to perform in-context learning for generation. The process flow is as follows: after each planner
decides on the next action, an LLM selects the most applicable code from the Skill Library for
that action. Subsequently, the LLM generates action code by incorporating the selected code into
the prompt. This code is then executed in the environment. After execution, the LLM determines
whether the operation failed based on environmental information. In case of failure, error codes and
other outputs are included in the prompt, and the LLM reconsiders the code. If this process fails
even after a maximum of 5 iterations, the action proposed by the planner is considered to have failed.
Experimental details including prompts are also provided in Appendix A.3.

4.2.2 RESULTS

The success rates for each resource are summarized in Table 3. DRIP consistently achieved the high-
est success rates across all resource types, maintaining 100% completion for wood, stone, and iron
tasks, and achieving 80% even for the most challenging mining diamond task. This demonstrates
DRIP's robustness in long-horizon tasks. Although ReAct achieved high success rates, it succeeded
in diamond mining only once out of five experimental trials. CoT completely failed in mining dia-
mond (0%).
We analyzed the average number of subtasks required for each planning method to complete each

task (Table 4). This analysis revealed that, unlike in BlockWorld, DRIP was not necessarily the
most efficient method in Minecraft. For subtasks up to stone pickaxe, which all methods achieved
100% completion, CoT showed the smallest number of subtasks despite having the lowest success
rate for diamond mining. In diamond mining, DRIP's average number of subtasks upon success
(37.25) proposed more subtasks compared to ReAct's only successful case (27). This is because

3https://www.minecraft.net
4https://github.com/PrismarineJS/mineflayer
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Table 3: Success rate for each resources.
Planner Wood Stone Iron Diamond
DRIP 100%(5/5) 100% (5/5) 100%(5/5) 80%(4/5)
ReAct 100%(5/5) 100%(5/5) 80%(4/5) 20%(1/5)
CoT 100%(5/5) 100%(5/5) 60%(3/5) 0%(0/5)

Table 4: Average number of steps to reach each resource. For ReAct’s diamond task only, this
represents the count from a single successful attempt.

Planner Wood Wood Pickaxe Stone Stone Pickaxe Iron Iron Pickaxe Diamond
DRIP 1.0 5.4 8.6 11.2 15.4 34.0 37.25
ReAct 1.0 4.0 5.0 6.4 16.5 23.3 27.0
CoT 1.0 4.2 5.2 7.4 11.0 - -

ReAct and CoT planning propose forward-looking subtasks, such as logging enough wood that will
likely be needed later, taking the overall task into account. Since DRIP only proposes the number
required for the immediate parent node, it may repeatedly perform basic tasks like “mining wood,”
resulting in a higher average number of subtasks. However, because the subtasks proposed by ReAct
and CoT are forward-looking and comprehensive, each individual subtask becomes a longer-horizon
task compared to DRIP, leading to more frequent execution failures and lower success rates. DRIP's
fine-grained subtask proposals allow for steady progress in action generation, which is considered
to contribute to its higher success rate in diamond mining. Each experimental result of DRIP is
discussed in more detail in Appendix A.3.2.

LIMITATIONS

The proposed DRIP framework demonstrates robustness and efficiency in planning by mimicking
human capabilities. However, it has several limitations. First, there are challenges related to the
decomposition capabilities of LLMs. While LLMs possess vast amounts of knowledge, the ex-
tent to which they can perform commonsense reasoning remains largely unexplored. For instance,
executing an action like “move A to the position of B” requires the preconditionthat “A is located
somewhere other than B.” In this study, we explicitly specified feasible actions and utilized struc-
tured tasks in the experiments. However, in real-world applications, this limitation could have a
significant impact.

Second, the number of LLM calls required is an issue. While CoT requires a single call, DRIP
(Manual) uses hierarchical reasoning, averaging 5.98 calls, and DRIP (Claude) averages 6.18 calls.
On the other hand, the average number of LLM calls for ReAct (Manual) is 28.3, whereas DRIP
achieves a significant reduction in comparison. Humans are said to switch between different types
of reasoning, as exemplified by the “Fast and Slow” theory(Kahneman, 2011). Building on these
insights, further exploration is needed to develop methods that appropriately combine backward
reasoning and forward reasoning.

CONCLUSION

This paper proposed a planning framework for LLM agents inspired by human problem-solving,
particularly the ability to decompose complex problems into simpler components. By employing
a backward reasoning approach, the framework dynamically decomposes tasks into prerequisite
subtasks, enhancing planning robustness and aligning with human cognitive processes.

