
000 RANDOM EFFECT BANDITS USING H-LIKELIHOOD 001 002 PROCEDURE 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009 010

011 Stochastic multi-armed bandit (SMAB) is a fundamental framework for sequen-
012 tial decision-making in reinforcement learning, where an agent must balance ex-
013 ploration and exploitation to maximize cumulative rewards. Recently, random
014 effect SMAB has been proposed where reward feedback is modeled as random
015 effect. However, it has not been well formulated yet in likelihood perspectives.
016 Furthermore, individual noise variance can be arm-dependent. We propose a
017 novel random effect upper confidence bound (ReUCBHL) algorithm, based on h-
018 likelihood. The likelihood approach is conceptually easy and can be implemented
019 by simply minimizing the loss (negative h-likelihood). The algorithm can be ap-
020 plied to SMAB with univariate and multivariate rewards under arm-dependent
021 noise variances. It can be further extended to contextual multivariate bandit. The-
022 oretical justification and simulation studies demonstrate that ReUCBHL consis-
023 tently achieves better regret performance compared to the baseline algorithms.
024 These results highlight the effectiveness of the proposed algorithm.

025 026 1 INTRODUCTION 027

029 Many real-world decision-making problems involve actions whose outcomes share a common base-
030 line, while their variability differs substantially across actions. In health care, for instance, treat-
031 ments for the same condition may be influenced by a common patient-level effect, yet individual
032 treatments exhibit different levels of uncertainty due to trial size or biological variability. Recently,
033 Ghosh et al. (2024) applied reBandit algorithm in a mobile health intervention to reduce cannabis
034 use among emerging adults, where random-effects modeling was leveraged to share information
035 across individuals. Similar structures arise in personalized education, where student performance
036 on different test items depends on a shared latent skill but exhibits varying levels of measurement
037 noise. Similarly, in recommendation systems, where global popularity trends influence all items
038 while feedback for niche products is considerably noisier than for widely adopted ones.

039 Bandit framework is widely used in reinforcement learning to model the trade-off between explo-
040 ration and exploitation. The most popular one is the stochastic multi-armed bandit (SMAB) (Lai
041 & Robbins, 1985; Auer et al., 2002; Zhu & Kveton, 2022a) where at each time step the agent se-
042 quentially selects an arm/action to maximize the total accumulated rewards over n rounds of play.
043 Each arm generates random rewards from unknown reward distribution. Objective of SMABs is to
044 minimize the total regret. Through experience, the agent faces trade-off between exploration (trying
045 new actions which might give higher reward in future) and exploitation (drawing the arm with max-
046 imum reward in past). SMABs have been analyzed using either regression (fixed effect) models or
047 Bayesian models. In SMABs, the upper confidence bound (UCB) algorithm is the most popular due
048 to its simplicity of implementation and established results on regret bound (Lai & Robbins, 1985;
049 Auer et al., 2002; Dani et al., 2008; Abbasi-Yadkori et al., 2011; Zhu & Kveton, 2022a). Many
050 versions of UCB algorithms have been developed under fixed effect models which operate on confi-
051 dence bounds (Auer et al., 2002; Dani et al., 2008; Abbasi-Yadkori et al., 2011; Garivier & Cappe,
052 2011). Thompson sampling (TS) algorithm is the most popular due to theoretical advantages with
053 good performance (Aggarwal & Navin, 2012; 2013; Russo & Roy, 2016; Abeille & Lazaric, 2017;
Aouali et al., 2023). Kaufmann et al. (2012) introduced Bayes upper confidence bound (BUCB)
algorithm.

054 While the prior is a blessing when correctly specified, a misspecified prior could be a curse (Zhu
 055 & Kveton, 2022a). However, the prior is hardly checkable via data. Zhu & Kveton (2022a) pro-
 056 posed the use of a random effect model for SMABs. They proposed random effect UCB (ReUCB)
 057 algorithm. They showed that ReUCB algorithm performs much better than UCB and can be even
 058 better than TS. Rewards from each arm can be multi-dimensional, so Lee et al. (2024) studied con-
 059 textual SMABs with multiple rewards from each arm. Recently, random effect models have been
 060 of interest for subject-specific predictions in statistical literature (Lee & Nelder, 1996). Distribution
 061 of random effects could be checkable and various model checking procedures have been developed
 062 (Lee et al., 2016). Lee & Nelder (1996) introduced the h-likelihood for inference from the model
 063 with additional random parameters. However, their h-likelihood may not give optimal estimation.
 064 Various alternatives have been developed to estimate parameters. Existing state-of-art algorithms
 065 have used different procedures to estimate various parameters in random effect models. For ex-
 066 ample, the best linear unbiased predictors (BLUPs) for random parameters, maximum likelihood
 067 estimators (MLEs), weighted least squares (WLS) estimators for fixed effects, method of moment
 068 (MM) and expectation-maximization (EM) for variance parameters. It has long been recognized that
 069 noise variance could be arm-dependent. However, difficulty in implementing efficient estimation al-
 070 gorithm prevents full development of UCB algorithm for random effect model approach. Recently,
 071 Lee & Lee (2023) defined the new h-likelihood for random effect deep neural network models,
 072 whose simple maximization provides an optimal estimation of all fixed and random parameters (Lee
 073 & Lee, 2025). In this study, we extend Lee & Lee (2023)'s h-likelihood to arm-dependent SMABs
 074 to develop the random effect ReUCB (ReUCBHL) algorithm. Lee et al. (2024) developed UCB
 075 algorithm for random effect contextual SMAB with multi-dimensional reward. Our algorithm can
 076 be easily extended to improve their contextual SMABs. An immediate advantage of our approach is
 077 that it is straightforwardly implemented by simple minimization of the loss (negative h-likelihood)
 078 function.
 079

2 FORMULATION OF BANDIT MODEL

081 We consider the SMAB with K arms, where each arm $k \in [K] = \{1, 2, \dots, K\}$ generates i.i.d.
 082 random reward $r_{k,t}$ at the round $t \in [n] = \{1, 2, \dots, n\}$.
 083

2.1 FIXED EFFECT SMAB

086 At the t th round, the reward $r_{k,t}$ of the arm k is generated from the fixed effect SMAB:

$$087 \quad r_{k,t} = \mu_k + e_{k,t} \quad (1)$$

089 where $r_{k,t}$ is the random reward generated from the arm k in t -th pull, μ_k is the fixed unknown
 090 mean reward of arm k and $e_{k,t} \sim \mathcal{N}(0, \sigma^2)$ is the noise term. Auer et al. (2002) introduced the
 091 UCB algorithm under the regression model (1). Bayesian models have been introduced by allowing
 092 prior distributions for μ_k and σ^2 . TS (Aggarwal & Navin, 2012; 2013) and BUCB (Kaufmann et al.,
 093 2012) algorithms have been developed based on posterior of rewards.

094 In real-world applications, however, the noise variance of reward could be arm-dependent $e_{k,t} \sim$
 095 $\mathcal{N}(0, \sigma_k^2)$ (Kirschner & Krause, 2018). Simultaneous fitting algorithm for fixed means μ_k and vari-
 096 ances σ_k^2 have been developed for analysis of quality improvement experiments (Lee & Nelder,
 097 1998). SMAB with arm-dependent noise variance was introduced by Cowan et al. (2018). Kirschner
 098 & Krause (2018) proposed a weighted least squares method to estimate the unknown reward func-
 099 tion by assuming that the variance of the noise at each round t is a function of the chosen action.
 100 Zhao et al. (2022) considered SMABs where the unknown reward function belongs to a more general
 101 class of functions.

