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Abstract

Table-based reasoning has shown remarkable001
progress in combining deep models with dis-002
crete reasoning, which requires reasoning over003
both free-form natural language (NL) ques-004
tions and semi-structured tabular data. How-005
ever, previous table reasoning solutions only006
consider small-sized tables and exhibit limi-007
tations in handling larger tables. In addition,008
most existing methods struggle to reason over009
complex questions since they lack essential010
information or they are scattered in different011
places. To alleviate these challenges, we pro-012
pose TAP4LLM as a versatile pre-processing013
toolbox to generate table prompts through (1)014
table sampling, (2) table augmentation, and015
(3) table packing while balancing the token016
allocation trade-off. In each module, we col-017
lect and design several common methods for018
usage in various scenarios (e.g., speed over019
accuracy). We also provide a comprehensive020
evaluation on performance of each components021
inside TAP4LLM and show that our method022
improves LLMs’ reasoning capabilities in vari-023
ous tabular tasks and enhances the interaction024
between LLMs and tabular data by employing025
effective pre-processing. The code of this pa-026
per will be released at https://anonymous.027
4open.science/r/TableProvider-4CC3.028

1 Introduction029

The extensive and complex characteristics of data030

are commonly represented in the format of struc-031

tured data. Table is one of those fundamental and032

widely used semi-structured data types in relational033

databases, spreadsheet applications, and program-034

ming languages that handle data for various do-035

mains, including financial analysis (Zhang et al.,036

2020; Li et al., 2022), risk management (Babaev037

et al., 2019), healthcare analytics (Vamathevan038

et al., 2019), etc. Reasoning over tabular data is039

a fundamental aspect of natural language under-040

standing (NLU) and information retrieval (IR), and041

has several downstream tasks, such as Table-based 042

Question Answering (TQA) (Chen et al., 2020b; 043

Iyyer et al., 2017; Ye et al., 2023a; Cheng et al., 044

2023), Table-based Fact Verification (TFV) (Chen 045

et al., 2020a; Xie et al., 2022; Günther et al., 046

2021), Table-to-Text (Wang et al., 2021b), Text- 047

to-SQL (Yu et al., 2018), Column Type & Rela- 048

tion Classification (Iida et al., 2021; Deng et al., 049

2020),etc. 050

Utterance: Which category achieves the most sales in 2016?  

(1) Table Sampling

Utterance (user query)

Output Prompt:
<table id = “user_table_1” range = “A1:G16”>
   <tr row = 1>
       <th role = “dimension”> Year </th>
        …
   <th row = 2>
        <td>2016</td>
        …
</table>

(2) Table Augmentation 

<augmentedInfo> 
The table is sampled from the user table 
of 15 rows and 5 columns with headers 
[“Year”,“Category”,”Product”…]
The range of ”Year” column is from 
2015 to 2017 with category Dimension…
</augmentedInfo>

Input Control: HTML(output form), 512(Token Limit)

(3) Table Packing & Serialization 

Year Category Product Sales Rating
2016 Components Chains $20,000 75%

2017 Clothing Bib-Shorts $4,000 22%

2016 Clothing Socks $2,300 28%

2016 Accessories Helmets $3,400 36%

2017 Components Brakes $5,400 38%
… … … … …

R1

R2

R3

R4

R5

Sampled Rows {R1,R3,R4…}

Sampled column headers 

Year Category Sales

2016

2016
2016

Components
Clothing

Accessories

$20,000
$2,300
$3,400

Components

Clothing
Accessories

…

$20,000

…

$4,000
$2,300

15 rows, 5 columns, headers are [“Year”, …]

…

Augmented info

• Year: The year in which sales data is recorded or reported.

• Category: The classification or grouping of sales products.

• Sales: The total revenue generated from the sale of products.
…

D
im

ension

M
easure

Sampled Table:
Referred from Wiki

Figure 1: Demonstration of the Three TAP4LLM Modules.
(1) Table sampling: sample most relevant content. (2) Table
augmentation: retrieve and add extra information. (3) Table
packing: serialize the sampled table and augmented informa-
tion into a string while controlling the token allocation.

Meanwhile, large language models (LLMs) are 051

advancing in their ability to tackle challenges asso- 052

ciated with natural language using in-context learn- 053

ing (Cheng et al., 2023; Ye et al., 2023a; Gemmell 054

and Dalton, 2023), but the degree to which they 055

understand tables and how to leverage LLMs to 056

work with table-based data remain an open ques- 057

1

https://anonymous.4open.science/r/TableProvider-4CC3
https://anonymous.4open.science/r/TableProvider-4CC3
https://anonymous.4open.science/r/TableProvider-4CC3


