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ABSTRACT

Stochastic multi-armed bandit (SMAB) is a fundamental framework for sequen-
tial decision-making in reinforcement learning, where an agent must balance ex-
ploration and exploitation to maximize cumulative rewards. Recently, random
effect SMAB has been proposed where reward feedback is modeled as random
effect. However, it has not been well formulated yet in likelihood perspectives.
Furthermore, individual noise variance can be arm-dependent. We propose a
novel random effect upper confidence bound (ReUCBHL) algorithm, based on h-
likelihood. The likelihood approach is conceptually easy and can be implemented
by simply minimizing the loss (negative h-likelihood). The algorithm can be ap-
plied to SMAB with univariate and multivariate rewards under arm-dependent
noise variances. It can be further extended to contextual multivariate bandit. The-
oretical justification and simulation studies demonstrate that ReUCBHL consis-
tently achieves better regret performance compared to the baseline algorithms.
These results highlight the effectiveness of the proposed algorithm.

1 INTRODUCTION

Many real-world decision-making problems involve actions whose outcomes share a common base-
line, while their variability differs substantially across actions. In health care, for instance, treat-
ments for the same condition may be influenced by a common patient-level effect, yet individual
treatments exhibit different levels of uncertainty due to trial size or biological variability. Recently,
Ghosh et al. (2024) applied reBandit algorithm in a mobile health intervention to reduce cannabis
use among emerging adults, where random-effects modeling was leveraged to share information
across individuals. Similar structures arise in personalized education, where student performance
on different test items depends on a shared latent skill but exhibits varying levels of measurement
noise. Similarly, in recommendation systems, where global popularity trends influence all items
while feedback for niche products is considerably noisier than for widely adopted ones.

Bandit framework is widely used in reinforcement learning to model the trade-off between explo-
ration and exploitation. The most popular one is the stochastic multi-armed bandit (SMAB) (Lai
& Robbins, 1985; Auer et al., 2002; Zhu & Kveton, 2022a) where at each time step the agent se-
quentially selects an arm/action to maximize the total accumulated rewards over n rounds of play.
Each arm generates random rewards from unknown reward distribution. Objective of SMABs is to
minimize the total regret. Through experience, the agent faces trade-off between exploration (trying
new actions which might give higher reward in future) and exploitation (drawing the arm with max-
imum reward in past). SMABs have been analyzed using either regression (fixed effect) models or
Bayesian models. In SMABs, the upper confidence bound (UCB) algorithm is the most popular due
to its simplicity of implementation and established results on regret bound (Lai & Robbins, 1985;
Auer et al., 2002; Dani et al., 2008; Abbasi-Yadkori et al., 2011; Zhu & Kveton, 2022a). Many
versions of UCB algorithms have been developed under fixed effect models which operate on confi-
dence bounds (Auer et al., 2002; Dani et al., 2008; Abbasi-Yadkori et al., 2011; Garivier & Cappe,
2011). Thompson sampling (TS) algorithm is the most popular due to theoretical advantages with
good performance (Aggarwal & Navin, 2012; 2013; Russo & Roy, 2016; Abeille & Lazaric, 2017;
Aouali et al., 2023). Kaufmann et al. (2012) introduced Bayes upper confidence bound (BUCB)
algorithm.
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While the prior is a blessing when correctly specified, a misspecified prior could be a curse (Zhu
& Kveton, 2022a). However, the prior is hardly checkable via data. Zhu & Kveton (2022a) pro-
posed the use of a random effect model for SMABs. They proposed random effect UCB (ReUCB)
algorithm. They showed that ReUCB algorithm performs much better than UCB and can be even
better than TS. Rewards from each arm can be multi-dimensional, so Lee et al. (2024) studied con-
textual SMABs with multiple rewards from each arm. Recently, random effect models have been
of interest for subject-specific predictions in statistical literature (Lee & Nelder, 1996). Distribution
of random effects could be checkable and various model checking procedures have been developed
(Lee et al., 2016). Lee & Nelder (1996) introduced the h-likelihood for inference from the model
with additional random parameters. However, their h-likelihood may not give optimal estimation.
Various alternatives have been developed to estimate parameters. Existing state-of-art algorithms
have used different procedures to estimate various parameters in random effect models. For ex-
ample, the best linear unbiased predictors (BLUPs) for random parameters, maximum likelihood
estimators (MLEs), weighted least squares (WLS) estimators for fixed effects, method of moment
(MM) and expectation-maximization (EM) for variance parameters. It has long been recognized that
noise variance could be arm-dependent. However, difficulty in implementing efficient estimation al-
gorithm prevents full development of UCB algorithm for random effect model approach. Recently,
Lee & Lee (2023) defined the new h-likelihood for random effect deep neural network models,
whose simple maximization provides an optimal estimation of all fixed and random parameters (Lee
& Lee, 2025). In this study, we extend Lee & Lee (2023)’s h-likelihood to arm-dependent SMABs
to develop the random effect ReUCB (ReUCBHL) algorithm. Lee et al. (2024) developed UCB
algorithm for random effect contextual SMAB with multi-dimensional reward. Our algorithm can
be easily extended to improve their contextual SMABs. An immediate advantage of our approach is
that it is straightforwardly implemented by simple minimization of the loss (negative h-likelihood)
function.