2.2 RANDOM EFFECT SMAB WITH ARM-INDEPENDENT NOISE

105 When the number of arms is large, the prediction of rewards based on the fixed effect SMAB could
 106 be unreliable. For a better prediction of rewards, Zhu & Kveton (2022a) proposed the random effect
 107 SMAB:

$$107 \quad r_{k,t} = \mu_k + e_{k,t} \text{ with } \mu_k = \mu_0 + \delta_k, \quad (2)$$

108 where μ_0 is the fixed common mean of arms and $\delta_k \sim \mathcal{N}(0, \sigma_0^2)$ are random effects. In this model,
109 μ_k is the random mean reward of the arm k and the noise variance is arm-independent, $\text{var}(e_{k,t}) =$
110 σ^2 . For estimation, Zhu & Kveton (2022a) used the BLUP for δ_k , genealized least square estimator
111 for μ_0 and method of moments for fixed variance parameters σ_0^2 and σ^2 . Based on these estimates,
112 they developed ReUCB algorithm. They derived an upper bound on n -round regret for this algorithm
113 and empirically showed that ReUCB can outperform TS algorithm.
114

115 2.3 RANDOM EFFECT SMAB WITH ARM-DEPENDENT NOISE

116 In this study, we consider the arm-dependent random effect SMAB:

$$118 \quad r_{k,t} = \mu_k + e_{k,t} \text{ with } \mu_k = \mu_0 + \delta_k, \quad (3)$$

119 where μ_0 and $\delta_k \sim \mathcal{N}(0, \sigma_0^2)$ are the same as the model (2), but $e_{k,t} \sim \mathcal{N}(0, \sigma_k^2)$. This model leads
120 to the within arm-dependent variance $\text{var}(r_{k,t} | \delta_k) = \sigma_k^2$ and between arm-independent variance
121 $\text{var}(\delta_k) = \text{var}(\mu_k) = \sigma_0^2$ to give the total arm-dependent variance $\text{var}(r_{k,t}) = \sigma_k^2 + \sigma_0^2$.
122

123 Zhu & Kveton (2022a) considered arm-dependent random effect SMAB (3) and used the method of
124 moment to estimate σ_k^2 . However, they used the BLUP procedure to predict random rewards under
125 the arm-independent random effect SMAB (2) by taking $\sigma_*^2 = \max \sigma_k^2$ as the noise variance of all
126 the arms. In this study, we develop an algorithm for the arm-dependent random effect SMAB (3) by
127 simply maximizing h-likelihood, and show its advantages.

128 Suppose that we observe the multi-dimensional reward vector $\mathbf{r} = (r_{A_1,1}, \dots, r_{A_n,n})^T$ over n rounds
129 of play, where $A_t \in [K]$ is the chosen arm in the round t . Then, the multi-dimensional arm-
130 dependent SMAB (3) can be expressed by

$$131 \quad \mathbf{r} = \mathbf{1}\mu_0 + \mathbf{Z}\delta + \mathbf{e} \quad (4)$$

132 where $\mathbf{1}$ is the column vector with all elements 1, \mathbf{Z} is the $n \times K$ matrix whose (t, A_t) th elements
133 are 1 for $t = 1, \dots, n$ and the rest are 0, $\delta = (\delta_1, \dots, \delta_K)^T \sim MVN(\mathbf{0}, \mathbf{D}_K)$ with $\mathbf{D}_K = \sigma_0^2 \mathbf{I}_K$,
134 $\mathbf{e} = (e_{A_1,1}, \dots, e_{A_n,n})^T \sim MVN(\mathbf{0}, \Sigma_n)$ and Σ_n is the n -dimensional diagonal matrix whose t th
135 element is $\sigma_{A_t}^2$.
136

137 3 RANDOM EFFECT SMAB WITH ARM-DEPENDENT NOISE

138 3.1 H-LIKELIHOOD

141 Lee & Lee (2023) derived the h-likelihood, applicable to arm-independent SMAB (2). Under the
142 arm-dependent random effect SMABs (3) and (4), let the $\delta^c = \mathbf{B}^{1/2}\delta$ where $\mathbf{B} = (\mathbf{Z}^T \Sigma^{-1} \mathbf{Z} + \mathbf{D}_K^{-1})$
143 and $\mathbf{B}^{1/2}$ is computed by Cholesky decomposition. Then, given observed reward \mathbf{r} , the h-likelihood
144 for the random effect δ^c and fixed parameters $\theta = (\mu_0, \sigma_0^2, \sigma_1^2, \dots, \sigma_K^2)^T$ in the n round of play can
145 be defined by

$$146 \quad h(\theta, \delta^c; \mathbf{r}) = -\frac{1}{2}(\mathbf{r} - \mathbf{1}\mu_0 - \mathbf{Z}\mathbf{B}^{1/2}\delta^c)^T \Sigma^{-1}(\mathbf{r} - \mathbf{1}\mu_0 - \mathbf{Z}\mathbf{B}^{1/2}\delta^c) - \frac{1}{2} \log(2\pi\Sigma) \\ 147 \quad -\frac{1}{2}\delta^{cT}\mathbf{B}^{1/2}\mathbf{D}_K^{-1}\mathbf{B}^{1/2}\delta^c - \frac{1}{2} \log(2\pi\mathbf{B}^{1/2}\mathbf{D}_K\mathbf{B}^{1/2}).$$

150 The simple joint maximization of the h-likelihood gives the MLEs for all fixed parameters θ and
151 the BLUPs, $\hat{\delta} = E(\delta | \mathbf{r})|_{\theta=\hat{\theta}}$ for random effects δ . There is no need to develop different estimation
152 procedures for the fixed effect μ_0 , and dispersion parameters $\sigma_0^2, \sigma_1^2, \dots, \sigma_K^2$ and random effects δ .
153

154 3.2 REUCBHL ALGORITHM

156 We propose a UCB algorithm for arm-dependent random-effect SMABs using h-likelihood. UCB
157 algorithm works by associating an upper confidence index to each arm and pulling the arm with the
158 highest index value. The upper index is the sum of mean reward estimate and a weighted standard
159 deviation of that estimate. The proposed ReUCBHL algorithm is given in Table 1. ReUCBHL is
160 initialized by pulling each arm once. The upper confidence index of arm k in round t is calculated
161 as

$$162 \quad U_{k,t} = \hat{\mu}_{k,t} + \hat{c}_{k,t} \quad (5)$$

162 where $\hat{\mu}_{k,t} = \hat{\mu}_{0,t} + \hat{\delta}_{k,t}$, $\hat{c}_{k,t} = \sqrt{a\hat{\tau}_{k,t}^2 \log(t)}$ is the uncertainty bonus, $\hat{\tau}_{k,t}^2 = \widehat{\text{var}}(\hat{\mu}_{k,t})$ and $a > 0$
 163 is a tuning parameter. In each round t , ReUCBHL pulls the arm with the highest index value. If two
 164 or more arms have same highest value, randomly pull one of the arms.
 165

```

1:      Pull each arm once
2:  for each round  $t = k + 1, 2, \dots, n$  do
3:    for  $k = 1, 2, \dots, K$  do
4:       $U_{k,t} \leftarrow \hat{\mu}_{k,t} + \hat{c}_{k,t}$ 
5:    end for
6:    Pull the arm  $A_t = \text{argmax}_{k \in [K]} U_{k,t}$ 
7:    Observe the reward  $r_{A_t, n_{A_t}}$ 
8:    Update all statistics
9:  end for

```

175
 176 Table 1: ReUCBHL algorithm for SMAB
 177

178 We derive an upper bound on the n -round regret of ReUCBHL algorithm given in Table 1. Under
 179 the SMAB model (3), μ_k are random variables. Assuming that $r_{k,j} \sim \mathcal{N}(\mu_k, \sigma_k^2)$, $\mu_k \sim \mathcal{N}(\mu_0, \sigma_0^2)$
 180 and $(\hat{\mu}_{k,t} - \mu_k) | \delta_k \sim \mathcal{N}((w_k - 1)\delta_k, w_k^2 \sigma_k^2 / n_k)$. We introduce a new notion of regret, motivated by
 181 h-likelihood inference in random-effects model. Once the random effects $\delta = (\delta_1, \delta_2, \dots, \delta_K)^T$ are
 182 generated from some distribution, then they are realized as fixed $\delta_0 = (\delta_{01}, \delta_{02}, \dots, \delta_{0K})^T$. Let A_t
 183 be the arm pulled at round t and $A^* = \text{argmax}_{k \in [K]} (\mu_0 + \delta_{0k})$ is the optimal arm under the realized
 184 values δ_0 . In this study, we define regret of a bandit algorithm under random effect model (3) after
 185 n rounds as

$$186 R_n = E \left\{ \sum_{t=1}^n (\mu_{A^*} - \mu_{A_t, t}) \right\},$$

$$187$$

188 where $\mu_{A^*} = \max_{k \in [K]} (\mu_0 + \delta_{0k})$ is a fixed unknown constant given the realized values δ_0 , $A_t =$
 189 $\arg \max_{k \in [K]} (U_{k,t})$ in (5) and the expectation is over randomness in reward.
 190

191 Unlike Bayes regret (Zhu & Kveton, 2022a), this definition does not average over the prior dis-
 192 tribution of $\mu = (\mu_1, \dots, \mu_K)$. Instead, it treats them as realized values of unobservable random
 193 variables. The maximum h-likelihood estimator $\hat{\mu}_{A_t, t}$ is the optimal estimator of the realized value
 194 $\mu_{A_t, t}$, by achieving generalized Cramer-Rao lower bound (Lee & Lee, 2025).