tion (Chen, 2022; Gong et al., 2020). Our research058

aims to explore this question and improve how059

LLMs use and work with table-based data.060

First, which part of a table should be kept in061

the prompt? The full content of a table could be062

very long and noisy to be included in the prompt.063

Most LLMs have a limited input context window064

size (e.g., 4k~16k tokens) in which an overlong065

table cannot fit. For long tables that satisfy the066

length constraint, it can still lead to unnecessary067

computations (of LLM on long prompt) and qual-068

ity regressions (generation interfered by noisy in-069

put) when placing irrelevant table content (w.r.t.070

the task or query) in the prompt. To address the071

challenge, some sampling methods were proposed072

in ad-hoc ways. For example, truncating the in-073

put tables to contain only the first 20+ rows and 8074

columns (Chen, 2022), or filtering relevant rows075

based on n-gram overlap between them and the076

utterance (Yin et al., 2020). To answer the question077

of which part to keep, we need a more systematic078

study of different grounding and sampling algo-079

rithms.080

Second, what additional/external knowledge081

could help LLMs better understand a table? The082

raw content of a table may contain ambiguous infor-083

mation (e.g., abbreviations, domain-specific terms,084

column type,etc.) that requires further interpreta-085

tion and clarification. As a result, direct reasoning086

on the raw tables may lead to misinterpretation and087

bias in the LLMs’ outputs. To address this, some088

augmentation techniques were proposed to incor-089

porate structured knowledge (Sui et al., 2023; Xie090

et al., 2022), common sense knowledge (Bian et al.,091

2023; Ogundare and Araya, 2023; Shen et al., 2023;092

Guo et al., 2023), and analytical knowledge (Jena093

et al., 2022; He et al., 2023) into pre-training and in-094

ference processes. For example, (Jena et al., 2022)095

transforms existing tabular data to create diverse096

NL inference instances for better zero-shot perfor-097

mance. (He et al., 2023) infers implicit metadata098

behind raw table content through field distribution099

and knowledge graph information. However, the100

techniques were proposed independently and there101

lack a comprehensive study that compares them102

and tries to combine them to provide useful and103

diverse knowledge and thoughts for LLMs.104

Third, how do we encode the table into a prompt?105

While sampling and grounding compress the ta-106

ble content, augmentation expands the prompt by107

adding more information. With a given token bud-108

get, one needs to find the balance to allocate avail-109

able tokens between table content and augmented 110

knowledge. Furthermore, the serialization format 111

of the table also plays a critical role. It not only in- 112

fluences how well an LLM understands the table in- 113

put (Sui et al., 2023), but also determines the string 114

length of the serialized table and the augmented in- 115

formation. For example, as discussed in (Sui et al., 116

2023), table formats such as HTML (Aghajanyan 117

et al., 2021) or XML are better understood by GPT 118

models, but they also lead to increased token con- 119

sumption. To pack a table into the prompt, these 120

problems should be addressed with trade-offs. 121

In this paper, we propose TAP4LLM (table 122

provider for large language models) as a versatile 123

pre-processing toolbox to generate table prompts 124

in LLM reasoning. TAP4LLM addresses the above 125

challenges with three corresponding modules (i) 126

Table Sampling: Selecting a sub-table T ′ from the 127

raw table T based on the rules or semantics of the 128

query or utterance Q; (ii) Table Augmentation: En- 129

hancing T ′ by integrating relevant external knowl- 130

edge, metadata, and attributes based on the raw 131

Table T ; and (iii) Table Packing: Packing the sam- 132

pled table T ′ with the augmented knowledge into a 133

sequence with a specified serialization format for 134

LLMs while balancing the token allocation trade- 135

off. In each module, we collect and design several 136

common methods for usage in various scenarios 137

(e.g., speed over accuracy). Across six distinct 138

datasets, our findings demonstrate that TAP4LLM 139

significantly improves accuracy by achieving an 140

average enhancement of 6.02% through the table 141

sampling module, 3.29% through the table aug- 142

mentation module, and 1.38% through the table 143

packing module. Collectively, TAP4LLM elevates 144

accuracy by an average of 7.93% when compared 145

to the direct input of raw tables into LLMs. Our 146

exploration has led us to conclude that TAP4LLM 147

enhances the interaction between LLMs and tabular 148

data by employing effective pre-processing. 149

In summary, our main contributions are: 150

• We proposed a unified pre-processor to im- 151

prove the effectiveness of LLMs in tabular 152

reasoning tasks and enhance the interaction 153

between LLMs and tabular data. 154

• We conducted a comprehensive evaluation of 155

each components and showed that TAP4LLM 156

achieves an average of improved performance 157

by 7.93%. 158

• We formulated a complete usage guideline 159

for our framework TAP4LLM. For different 160
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TAP4LLM: Table Provider

Application
(e.g., Excel Copilot)

Utterance

Table Manager
(Table Cache /

Database Connection)

Table

Table Sync
Docs 

References

Metadata

Term 
Explanation

Table Sampling

Rule-based

Embedded-based

Hybrid approach

Table Augmentation

Retrieval-based

Metadata-based

Augmented Info

Sampled Table Table Packing

Token Allocation

Serialization Options

LLM (e.g., GPT-4)

Figure 2: TAP4LLM Framework for Tabular Data. Noted that the “table sync” refers to the application (such as Excel Copilot)
keeps its table data in sync with the table manager. The table manager acts as an intermediary, managing the data that is either
stored locally in a cache or accessed through a database connection. This syncing process is crucial for “interactive table
reasoning” and for maintaining data integrity. The implication of this syncing process is further discussed in §F.2.

real world scenarios, We identify correspond-161

ing optimal combination of methods within162

each module. we also provide a trade-off map163

between performance metrics and token allo-164

cation for reference.165

2 TAP4LLM: Table Provider for LLMs166

The overall architecture of TAP4LLM is defined167

as follows (as illustrated in Figure 2): Given a168

natural language query / utterance Q from applica-169

tions (e.g., Excel Copilot) and a table T from Table170

Manager (e.g., table cache or database connection),171

our system incorporates three core components as172

follows:173

• Table Sampling: Decompose a large table174

T into a sub-table T ′ with specific rows and175

columns.176

• Table Augmentation: Explicitly incorporate177

relevant external knowledge, metadata, and178

attributes about the original table T .179

• Table Packing: Control the token allocation180

for table sampling and table augmentation;181

Convert the structured table into a sequence182

(table serialization).183

2.1 Table Sampling184

In table sampling, a subset of top-ranked rows and185

columns is selected to form the sub-table. Specifi-186

cally, given an original table T with a distinct set of187

rows RT , columns CT , and a query q, the goal of188

table sampling is to produce a sub-table T ′ = Tr,c,189

where r ∈ P(RT ), c ∈ P(CT ). Here P(X) de-190

notes the power set of X , representing all possible191

subsets of X . The process can be formulated as192

T ′ = Tr,c = select(T, rank(f(T, q))). The f(T, q)193

function represents each sampling method. For194

example, the query-based sampling (discussed in195

details below) calculates the similarity score as f 196

between the query q and each row / column from T . 197

The rank() function sorts the rows and columns 198

of T based on sampling methods f and outputs a 199

ranked list. The select() function then chooses the 200

top-k rows and top-l columns from the ranked list 201

to form the sub-table Tr,c. Specifically, we clas- 202

sify multiple variants for table sampling as three 203

following categories: 204

2.1.1 Rule-based Sampling 205

Rule-based sampling refers to table sampling based 206

on predefined criteria or rules. These methods fol- 207

low the established patterns or criteria for data se- 208

lection. We consider three common rule-based 209

sampling methods as the baselines: (1) Random 210

Sampling, (2) Evenly Sampling and (3) Content 211

Snapshot & Synthetically Sampling. The detailed 212

description can be found in Appendix A. 213

2.1.2 Embedding-based Sampling 214

Instead of adhering to strict rules or criteria in rule- 215

based sampling, embedding-based methods lever- 216

age the semantic and contextual representation of 217

each row and column. Specifically, let T be a ta- 218

ble where RT is the set of rows and CT is the set 219

of columns. Let E : RT ∪ CT → Rd be an em- 220

bedding function that maps each row or column 221

to a d-dimensional vector by capturing its seman- 222

tic content. By mapping each row or column to 223

vectors, this method harnesses the power of spa- 224

tial relationships within the embedding space to 225

guide sampling decisions. We propose two variant 226

methods as follows: 227

(1) Semantic-based Sampling: Semantic-based 228

Sampling is a tailored approach emphasizing the 229

semantics relevance of row / columns to the utter- 230

ance. The process is exactly illustrated in Eq. 2.1. 231
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Noted that the default query-based sampling is the232