2 FORMULATION OF BANDIT MODEL

We consider the SMAB with K arms, where each arm k ∈ [K] = {1, 2, ...,K} generates i.i.d.
random reward rk,t at the round t ∈ [n] = {1, 2, ..., n}.

2.1 FIXED EFFECT SMAB

At the tth round, the reward rk,t of the arm k is generated from the fixed effect SMAB:

rk,t = µk + ek,t (1)

where rk,t is the random reward generated from the arm k in t-th pull, µk is the fixed unknown
mean reward of arm k and ek,t ∼ N (0, σ2) is the noise term. Auer et al. (2002) introduced the
UCB algorithm under the regression model (1). Bayesian models have been introduced by allowing
prior distributions for µk and σ2. TS (Aggarwal & Navin, 2012; 2013) and BUCB (Kaufmann et al.,
2012) algorithms have been developed based on posterior of rewards.

In real-world applications, however, the noise variance of reward could be arm-dependent ek,t ∼
N (0, σ2

k) (Kirschner & Krause, 2018). Simultaneous fitting algorithm for fixed means µk and vari-
ances σ2

k have been developed for analysis of quality improvement experiments (Lee & Nelder,
1998). SMAB with arm-dependent noise variance was introduced by Cowan et al. (2018). Kirschner
& Krause (2018) proposed a weighted least squares method to estimate the unknown reward func-
tion by assuming that the variance of the noise at each round t is a function of the chosen action.
Zhao et al. (2022) considered SMABs where the unknown reward function belongs to a more general
class of functions.

2.2 RANDOM EFFECT SMAB WITH ARM-INDEPENDENT NOISE

When the number of arms is large, the prediction of rewards based on the fixed effect SMAB could
be unreliable. For a better prediction of rewards, Zhu & Kveton (2022a) proposed the random effect
SMAB:

rk,t = µk + ek,t with µk = µ0 + δk, (2)
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where µ0 is the fixed common mean of arms and δk ∼ N (0, σ2
0) are random effects. In this model,

µk is the random mean reward of the arm k and the noise variance is arm-independent, var(ek,t) =
σ2. For estimation, Zhu & Kveton (2022a) used the BLUP for δk, genearalized least square estimator
for µ0 and method of moments for fixed variance parameters σ2

0 and σ2. Based on these estimates,
they developed ReUCB algorithm. They derived an upper bound on n-round regret for this algorithm
and empirically showed that ReUCB can outperform TS algorithm.

2.3 RANDOM EFFECT SMAB WITH ARM-DEPENDENT NOISE

In this study, we consider the arm-dependent random effect SMAB:

rk,t = µk + ek,t with µk = µ0 + δk, (3)

where µ0 and δk ∼ N (0, σ2
0) are the same as the model (2), but ek,t ∼ N (0, σ2

k). This model leads
to the within arm-dependent variance var(rk,t|δk) = σ2

k and between arm-independent variance
var(δk) = var(µk) = σ2

0 to give the total arm-dependent variance var(rk,t) = σ2
k + σ2

0 .

Zhu & Kveton (2022a) considered arm-dependent random effect SMAB (3) and used the method of
moment to estimate σ2

k. However, they used the BLUP procedure to predict random rewards under
the arm-independent random effect SMAB (2) by taking σ2

∗ = maxσ2
k as the noise variance of all

the arms. In this study, we develop an algorithm for the arm-dependent random effect SMAB (3) by
simply maximizing h-likelihood, and show its advantages.

Suppose that we observe the multi-dimensional reward vector r = (rA1,1, ..., rAn,n)
T over n rounds

of play, where At ∈ [K] is the chosen arm in the round t. Then, the multi-dimensional arm-
dependent SMAB (3) can be expressed by

r = 1µ0 + Zδ + e (4)

where 1 is the column vector with all elements 1, Z is the n ×K matrix whose (t, At)th elements
are 1 for t = 1, ..., n and the rest are 0, δ =(δ1, ..., δK)T ∼ MVN(0,DK) with DK=σ2

0IK ,
e =(eA1,1, ..., eAn,n)

T ∼ MVN(0,Σn) and Σn is the n-dimensional diagonal matrix whose tth
element is σ2

At
.

3 RANDOM EFFECT SMAB WITH ARM-DEPENDENT NOISE

3.1 H-LIKELIHOOD

Lee & Lee (2023) derived the h-likelihood, applicable to arm-independent SMAB (2). Under the
arm-dependent random effect SMABs (3) and (4), let the δc = B1/2δ where B = (ZTΣ−1Z+D−1

K )

and B1/2 is computed by Cholesky decomposition. Then, given observed reward r, the h-likelihood
for the random effect δc and fixed parameters θ = (µ0, σ

2
0 , σ

2
1 , ..., σ

2
K)T in the n round of play can

be defined by

h(θ, δc; r) = −1

2
(r− 1µ0 − ZB1/2δc)TΣ−1(r− 1µ0 − ZB

1/2

δc)− 1

2
log(2πΣ)

−1

2
δcTB1/2D−1

K B1/2δc − 1

2
log(2πB1/2DKB1/2).