195 **Theorem 1.** *Under the SMAB (3) with arm-dependent noise, the n -round regret of ReUCBHL is*

$$196 R_n \leq C \sqrt{\log n} \frac{\sqrt{\sum_{k=1}^K \sigma_k^2}}{\sigma_0} \sqrt{\sigma_0^2 n + \sum_{k=1}^K \sigma_k^2} + O(\delta_{\max} \sum_{k=1}^K (\sigma_k^2 / \sigma_0^2) \log n) + O(K \sqrt{\log n}),$$

$$197$$

$$198$$

$$199$$

200 where $\delta_{\max} = \max_{k \in [K]} \{\delta_{0k}\}$ and constant $C = 4\sqrt{2}$.
 201

202 3.3 RELATED WORKS
 203

204 • UCB (Auer et al., 2002): UCB algorithm is developed under the fixed effect SMAB (1)
 205 wherein the agent pulls the arm with the highest upper confidence index, using the MLEs.
 206 • BUCB (Kaufmann et al., 2012): Bayesian models assumes a prior distribution on the fixed
 207 parameters θ . BUCB algorithm has been proposed using quantiles of posterior distribution.
 208 • TS (Aggarwal & Navin, 2012; Russo et al., 2018; Zhu & Kveton, 2022a): TS algorithm
 209 chooses the arm with highest expected reward under the posterior distribution.
 210 • ReUCB1 (Zhu & Kveton, 2022a): ReUCB1 stands for ReUCB algorithm under arm-
 211 independent random effect SMAB (2).
 212 • ReUCB2 (Zhu & Kveton, 2022a): ReUCB2 is for arm-dependent random effect SMAB.
 213 However, they used the maximum noise variance as the common noise variance and used
 214 the estimation procedure under the arm-independent random effect SMAB (2). Thus, they
 215 do not fully exploit the advantage of arm-dependent random effect SMAB (3).

216 • ReUCBHL (the proposed algorithm): ReUCBHL is an extension of ReUCB algorithm to
 217 arm-dependent random effect SMAB (3). In this study, ReUCBHL stands for the use of
 218 h-likelihood algorithm under arm-dependent random effect SMAB (3).

219

220 As ReUCBHL uses an upper confidence index, it is similar to UCB algorithm. The difference lies
 221 in the fact that UCB assumes the mean of each arm as fixed and uses MLEs, whereas ReUCBHL
 222 assumes the mean as random and uses h-likelihood estimates, which are the MLEs for fixed param-
 223 eters θ and the BLUPs for random effects. ReUCBHL is closely related to ReUCB because they
 224 are based on random effect models. The difference is that ReUCB1 and ReUCB2 use the method of
 225 moments for variance estimators, the generalized least square estimator for μ_0 and the BLUPs for
 226 random effects, whereas ReUCBHL use maximum h-likelihood estimators for all fixed and random
 227 parameters. Parameter estimation methods provide similar result because ReUCB1 and ReUCBHL
 228 under arm-independent random effect SMAB (2) provide almost identical results. ReUCBHL gives
 229 BLUP estimators for the arm-dependent random effect SMAB. The numerical study shows that
 230 ReUCBHL performs generally the best.

231

232 3.4 NUMERICAL STUDIES FOR SYNTHETIC EXPERIMENTS

233

234 For random effect SMAB (3), we first set $\mu_k \sim \mathcal{N}(1, 0.04)$ with $K = 50$ and $n = 10,000$. Second,
 235 μ_k are drawn from uniform distribution $\mathcal{U}(1, 2)$. Then, we compare the performance of ReUCBHL
 236 in terms of cumulative regret over n rounds of play with four other benchmark algorithms UCB
 237 (Auer et al., 2002), TS (Zhu & Kveton, 2022a), BUCB (Kaufmann et al., 2012) and ReUCB (Zhu
 238 & Kveton, 2022a). ReUCBs with arm-independent and arm-dependent SMAB are denoted as
 239 ReUCB1 and ReUCB2, respectively. Each experiment is based on 1,000 independent simulation
 240 runs. We consider arm-independent and arm-dependent cases to study the performance of various
 241 algorithms. ReUCBHL is generally the best among algorithms.

242 i) Arm-independent case: We assume $\sigma_k^2 = \sigma^2 = 0.25$ for all arms. Zhu & Kveton (2022a) noted
 243 that the Gaussian random-effect model is robust against the misspecification for distribution of
 244 random effects. Figure 1(a) for $\mu_k \sim \mathcal{N}(1, 0.04)$ and Figure 1(b) for $\mu_k \sim \mathcal{U}(1, 2)$ show plots
 245 of cumulative regret as a function of time horizon. Algorithms perform similarly under normal
 246 and uniform assumptions. The performance of TS is better than UCB and BUCB but worse than
 247 ReUCB1, ReUCB2 and ReUCBHL. In arm-independent cases, the ReUCB1 should be the best.
 248 ReUCBHL and ReUCB2 are almost identical to the ReUCB1 in arm-independent cases.

249 ii) Arm-dependent cases: We generate noise variances as $\sigma_k^2 = 0.25 \times k$. The regret performance
 250 of the algorithms is shown in Figure 1(c) for $\mu_k \sim \mathcal{N}(1, 0.04)$ and Figure 1(d) for $\mu_k \sim \mathcal{U}(1, 2)$.
 251 We observe that ReUCBHL outperforms the other algorithms. ReUCB1 works poor under arm-
 252 dependent cases. Thus, the arm-dependent random effect SMAB is preferred to the arm-independent
 253 random effect SMAB.

254

255 3.5 EXPERIMENTS ON REAL DATA

256

257 We apply SMAB algorithm to recommendation problem. We consider MoiveLens dataset (Lam
 258 & Herlocker, 2016), which contains almost 1 million ratings, 4,000 users and 6,000 movies. Our
 259 goal is to identify the movie with highest rating for a specific user group. We preprocess the data
 260 following the Katariya et al. (2017). Our learning problem is formulated as follows. Define a user
 261 group for every unique combination of gender, age group and occupation. The total number of user
 262 groups is 241. For each user group and movie pair, we average the ratings of all the users in that
 263 group that rate the movie and learn a low-rank approximation to the underlying rating matrix M
 264 using the algorithm in Keshavan et al. (2010). The algorithm automatically detects the rank of the
 265 matrix to be 5. We randomly choose $J = 128$ user groups and $K = 128$ movies. The reward for
 266 choosing user group $j \in [J]$ and movie $k \in [K]$ is a categorical random variable over five-star
 267 ratings. We estimate its parameters based on the assumption that the ratings are normally distributed
 268 with a fixed variance, conditioned on the completed ratings. Our results are averaged over 200 runs.
 269 In each run, user j is chosen uniformly at random from [128] and it represents a bandit instance in
 that run. The goal is to learn the most rewarding movie for the user j . We model this problem as a

random-effect SMAB with $K = 128$ arms, one per movie, where the mean reward of movie k by user j is the (j, k) th element $M_{j,k}$ of M .

i) Arm-independent case: Following Zhu & Kveton (2022a), the rewards are generated from $\mathcal{N}(M_{j,k}, 0.796^2)$. Figure 1(e) shows that TS performs better than UCB and BUCB but worse than ReUCB1, REUCB2 and ReUCBHL.

ii) Arm-dependent case: The rewards are generated from $\mathcal{N}(M_{j,k}, 0.796^2 \times \log(k+1))$. The regret performance of the algorithms is shown in Figure 1(f). We observe that ReUCBHL outperforms the other algorithms. ReUCB1 works poor in arm-dependent case. Thus, arm-dependent assumption enhances the performance and ReUCBHL works well in both arm-independent and arm-dependent cases.