row-based method. We also study the significance233

of column grounding as shown in Table 1.234

(2) Centroid-based Sampling: Compared to the235

semantic-based sampling, the goal of centroid-236

based sampling is to ensure the preservation of237

data diversity. We use K-Means (MacQueen et al.,238

1967) to partition the set of embeddings into n clus-239

ters Cn. For each cluster Ci, we select the top-K240

rows or columns based on the closeness to cen-241

troid. Since the construction of columns in a table242

inherently presupposes each column should be di-243

versified, in that case, column-based sampling may244

not be well-suited for centroid-based methods.245

(3) Hybrid-approach: The Hybrid approach mar-246

ries the specificity of semantic-based sampling247

with the broad representations of centroid-based248

sampling. Compared to the centroid-based sam-249

pling, the top-K rows or columns (r) are selected250

based on a combination metric h(r, c, u) measur-251

ing the directional distance to cluster centroid (c)252

and the semantic similarity to the utterance (u).253

A straightforward approach to combine these two254

measures is: h(r, c, u) = α( 1
1+D(r,c)) + βS(r, u),255

where D(r, c) measures the directional distance256

(e.g., Euclidean distance) between selected rows or257

columns and cluster centroid in embedding space,258

and S(r, u) measures the semantic similarity be-259

tween rows / columns and the utterance. The260

weights α and β allow for flexible prioritization261

between these two aspects, tailoring the sampling262

process to emphasize either contextual relevance263

or diversity within the sampled data. In our experi-264

ment, we set α = 0.3 and β = 0.7.265

2.1.3 LLM-based Sampling266

LLMs have been confirmed as effective decom-267

posers for tabular reasoning (Ye et al., 2023a).268

They employ a powerful LLM to facilitate sub-269

table extraction by predicting the indexes of rows270

and columns. However, reliance on LLMs for such271

pre-processing inevitably escalates computational272

costs and budgets. Moreover, using LLMs to pre-273

dict the index still comes with challenges like to-274

ken budget and noisy information and still requires275

table pre-processing. These issues inevitably trans-276

form the original table pre-processing task into a277

loop task. Despite this method not being ideally278

suited to our scope, we still consider it a strong279

baseline, albeit at the expense of time.280

2.2 Table Augmentation 281

In table augmentation, we mainly consider the fol- 282

lowing three categories: (See the full knowledge 283

aspects used in TAP4LLM from Table 6.) 284

2.2.1 Metadata-based Augmentation 285

Tabular data analysis have been evaluated to rely on 286

accurate understanding of field semantics and fur- 287

ther finding common patterns in daily analysis (He 288

et al., 2023). These kind of metadata in contrast 289

to the raw tabular input which does not directly 290

provide this information. Following AnaMeta (He 291

et al., 2023) using a range of knowledge-fusion 292

models for metadata inference, we consider the 293

following metadata-based augmentation types and 294

leverage LLMs for zero-shot inference using meta- 295

data instruction as clues: Dimension / Measure, 296

Semantic Field Type, Table Size, Statistics Feature, 297

Header Hierarchy. The detailed description for 298

each type can be found in Appendix C. 299

2.2.2 Retrieval-based Augmentation 300

Large Language Models have occasionally been 301

observed to generate hallucinated or factually inac- 302

curate text (Zhou et al., 2021; Zhao et al., 2023). To 303

mitigate these issues, several works have proposed 304

to strengthen LLMs with information retrieval sys- 305

tems (Shi et al., 2023; Jiang et al., 2023; Nakano 306

et al., 2022), which enables LLMs to retrieve rele- 307

vant contents from an external repository (knowl- 308

edge corpus). It has been verified that retrieval- 309

augmented LLMs can generate texts in response to 310

user input with fewer hallucinations (Nakano et al., 311

2022). Furthermore, by incorporating customized 312

private data resources, retrieval-augmented LLMs 313

can respond to in-domain queries that cannot be 314

answered by LLMs trained with public data. As 315

previous works (Nakano et al., 2022; Shi et al., 316

2023; Jiang et al., 2023) suggest, LLMs can gener- 317

ate more factual answers by feeding the references 318

retrieved from the external corpus. In TAP4LLM, 319

we have fortified the document retrieval capabil- 320

ities of LLMs and consider two components: (i) 321

document references: to provide supplemental 322

relevant web pages as the references for the given 323

table; (ii) term explanation: to explain strange/am- 324

biguous term in the given table. We utilize tech- 325

nologies like vector databases (Wang et al., 2021a) 326

and LangChain (LangChain, 2022) to facilitate the 327

retrieval of pertinent information from Wikipedia1. 328

1https://www.wikipedia.org/

4

https://www.wikipedia.org/


Table 1: Comparative results of the table sampling methods. The term “w/ Column Grounding” refers to the method consider
both row-based and column-based sampling (sometimes referred to as “grounding”). “GPT-3.5” refers to the OpenAI released
model gpt-3.5-turbo-32k, with 32k token-sized context window; In contrast, “GPT-3.5 truncated” refers to gpt-3.5-turbo, with 4k
token-sized context window, where most tables will be truncated according to this token limitation. The top-3 performances on
each dataset are highlighted in green, with the best performance being both bold and underlined.

Sampling Type Table Sampling Methods SQA FEVEROUS TabFact HybridQA ToTTo

Rule-based Sampling
Random Sampling 27.30% 60.30% 55.17% 23.60% 40.12%
Evenly Sampling 26.72% 61.87% 54.63% 5.32% 29.41%
Content Snapshot (Yin et al., 2020) 28.24% 63.10% 56.92% 23.40% 47.51%

Embedding-based Sampling

Centroid-based Sampling 28.10% 63.50% 55.40% 24.03% 48.30%
Semantic-based Sampling 28.32% 63.32% 59.80% 24.32% 49.14%

w/ Column Grounding 29.12% 64.74% 60.23% 25.14% 53.42%
Hybrid Sampling 28.79% 65.34% 61.37% 24.71% 51.63%

LLM-based Sampling LLM-Decomposer (Ye et al., 2023b) 27.98% 62.34% 58.74% 24.98% 48.13%

-
No sampling (GPT-3.5) 27.60% 60.12% 56.20% 14.10% 47.42%
No sampling (GPT-3.5, truncated) 23.54% 43.54% 52.12% 23.12% 30.42%

The details for document references and term ex-329

planation can be found in Appendix B.330

2.2.3 Self-consistency-based Augmentation331

We follow (Sui et al., 2023) to provide the self-332

consistency-based augmentation approach. First,333

we append the instruction “Identify critical values334

and ranges of the last table related to the statement”335

to the initial prompt, and then forward this prompt336

to the LLM. The output generated from this in-337

struction is then incorporated back into the prompt.338

Following this, we reintroduce the enriched prompt,339

now containing both the initial query and the newly340

generated insights, to the LLM along with the task-341

specific instructions for further processing.342

2.3 Table Packing343

The desire to maintain efficient reasoning without344

changing the LLMs architecture motivates us to345

propose the token allocations module. The pack-346

ing component supports token-limit allocation for347

table sampling and augmentation. We conduct an348

empirical study to determine the proper proportion349

of the sub-table length and augmentation informa-350

tion length, as shown in Figure 3. The packing351

process is controlled by a user-defined parameter352

token limit, which determines the maximum trun-353

cate token length. Moreover, the study (Sui et al.,354

2023) emphasizes a noteworthy observation regard-355

ing using markup languages like HTML or XML356

leads to much better generation quality by LLMs357

over TQA and TFV. In this pattern, TAP4LLM sup-358

port multiple serialization functions, e.g., HTML,359

XML, JSON, CSV, NL+Sep (one of the typical op-360

tions, e.g., using ‘|’ as cell/column separator) and361

Markdown,etc.362

3 Experiments 363

In this section, we first introduce the experiment 364

settings, then we conduct extensive comparison 365

between baseline models and each module in 366

TAP4LLM. We further provide an ablation study of 367

our method and a comprehensive evaluation on the 368

usage of TAP4LLM. Please refer to Appendix D, E 369

for additional settings and experiments. 370

3.1 Experiment Settings 371

Dataset. We evaluate TAP4LLM on five TQA 372

& TFV datasets: Sequential Question Answer- 373

ing (SQA) (Iyyer et al., 2017), HybridQA (Chen 374

et al., 2020b), TabFact (Chen et al., 2020a), 375

ToTTo (Parikh et al., 2020). we also set up 376

TAP4LLM on a Text-to-SQL dataset Spider (Yu 377

et al., 2018), detailed in E.4. The statistic of the 378

datasets are given in Table 5, and the details of the 379

datasets and metrics are described in Appendix D.1. 380

Models. We select state-of-the-art LLMs that have 381

been widely studied in text generation and reason- 382

ing. Specifically, We focus on multiple GPT mod- 383

els and most updated open-source LLMs (Llama2- 384

70B and Mixtral-8x7B) to test TAP4LLM effec- 385

tiveness. The details for the tested models and the 386

embedding methods can be found in Appendix D.2. 387

The experiment results of open-sourced models can 388

be found in Appendix E.3. 389

3.2 Comparison Results of Table Sampling 390

According to Table 1, we conduct the compara- 391

tive experiments on multiple table sampling meth- 392

ods and make several observations as follow: (1) 393

Semantic-based sampling with column grounding 394

outperforms other sampling methods across all 395
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Table 2: Comparative results of the table augmentation methods. We use semantic-based sampling method without augmentation
as the baseline. The term “Delta” refers to the performance gap between each method and the baseline. The top-3 performance
gap on each dataset are highlighted in green, with the best performance being underlined. Noted that since only the ToTTo
dataset contains hierarchical headers, we only provide the “header hierarchy” method on this dataset. “D/M + SF" refers to
Dimension/Measure+ Semantic Field Type.