The simple joint maximization of the h-likelihood gives the MLEs for all fixed parameters θ and
the BLUPs, δ̂ = E(δ|r)|θ=θ̂ for random effects δ. There is no need to develop different estimation
procedures for the fixed effect µ0, and dispersion parameters σ2

0 , σ
2
1 , ..., σ

2
K and random effects δ.

3.2 REUCBHL ALGORITHM

We propose a UCB algorithm for arm-dependent random-effect SMABs using h-likelihood. UCB
algorithm works by associating an upper confidence index to each arm and pulling the arm with the
highest index value. The upper index is the sum of mean reward estimate and a weighted standard
deviation of that estimate. The proposed ReUCBHL algorithm is given in Table 1. ReUCBHL is
initialized by pulling each arm once. The upper confidence index of arm k in round t is calculated
as

Uk,t = µ̂k,t + ĉk,t (5)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

where µ̂k,t = µ̂0,t+ δ̂k,t, ĉk,t =
√
aτ̂2k,t log(t) is the uncertainty bonus, τ̂2k,t = v̂ar(µ̂k,t) and a > 0

is a tuning parameter. In each round t, ReUCBHL pulls the arm with the highest index value. If two
or more arms have same highest value, randomly pull one of the arms.

1: Pull each arm once
2: for each round t = k + 1, 2, ..., n do
3: for k = 1, 2, ...,K do
4: Uk,t ← µ̂k,t + ĉk,t
5: end for
6: Pull the arm At=argmaxk∈[K]Uk,t

7: Observe the reward rAt,nAt

8: Update all statistics
9: end for

Table 1: ReUCBHL algorithm for SMAB

We derive an upper bound on the n-round regret of ReUCBHL algorithm given in Table 1. Under
the SMAB model (3), µk are random variables. Assuming that rk,j ∼ N (µk, σ

2
k), µk ∼ N (µ0, σ

2
0)

and (µ̂k,t−µk)|δk ∼ N ((wk−1)δk, w
2
kσ

2
k/nk). We introduce a new notion of regret, motivated by

h-likelihood inference in random-effects model. Once the random effects δ = (δ1, δ2, . . . , δK)T are
generated from some distribution, then they are realized as fixed δ0 = (δ01, δ02, . . . , δ0K)T . Let At

be the arm pulled at round t and A∗ = argmaxk∈[K](µ0+ δ0k) is the optimal arm under the realized
values δ0. In this study, we define regret of a bandit algorithm under random effect model (3) after
n rounds as

Rn = E

{
n∑

t=1

(µA∗ − µAt,t)

}
,

where µA∗ =maxk∈[K](µ0 + δ0k) is a fixed unknown constant given the realized values δ0, At =
argmaxk∈[K](Uk,t) in (5) and the expectation is over randomness in reward.

Unlike Bayes regret (Zhu & Kveton, 2022a), this definition does not average over the prior dis-
tribution of µ = (µ1, . . . , µK). Instead, it treats them as realized values of unobservable random
variables. The maximum h-likelihood estimator µ̂At,t is the optimal estimator of the realized value
µAt,t, by achieving generalized Cramer-Rao lower bound (Lee & Lee, 2025).

Theorem 1. Under the SMAB (3) with arm-dependent noise, the n-round regret of ReUCBHL is

Rn ≤ C
√
log n

√∑K
k=1 σ

2
k

σ0

√√√√σ2
0n+

K∑
k=1

σ2
k +O(δmax

K∑
k=1

(σ2
k/σ

2
0) log n) +O(K

√
log n),

where δmax = maxk∈[K]{δ0k} and constant C = 4
√
2.

3.3 RELATED WORKS

• UCB (Auer et al., 2002): UCB algorithm is developed under the fixed effect SMAB (1)
wherein the agent pulls the arm with the highest upper confidence index, using the MLEs.

• BUCB (Kaufmann et al., 2012): Bayesian models assumes a prior distribution on the fixed
parameters θ. BUCB algorithm has been proposed using quantiles of posterior distribution.

• TS (Aggarwal & Navin, 2012; Russo et al., 2018; Zhu & Kveton, 2022a): TS algorithm
chooses the arm with highest expected reward under the posterior distribution.

• ReUCB1 (Zhu & Kveton, 2022a): ReUCB1 stands for ReUCB algorithm under arm-
independent random effect SMAB (2).

• ReUCB2 (Zhu & Kveton, 2022a): ReUCB2 is for arm-dependent random effect SMAB.
However, they used the maximum noise variance as the common noise variance and used
the estimation procedure under the arm-independent random effect SMAB (2). Thus, they
do not fully exploit the advantage of arm-dependent random effect SMAB (3).
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• ReUCBHL (the proposed algorithm): ReUCBHL is an extension of ReUCB algorithm to
arm-dependent random effect SMAB (3). In this study, ReUCBHL stands for the use of
h-likelihood algorithm under arm-dependent random effect SMAB (3).