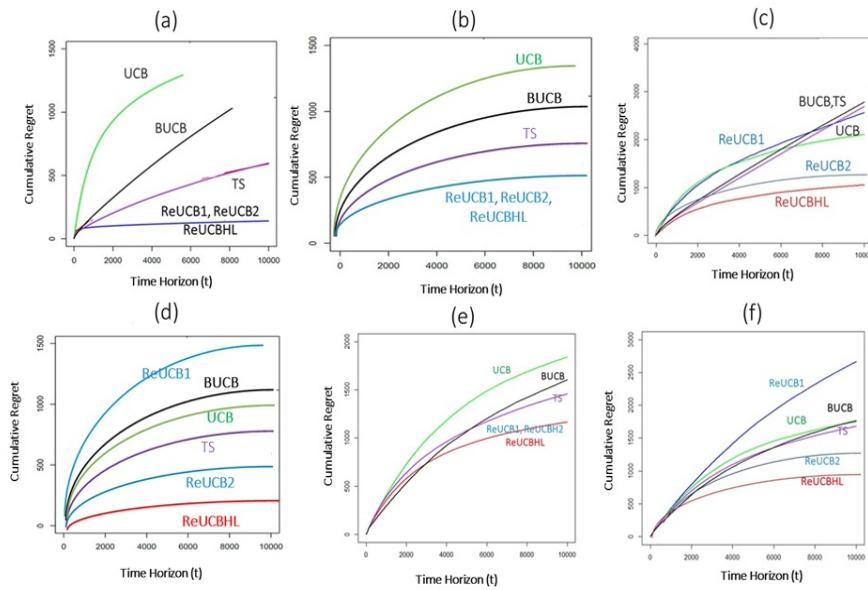


Figure 1: Comparison of the average cumulative regrets (a) $\mu_k \sim \mathcal{N}(1, 0.04)$, (b) $\mu_k \sim \mathcal{U}(1, 2)$ arm-independent noise, (c) $\mu_k \sim \mathcal{N}(1, 0.04)$, (d) $\mu_k \sim \mathcal{U}(1, 2)$ arm-dependent noise in numerical studies for synthetic experiments and (e) arm-independent noise, (f) arm-dependent noise in experiments on real data under the random effect SMAB.

4 MULTIVARIATE SMAB

Lee et al. (2024) introduced a new variant of contextual SMAB where the reward is formulated by multi-dimensional random effect SMAB. The correlations among multiple rewards arise due to the sharing of stochastic coefficients called random effects. To address this setting, they proposed mixed effect contextual UCB (ME-CUCB) algorithm for contextual SMAB with arm independent noise. In this section, we investigate how our algorithm can be extended to enhance the performance of their multi-dimensional contextual SMAB framework.

4.1 MULTI-DIMENSIONAL CONTEXTUAL RANDOM EFFECT SMAB WITH ARM-DEPENDENT NOISE

In the contextual stochastic multi-armed bandit (contextual SMAB) framework, at each round $t \in [n]$, the learner observes a context vector \mathbf{x}_t , pulls an arm $k \in [K]$ conditioned on the context and receives a random reward. The contextual SMAB can generate multi-dimensional rewards from each arm. Recently, contextual multi-dimensional SMABs have attracted increasing interest. We consider a multi-dimensional SMAB with K arms, where pulling an arm $k \in [K]$ generates an m -dimensional column vector of rewards $\mathbf{r}_{k,t}$ at the round $t \in [n]$. The multivariate reward $\mathbf{r}_{k,t}$ can be

correlated at each time point but are independent across time. In this section, we focus on contextual random effect SMAB with arm-dependent noise:

$$\mathbf{r}_{k,t} = \mu_{k,t} + \mathbf{e}_{k,t} \text{ with } \mu_{k,t} = \mathbf{X}_{k,t}\beta + \mathbf{Z}_{k,t}\delta_k \quad (6)$$

where the $m \times p$ matrix $\mathbf{X}_{k,t}$ and the $m \times q$ matrix $\mathbf{Z}_{k,t}$ are the context matrices for the p -dimensional fixed effect β and the q -dimensional random effect $\delta_k \sim \mathbf{N}(\mathbf{0}, \Sigma_0)$ with $q \times q$ covariance matrix Σ_0 , respectively. Both $\mathbf{X}_{k,t}$ and $\mathbf{Z}_{k,t}$ may vary over time t and $\mathbf{e}_{k,t} \sim \mathbf{N}(\mathbf{0}, \sigma_k^2 \mathbf{I}_m)$ is the multi-dimensional noise and $\mu_{k,t}$ is the multi-dimensional random mean reward. Lee et al. (2024) studied random effect SMAB with arm-independent noise, $\sigma_1^2 = \dots = \sigma_K^2 = \sigma^2$.

Lee et al. (2024) used the weighted least squares estimators for fixed effect, the BLUPs for estimating random effects and the EM algorithm for estimating variances. In the h-likelihood approach, the simple joint maximization gives the MLEs for all fixed parameters θ and the BLUPs, $\hat{\delta} = E(\delta|\mathbf{r})|_{\theta=\hat{\theta}}$, for random effects. Furthermore, the h-likelihood algorithm in Section 3.1 is straightforwardly extended to multi-dimensional contextual SMABs by simply replacing $\mathbf{1}\mu_0$ by $\mathbf{X}\beta$ and σ_0^2 by Σ_0 .

4.2 H-LIKELIHOOD

Under the model (6), let the $\delta^c = \mathbf{B}^{1/2}\delta$ where $\mathbf{B} = (\mathbf{Z}^T \Sigma^{-1} \mathbf{Z} + \mathbf{D}^{-1})$. Given mn -dimensional column vector the observed reward $\mathbf{r} = (\mathbf{r}_{A_1,1}^T, \dots, \mathbf{r}_{A_n,n}^T)^T$, the h-likelihood for fixed parameters $\theta = (\beta, \Sigma_0, \sigma_1^2, \dots, \sigma_K^2)$ and the random effect δ^c in the n round of play can be defined as

$$\begin{aligned} h(\theta, \delta^c; \mathbf{r}) &= -\frac{1}{2}(\mathbf{r} - \mathbf{X}\beta - \mathbf{Z}\mathbf{B}^{-1/2}\delta^c)^T \Sigma^{-1}(\mathbf{r} - \mathbf{X}\beta - \mathbf{Z}\mathbf{B}^{-1/2}\delta^c) - \frac{1}{2} \log(2\pi\Sigma) \\ &\quad - \frac{1}{2}\delta^{cT}\mathbf{B}^{-1/2}\mathbf{D}^{-1}\mathbf{B}^{-1/2}\delta^c - \frac{1}{2} \log(2\pi\mathbf{B}^{1/2}\mathbf{D}\mathbf{B}^{1/2}), \end{aligned}$$

where $\mathbf{X} = (\mathbf{X}_{A_1,1}^T, \dots, \mathbf{X}_{A_n,n}^T)^T$ is the $mn \times p$ context matrix for β , $\mathbf{Z} = (\mathbf{Z}_{A_1,1}^T \otimes \mathbf{a}_{A_1}^T, \dots, \mathbf{Z}_{A_n,n}^T \otimes \mathbf{a}_{A_n}^T)^T$ is the $mn \times qK$ context matrix for δ , where \mathbf{a}_{A_t} is the q -dimensional column vector with value 1 for A_t th element and 0 for otherwise. The qK dimensional random effects $\delta = (\delta_1^T, \dots, \delta_K^T)^T \sim MVN(\mathbf{0}, \mathbf{D})$ with the $qK \times qK$ matrix $\mathbf{D} = \Sigma_0 \otimes \mathbf{I}_K$, the mn dimensional noise $\mathbf{e} = (\mathbf{e}_{A_1,1}^T, \dots, \mathbf{e}_{A_n,n}^T)^T \sim MVN(\mathbf{0}, \Sigma)$ and the $mn \times mn$ matrix $\Sigma = \mathbf{I}_m \otimes \text{diag}\{\sigma_{A_1}^2, \dots, \sigma_{A_n}^2\}$. Here \otimes denotes Kronecker product. The simple joint maximization gives the MLEs for all fixed parameters θ and the BLUPs, $\hat{\delta} = E(\delta|\mathbf{r})$, for random effects.