Augmentation Aspect
SQA FEVEROUS TabFact HybridQA ToTTo

Acc Delta Acc Delta Acc Delta Acc Delta BLEU-4 Delta

baseline 28.32% 0.00% 63.32% 0.00% 59.80% 0.00% 24.32% 0.00% 49.14% 0.00%

D/M + SF 30.12% 1.80% 65.72% 2.40% 62.67% 2.87% 26.12% 1.80% 51.25% 2.11%
Table Size 28.85% 0.53% 63.40% 0.08% 60.30% 0.50% 24.94% 0.62% 49.03% -0.11%
Statistics Feature 31.22% 2.90% 66.51% 3.19% 62.33% 2.53% 26.13% 1.81% 50.57% 1.43%
Header Hierarchy - - - - - - - - 48.64% -0.50%

Docs References 33.45% 5.13% 63.13% -0.19% 61.32% 1.52% 25.12% 0.80% 52.74% 3.60%
Term Explanations

- LLM-based 31.59% 3.27% 64.12% 0.80% 62.32% 2.52% 26.24% 1.92% 53.21% 4.07%
- Heuristics-based 29.59% 1.27% 63.72% 0.40% 61.58% 1.78% 25.24% 0.92% 51.21% 2.07%

Self Prompting 30.45% 2.13% 65.24% 1.92% 62.32% 2.52% 26.64% 2.32% 52.36% 3.22%

datasets by effectively selecting table parts most396

relevant to queries. Centroid-based sampling also397

shows competitive results by clustering data points398

within tables, though it lacks query-table relevance399

consideration. Moreover, when combining these400

two strong variants together (hybrid sampling), it401

shows the most powerful capability. (2) The rule-402

based sampling method “content snapshot”, while403

not as precise in capturing query-specific informa-404

tion, offers a promising, efficient alternative by405

focusing on essential table content through n-gram406

overlap, without the need for complex embedding407

calculations. (3) In contrast, direct encoding meth-408

ods, including using GPT-3.5-turbo with a 32k to-409

ken limit or a 4K token-sized context window with410

truncation, demonstrate inferior performance. This411

suggests that while they can encompass more ta-412

ble information, they may introduce noise or lose413

critical context, undermining the table reasoning414

process and highlighting the importance of strate-415

gic sampling for optimal LLM performance.416

3.3 Comparison Results of Augmentation.417

For the comparative experiments of table augmenta-418

tion methods, we use the semantic-based sampling419

method as the baseline and report the performance420

gap between adding each augmentation method or421

not. According to Table 2, several insights can be422

found as follows: (1) Table augmentation meth-423

ods further improve LLM’s reasoning ability af-424

ter sampling. For example, “D/M + SF" achieves425

higher accuracy across all six datasets (most sig-426

nificant increase on TabFact +2.87%).“Docs Ref-427

erences" and “Term Explanations" add meaningful428

context and semantic understanding to the model’s 429

processing of tables, with (SQA +5.13%, ToTTo 430

+4.07% ). The “self-prompting" further exemli- 431

fies the potential for iterative improvment in query 432

and response generation. However, not all augmen- 433

tation methods yield positive outcomes. “Table 434

Size" offers minimal performance enhancement 435

and “Header Hierarchy" shows that introducing 436

a hierarchy may complicate the model’s ability 437

to process the tabular information in some con- 438

texts, possibly by adding unnecessary complexity. 439

(2) Additionally, the comparison of cell selection 440

methods for “Term Explanations" highlights the 441

superior performance of LLM-based selection over 442

heuristic approaches. We find that LLM-based cell 443

selection outperforms the heuristics-based cell se- 444

lection with improvements in “Delta” ranging from 445

0.80% to 4.07%. While achieving higher perfor- 446

mance, the LLM-based method also increases the 447

calling budget as it requires additional LLM calls. 448

These results indicate that the method’s effective- 449

ness varies with the dataset. i.e. It’s beneficial for 450

datasets requiring complex text understanding and 451

generation (SQA and ToTTo). However, its impact 452

is less distinct or even slightly negative in datasets 453

involving different types of data or nuanced tasks 454

(FEVEROUS and HybridQA). 455

Through the experiment results, we also observe 456

that different augmentation methods perform well 457

on the same dataset. For example, “D/M + SF", 458

“Statistics Feature", “Term Explanation" and “Self 459

Prompting" all show significant improvement on 460

the TabFact dataset. This suggests superposable 461

effects through combining multiple augmentation 462

6



methods may bring better performance. We only463

report the simplest way to append all the augmen-464

tation information together into the prompt, and465

leave the fine-grained way of combination for fu-466

ture investigation.467

3.4 Ablation Study of TAP4LLM468

As indicated in Table 3, we conduct an ablation469

study to assess the impact of various components470

on the performance of TAP4LLM. Each row rep-471

resents the method performance without a certain472

component. We find that each component con-473

tributes to the model’s effectiveness. The study474

demonstrates that certain components, such as ta-475

ble sampling and table augmentation, are more476

crucial. Each dataset reacts differently to the re-477

moval of features, which highlights the necessity of478

a customized design when optimizing for particular479

datasets. We also report the performance using the480

most suitable combination of table sampling and481

augmentation for each dataset in Table 3.482

3.5 Trade-offs between Token Allocation483

We use five table datasets to find the trade-off be-484

tween token allocation for table sampling and table485

augmentation, as demonstrated in Figure 3. We486

find that: (1) A balanced token distribution be-487

tween the table and augmentation (around the 5:5488

and 4:6 ratios, also known as a balanced T:A Ra-489

tio) generally yields the best performance for all490

five datasets. In indicates that properly controlling491

the token allocation can help LLMs achieve better492

performance. (2) Diminishing returns are observed493

when too many tokens are allocated to the aug-494

mentation information (as in the 3:7 ratio). This495

leads to a decrease in performance, suggesting that496

beyond a certain point, additional augmentation497

tokens may not be beneficial and could potentially498

detract from the main table content.499

This trade-off highlights a broader concept in500

data processing and machine learning: the bal-501

ance between information overload and informa-502

tion scarcity. Over-augmentation can lead to con-503

fusion and difficulty in discerning key patterns or504

insights. On the other hand, excessive sampling505

could result in an incomplete or biased understand-506

ing of the data. Note that the optimal T: A Ratio507

may vary across different datasets, as each may508

have unique characteristics making certain ratios509

more effective.510

9:1 8:2 7:3 6:4 5:5 4:6 3:7 2:8
T:A Portion: Table Tokens vs. Augmentation Tokens
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Figure 3: Token Allocation. T:A refers to the ratio of upper
#token limitations of sampled table vs. augment info.

3.6 Large Table Analysis 511

Compared to the smaller-sized table, large table 512

can grow to immense sizes, which make it more 513

difficult to efficiently maintain, and reason over 514

the tables. In designing TAP4LLM, performance 515

optimization in this scenario is critical. We plot 516

the distribution regarding the token numbers from 517

the table across the five datasets in Figure 4, and 518

also illustrate the impact of token numbers on LLM 519

performance for three distinct settings. 520

We can observe that: Shorter token lengths dom- 521

inate the datasets, indicating a prevalence of text 522

entries are relatively brief. Augmentation tech- 523

niques excel with these shorter lengths by provid- 524

ing focused, enriched contexts that facilitate better 525

model learning from simpler inputs. In contrast, 526

sampling methods prove more effective for larger 527

tables, suggesting they help manage data complex- 528

ity by focusing on relevant data segments. The 529

hybrid method, combining both techniques, shows 530

consistent accuracy across various token lengths, 531

highlighting its ability to leverage the strengths 532

of both augmentation and sampling for improved 533

performance across the board. 534

4 Related Work 535

Large Language Models for Tabular Data. Fol- 536

lowing the line of LLMs in natural language pro- 537

cessing, researchers have also explored large mod- 538

els for various modalities like vision (Gong et al., 539

2023; Kirillov et al., 2023) and speech (Huang 540

et al., 2023). From a technical standpoint, their 541

ability to generate human-like text has opened new 542

vistas of possibilities for processing tabular data. 543

Nevertheless, it is non-trivial to directly employ 544
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Table 3: Ablation results on five table datasets using gpt-3.5-turbo model. Similar to Table 2, the lowest accuracy on each
dataset is bold. The top-3 decreasing gap (delta) on each dataset are highlighted in red, with the lowest performance being
underlined. The performance of golden combination of table sampling and augmentation (“hybrid-sampling + all-augmentation”)
is reported in the first row.