As ReUCBHL uses an upper confidence index, it is similar to UCB algorithm. The difference lies
in the fact that UCB assumes the mean of each arm as fixed and uses MLEs, whereas ReUCBHL
assumes the mean as random and uses h-likelihood estimates, which are the MLEs for fixed param-
eters θ and the BLUPs for random effects. ReUCBHL is closely related to ReUCB because they
are based on random effect models. The difference is that ReUCB1 and ReUCB2 use the method of
moments for variance estimators, the generalized least square estimator for µ0 and the BLUPs for
random effects, whereas ReUCBHL use maximum h-likelihood estimators for all fixed and random
parameters. Parameter estimation methods provide similar result because ReUCB1 and ReUCBHL
under arm-independent random effect SMAB (2) provide almost identical results. ReUCBHL gives
BLUP estimators for the arm-dependent random effect SMAB. The numerical study shows that
ReUCBHL performs generally the best.

3.4 NUMERICAL STUDIES FOR SYNTHETIC EXPERIMENTS

For random effect SMAB (3), we first set µk ∼ N (1, 0.04) with K = 50 and n = 10, 000. Second,
µk are drawn from uniform distribution U(1, 2). Then, we compare the performance of ReUCBHL
in terms of cumulative regret over n rounds of play with four other benchmark algorithms UCB
(Auer et al., 2002), TS (Zhu & Kveton, 2022a), BUCB (Kaufmann et al., 2012) and ReUCB (Zhu
& Kveton, 2022a). ReUCBs with arm-independent and arm-dependent SMAB are denoted as
ReUCB1 and ReUCB2, respectively. Each experiment is based on 1,000 independent simulation
runs. We consider arm-independent and arm-dependent cases to study the performance of various
algorithms. ReUCBHL is generally the best among algorithms.

i) Arm-independent case: We assume σ2
k = σ2 = 0.25 for all arms. Zhu & Kveton (2022a) noted

that the Gaussian random-effect model is robust against the misspecification for distribution of
random effects. Figure 1(a) for µk ∼ N (1, 0.04) and Figure 1(b) for µk ∼ U(1, 2) show plots
of cumulative regret as a function of time horizon. Algorithms perform similarly under normal
and uniform assumptions. The performance of TS is better than UCB and BUCB but worse than
ReUCB1, ReUCB2 and ReUCBHL. In arm-independent cases, the ReUCB1 should be the best.
ReUCBHL and ReUCB2 are almost identical to the ReUCB1 in arm-independent cases.

ii) Arm-dependent cases: We generate noise variances as σ2
k = 0.25 × k. The regret performance

of the algorithms is shown in Figure 1(c) for µk ∼ N (1, 0.04) and Figure 1(d) for µk ∼ U(1, 2).
We observe that ReUCBHL outperforms the other algorithms. ReUCB1 works poor under arm-
dependent cases. Thus, the arm-dependent random effect SMAB is preferred to the arm-independent
random effect SMAB.

3.5 EXPERIMENTS ON REAL DATA

We apply SMAB algorithm to recommendation problem. We consider MoiveLens dataset (Lam
& Herlocker, 2016), which contains almost 1 million ratings, 4,000 users and 6,000 movies. Our
goal is to identify the movie with highest rating for a specific user group. We preprocess the data
following the Katariya et al. (2017). Our learning problem is formulated as follows. Define a user
group for every unique combination of gender, age group and occupation. The total number of user
groups is 241. For each user group and movie pair, we average the ratings of all the users in that
group that rate the movie and learn a low-rank approximation to the underlying rating matrix M
using the algorithm in Keshavan et al. (2010). The algorithm automatically detects the rank of the
matrix to be 5. We randomly choose J = 128 user groups and K = 128 movies. The reward for
choosing user group j ∈ [J ] and movie k ∈ [K] is a categorical random variable over five-star
ratings. We estimate its parameters based on the assumption that the ratings are normally distributed
with a fixed variance, conditioned on the completed ratings. Our results are averaged over 200 runs.
In each run, user j is chosen uniformly at random from [128] and it represents a bandit instance in
that run. The goal is to learn the most rewarding movie for the user j. We model this problem as a
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random-effect SMAB with K = 128 arms, one per movie, where the mean reward of movie k by
user j is the (j, k)th element Mj,k of M .

i) Arm-independent case: Following Zhu & Kveton (2022a), the rewards are generated from
N (Mj,k, 0.796

2). Figure 1(e) shows that TS performs better than UCB and BUCB but worse than
ReUCB1, REUCB2 and ReUCBHL.

ii) Arm-dependent case: The rewards are generated fromN (Mj,k, 0.796
2× log(k+1)). The regret

performance of the algorithms is shown in Figure 1(f). We observe that ReUCBHL outperforms the
other algorithms. ReUCB1 works poor in arm-dependent case. Thus, arm-dependent assumption
enhances the performance and ReUCBHL works well in both arm-independent and arm-dependent
cases.