4.3 REUCBHL ALGORITHM

We propose the ReUCBHL algorithm for contextual random effect SMAB, which is presented in Table 2. Fixed parameters θ and random effects δ are estimated by maximizing the h-likelihood. In round t , the algorithm chooses an arm $A_t = \text{argmax}_{k \in [K]} \mathbf{a}^T \mathbf{U}_{k,t}$ where $\mathbf{a} = (1/m)\mathbf{1}_m$ and $\mathbf{U}_{k,t}$ is the m -dimensional column vector of upper confidence bound which is given by

$$\mathbf{U}_{k,t} = \mathbf{X}_{k,t}\hat{\beta}_t + \mathbf{Z}_{k,t}\hat{\delta}_k + \hat{\mathbf{c}}_{k,t} = \hat{\mu}_{k,t} + \hat{\mathbf{c}}_{k,t}, \quad (7)$$

where $\hat{\mathbf{c}}_{k,t}$ is the m -dimensional column vector whose j th element is the $\sqrt{a\hat{\tau}_{k,t,j}^2 \log(t)}$, a is the tuning parameter, $\hat{\tau}_{k,t,j}^2 = \widehat{\text{var}}(\hat{\mu}_{k,t,j})$ and $\hat{\mu}_{k,t,j}$ is the j th element of $\hat{\mu}_{k,t}$.

Similar to univariate SMAB, in this study we define regret for multi-dimensional SMAB. Given the selected arm k , its random effect is realized as fixed δ_{0k} . Lee et al. (2024) used the classical regret based on marginal model $\mathbf{X}_{k,t}\beta$ without accounting for arm effect δ_{0k} . The optimal arm in the t th round is defined as the arm having $A_t^* = \arg \max_{k \in [K]} (\mathbf{a}^T \mathbf{X}_{k,t}\beta + \mathbf{a}^T \mathbf{Z}_{k,t}\delta_{0k})$ given contexts $\mathbf{X}_{k,t}$ and $\mathbf{Z}_{k,t}$. Then, the total regret in n rounds of play is defined by

$$R_n = E \left\{ \sum_{t=1}^n (\mu_{A_t^*,t} - \mu_{A_t,t}) \right\},$$

where $\mu_{A_t^*,t} = \max_{k \in [K]} (\mathbf{a}^T \mathbf{X}_{k,t}\beta + \mathbf{a}^T \mathbf{Z}_{k,t}\delta_{0k})$ is a fixed unknown constant given contexts $(\mathbf{X}_{k,t}, \mathbf{Z}_{k,t})$, $A_t = \arg \max_{k \in [K]} (\mathbf{U}_{k,t})$ in (7). Difference between random effect SMAB (3) and

```

378 1: INPUT: number of random exploration rounds  $d$  and tuning parameter  $a$ .
379 2: for each round  $t \leq d$  do
380 3:   Sample an arm  $A_t \in [K]$  randomly and observe  $\mathbf{r}_{k,A_t}$ .
381 4:   end for
382 5:   Calculate  $\hat{\theta}_d$ .
383 6:   for  $t > d$  do
384 7:     Observe the contexts  $\{\mathbf{X}_{t,k}\}$ ,  $\{\mathbf{Z}_{t,k}\}$  and compute  $\hat{\theta}_t \in H_t$ 
385 8:     Compute  $U_{k,t}$  for each arm  $k$  using equation (6)
386 9:     Pull the arm  $A_t = \text{argmax}_{k \in [K]} a^T \mathbf{U}_{k,t}$  and observe  $\mathbf{r}_{k,A_t}$ 
387 10:    end for

```

Table 2: ReUCBHL algorithm for multivariate SMAB

contextual random effect SMAB (6) is that $\mu_{A_{t,t}^*,t}$ changes over time t in the contextual model. We develop n round regret bound for ReUCBHL algorithm in Table 2.

Theorem 2. *Under the multi-dimensional contextual SMAB (6) with arm-dependent noise, the n -round regret of ReUCBHL is*

$$R_n \leq \sigma_{\max} \xi (\sqrt{2d(p+q+K)n \log(n)} + K \sqrt{2/\pi}),$$

where $\sigma_{\max}^2 = \max_{k \in [K]} \sigma_k^2$, $\xi = \max_{k \in [K], t \in [n]} \sqrt{\mathbf{a}^T (\mathbf{X}_{k,t} \mathbf{X}_{k,t}^T + \mathbf{Z}_{k,t} \Sigma_0 \mathbf{Z}_{k,t}^T) \mathbf{a}} / \sigma_k^2$ and $d = \log(1 + \xi^2 nm / (p+q+K)) / \log(1 + \xi^2 / m)$.

4.4 RELATED WORKS

There are several variants of SMABs that allow for multi-dimensional reward such as combinatorial SMAB (Chen et al., 2013; Qin et al., 2014; Li et al., 2016) and multi-objective SMAB (Drugan & Nowe, 2013). However, they did not introduce the correlation structure. It was Lee et al. (2024), who introduced the correlation structure using the random effect model.

- C2UCB (Qin et al., 2014): Chen et al. (2013) introduced combinatorial UCB algorithm for analyzing the regret performance. Qin et al. (2014) proposed C2UCB (contextual combinatorial UCB) algorithm for contextual SMABs by extending the work of Chen et al. (2013).
- ME-CUCB (Lee et al., 2024): Lee et al. (2024) used weighted least squares estimators for fixed effects β , expectation-maximization algorithm for variance parameters and BLUPs for δ .

4.5 NUMERICAL STUDIES FOR RANDOM INTERCEPT MODEL

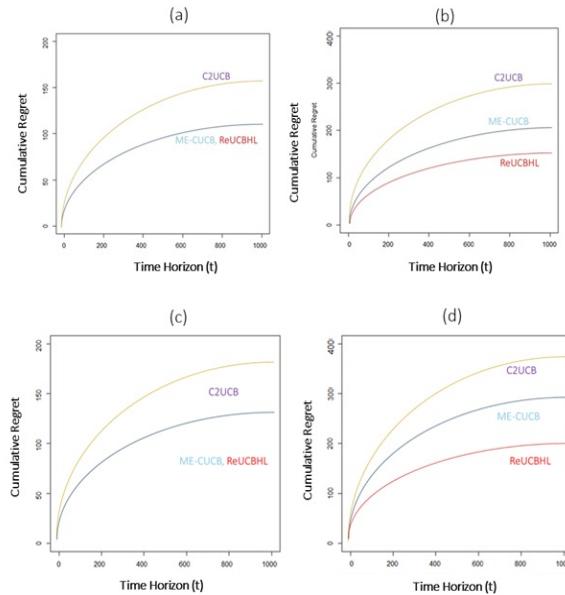
For multivariate reward model (6), we consider numerical study when $\mathbf{X}_{k,t} = \mathbf{1}_m$ and $\mathbf{Z}_{k,t} = \mathbf{I}_m$ with $m = 10$, $K = 100$ and $n = 1,000$, where entries in $\mathbf{X}_{k,t}$ and $\mathbf{Z}_{k,t}$ do not depend on t . By setting $\beta = 1$ and $\Sigma_0 = \mathbf{I}_m$, we compare the ReUCBHL algorithm with C2UCB (Qin et al., 2014) and ME-CUCB (Lee et al., 2024) algorithms in terms cumulative regrets over n rounds of play. Each simulation experiment is averaged over 200 independent runs.