Components of TAP4LLM
SQA FEVEROUS TabFact HybridQA ToTTo

Acc Delta Acc Delta Acc Delta Acc Delta BLEU-4 Delta

All 34.12% 0.00% 68.32% 0.00% 64.78% 0.00% 27.87% 0.00% 54.93% 0.00%

w/o table sampling 26.54% -7.58% 61.54% -6.78% 58.12% -6.66% 24.12% -3.75% 48.47% -6.46%
w/o table augmentation - all 29.12% -5.00% 63.74% -4.58% 60.23% -4.55% 25.14% -2.73% 53.42% -1.51%
w/o table augmentation - metadata-based 33.87% -0.25% 64.38% -3.94% 62.78% -2.00% 26.98% -0.89% 53.42% -1.51%
w/o table augmentation - retrieval-based 31.42% -2.7% 66.23% -2.09% 62.97% -1.81% 26.33% -1.54% 52.67% -2.26%
w/o table packing 31.87% -2.25% 67.42% -0.90% 63.28% -1.50% 26.32% -1.55% 52.87% -2.06%
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Figure 4: Comparative Analysis of Model Performance Across TabFact, HybridQA, FEVEROUS and SQA. The series of
graphs illustrates the frequency distribution of token lengths alongside the LLM performance (%) for three distinct methods:
only sampling, only augmentation, and the hybrid method. Each subplot corresponds to a different dataset, depicting how table
token length impacts model accuracy for various data augmentation and sampling strategies. Noted that “only augmentation”
method refers to adding only the augmentation information to the prompt, without using any sampling method.

the vanilla LLMs in the tabular area for two rea-545

sons: (i)-Global Table Understanding: the GPTs546

are known to suffer from the limited token length547

and thus, they can not read a whole large table,548

making them hard to understand the global tabular549

information. (ii)-Generalized to Tabular Domain:550

Second, their training processes are tailored for551

natural languages and thus, they are less generaliz-552

able when handling tabular data. There have been553

several works (Hu et al., 2023; Zhong et al., 2017;554

Li et al., 2023b,a) developed to integrate natural555

language for tabular data analysis. Table Augmen-556

tation. Table augmentation is a technique used to557

improve the generalization performance and robust-558

ness of machine learning models. To enhance the559

performance and capabilities of LLMs in various560

domains, various explorations have been done to561

augment their knowledge grounding. It involves in-562

corporating structured knowledge (Sui et al., 2023;563

Xie et al., 2022), commonsense knowledge (Bian564

et al., 2023; Ogundare and Araya, 2023; Shen565

et al., 2023; Guo et al., 2023), and analytical knowl-566

edge (He et al., 2023; Jena et al., 2022) into the567

pre-training and inference processes. For example,568

(Jena et al., 2022) proposes to semi-automatically569

transform existing tabular data to create diverse/in-570

ventive natural language inference instances for571

better zero-shot performance. (He et al., 2023) pro- 572

poses a multi-tasking Metadata model that lever- 573

ages field distribution and knowledge graph infor- 574

mation to accurately infer analysis metadata for 575

tables, and then demonstrates its deployment in a 576

data analysis product for intelligent features. We 577

follow the definition of statistical features from (He 578

et al., 2023). Each term with the corresponding def- 579

inition is shown in Table 8. 580

5 Conclusion 581

We present TAP4LLM, a pre-processor designed 582

to enhance the effectiveness of LLMs in tabular 583

reasoning tasks. Technically, our method paves 584

the way for interactive table reasoning as a natural 585

language-driven framework, allowing for different 586

components as plugins. Through three core com- 587

ponents: table sampling, table augmentation, and 588

table packing & serialization, we address several 589

major challenges in comprehensive table under- 590

standing. We believe that TAP4LLM has the po- 591

tential to enhance table modeling and exploratory 592

data analysis (EDA) and enable various domains 593

such as finance, transportation etc. Our study will 594

be beneficial for table-based research and serve as 595

an auxiliary tool to help better utilize LLMs on 596

tabular-based/structured data-based tasks. 597
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Limitations598

Code generation-based methods (Cheng et al.,599

2023; Gemmell and Dalton, 2023) have been pro-600

posed to leverage LLMs to convert natural lan-601

guage queries into executable code or structured602

representations. We believe that semantic parsing603

or code generation is an important research direc-604

tion. However, due to the page limits, we will605

leave this topic to further exploration. Additionally,606

our empirical study is mostly designed for English,607

rather than multilingual scenarios. The conversa-608

tion on multilingual capabilities will also be part609

of future exploration.610

Ethics Statement611

All the experiments in this paper run on GPU clus-612

ters with 8 NVIDIA A100 GPUs. Notably, all GPU613

clusters within our organization are shared instead614

of exclusive usage, and their carbon footprints are615

monitored in real-time. Our organization also con-616

sistently upgrade our data centers to reduce energy617

use.618
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random selection for a user-specified amount of920

time and return the sub-table with the highest com-921

bined score among all the randomly computed sub-922

tables. (2) Evenly Sampling: It samples rows from923

a table by alternating between the top (r1) and bot-924

tom rows (rn) and moving towards the middle until925

reaching a set token limit. Compared to random926

sampling, it helps to balance the proportions of927

each field in the dimension column of the table (i.e.928

rows are selected at regular intervals), ensuring a929

uniform distribution of the sample accross the en-930

tire table. (3) Content Snapshot & Synthetically931

Sampling: Content snapshot (Yin et al., 2020) is932

a text-matching based method for retrieving sub-933

tables. For our empirical analysis, we construct934

the content snapshot K rows based on their rele-935

vance to the utterance using n-gram overlap ratio.936

Specifically, for K > 1, top-K rows with the high-937

est n-gram overlap ratio are selected. For K = 1,938

a synthetic row is composed by selecting the cell939

values from each column with the highest n-gram940

overlap with the utterance. The comparative results941

can be found in Table 1.942

B Retrieval-based Augmentation943

B.1 Docs References944

This process involves associating tables with rele-945

vant documents or sources for in-depth insights or946

references. For example, suppose we have a table947

titled “2023 Fortune 500 Companies”. This ta-948

ble contains various information about the top 500949

companies as ranked by Fortune in 2023, including950

their revenue, number of employees, and market951

capitalization. Docs references could fetch the ac-952

tual 2023 Fortune 500 list from the Fortune website,953

Wikipedia pages discussing the Fortune 500 con-954

cept and its criteria, or analytical articles discussing955

the companies on the 2023 list. In our setting, we956

leverage Langchain (LangChain, 2022) to retrieve957

wiki pages from wikipedia.org. We craft queries by958

concatenating the table header and the table’s title959

into a single string. These queries are then used960

to identify and fetch the relevant Wikipedia pages,961

which act as informative document references in962

our study.963

B.2 Term Explanation964

Compared to the docs references, term explanation965

focuses on providing definitions and explanations966

for specific strange terms or values in the table cells.967

For example, if a cell mentions a technical term968

or an acronym, the term explanation module could 969

source a brief definition or background from reli- 970

able web sources (such as Wikipedia, wolfram,etc) 971

on that term, ensuring that the strange term will 972

not be forwarded to LLMs. To ensure the efficacy 973

and accuracy of term explanations, we introduce 974

two distinct approaches for selecting the cell that is 975

required to be explained, LLM-based Cell Selection 976

and Heuristics-based Cell Selection. The compara- 977

tive experiment results of these two variants can be 978

found in Table 2. 979

1) LLM-based Cell Selection Module: To pin- 980

point the exact cell warranting explanation, we 981

harness the capabilities of LLMs. The selection 982

prompt is meticulously constructed, taking into ac- 983

count various factors including: (1) Cell Position; 984

(2) Cell Content; (3) Cell Formatting; (4) Cell Con- 985

text; (5) Cell Properties. A detailed description 986

and the specific prompt utilized to determine which 987

cells require explanation can be found in Table 4. 988

Table 4: LLM-based Cell Selection Criteria and Exact Prompt
Template.

Criteria Description

Cell Position Specify the range or position of the cells you want
to search. For example, you may want to search for
explanations only in the cells of a specific column, row,
or a particular section of the table.