Figure 1: Comparison of the average cumulative regrets (a) µk ∼ N (1, 0.04), (b) µk ∼ U(1, 2) arm-
independent noise, (c) µk ∼ N (1, 0.04), (d) µk ∼ U(1, 2) arm-dependent noise in numerical studies
for synthetic experiments and (e) arm-independent noise, (f) arm-dependent noise in experiments on
real data under the random effect SMAB.

4 MULTIVARIATE SMAB

Lee et al. (2024) introduced a new variant of contextual SMAB where the reward is formulated by
multi-dimensional random effect SMAB. The correlations among multiple rewards arise due to the
sharing of stochastic coefficients called random effects. To address this setting, they proposed mixed
effect contextual UCB (ME-CUCB) algorithm for contextual SMAB with arm independent noise.
In this section, we investigate how our algorithm can be extended to enhance the performance of
their multi-dimensional contextual SMAB framework.

4.1 MULTI-DIMENSIONAL CONTEXTUAL RANDOM EFFECT SMAB WITH ARM-DEPENDENT
NOISE

In the contextual stochastic multi-armed bandit (contextual SMAB) framework, at each round t ∈
[n], the learner observes a context vector xt, pulls an arm k ∈ [K] conditioned on the context and
receives a random reward. The contextual SMAB can generate multi-dimensional rewards from
each arm. Recently, contextual multi-dimensional SMABs have attracted increasing interest. We
consider a multi-dimensional SMAB with K arms, where pulling an arm k ∈ [K] generates an m-
dimensional column vector of rewards rk,t at the round t ∈ [n]. The multivariate reward rk,t can be

6
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correlated at each time point but are independent across time. In this section, we focus on contextual
random effect SMAB with arm-dependent noise:

rk,t = µk,t + ek,t with µk,t = Xk,tβ + Zk,tδk (6)
where the m×p matrix Xk,t and the m×q matrix Zk,t are the context matrices for the p-dimensional
fixed effect β and the q-dimensional random effect δk ∼ N(0,Σ0) with q × q covariance matrix
Σ0, respectively. Both Xk,t and Zk,t may vary over time t and ek,t ∼ N(0, σ2

kIm) is the multi-
dimensional noise and µk,t is the multi-dimensional random mean reward. Lee et al. (2024) studied
random effect SMAB with arm-independent noise, σ2

1 = · · · = σ2
K = σ2.

Lee et al. (2024) used the weighted least squares estimators for fixed effect, the BLUPs for estimating
random effects and the EM algorithm for estimating variances. In the h-likelihood approach, the sim-
ple joint maximization gives the MLEs for all fixed parameters θ and the BLUPs, δ̂ = E(δ|r)|θ=θ̂,
for random effects. Furthermore, the h-likelihood algorithm in Section 3.1 is straightforwardly ex-
tended to multi-dimensional contextual SMABs by simply replacing 1µ0 by Xβ and σ2

0 by Σ0.

4.2 H-LIKELIHOOD

Under the model (6), let the δc = B1/2δ where B = (ZTΣ−1Z +D−1). Given mn-dimensional
column vector the observed reward r = (rTA1,1

, ..., rTAn,n
)T , the h-likelihood for fixed parameters

θ = (β, Σ0, σ
2
1 , ..., σ

2
K) and the random effect δc in the n round of play can be defined as

h(θ, δc; r) = −1

2
(r−Xβ − ZB−1/2δc)TΣ−1(r−Xβ − ZB−1/2δc)− 1

2
log(2πΣ)

−1

2
δcTB−1/2D−1B−1/2δc − 1

2
log(2πB1/2DB1/2),

where X = (X
T
A1,1

, ...,XT
An,n)

T is the mn×p context matrix for β, Z = (Z
T
A1,1
⊗aTA1

, ...,ZT
An,n⊗

aTAn
)
T is the mn × qK context matrix for δ, where aAt is the q-dimensional column vec-

tor with value 1 for Atth element and 0 for otherwise. The qK dimensional random effects
δ =(δT1 , ..., δ

T
K)T ∼ MVN(0,D) with the qK × qK matrix D = Σ0 ⊗ IK , the mn dimen-

sional noise e =(eTA1,1
, ..., eTAn,n

)T ∼ MVN(0,Σ) and the mn × mn matrix Σ = Im ⊗
diag{σ2

A1
, ..., σ2

An
}. Here ⊗ denotes Kronecker product. The simple joint maximization gives the

MLEs for all fixed parameters θ and the BLUPs, δ̂ = E(δ|r), for random effects.