From the experimental results, we found that our framework demonstrates superior robustness com-
pared to forward reasoning-based methods. Particularly in structural tasks such as BlockWorld, it
was shown to perform efficient planning with fewer steps by avoiding unnecessary actions. In tasks
with high degrees of freedom in actions, such as Minecraft, our method did not always achieve
planning with fewer steps. However, through comparison with existing methods, we confirmed a
trade-off where reducing the number of steps leads to decreased success rates. In the future, to-
ward extending to real-world applications, we will develop our proposed method to enable efficient
planning while maintaining its robustness.
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A APPENDIX

A.1 ALGORITHM

The symbols appearing in the algorithm are summarized in the table below.

Table 5: Algorithm Symbol Notation
Symbol Description

Variables
S0 Initial condition of the environment
St Current condition at time step t.
g00 Initial goal to be achieved
π Plan: sequence of executable actions
t Number of executable actions.
T Reasoning tree structure
ndj Node at depth d, index j with structure
n00 Root node of the reasoning tree
d Depth level from root node
j Index of subtasks decomposed from same parent (j = 0, 1, . . . , k)
gdj subtask at depth d, index j j

{gd0, gd1, . . . , gdk} Set of subtasks decomposed from parent node
F Frontier: set of nodes currently being processed

Fpending Temporary set of nodes awaiting execution evaluation
Fremaining Set of nodes that failed executability check

Functions
decompose(gdj) Decomposes subtask gdj in node ndj into subtasks

executability(gdj , St) Evaluates if subtask g is executable in condition St

apply(gdj , St) Execute subtask gtj at condition St, returns new condition St+1

checkParentExec(n) Checks parent executability when all children are executable
MAX_DEPTH Maximum allowed depth for tree expansion

true Boolean true value for executability
false Boolean false value for executability

A.2 EXPERIMENT(BLOCKWORLD)

A.2.1 DETAILS OF THE BLOCKWORLD DATASET

We summarize the number of blocks and the number of instances for each dataset in the BlockWorld
dataset in a table6.

Table 6: Details of the number of blocks in the dataset
Number of blocks Number of datasets

6 1
7 1
8 7
9 14

10 13
11 13
12 12
13 18
14 21
15 10

total 110
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A.2.2 DETAILS OF THE BENCHMARK

DRIP (Manual) refers to a method where a human acts as the actuator to stack the blocks. In this
method, humans determine executability and provide feedback on whether the actions proposed by
the LLM were successfully executed or not. The LLM responsible for action decomposition only
reasons about actions based on the goal and humans do not receive feedback on the condition. The
termination condition is when the root node action (data set goal) is determined to be executable.

In ReAct (Manual), humans execute the actions proposed by the LLM and return the resulting new
state as an observation after each action. In this approach, the goal and initial condition are provided
at the beginning, and the LLM generates actions based on this information. After executing an
action, humans provide the updated condition to the LLM, which then generates the next action
based on the new condition. This cycle continues iteratively.

A.2.3 PROMPT

The prompts used in the BlockWorld experiments are attached.

Table 7 is the prompt used for decomposition and is utilized in both DRIP (Manual) and DRIP
(LLM).

Table 8 and Table 9 are prompts used in DRIP (Claude, GPT-4o) to utilize LLM as an actuator. Table
8 is a prompt used to determine whether an action is executable, while table 9 is a prompt used to
describe how the condition of the blocks changes after an action is performed.
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I am playing with a block set where I need to stack and organize the blocks into a stack. My ultimate
goal is to reach the goal state as efficiently as possible without making mistakes.

My Goal"{task}". Please provide actions based solely on the conditions required to achieve this goal.

Available Actions:
1.stack [block1] [block2]
Place [block1] on top of [block2].
2.unstack blocks [block2]
Remove blocks from the top of [block2] and clear [block2] by placing them on the table.
3.put-down [block2]
Place [block2] on the table.

Constraints and Notes:
- Only when the goal state is in the form of "stack [block1] [block2]", return the following actions:
unstack blocks [block2]
put-down [block2]
- For all other conditions:
Return the action stack [block1] [block2].
- Eliminate unnecessary information:
Always respond with actions in a list format. Do not include extra sentences, structures (e.g., [ ] or
parentheses), or numbers. Always adhere to the following format:
action1
action2
action3

[Example Responses]

[Goal]
stack blue yellow

[Actions Based on Conditions]
unstack blocks yellow
put-down yellow
[Goal]
task

[Actions Based on Conditions]

Table 7: Decomposition Prompt for BlockWorld.This is an English translation of the Japanese
prompts.
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You are playing with a block set where you need to stack and organize the blocks into a stack. Based
on the given state, determine whether the specified action is executable.