Cell Content Define the specific content or data type within the cells
you want to search. For instance, you may want to
search for explanations in cells containing numerical
values, dates, specific keywords, or a combination of
certain words.

Cell Formatting Consider the formatting or styling applied to the cells.
This could include searching for explanations in cells
with bold or italic text, specific background colors, or
cells that are merged or highlighted in a certain way.

Cell Context Take into account the context surrounding the cells. You
can search for explanations in cells that are adjacent
to certain labels, headings, or identifiers, or within a
specific context provided by other cells in the same row
or column.

Cell Properties Consider any specific properties associated with the
cells. This might include searching for explanations in
cells that have formulas, links, or other data validation
rules applied to them.

Prompt You will be given a parsed table {Table} in python
dictionary format, extract the cells that need to be ex-
plained. The extraction rule should be based on the
following criteria: {Criteria}. Only return the cells
name in a python List[str].

2) Heuristics-based Cell Selection: Inspired 989

by the methodology presented in (Herzig et al., 990

2020), we introduce a heuristics-based cell selec- 991

tion, which is predicated upon the following crite- 992

ria: (1) Explicit Mention: whether the cell’s value 993

is explicitly referenced in the query. (2) Compar- 994

ative Value: whether the cell’s value is greater or 995

less than a value mentioned in the query. (3) Su- 996
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perlative Value: whether the cell’s value represents997

a maximum or minimum across the entire column,998

especially when the query incorporates superlative999

terms.1000

C Metadata-based Augmentation1001

Metadata are defined as a form of formally repre-1002

sented background knowledge to understand the1003

field semantics for correctly operating on table1004

fields (or columns) and to further find common1005

patterns in daily analysis (He et al., 2023). This an-1006

alytical knowledge, particularly of field semantics,1007

is able to increase the applicability across various1008

tasks. In our table augmentation, we consider the1009

following metadata:1010

(1) Dimension / Measure: This is one type of1011

metadata used in Tableau (Hoelscher and Mortimer,1012

2018) and Excel (Ding et al., 2019) across diverse1013

features. As the name suggests, the method in-1014

volves categorizing each field in a table as either1015

measure or dimension. The measure contains nu-1016

merical data that can be subjected to calculations,1017

such as the “Price" and “Discount". The dimension1018

provides categorical information used for filtering,1019

grouping, and labeling, such as the “Product Name"1020

and “Category". Correctly classifying fields as ei-1021

ther a measure or a dimension is crucial to determin-1022

ing feasible operations on the data and influences1023

the accuracy and relevance of data analysis. (2)1024

Semantic Field Type: Besides identifying whether1025

a field is a measure or a dimension, semantic field1026

type specifies the meaning and format of the data1027

within each field based on knowledge graphs. For1028

example, the dimension field includes semantic1029

field types such as “Consumer Product” and “Cat-1030

egory”, etc. Measure field includes semantic field1031

types such as “Money” and “Ratio”, etc. We follow1032

the work (He et al., 2023) as a reference to this1033

term. (3) Table Size: The size of a table is defined1034

by its number of rows and columns. It provides1035

essential context when determining the computa-1036

tional complexity of operations or understanding1037

data density and granularity. (4) Statistics Feature:1038

Statistics feature provides a quantitative represen-1039

tation of the tabular data. These features serve as1040

numerical descriptors that summarize key aspects1041

of the table datasets, aiding LLMs in understanding1042

the overall characteristics and tendencies. Gener-1043

ally, statistics features include four categories (He1044

et al., 2023): (a) Progression features (b) String1045

features (c) Number range features (d) Distribution1046

features, discussed in Section §4. We conducted 1047

empirical studies on common statistical features 1048

to identify the most appropriate combination for 1049

optimal utilization of TAP4LLM. (5) Header Hi- 1050

erarchy: Tables are often used to present data in a 1051

structured format, and headers play a crucial role 1052

in defining the meaning and context of the data in 1053

each column or row. The header hierarchy typically 1054

includes different levels of headers, each providing 1055

a level of organization and categorization for the 1056

data. 1057

D Additional Experiment Settings 1058

Table Reasoning Tasks. Each instance in table- 1059

based reasoning consists of a table T , a natural lan- 1060

guage question Q, and an answer A. Specifically, 1061

table T is defined as T = {vi,j | i ≤ RT , j ≤ CT }, 1062

containing RT rows and CT columns. The con- 1063

tent of the cell in the i-th row and j-th column 1064

is represented by vi, j. A question Q is a se- 1065

quence of n tokens: Q = {q1, q2, q3, · · · , qn}. In 1066

this paper, our primary focus is on two distinct 1067

table-based reasoning tasks, table-based fact verifi- 1068

cation (TFV) and table-based question answering 1069

(TQA). In TFV, the answer A is a boolean value 1070

in {0, 1}, indicating the veracity of the input state- 1071

ment (where 1 means the statement is entailed by 1072

the given table, and 0 means the statement is re- 1073

futed by the given table). In TQA, the answer is 1074

a sequence of natural language tokens represented 1075

as A = {a1, a2, a3, · · · , an} corresponding to the 1076

posed question. For our experiments, all tables 1077

first undergo table sampling and table augmenta- 1078

tion by our proposed method and then are serialized 1079

into a sequence by table packing and serialization. 1080

Detailed implementation specifics are provided in 1081

Section §2.3. 1082

D.1 Downstream Tasks and Datasets 1083

In this paper, we mainly focus on tabular reasoning 1084

with two major tasks: TQA & TFV. We conduct 1085

experiments on five typical datasets and the dis- 1086

tribution of the datasets can be found in Table 5. 1087

In addition, to extend our work to databases con- 1088

taining table structures, we also set up TAP4LLM 1089

on Spider (Yu et al., 2018) dataset. Specifically, 1090

we use: (1) SQA (Iyyer et al., 2017), which is 1091

constructed by decomposing a subset of a highly 1092

compositional dataset, WTQ (Pasupat and Liang, 1093

2015). The dataset consists of 1,288 unique queries 1094

corresponding to 432 tables, with each table having 1095
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Table 5: The distribution of the used datasets.

Property SQA FEVEROUS TabFact HybridQA ToTTo Spider

Unique Query (Set Size) 1,228 1,322 9,228 6,268 8,026 10,181
Unique Table 432 942 1,342 4,364 5,934 500
SQL Query - - - - - 5,693
Rows per tables (Median/Avg) 12 / 18.5 14 / 26.3 8 / 14.0 8 / 15.7 16 / 28.4 10 / 16.1
Columns per tables (Median/Avg) 4 / 6.4 4 / 5.5 4 / 5.5 4 / 4.3 6 / 8.8 4 / 4.5
Cells per tables (Median/Avg) 78 / 180.4 77 / 190.3 80 / 150.3 70 / 143.9 87 / 212.6 -

Domain Wikipedia Wikipedia Wikipedia Wikipedia Wikipedia -
Evaluation Metric Exact Match Exact Match Exact Match Exact Match BLEU-4 Execution Accuracy

Table 6: Different kinds of table augmentation.

Knowledge Aspect Categories Definition

Dimension/Measure Metadata-based Distinguish each element in a table as either dimension field or measure field.

Semantic Field Type Metadata-based Classify the meaning and format of the data within each field based on knowl-
edge graphs.

Table Size Metadata-based Basic information of a table including numbers of rows and columns.

Statistics Feature Metadata-based Statistics features such as change rate, numerical distribution, range of data.

Header Hierarchy Metadata-based The organization and structure of header elements within a table.

Docs References Retrieval-based External domain knowledge from reliable webpages (e.g., wikipedia, Wolfram
Alpha, etc.) which are similar to the given context.

Term Explanation Retrieval-based External domain knowledge such as term and metric definitions (formulas,
relevant documents/sources, search results, etc.)

Self Prompting Self-consistency-based Leverage LLMs to generate some reasoning thoughts as supplementary for table
augmentation (self-augmented prompting, chain-of-thoughts, etc.)