4.3 REUCBHL ALGORITHM

We propose the ReUCBHL algorithm for contextual random effect SMAB, which is presented in
Table 2. Fixed parameters θ and random effects δ are estimated by maximizing the h-likelihood. In
round t, the algorithm chooses an arm At = argmaxk∈[K]a

TUk,t where a = (1/m)1m and Uk,t

is the m-dimensional column vector of upper confidence bound which is given by

Uk,t = Xk,tβ̂t + Zk,tδ̂k + ĉk,t = µ̂k,t + ĉk,t, (7)

where ĉk,t is the m-dimensional column vector whose jth element is the
√
aτ̂2k,t,j log(t) , a is the

tuning parameter, τ̂2k,t,j = v̂ar(µ̂k,t,j) and µ̂k,t,j is the jth element of µ̂k,t.

Similar to univariate SMAB, in this study we define regret for multi-dimensional SMAB. Given the
selected arm k, its random effect is realized as fixed δ0k. Lee et al. (2024) used the classical regret
based on marginal model Xk,tβ without accounting for arm effect δ0k. The optimal arm in the
tth round is defined as the arm having A∗

t = argmaxk∈[K](a
TXk,tβ + aTZk,tδ0k) given contexts

Xk,t and Zk,t. Then, the total regret in n rounds of play is defined by

Rn = E

{
n∑

t=1

(
µA∗

t ,t
− µAt,t

)}
,

where µA∗
t ,t

= maxk∈[K](a
TXk,tβ + aTZk,tδ0k) is a fixed unknown constant given contexts

(Xk,t, Zk,t), At = argmaxk∈[K](Uk,t) in (7). Difference between random effect SMAB (3) and
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1: INPUT: number of random exploration rounds d and tuning parameter a.
2: for each round t ≤ d do
3: Sample an arm At ∈ [K] randomly and observe rk,At

.
4: end for
5: Calculate θ̂d.
6: for t > d do
7: Observe the contexts {Xt,k}, {Zt,k} and compute θ̂t ∈ Ht

8: Compute Uk,t for each arm k using equation (6)
9: Pull the arm At = argmaxk∈[K]a

TUk,t and observe rk,At

10: end for

Table 2: ReUCBHL algorithm for multivariate SMAB

contextual random effect SMAB (6) is that µA∗
t ,t

changes over time t in the contextual model. We
develop n round regret bound for ReUCBHL algorithm in Table 2.

Theorem 2. Under the multi-dimensional contextual SMAB (6) with arm-dependent noise, the n-
round regret of ReUCBHL is

Rn ≤ σmaxξ(
√
2d(p+ q +K)n log(n) +K

√
2/π),

where σ2
max = maxk∈[K] σ

2
k, ξ = maxk∈[K],t∈[n]

√
aT (Xk,tXT

k,t + Zk,tΣ0ZT
k,t)a/σ

2
k and d =

log(1 + ξ2nm/(p+ q +K))/ log(1 + ξ2/m).

4.4 RELATED WORKS

There are several variants of SMABs that allow for multi-dimensional reward such as combinatorial
SMAB (Chen et al., 2013; Qin et al., 2014; Li et al., 2016) and multi-objective SMAB (Drugan &
Nowe, 2013). However, they did not introduce the correlation structure. It was Lee et al. (2024),
who introduced the correlation structure using the random effect model.

• C2UCB (Qin et al., 2014): Chen et al. (2013) introduced combinatorial UCB algorithm
for analyzing the regret performance. Qin et al. (2014) proposed C2UCB (contextual com-
binatorial UCB) algorithm for contextual SMABs by extending the work of Chen et al.
(2013).

• ME-CUCB (Lee et al., 2024): Lee et al. (2024) used weighted least squares estimators for
fixed effects β, expectation-maximization algorithm for variance parameters and BLUPs
for δ.

4.5 NUMERICAL STUDIES FOR RANDOM INTERCEPT MODEL

For multivariate reward model (6), we consider numerical study when Xk,t = 1m and Zk,t = Im
with m = 10, K = 100 and n = 1, 000, where entries in Xk,t and Zk,t do not depend on t. By
setting β = 1 and Σ0 = Im, we compare the ReUCBHL algorithm with C2UCB (Qin et al., 2014)
and ME-CUCB (Lee et al., 2024) algorithms in terms cumulative regrets over n rounds of play. Each
simulation experiment is averaged over 200 independent runs.

i) Arm-independent case: We assume that the reward noise σ2
k = 1 is constant for all arms k. Figure

2(a) shows a plot of average of m cumulative regrets as a function of time horizon. In this case,
ReUCBHL and ME-CUCB perform almost identically and perform better than C2UCB.

ii) Arm-dependent case: We assume σ2
k = log(k + 1). The regret performance of the algorithms is

shown in Figure 2(b). We observe that ReUCBHL outperforms the other algorithms. Arm-dependent
assumption enhances the performance of ME-CUCB algorithm. The ReUCBHL performs the best
in the multi-dimensional contextual SMABs.
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4.6 NUMERICAL STUDIES FOR RANDOM SLOPE MODEL