- Arm-independent case: We assume that the reward noise $\sigma_k^2 = 1$ is constant for all arms k . Figure 2(a) shows a plot of average of m cumulative regrets as a function of time horizon. In this case, ReUCBHL and ME-CUCB perform almost identically and perform better than C2UCB.
- Arm-dependent case: We assume $\sigma_k^2 = \log(k+1)$. The regret performance of the algorithms is shown in Figure 2(b). We observe that ReUCBHL outperforms the other algorithms. Arm-dependent assumption enhances the performance of ME-CUCB algorithm. The ReUCBHL performs the best in the multi-dimensional contextual SMABs.

432 4.6 NUMERICAL STUDIES FOR RANDOM SLOPE MODEL
433

434 Following Lee et al. (2024), we consider the $p = 10$ -dimensional context matrix $\mathbf{X}_{k,t}$ whose the
435 j th row columns $\mathbf{x}_{k,t}^{(j)}$ are generated by $\mathcal{N}(0, \mathbf{I}_p)$ and random coefficient model $\mathbf{Z}_{k,t} = \mathbf{X}_{k,t} \otimes \mathbf{1}_m^T$
436 that changes over time t as $\mathbf{X}_{k,t}$. By setting $\beta = 1$ and $\Sigma_0 = \mathbf{I}_{pm}$ with $m = 10$, $K = 100$ and
437 $n = 1,000$, we compare the performance of the proposed ReUCBHL algorithm with C2UCB (Qin
438 et al., 2014) and ME-CUCB (Lee et al., 2024) algorithms in terms cumulative regrets over n rounds
439 of play. Each simulation experiment is averaged over 200 independent runs.

440 i) Arm-independent case: We assume that the reward noise $\sigma_k^2 = 1$ is constant for all arms k . Figure
441 2(c) shows a plot of average of m cumulative regrets as a function of time horizon. Here ReUCBHL
442 and ME-CUCB perform almost identical and are better than C2UCB.

443 ii) Arm-dependent case: Consider $\sigma_k^2 = \log(k + 1)$. The regret performance of the algorithms is
444 shown in Figure 2(d). Again ReUCBHL outperforms the rest. Thus, the ReUCBHL algorithm is
445 strongly recommended for multivariate contextual SMABs.

468 Figure 2: Comparison of average of cumulative regrets (a) arm-independent, (b) arm-dependent
469 noise for the intercept-only model and (a) homogeneous, (b) arm-dependent noise for the intercept-
470 only model for the model under the multivariate contextual random effect SMAB.

471
472 5 CONCLUSION
473

474 The UCB algorithm remains a cornerstone in reinforcement learning. Recently, random-effect
475 bandit models have been introduced to exploit correlation structure across arms. However, existing
476 works have focused on the SMABs with arm-independent noise variances. In practice, arm-
477 dependent noise is ubiquitous and developing efficient algorithms under such setting is challenging
478 due to difficulties in parameter estimation. In this study, we develop ReUCB algorithm for random
479 effect SMABs with arm-dependent noises, which is easily implementable by simply minimizing the
480 loss function (negative of h-likelihood) and computationally as fast as other algorithms. Further-
481 more, our experimental studies show that it outperforms all the existing state-of-art algorithms for
482 SMABs and multivariate contextual SMABs. We should always use ReUCBHL algorithm because
483 there is no loss in assuming arm-dependent noise as the regret is almost identical to the best algo-
484 rithm in arm-independent cases. In arm-dependent cases, arm-independent random effect SMAB
485 could be worse than TS. Throughout the studies, arm-dependent random effect SMAB always out-
486 performs all the existing state-of-arts algorithms.

486 REFERENCES

487

488 Yasin Abbasi-Yadkori, David Paul, and Csaba Szepesvari. Improved algorithms for linear stochastic
489 bandits. *Advances in Neural Information Processing Systems*, 24:2312–2320, 2011.

490 Marc Abeille and Alessandro Lazaric. Linear thompson sampling revisited. In *Proceedings of the
491 20th International Conference on Artificial Intelligence and Statistics*, volume 54, pp. 176–184.
492 PMLR, 2017.

493 Shipra Aggarwal and Goyal Navin. Analysis of thompson sampling for the multi-armed bandit
494 problem. In *Conference On Learning Theory*. 2012.

495 Shipra Aggarwal and Goyal Navin. Further optimal regret bounds for thompson sampling. In
496 *Proceedings of the 16th International Conference on Artificial Intelligence and Statistics*, pp.
497 99–107. 2013.

498 Imad Aouali, Branislav Kveton, and Sumeet Katariya. Mixed-effect thompson sampling. In
499 *Proceedings of the 26th International Conference on Artificial Intelligence and Statistics*, volume
500 206, pp. 2087–2115. PMLR, 2023.

501 Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
502 problem. *Machine Learning*, 47:235–256, 2002.

503 Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework, re-
504 sults and applications. In *Proceedings of the 30th International Conference on Machine Learning*,
505 volume 28, pp. 151–159. PMLR, 2013.

506 Wesley Cowan, Junya Honda, and Michael N. Katehakis. Normal bandits of unknown means and
507 variances. *Journal of Machine Learning Research*, 18:1–28, 2018.

508 Varsha Dani, Thomas P. Hayes, and Sham M. Kakade. Stochastic linear optimization
509 under bandit feedback. In *21st Annual Conference on Learning Theory* pp. 355–366.
510 http://repository.upenn.edu/statistics_papers/101, 2008.

511 Madalina M. Drugan and Ann Nowe. Designing multi-objective multi-armed bandits algorithms: A
512 study. In *The 2013 International Joint Conference on Neural Networks (IJCNN)*, pp. 1245–1253.
513 IEEE, 2013.

514 Aurelien Garivier and Olivier Cappe. The kl-ucb algorithm for bounded stochastic bandits and beyond.
515 In *Proceeding of the 24th Annual Conference on Learning Theory* pp. 359–376. PMLR, 2011.

516 Susobhan Ghosh, Yongyi Guo, Pei-Yao Hung, Lara Coughlin, Erin Bonar, Inbal Nahum-Shani, Mau-
517 reen Walton, and Susan Murphy. Rebandit: Random effects based online rl algorithm for reducing
518 cannabis use. In *Proceedings of the Thirty-Third International Joint Conference on Artificial Intel-
519 ligence (IJCAI-24)*, pp. 7278 – 7286. IJCAI, 2024.

520 Sumit Katariya, Branislav Kveton, Csaba Szepesvari, Claire Vernade, and Zheng Wen. Stochastic
521 rank-1 bandits. In *Proceedings of the 20th International Conference on Artificial Intelligence and
522 Statistics*. PMLR, 2017.

523 Emilie Kaufmann, Olivier Cappe, and Aurelien Garivier. On bayesian upper confidence bounds for
524 bandit problems. In *Proceedings of the 15th International Conference on Artificial Intelligence and
525 Statistics*, volume 22, pp. 592–600. PMLR, 2012.

526 Raghunandan H. Keshavan, Andrea Montanari, and Sewoong Oh. Matrix completion from noisy
527 entries. *Journal of Machine Learning Research*, 11:2057–2078, 2010.

528 Johannes Kirschner and Andreas Krause. Information directed sampling and bandits with het-
529 eroscedastic noise. In *Proceedings of the 31st Conference On Learning Theory*, volume 75, pp.
530 358–384. PMLR, 2018.

531 T. L. Lai and Herbert Robbins. Asymtotically efficient adaptive allocation rule. *Advances in Applied
532 Mathematics*, 6:4–22, 1985.