18.5 rows and 6.4 columns on average; (2) Hy-1096

bridQA (Chen et al., 2020b), which is designed as1097

a large-scale multi-hop question-answering dataset1098

over heterogeneous information of both structured1099

tabular and unstructured textual forms. The dataset1100

consists of 6,268 unique questions and each ques-1101

tion is aligned with a Wikipedia table. Compared1102

to the SQA dataset, HybridQA has shorter column1103

numbers, which facilitates the understanding of the1104

table’s structure boundaries. (3) ToTTo (Parikh1105

et al., 2020) is a high-quality English table-to-text1106

dataset. It proposes a controlled generation task1107

that involves synthesizing a one-sentence descrip-1108

tion given a Wikipedia table and a set of highlighted1109

table cells. The dataset contains 8,026 samples,1110

each comprising a Wikipedia table with highlighted1111

cells. Each table contains 16 rows and 6 columns1112

on average. (4) FEVEROUS (Aly et al., 2021) is a1113

fact verification dataset over structured information.1114

The dataset consists of 1,322 verified claims. Each1115

claim is annotated with evidence in the form of1116

sentences and cells from tables in Wikipedia. Each1117

annotation also includes a label indicating whether1118

the evidence supports, refutes, or does not provide1119

enough information to make a decision. Each table1120

contains 26.3 rows and 5.5 columns on average.1121

(5) TabFact (Chen et al., 2020a) is another fact1122

verification dataset where the tables are extracted 1123

from Wikipedia and the sentences are composed 1124

by crowd workers. Compared to the FEVEROUS 1125

dataset, TabFact encompasses a larger number of 1126

samples and each table has fewer rows, has 14 rows 1127

per table on average. 1128

Metrics. For TQA and TFV tasks (SQA, 1129

FEVEROUS, TabFact and HybridQA), we report 1130

the exact match accuracy of answer sets. For data- 1131

to-text generation task (ToTTo), we report BLEU-4 1132

score. 1133

D.2 Models 1134

In this study, we evaluate the performance of the 1135

recent dominant LLM models, 1) Instruct-GPT- 1136

3.5 (Ouyang et al., 2022), using versions gpt-3.5- 1137

turbo, gpt-3.5-turbo-16k; 2) GPT-4, using the latest 1138

version of gpt-4 model; 3) Llama-2-70B (Touvron 1139

et al., 2023), using version 17; 4) Mixtral-8x7B 1140

(Jiang et al., 2024), using version 0.1. 1141

Unless otherwise specified, we utilize gpt-3.5- 1142

turbo in all experiments. In the sampling meth- 1143

ods, we use text-embedding-ada-002 (ope) for row 1144

and query embedding generation. The compar- 1145

ison experiments using other embeddings mod- 1146

els, such as, text-search-ada-doc-001, bge-largen- 1147

en (Xiao et al., 2023), all-MinLM-L6-v2 (Reimers 1148
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and Gurevych, 2019) can be found in Table 7. The1149

development of TAP4LLM begins with the foun-1150

dation provided by LLMs. In designing our frame-1151

work, we opt to use OpenAI models as our base1152

model due to their excellent capabilities in lan-1153

guage reasoning. However, the choice is not ex-1154

clusive. Since TAP4LLM use natural language1155

as an intermediary for interactive communication1156

between the table and LLMs, it can also support1157

other outstanding open-sourced models using natu-1158

ral language as input, such as Phoenix (Chen et al.,1159

2023), ChatGLM (Zeng et al., 2022), Ziya (IDEA-1160

CCNL, 2023), and Baichuan (Intelligence, 2023).1161

This design provides versatility and flexibility in1162

TAP4LLM implementation.1163

E Additional Experiments1164

E.1 Comparison Results of Embedding Type.1165

Based on the results from Table 7, we observe1166

that: (1) Superiority of “text-embedding-ada-002”:1167

“text-embedding-ada-002” consistently offers the1168

best performance across the datasets. It suggests1169

that for tasks similar to table reasoning, this embed-1170

ding type might be the most suitable choice. (2) Po-1171

tential of “sentence-transformer”: The “sentence-1172

transformer” embedding type provides competi-1173

tive results, especially in the ToTTo dataset. This1174

suggests that it might be particularly suitable for1175

certain tasks or datasets and is worth considering1176

alongside “text-embedding-ada-002”.1177

Table 7: Comparative results of different embedding mod-
els on query-based sampling method without any augmen-
tation method. We use all-MinLM-L6-v2 for the sentence-
transformer. The highest performance of each dataset is bold.

Embedding Type SQA FEVEROUS TabFact HybridQA ToTTo Spider

text-embedding-ada-002 28.32% 63.32% 59.80% 24.32% 49.14% 80.27%
text-embedding-ada-001 27.12% 62.24% 57.32% 23.14% 48.21% 79.34%
bge-large-en (Xiao et al., 2023) 26.76% 62.87% 56.31% 22.65% 47.32% 78.25%
sentence-transformer (Reimers and Gurevych, 2019) 26.32% 63.31% 58.94% 23.78% 50.12% 80.05%

While “text-embedding-ada-001” and “bge-1178

large-en” don’t lead to the highest performance,1179

they still provide competitive performance. This1180

suggests that the choice of embedding can affect1181

the overall performance, but the differences might1182

not always be significant. The choice between these1183

embeddings would likely depend on specific use1184

cases, computational costs, and other practical con-1185

siderations.1186

E.2 Comparison Results of Statistics Features1187

The accuracy of each dataset for four groups of1188

statistics features reveals that the distribution fea-1189

tures overall performed well in capturing the nu- 1190

ances and variations within specific tabular data 1191

entries. Based on this, we further propose a combi- 1192

nation including the most practical features across 1193

these four categories and carry out an empirical 1194

study to examine its performance. Specifically, this 1195

combination contains variance, range, cardinality, 1196

major, and change rate. with each term’s definition 1197

listed in Table 8. The experiment result, displayed 1198

in Table 9, demonstrates that our proposed com- 1199

bination surpasses the previous four feature sets 1200

across all six datasets.

Table 8: Detailed definition of statistics features.

Features Definition

Progression Type:
ChangeRate Proportion of different adjacent values
PartialOrdered Maximum proportion of increasing / decreasing adjacent values
OrderedConfidence Indicator of sequentiality

String Features:
AggrPercentFormatted Proportion of cells having percent format
CommonPrefix Proportion of most common prefix digit
CommonSuffix Proportion of most common suffix digit

Number Range Features:
Aggr01Ranged Proportion of values ranged in 0-1
Aggr0100Ranged Proportion of values ranged in 0-100
AggrIntegers Proportion of integer values
AggrNegative Proportion of negative values

Distribution features:
Variance Standard deviation of a given series of data
Range Values range
Cardinality Proportion of distinct values
Spread Cardinality divided by range
Major Proportion of the most frequent value
Benford Distance of the first digit distribution to real-life average
Skewness Skewness of numeric values
Kurtosis Kurtosis of numeric values
Gini Gini coefficient of numeric values

1201

Table 9: Comparative results of various types of statistical
features. The experiment setting is the same as Section 2. The
highest performance of each dataset is bold.

Statistics Features Type SQA FEVEROUS TabFact HybridQA ToTTo Spider

Progression features 29.20% 64.26% 60.45% 25.11% 49.53% 77.47%
String features 28.56% 63.13% 61.38% 24.83% 48.29% 73.56%
Number range features 29.13% 62.18% 59.03% 24.53% 49.68% 76.32%
Distribution features 30.28% 66.34% 62.18% 24.76% 49.34% 79.14%
Statistics features 31.22% 66.51% 62.33% 26.13% 50.57% 80.94%

E.3 TAP4LLM in Open-source model 1202

Beyond conducting experiments on GPT models. 1203

we also evaluate the effectiveness of TAP4LLM 1204

on two most updated LLMs: Llama-2-70B and 1205

Mixtral-8x7B. According to Table 10, we first eval- 1206

uated direct inference on open-source models and 1207

then apply TAP4LLM to each model. The result 1208

demonstrates that TAP4LLM increases models’ 1209

performance on all five datasets. The experiment 1210

gives us insights on the advantages of TAP4LLM 1211

among general LLMs. We will also conduct exper- 1212

iments on other table-related pre-trained models 1213

e.g.TaBERT (Yin et al., 2020) in our future work. 1214
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Table 10: Comparison of TAP4LLM and baseline on Open-
source models. We refer to "Baseline" as directly inferring
each task using the model. For TAP4LLM, we apply se-
mantic sampling for table sampling module and Statistics
Feature/D/M+SF/self-prompting for table augmentation mod-
ule.