Following Lee et al. (2024), we consider the p = 10-dimensional context matrix Xk,t whose the
jth row columns x(j)

k,t are generated by N (0, Ip) and random coefficient model Zk,t = Xk,t ⊗ 1T
m

that changes over time t as Xk,t. By setting β = 1 and Σ0 = Ipm with m = 10, K = 100 and
n = 1, 000, we compare the performance of the proposed ReUCBHL algorithm with C2UCB (Qin
et al., 2014) and ME-CUCB (Lee et al., 2024) algorithms in terms cumulative regrets over n rounds
of play. Each simulation experiment is averaged over 200 independent runs.

i) Arm-independent case: We assume that the reward noise σ2
k = 1 is constant for all arms k. Figure

2(c) shows a plot of average of m cumulative regrets as a function of time horizon. Here ReUCBHL
and ME-CUCB perform almost identical and are better than C2UCB.

ii) Arm-dependent case: Consider σ2
k = log(k + 1). The regret performance of the algorithms is

shown in Figure 2(d). Again ReUCBHL outperforms the rest. Thus, the ReUCBHL algorithm is
strongly recommended for multivariate contextual SMABs.

Figure 2: Comparison of average of cumulative regrets (a) arm-independent, (b) arm-dependent
noise for the intercept-only model and (a) homogeneous, (b) arm-dependent noise for the intercept-
only model for the model under the multivariate contextual random effect SMAB.

5 CONCLUSION

The UCB algorithm remains a cornerstone in reinforcement learning. Recently, random-effect
bandit models have been introduced to exploit correlation structure across arms. However, exist-
ing works have focused on the SMABs with arm-independent noise variances. In practice, arm-
dependent noise is ubiquitous and developing efficient algorithms under such setting is challenging
due to difficulties in parameter estimation. In this study, we develop ReUCB algorithm for random
effect SMABs with arm-dependent noises, which is easily implementable by simply minimizing the
loss function (negative of h-likelihood) and computationally as fast as other algorithms. Further-
more, our experimental studies show that it outperforms all the existing state-of-art algorithms for
SMABs and multivariate contextual SMABs. We should always use ReUCBHL algorithm because
there is no loss in assuming arm-dependent noise as the regret is almost identical to the best algo-
rithm in arm-independent cases. In arm-dependent cases, arm-independent random effect SMAB
could be worse than TS. Throughout the studies, arm-dependent random effect SMAB always out-
performs all the existing state-of-arts algorithms.
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APPENDIX A

Under the model (2), the (log-)h-likelihood (Lee & Nelder, 1996) of the fixed parameters θ = (µ0,
σ2
0 , σ

2
1 , ..., σ

2
K)T and the random effect δ for the observed reward r in the n round of play is defined

by

h(θ, δ; r) = −1

2
(r− µ01−Zδ)TΣ−1(r− µ01−Zδ)− 1

2
log(2πΣ)− 1

2
δTD−1δ− 1

2
log(2πD).

The marginal-(log)-likelihood ℓ can be obtained form h by integrating out the random effect,

ℓ(θ; r) = log

∫
exp{h(θ, δ; r)}dδ.
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Optimization of the joint likelihood h(θ, δ; r) gives MLEs, maximizing ℓ(θ; r) for θ, and the BLUPs
for δ. However, it cannot give MLEs for the variances (σ2

0 , σ
2
1 , ..., σ

2
K). Recently, Lee & Lee (2023)

suggested to use the new h-likelihood based on the canonical scale of random effects δc = A1/2δ,

h(θ, δc; r) = log f(r|δc) + log f(c) = ℓ(θ) + log f(δc|r).

Following Lee & Lee (2023), since δ|r has the multivariate normal distribution

δ|r ∼ N(A−1ZTΣ−1(r− µ01), A
−1),

we have
δc|r ∼ N(A−1/2ZTΣ−1(r− µ01), IK),

which leads to δ̃c = A−1/2ZTΣ−1(r − µ01). Thus, the resulting predictive likelihood becomes
constant

log f(δ̃c|r) = −1

2
log |2πIK | = −

K

2
log(2π).

Thus, δc = A1/2δ is the canonical scale to give the h-likelihood,

h(θ, δ; r) = −1

2
(y − µ01− ZA−1/2δc)TΣ−1(y − µ01− ZA−1/2δc)− 1

2
log(2πΣ)

−1

2
δcTA−1/2D−1A−1/2δc − 1

2
log(2πA1/2DA1/2),

whose joint maximization gives the MLEs for the whole parameters θ and BLUPs for the random
effect δ.

APPENDIX B

Proof of Theorem 1.

We derive regret bound given fixed parameters θ = (µ0, σ
2
0 , σ

2
1 , ..., σ

2
K)T for the random effect

SMAB (3). At time t, arm k is pulled nk,t ≥ 1 times with sample mean r̄k =
∑nk,t

t=1 rk,t/nk,t and
variance dk,t = σ2

k/nk,t. The h-likelihood estimator of µk is

µ̂k,t = wk,tr̄k,t + (1− wk,t)µ0,

where wk,t = σ2
0/(σ

2
0 + dk,t). Then, we have

µ̂k,t − µk = Sk,t +Bk,t,

where Sk,t = wk,t(r̄k,t − µk) and Bk,t = −(1− wk,t)δ0k. So, Sk,t ∼ N(0, τ2k,t) with

τ2k,t = w2
k,tdk,t =

σ4
0σ

2
knk,t

(σ2
0nk,t + σ2

k)
2
.