##BlockWorld Action Rules unstack blocks [block2] - blocks refers to the blocks above [block2]. This
action involves removing the blocks above [block2] to clear [block2] and placing them on the table. If
you move the blocks above [block2], all blocks stacked on top of them will also be moved together.
put-down [block2] - This action involves placing [block2] on the table to separate [block1] and [block2]
into different towers. **All blocks stacked on top of [block2] will also be moved together.**
stack [block1] [block2]
- This action involves stacking [block1] on top of [block2]. [block2] must be clear for this action to be
performed. **All blocks stacked on top of [block1] will also be moved together**.

##BlockWorld Rules
- You can hold any number of blocks at once.
- Even if there are blocks above a block, you can pick up the block along with all the blocks stacked on
top of it.
- When moving a block, all blocks stacked on top of it must be moved together.
- You cannot stack blocks that are already part of the same tower.M
##Decision Procedure
Analyze the situation using the following steps and explicitly output the results for each step:
1. Analyze the Current State
- List the positional relationships of all blocks in bullet points.
- Check if there are any blocks above each block.
- Check if each block is on the table.
2. Analyze the Desired Action
- Moving Block: Identify which block is being moved.
* The "moving block" refers to the specified base block. However, if there are other blocks stacked on
top of this block, all of them must be moved together.
- Destination: Specify whether the destination is a block or the table.
- State of the Destination: If the destination is a block: Check if there are any blocks on top of [block2].
If the destination is the table: It is always possible to place blocks on the table.
3. Determine if the Action is Unnecessary
"Unnecessary Action": The action is unnecessary if any of the following conditions are met:
Action: unstack blocks [block2]
The action is unnecessary if there are no blocks above [block2].
Action: stack [block1] [block2]
The action is unnecessary if [block1] is already stacked on [block2].
Action: put-down [block2]
The action is unnecessary if [block1] and [block2] are already part of different towers.
Whether [block2] is already on the table is irrelevant.
4. Determine Executability (Skip this step if the action is unnecessary)
"Not Executable": The action is not executable if any of the following conditions are met:
If the destination is a block ([block2]), and there are other blocks on top of [block2].
If the moving block ([block1]) and the destination block ([block2]) are part of the same tower.
"Executable": You can always move a block, even if there are blocks stacked on top of it.
You can stack a block on the destination ([block2]) if [block2] is clear.
You can always place blocks on the table.
If the moving block is part of a different tower from the destination block, stacking is possible.
"END":If the action is END.
##Current Target for Evaluation
State: initial_condition
Action: action_list
1.State Analysis:[Describe the positional relationships of all blocks in bullet points here.]
2.Action Analysis:[Describe the state of the source and destination here.]
3.Determine if the Action is Unnecessary
4.Decision Result:[Decision],[Reason] (Separate the decision and reason with a comma)

Table 8: Executability prompt for BlockWorld(Translation to English)
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You are playing with a block set where you stack blocks. Consider how the situation will change if you
take the action {action} from the situation {condition}, and describe it in writing.
## Block World Action Rules unstack [block1] [block2]
- [block1] refers to the block above [block2]. This action removes [block1] from [block2] and places it
on the table, clearing [block2]. If [block1] is moved, all blocks above [block1] move with it. [block2]
is cleared.

put-down [block2]
- This action places [block2] on the table to separate [block1] and [block2] into different towers. **All
blocks on top of [block2] move together.** [block2] is cleared and placed on the table.
stack [block1] [block2]
- This action places [block1] on top of [block2]. [block2] must be cleared. **All blocks above [block1]
will move together.**
## Block World Rules
- You can have as many blocks as you want.
- **Blocks can be picked up together from the bottom even if there are other blocks on top of them.**
- When moving a block, **all blocks above it will move together.**
- You cannot stack blocks that are in the same tower.
- If the destination block ([block2]) is not clear, you cannot stack [block1] [block2].
- An empty/clear block means that there is nothing on top of it.

As your final answer, describe the empty blocks, the state of the blocks, and the blocks on the table in
the same order as the given situation. Use the format “X is in Y” consistently.
Answer in the following format.
## Current target for judgment
State: {condition}
Action: {action}
Thought process:
Final state: [answer ]

Table 9: The prompt for updating conditions for BlockWorld. This is an English translation of the
Japanese prompts.