Model Name Methods SQA FEVEROUS TabFact HybridQA ToTTo

Llama-2-70B
Baseline 19.02% 65.33% 63.45% 17.21% 21.08%
TAP4LLM 22.14% 69.20% 66.32% 23.15% 30.00%

Mixtral-8x7B
Baseline 21.25% 61.32% 57.21% 21.01% 34.25%
TAP4LLM 24.18% 63.29% 58.80% 25.44% 37.79%

E.4 TAP4LLM in Database Application1215

Dataset. We test TAP4LLM effectiveness on Spi-1216

der (Yu et al., 2018). Spider is a cross-domain1217

Text-to-SQL dataset as shown in Table 5. Each1218

instance contains a natural language question, a1219

specific database containing tabular information,1220

and one corresponding SQL query.1221

Metric. We evaluate TAP4LLM on the devel-1222

opment split Spider-dev which contains 1034 in-1223

stances over 200 databases. We use the Execution1224

Accuracy, followed by the original paper (Yu et al.,1225

2018), to compare the execution output of the pre-1226

dicted SQL query with golden SQL query.1227

Experiment As shown in Table 11 and Table 12,1228

the experiment result demonstrates that LLMs1229

achieve an overall higher model performance1230

through TAP4LLM. Specifically, the execution ac-1231

curacy reaches the highest through semantic-based1232

sampling and D/M + SF augmentation.1233

Table 11: Comparative results of the table sampling methods
on Spider.

Sampling Type Table Sampling Methods Execution Accuracy

Rule-based Sampling
Random Sampling 74.58%
Evenly Sampling 72.03%
Content Snapshot (Yin et al., 2020) 78.93%

Embedding-based Sampling

Centroid-based Sampling 77.43%
Semantic-based Sampling 80.27%

w/ Column Grounding 81.03%
Hybrid Sampling 78.94%

LLM-based Sampling LLM-Decomposer (Ye et al., 2023b) 78.34%

-
No sampling (GPT-3.5) 72.15%
No sampling (GPT-3.5, truncated) 68.47%

Table 12: Comparative results of table augmentation methods
on Spider. We use semantic-based sampling method without
augmentation as the baseline for table augmentation.

Augmentation Aspect Execution Accuracy

Baseline 80.27%

D/M + SF 82.45%
Statistic Feature 80.94%
Term Explaination (LLM-based) 80.48%
Term Explaination (Heuristics-based) 80.33%

F Implementation Details 1234

F.1 Motivation of our Framework 1235

Table Sampling: One primary challenges for tab- 1236

ular reasoning is that the full content of a table 1237

could be very long and noisy to be include in the 1238

prompt. Most LLMs have a limited input context 1239

window size (e.g., 4k tokens) in which an over- 1240

long table cannot fit it. For long tables that satisfy 1241

the length constraint, it can still lead to unneces- 1242

sary computations (of LLMs on long prompt) and 1243

quality regressions (generation interfered by noisy 1244

input) when placing irrelevant table content (w.r.t. 1245

the task or query) in the prompt. 1246

Table Augmentation: Another challenge is what 1247

additional/external knowledge could help LLMs 1248

better understand a table? The raw content of a 1249

table may contain ambiguous information (e.g., ab- 1250

breviations, domain-specific terms, column type, 1251

etc) that requires further interpretation and clarifica- 1252

tion. We are motivated to propose table augmenta- 1253

tion for 1) enhanced contextual understanding: by 1254

supplementing tables with metadata and attributes, 1255

we can achieve a more profound grasp of the ta- 1256

ble’s intrinsic structure and semantics and further 1257

enrich the tabular data; 2) bridging external knowl- 1258

edge gasps: tables alone might not encompass all 1259

the required information to provide comprehensive 1260

answers to certain queries. By retrieving external 1261

knowledge from reliable sources, e.g., Wikipedia, 1262

we can aid the language models in understanding 1263

the broader context of the query, leading to more 1264

informed and nuanced responses. 1265

Table Packing: The desire to maintain efficient 1266

reasoning without changing the LLMs architecture 1267

motivates us to consider how to encode the table 1268

into a prompt? While sampling and grounding 1269

compress the table content, augmentation expands 1270

the prompt by adding more information. With a 1271

given token budget, one needs to find the balance 1272

to allocate available tokens between table content 1273

and augmented knowledge. 1274

F.2 Table Syncing 1275

To achieve the interactive table reasoning, 1276

TAP4LLM proposes the “table sync” to ensure 1277

that applications, such as Excel Copilot, maintain 1278

their table data in synchronization with the table 1279

manager. The table manager acts as a go-between, 1280

managing the data that is either stored locally in 1281

a cache or accessed through a database connec- 1282

tion. Specifically, when changes are made to the 1283
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data within the application, those changes must be1284

reflected in the table manager for any operation1285

performance, such as sampling, augmentation, and1286

packing. Conversely, if changes are made within1287

the table manager, the changed data should be up-1288

dated in the application as well.1289

This syncing process is essential for maintaining1290

data integrity and ensuring that all components of1291

the system are kept up-to-date. This is especially1292

beneficial when the data is being used to generate1293

prompts for a large language model, as it allows for1294

accurate data processing, querying, and analysis.1295

By having the most current and relevant informa-1296

tion, the model can provide accurate and reliable1297

responses.1298

F.3 Table Cleansing1299

Table cleansing is an independent step in tabular1300

data prepossessing, especially when dealing with1301

hierarchical tables. In the context of fine-grained1302

in-context learning, where pre-trained generated1303

model has to discern and process intricate patterns1304

and relationships within datasets. The importance1305

of clean and standardized tables cannot be over-1306

stated for two reasons: (1) Dirty or unorganized1307

tabular data can mislead the models and impair1308

the model’s performance; (2) Cleansed tables en-1309

sure uniformity, making them easier to compare,1310

merge, or use in subsequent operations. For ex-1311

ample, imagine a financial analyst case aiming to1312

forecast a company’s stock price based on histor-1313

ical data. The corresponding table contains daily1314

stock prices, trading volumes, and various financial1315

indicators. If there are any missing certain values1316

for certain days, or duplicate entries due to system1317

glitches. Such inconsistencies may dramatically1318

affect the forecasting performance. For instance, it1319

might suggest a non-trading day or a sudden drop1320

in stock price. Specially, the formal definition of1321

table cleansing is: Given a table T consisting of1322

rows RT and columns CT , table cleansing trans-1323

forms T into T ′ such that: (a) Cell and column1324

name completeness: For every cell ci,j in T where1325

i ∈ RT and j ∈ CT , if ci,j has a missing or null1326

value, it is filled using contextual information (i.e.,1327

use the corresponding entire column Cj of cell ci,j1328

as the context). We utilize a separate “CallLLM"1329

system g(·) to call a pre-trained language model to1330

synthesize the missing value. The processing can1331

be formulated as ci,j = g(Cj). This ensures that1332

gaps in the data don’t lead to misleading interpreta-1333

tions or missed patterns. (b) Duplicate data points1334

removal: For every pair of rows rm, rn and pair of 1335

columns cp, cq in T , if rm = rn or cp = cq respec- 1336

tively, one from the pair is removed to eliminate 1337

duplication. (c) Format consistency: For every cell 1338

ci,j in T , the value conforms to a specific format, 1339

unit, or pattern. 1340
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