540 Shyong Lam and Jon Herlocker. MovieLens dataset. <http://grouplens.org/datasets/movielens/>, 2016.
 541

542 Hangbin Lee and Youngjo Lee. H-likelihood approach to deep neural networks with temporal-spatial
 543 random effects for high-cardinality categorical features. In *Proceedings of the 40th International
 544 Conference on Machine Learning*, 202, pp. 18974–18987. PMLR, 2023.

545 Hangbin Lee and Youngjo Lee. Statistical inference for random unknowns via modifications of ex-
 546 tended likelihood. *arXiv:2310.09955v3*, pp. 1–37, 2025.
 547

548 Kyungbok Lee, Myunghee Cho Paik, Min-hwan Oh, and Gi-Soo Kim. Mixed-effects contextual ban-
 549 dits. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38(12), pp. 13409–
 550 13417. PMLR, 2024.

551 Youngjo Lee and John A. Nelder. Hierarchical generalized linear models. *Journal of the Royal Statis-
 552 tical Society Series B: Statistical Methodology*, 58(4):619–656, 1996.
 553

554 Youngjo Lee and John A. Nelder. Generalized linear models for the analysis of quality-improvement
 555 experiments. *Canadian Journal of Statistics*, 26(4):619–656, 1998.
 556

557 Youngjo Lee, John A. Nelder, and Yudi Pawitan. *Generalized Linear Models with Random Effects*.
 558 Chapman and Hall/CRC, 2016.

559 Shuai Li, Baoxiang Wang, Shengyu Zhang, and Wei Chen. Contextual combinatorial cascading ban-
 560 dits. In *Proceedings of the 33rd International Conference on International Conference on Machine
 561 Learning*, pp. 1245–1253. PMLR, 2016.
 562

563 Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application on
 564 diversified online recommendation. In *Proceedings of the 2014 SIAM International Conference on
 565 Data Mining*, pp. 461–469. SIAM, 2014.

566 Daniel Russo and Benjamin Van Roy. An information-theoretic analysis of thompson sampling. *Jour-
 567 nal of Machine Learning Research*, 17(68):1–30, 2016. URL <http://jmlr.org/papers/v17/14-087.html>.
 568

569 Daniel J. Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on
 570 thompson sampling. *Foundations and Trends in Machine Learning*, 1:1–96, 2018.
 571

572 Heyang Zhao, Dongruo Zhou, Jiafan He, and Quanquan Gu. Bandit learning with
 573 general function classes: Heteroscedastic noise and variance-dependent regret bounds.
 574 <https://arxiv.org/pdf/2202.13603v1.pdf>, 2022.

575

576 Rong Zhu and Branislav Kveton. Random effect bandits. In *Proceedings of the 25th International
 577 Conference on Artificial Intelligence and Statistics*, pp. 3091–3107. PMLR, 2022a.
 578

579 Rong Zhu and Branislav Kveton. Robust contextual linear bandits. *arXiv:2210.14483*, pp. 1–17,
 580 2022b.
 581

582 **APPENDIX A**
 583

584 Under the model (2), the (log-)h-likelihood (Lee & Nelder, 1996) of the fixed parameters $\theta = (\mu_0,$
 585 $\sigma_0^2, \sigma_1^2, \dots, \sigma_K^2)^T$ and the random effect δ for the observed reward \mathbf{r} in the n round of play is defined
 586 by
 587

588

$$589 h(\theta, \delta; \mathbf{r}) = -\frac{1}{2}(\mathbf{r} - \mu_0 \mathbf{1} - \mathbf{Z}\delta)^T \Sigma^{-1}(\mathbf{r} - \mu_0 \mathbf{1} - \mathbf{Z}\delta) - \frac{1}{2} \log(2\pi\Sigma) - \frac{1}{2} \delta^T \mathbf{D}^{-1} \delta - \frac{1}{2} \log(2\pi\mathbf{D}).$$

590 The marginal-(log)-likelihood ℓ can be obtained from h by integrating out the random effect,
 591

592

$$593 \ell(\theta; \mathbf{r}) = \log \int \exp\{h(\theta, \delta; \mathbf{r})\} d\delta.$$

594 Optimization of the joint likelihood $h(\theta, \delta; \mathbf{r})$ gives MLEs, maximizing $\ell(\theta; \mathbf{r})$ for θ , and the BLUPs
595 for δ . However, it cannot give MLEs for the variances $(\sigma_0^2, \sigma_1^2, \dots, \sigma_K^2)$. Recently, Lee & Lee (2023)
596 suggested to use the new h-likelihood based on the canonical scale of random effects $\delta^c = \mathbf{A}^{1/2}\delta$,
597

$$598 \quad h(\theta, \delta^c; \mathbf{r}) = \log f(\mathbf{r}|\delta^c) + \log f(\mathbf{c}) = \ell(\theta) + \log f(\delta^c|\mathbf{r}).$$

599 Following Lee & Lee (2023), since $\delta|\mathbf{r}$ has the multivariate normal distribution
600

$$601 \quad \delta|\mathbf{r} \sim N(\mathbf{A}^{-1}\mathbf{Z}^T\boldsymbol{\Sigma}^{-1}(\mathbf{r} - \mu_0\mathbf{1}), \mathbf{A}^{-1}),$$

602 we have

$$603 \quad \delta^c|\mathbf{r} \sim N(\mathbf{A}^{-1/2}\mathbf{Z}^T\boldsymbol{\Sigma}^{-1}(\mathbf{r} - \mu_0\mathbf{1}), \mathbf{I}_K),$$

605 which leads to $\tilde{\delta}^c = \mathbf{A}^{-1/2}\mathbf{Z}^T\boldsymbol{\Sigma}^{-1}(\mathbf{r} - \mu_0\mathbf{1})$. Thus, the resulting predictive likelihood becomes
606 constant

$$607 \quad \log f(\tilde{\delta}^c|\mathbf{r}) = -\frac{1}{2} \log |2\pi I_K| = -\frac{K}{2} \log(2\pi).$$

609 Thus, $\delta^c = \mathbf{A}^{1/2}\delta$ is the canonical scale to give the h-likelihood,
610

$$611 \quad h(\theta, \delta; \mathbf{r}) = -\frac{1}{2}(\mathbf{y} - \mu_0\mathbf{1} - \mathbf{Z}\mathbf{A}^{-1/2}\delta^c)^T\boldsymbol{\Sigma}^{-1}(\mathbf{y} - \mu_0\mathbf{1} - \mathbf{Z}\mathbf{A}^{-1/2}\delta^c) - \frac{1}{2} \log(2\pi\boldsymbol{\Sigma}) \\ 612 \quad - \frac{1}{2}\delta^{cT}\mathbf{A}^{-1/2}\mathbf{D}^{-1}\mathbf{A}^{-1/2}\delta^c - \frac{1}{2} \log(2\pi\mathbf{A}^{1/2}\mathbf{D}\mathbf{A}^{1/2}),$$

615 whose joint maximization gives the MLEs for the whole parameters θ and BLUPs for the random
616 effect δ .
617

618 APPENDIX B

619 Proof of Theorem 1.

622 We derive regret bound given fixed parameters $\theta = (\mu_0, \sigma_0^2, \sigma_1^2, \dots, \sigma_K^2)^T$ for the random effect
623 SMAB (3). At time t , arm k is pulled $n_{k,t} \geq 1$ times with sample mean $\bar{r}_k = \sum_{t=1}^{n_{k,t}} r_{k,t}/n_{k,t}$ and
624 variance $d_{k,t} = \sigma_k^2/n_{k,t}$. The h-likelihood estimator of μ_k is

$$626 \quad \hat{\mu}_{k,t} = w_{k,t}\bar{r}_{k,t} + (1 - w_{k,t})\mu_0,$$

627 where $w_{k,t} = \sigma_0^2/(\sigma_0^2 + d_{k,t})$. Then, we have
628

$$629 \quad \hat{\mu}_{k,t} - \mu_k = S_{k,t} + B_{k,t},$$

631 where $S_{k,t} = w_{k,t}(\bar{r}_{k,t} - \mu_k)$ and $B_{k,t} = -(1 - w_{k,t})\delta_{0k}$. So, $S_{k,t} \sim N(0, \tau_{k,t}^2)$ with

$$632 \quad \tau_{k,t}^2 = w_{k,t}^2 d_{k,t} = \frac{\sigma_0^4 \sigma_k^2 n_{k,t}}{(\sigma_0^2 n_{k,t} + \sigma_k^2)^2}.$$