A.3 EXPERIMENT(MINECRAFT)

A.3.1 PROMPT & AGENT'ENVIRONMENT INFORMATION

The prompts used in the Minecraft experiment are attached below. The task decomposition prompt
is Table 10. In the Minecraft experiment, there are 8 types of subtasks that the Agent can perform:
"craft", "mine", "smelt", "kill", "cook", "equip", "explore", and "place". These were selected from
actions defined as primitives in Voyager.

The prompt for determining whether a task can be executed is Table 11. In the Minecraft world,
tasks that were already achieved during the execution of other nodes were frequently observed,
so we also determined "Achieved" status. This includes subtasks that are already completed and
therefore require neither code generation nor decomposition.

The prompt for code generation is Table 12. This prompt is a modified version of Voyager’s ac-
tion_template.txt5. For {sample_code}, we had the LLM select the most useful code from Voy-
ager’s skill_library6, attached that code, and used it for few-shot learning. The bot’s environmental
information used for executability assessment([Current bot status]:{new_observation}) and code
generation([Environment Settings]:{observation}) includes the following information.

Basic Information

• Position: Bot’s current coordinates (X, Y, Z)

• Biome: Current location’s biome name

• Time Period: Day/night determination

• Health: Bot’s current HP
5https://github.com/MineDojo/Voyager/blob/main/voyager/prompts/action_template.txt
6https://github.com/MineDojo/Voyager/tree/main/skill_library/trial1/skill/code
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• Inventory: List of possessed items (quantity and name)
• Main Hand Item: Currently held item in main hand

Resource Information (Within 15 blocks)

• Wood: Distance to nearest log and total count
• Stone: Distance to nearest stone block and total count
• Ore: Distance to nearest ore and total count
• Crafting Table: Availability status
• Furnace: Availability status

Nearby Placed Blocks (Within 5 blocks) Detailed information with positions for:

• Crafting Tables: Position, distance, count
• Furnaces: Position, distance, count
• Chests: Position, distance, count
• Workstations: Anvils, enchanting tables, brewing stands, etc.

Task-Specific Information Determined from inventory items:

• Material Possession: Availability of wood and stone materials
• Tool Possession: Detailed information on pickaxes, axes, swords, shovels, hoes
• Equipment Items: Possession of crafting tables and furnaces

A.3.2 DETAIL OF RESULTS

This appendix presents detailed results from DRIP’s Minecraft experiments. Figure 7 shows the
data from five DRIP experiments as a mean ± standard deviation graph. DRIP reached the diamond
mining task in a minimum of 21 steps and a maximum of 57 steps. In the one failed attempt to
mine diamonds, the agent died twice before mining stone and before smelting iron to create an
iron pickaxe, resulting in an empty inventory. This caused the acquisition of stone and subsequent
resources to require significantly more steps. However, this observation demonstrates that even when
a task fails midway, DRIP can resume planning without losing sight of the goal. In the future, we
plan to conduct experiments with more realistic tasks to explore a better balance between efficiency
and robustness.

Figure 7: Steps required to acquire each resource in Minecraft using DRIP (n=5 experiments). Error
bars show standard deviation. Individual points represent raw experimental data.
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## Role:
You are a helpful assistant that suggests actions to take to accomplish a task in Minecraft.

## Instructions:
Break down the requirements to achieve the following goal "{task}" into only the immediately preced-
ing step for this task.
## Constraints:
1: Only list what is necessary for **the immediately preceding step to efficiently achieve the goal** of
this task.
2: **Do not include earlier steps.** Example: "Craft an iron pickaxe" -> "Craft 3 iron ingots, craft 2
sticks, place a crafting table" (do not include mining iron ore).
3. Suggest a slightly extra number of items.
4. The available actions are: Table .
5. The "place" action requires the "craft" action as a prerequisite. 6. "Mining" or "killing" something
requires the "explore" action to find something (e.g., explore to the location of wood blocks, explore to
the location of iron ore blocks).
7. If items are needed, write the specific item name. Example: Wooden Pickaxe, Iron Armor (Pickaxe,
Armor alone are insufficient).
8. The executing bot does not require light or food.
9. Only provide concrete actions. Do not include supplementary information.
10. Respond only in a list format.

## Order of response rules:
- Gather necessary materials (mine, kill, craft)
- Prepare equipment (place, equip)
- Execute (explore, smelt, cook)

## Response format:
[Goal]
{task}

[Immediately preceding step ]

Table 10: Prompt for subtask decomposition in Minecraft. Translated into English.
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## Role:
You are an expert agent determining the executability of tasks in the Minecraft world. Consider this
based on your knowledge of Minecraft.