For any x > 0, the tail-probability is

Pr (|µ̂k,t − µk −Bk,t| ≥ x) ≤ 2 exp
(
−x2/2τ2k,t

)
.

Set the confidence radii of arm k in round t as

ck,t = τk,t
√
a log t = τk,t

√
2 log(1/αt)

where αt = t−a/2 and a is the tuning parameter. Taking a = 2, we have

Pr (|µ̂k,t − µk −Bk,t| ≥ ck,t) ≤ 2t−1.

Define the global event

Gt =

K⋂
k=1

{|µ̂k,t − µk −Bk,t| ≤ ck,t}.
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This ensures that confidence intervals hold for both the played arm and the oracle arm simultane-
ously. Let Gc

t denote the complement of Gt. Then,

Pr(Gc
t) ≤ 2Kt−1,

n∑
t=1

Pr(Gc
t) ≤ 2K(1 + log n).

At round t, ReUCBHL chooses At = argmaxk(µ̂k,t + ĉk,t). For the optimal arm A∗ =
argmaxk µk, we have

µA∗ − µAt
= (µA∗ − µ̂At,t − ĉAt,t) + (µ̂At,t + ĉAt,t − µAt

).

On Gt,

µA∗ − µ̂At,t − cAt,t ≤ −BA∗,t,

µ̂At,t + cAt, − µAt
≤ 2cAt,t +BAt,t.

Thus,
µA∗ − µAt ≤ 2cAt,t + (BAt,t −BA∗,t).

On Gc
t we use the trivial bound µA∗−µAt,t ≤ ∆max, where ∆max is the maximum gap. We assume

that the rewards rk,t are bounded in [0,1]. Taking expectations and summing,

Rn =

n∑
t=1

E(µA∗ − µAt)

≤ 2

n∑
t=1

E(cAt,t) +

n∑
t=1

E(BAt,t −BA∗,t) + ∆max

n∑
t=1

Pr(Gc
t).

For all k, t,

τ2k,t =
σ4
0σ

2
knk,t

(σ2
0nk,t + σ2

k)
2
≤ σ2

0σ
2
k

σ2
0nk,t + σ2

k

.

Therefore,

ck,t ≤
√
2 log n

√
σ2
0σ

2
k

σ2
0nk,t + σ2

k

.

Grouping by pulls of arm k and bounding by an integral,

Tk(n)∑
s=1

ck,s ≤
√
8 log n

σk

σ0
(
√

σ2
0Tk(n) + σ2

k − σk) +O(
√

log n),

where Tk(n) is the total number of pulls of arm k. Sum across arms and apply Cauchy–Schwarz
inequality,

n∑
t=1

cAt,t ≤
√
8 log n

√∑K
k=1 σ

2
k

σ0

√√√√σ2
0n+

K∑
k=1

σ2
k +O(K

√
log n).

Since Bk,t = −(1− wk,t)δk = − dk,t

σ2
0+dk,t

δk,

Tk(n)∑
s=1

|Bk,s| ≤ |δk|
Tk(n)∑
s=1

σ2
k

σ2
0s+ σ2

k

= O(|δk|+ |δk|σ
2
k

σ2
0
log Tk(n)).

Thus,

|
n∑

t=1

(BAt,t −BA∗,t)| ≤ O(δmax

∑K
k=1 σ2

k

σ2
0

log n),
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with δmax = maxk |δ0k|. For any fixed realization δ0 = (δ01, . . . , δ0K),

Rn ≤ C
√

log n

√∑K
k=1 σ

2
k

σ0

√√√√σ2
0n+

K∑
k=1

σ2
k +O(δmax

K∑
k=1

(σ2
k/σ

2
0) log n) +O(K

√
log n),

where, constant C = 4
√
2. This completes the proof.

Proof of Theorem 2.

The model (6) can be written by

r∗k,t = µ∗
k,t + e∗k,t

with r∗k,t = aT rk,t/σk, µ
∗
k,t = aTµk,t/σk and e∗k,t = aTek,t/σk˜N (0, 1/m). Let σ2

max =

maxk∈[K]{σ2
k}. Because σ∗/σk ≥ 1 for all k, then the n-round regret can be obtained by

Rn ≤ E

{
n∑

t=1

(
σmax

σk
µA∗

t
− σmax

σk
µAt,t

)}
= σmaxR

∗
n.

where R∗
n = E

{∑n
t=1

(
1
σk

µ∗,t − 1
σk

µAt,t

)}
. When we take expectation over µAt,t, R

∗
n becomes

the Bayes regret. For simplicity of calculation, we use Bayes regret to analyze regret bound. Fol-
lowing Theorem 1 of Zhu & Kveton (2022b), we have

R∗
n ≤ ξ

√
2d(p+ q +K)n log(n) +

√
2/πξK.

This completes the proof.
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