635 For any $x > 0$, the tail-probability is
636

$$637 \quad \Pr(|\hat{\mu}_{k,t} - \mu_k - B_{k,t}| \geq x) \leq 2 \exp(-x^2/2\tau_{k,t}^2).$$

639 Set the confidence radii of arm k in round t as

$$640 \quad c_{k,t} = \tau_{k,t} \sqrt{a \log t} = \tau_{k,t} \sqrt{2 \log(1/\alpha_t)}$$

642 where $\alpha_t = t^{-a/2}$ and a is the tuning parameter. Taking $a = 2$, we have
643

$$644 \quad \Pr(|\hat{\mu}_{k,t} - \mu_k - B_{k,t}| \geq c_{k,t}) \leq 2t^{-1}.$$

645 Define the global event

$$646 \quad G_t = \bigcap_{k=1}^K \{|\hat{\mu}_{k,t} - \mu_k - B_{k,t}| \leq c_{k,t}\}.$$

648 This ensures that confidence intervals hold for both the played arm and the oracle arm simultaneously.
649 Let G_t^c denote the complement of G_t . Then,
650

$$\begin{aligned} \Pr(G_t^c) &\leq 2Kt^{-1}, \\ \sum_{t=1}^n \Pr(G_t^c) &\leq 2K(1 + \log n). \end{aligned}$$

655 At round t , ReUCBHL chooses $A_t = \arg \max_k (\hat{\mu}_{k,t} + \hat{c}_{k,t})$. For the optimal arm $A^* =$
656 $\arg \max_k \mu_k$, we have
657

$$\mu_{A^*} - \mu_{A_t} = (\mu_{A^*} - \hat{\mu}_{A_t,t} - \hat{c}_{A_t,t}) + (\hat{\mu}_{A_t,t} + \hat{c}_{A_t,t} - \mu_{A_t}).$$

659 On G_t ,

$$\begin{aligned} \mu_{A^*} - \hat{\mu}_{A_t,t} - c_{A_t,t} &\leq -B_{A^*,t}, \\ \hat{\mu}_{A_t,t} + c_{A_t,t} - \mu_{A_t} &\leq 2c_{A_t,t} + B_{A_t,t}. \end{aligned}$$

663 Thus,

$$\mu_{A^*} - \mu_{A_t} \leq 2c_{A_t,t} + (B_{A_t,t} - B_{A^*,t}).$$

666 On G_t^c we use the trivial bound $\mu_{A^*} - \mu_{A_t,t} \leq \Delta_{\max}$, where Δ_{\max} is the maximum gap. We assume
667 that the rewards $r_{k,t}$ are bounded in $[0,1]$. Taking expectations and summing,
668

$$\begin{aligned} R_n &= \sum_{t=1}^n E(\mu_{A^*} - \mu_{A_t}) \\ &\leq 2 \sum_{t=1}^n E(c_{A_t,t}) + \sum_{t=1}^n E(B_{A_t,t} - B_{A^*,t}) + \Delta_{\max} \sum_{t=1}^n \Pr(G_t^c). \end{aligned}$$

669 For all k, t ,

$$\tau_{k,t}^2 = \frac{\sigma_0^4 \sigma_k^2 n_{k,t}}{(\sigma_0^2 n_{k,t} + \sigma_k^2)^2} \leq \frac{\sigma_0^2 \sigma_k^2}{\sigma_0^2 n_{k,t} + \sigma_k^2}.$$

670 Therefore,

$$c_{k,t} \leq \sqrt{2 \log n} \sqrt{\frac{\sigma_0^2 \sigma_k^2}{\sigma_0^2 n_{k,t} + \sigma_k^2}}.$$

671 Grouping by pulls of arm k and bounding by an integral,

$$\sum_{s=1}^{T_k(n)} c_{k,s} \leq \sqrt{8 \log n} \frac{\sigma_k}{\sigma_0} (\sqrt{\sigma_0^2 T_k(n) + \sigma_k^2} - \sigma_k) + O(\sqrt{\log n}),$$

672 where $T_k(n)$ is the total number of pulls of arm k . Sum across arms and apply Cauchy–Schwarz
673 inequality,

$$\sum_{t=1}^n c_{A_t,t} \leq \sqrt{8 \log n} \frac{\sqrt{\sum_{k=1}^K \sigma_k^2}}{\sigma_0} \sqrt{\sigma_0^2 n + \sum_{k=1}^K \sigma_k^2} + O(K \sqrt{\log n}).$$

674 Since $B_{k,t} = -(1 - w_{k,t})\delta_k = -\frac{d_{k,t}}{\sigma_0^2 + d_{k,t}}\delta_k$,

$$\sum_{s=1}^{T_k(n)} |B_{k,s}| \leq |\delta_k| \sum_{s=1}^{T_k(n)} \frac{\sigma_k^2}{\sigma_0^2 s + \sigma_k^2} = O(|\delta_k| + |\delta_k| \frac{\sigma_k^2}{\sigma_0^2} \log T_k(n)).$$

675 Thus,

$$|\sum_{t=1}^n (B_{A_t,t} - B_{A^*,t})| \leq O(\delta_{\max} \frac{\sum_{k=1}^K \sigma_k^2}{\sigma_0^2} \log n),$$

702 with $\delta_{\max} = \max_k |\delta_{0k}|$. For any fixed realization $\delta_0 = (\delta_{01}, \dots, \delta_{0K})$,

$$704 \quad R_n \leq C \sqrt{\log n} \frac{\sqrt{\sum_{k=1}^K \sigma_k^2}}{\sigma_0} \sqrt{\sigma_0^2 n + \sum_{k=1}^K \sigma_k^2} + O(\delta_{\max} \sum_{k=1}^K (\sigma_k^2 / \sigma_0^2) \log n) + O(K \sqrt{\log n}),$$

707 where, constant $C = 4\sqrt{2}$. This completes the proof.

709 **Proof of Theorem 2.**

710 The model (6) can be written by

$$712 \quad r_{k,t}^* = \mu_{k,t}^* + e_{k,t}^*$$

714 with $r_{k,t}^* = \mathbf{a}^T \mathbf{r}_{k,t} / \sigma_k$, $\mu_{k,t}^* = \mathbf{a}^T \mu_{k,t} / \sigma_k$ and $e_{k,t}^* = \mathbf{a}^T \mathbf{e}_{k,t} / \sigma_k \sim \mathcal{N}(0, 1/m)$. Let $\sigma_{\max}^2 =$
715 $\max_{k \in [K]} \{\sigma_k^2\}$. Because $\sigma_* / \sigma_k \geq 1$ for all k , then the n -round regret can be obtained by
716

$$717 \quad R_n \leq E \left\{ \sum_{t=1}^n \left(\frac{\sigma_{\max}}{\sigma_k} \mu_{A_t^*} - \frac{\sigma_{\max}}{\sigma_k} \mu_{A_t,t} \right) \right\} = \sigma_{\max} R_n^*.$$

720 where $R_n^* = E \left\{ \sum_{t=1}^n \left(\frac{1}{\sigma_k} \mu_{*,t} - \frac{1}{\sigma_k} \mu_{A_t,t} \right) \right\}$. When we take expectation over $\mu_{A_t,t}$, R_n^* becomes
721 the Bayes regret. For simplicity of calculation, we use Bayes regret to analyze regret bound. Following
722 **Theorem 1** of Zhu & Kveton (2022b), we have
723

$$725 \quad R_n^* \leq \xi \sqrt{2d(p+q+K)n \log(n)} + \sqrt{2/\pi} \xi K.$$

726 This completes the proof.

727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755