## Instructions:
Determine whether the specified task is executable in the current situation or if it has already been
achieved.

## Criteria:
1. Achieved (Done):
- The task is fulfilled (e.g., if the task is "equip [item]," and [item] is in the main hand).
- The item resulting from the task is already in the inventory/equipment, and the required quantity is
met.
- The task’s destination has already been reached.

2.Executable (True): The task can be directly executed at the current location.
- Necessary blocks/entities are nearby.
- It can be inferred as executable from the Biome or surrounding conditions.
- **Underground exploration tasks are feasible even from above ground if appropriate tools (e.g., pick-
axe) are available.**
- **Wood blocks, dirt, sand, gravel, and leaves can be mined with bare hands.**
- **Specific quantities will be confirmed at the time of execution.**
- **The task "explore to the location of [item]" is feasible if basic equipment to find that item is avail-
able.**

3.Unexecutable (False): Necessary conditions are missing.

## Important:
- Whether a task is achieved or not should be determined by the resulting item/situation, not by the verb
of the task (e.g., chop, kill, mine).
- Do not consider efficiency. Only determine feasibility.

## Response Format:
- If achieved: "Done: [Reason]"
- If executable: "True: [Reason]"
- If not executable: "False: [Reason]"

[Task]: {task}
[Current bot status]: {new_observation}
[Output]: {stdout}

[Judgement]:

Table 11: Prompt for judging task executability. Translated into English.
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## Role
You are an agent that creates Mineflayer JavaScript code to accomplish Minecraft tasks specified by
me.
Below is a useful program written using the Mineflayer API, which is highly relevant to the task. Please
use it as a reference.
{sample_code}

Please provide the necessary function code that meets the following conditions and follows the proposed
action plan:

## Conditions
- The bot has already been created and exists in the Minecraft game world.
- The bot does not require light or food.
- Do not include anything that is already in the code header.
- No need to set up the bot instance.
- Write an asynchronous function that takes the bot as its only argument.
- Avoid using await as much as possible.
- Use ‘mineBlock(bot, name, count)‘ to collect blocks. Do not use ‘bot.dig‘ directly.
- Use ‘craftItem(bot, name, count)‘ to craft items. Do not use ‘bot.craft‘ or ‘bot.recipesFor‘ directly.
- Use ‘smeltItem(bot, name, fuelname, count)‘ to smelt items. Do not use ‘bot.openFurnace‘ directly.
- Use ‘placeItem(bot, name, position)‘ to place blocks. Do not use ‘bot.placeBlock‘ directly.
- Use ‘killMob(bot, name, timeout)‘ to kill mobs. Do not use ‘bot.attack‘ directly.
- Use ‘bot.chat‘ and ‘console.log‘ to report progress in the chat and console.
- If something cannot be found, use ‘exploreUntil(bot, direction, maxDistance, callback)‘. You must
call this frequently before mining blocks or killing mobs. You should choose a random direction each
time (do not always use (1, 0, 1)).
- ‘maxDistance‘ must always be 32 for ‘bot.findBlocks‘ and ‘bot.findBlock‘. Do not cheat.
- Do not write infinite loops or recursive functions.
- Do not use ‘bot.on‘ or ‘bot.once‘ to register event listeners. They are absolutely unnecessary.
- After calling the function, always call ‘bot.quit();‘ to log out the bot.
- At the end, use ‘bot.on(’spawn’, () => );‘ to call the function.

Write the necessary Mineflayer JavaScript function to complete the specified task "{task}".
Also, include the specific steps and their explanations that will be performed within the function.

[Environment Settings]:
{observation}

[Task]:
{task}

[Action Plan]:
{action}

[Code Header]:
{js_setting}
[Code]:

Table 12: Prompt for Minecraft code generation. Translated into English.

20


	Introduction
	Related Work
	LLM Reasoning with decompose
	Regression Planning
	Planning for LLM Agents

	Planning Framework:DRIP
	Decompose
	Executability
	Re-decomposition and Termination of tree construction

	Experiment
	BlockWorld
	Experiment setup
	Benchmark
	Results
	error analysis

	Minecraft
	Experiment setup
	Results


	Appendix
	Algorithm
	Experiment(BlockWorld)
	Details of the BlockWorld dataset
	Details of the Benchmark
	Prompt

	Experiment(Minecraft)
	Prompt & Agent'environment information
	Detail of results



