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ABSTRACT

Large video models, pretrained on massive quantities of amount of Internet video,
provide a rich source of physical knowledge about the dynamics and motions of
objects and tasks. However, video models are not grounded in the embodiment
of an agent, and do not describe how to actuate the world to reach the visual
states depicted in a video. To tackle this problem, current methods use a separate
vision-based inverse dynamic model trained on embodiment-specific data to map
image states to actions. Gathering data to train such a model is often expensive and
challenging, and this model is limited to visual settings similar to the ones in which
data is available. In this paper, we investigate how to directly ground video models
to continuous actions through self-exploration in the embodied environment – using
generated video states as visual goals for exploration. We propose a framework
that uses trajectory level action generation in combination with video guidance
to enable an agent to solve complex tasks without any external supervision, e.g.,
rewards, action labels, or segmentation masks. We validate the proposed approach
on 8 tasks in Libero, 6 tasks in MetaWorld, 4 tasks in Calvin, and 12 tasks in
iThor Visual Navigation. We show how our approach is on par with or even
surpasses multiple behavior cloning baselines trained on expert demonstrations
while without requiring any action annotations. Results are best viewed on our
website: https://sites.google.com/view/video-to-actions.

1 INTRODUCTION

Large video models (Brooks et al., 2024; Girdhar et al., 2023; Ho et al., 2022) trained on a massive
amount of Internet video data capture rich information about the visual dynamics and semantics of
the world for physical decision-making. Such models are able to provide information on how to
accomplish tasks, allowing them to parameterize policies for solving many tasks (Du et al., 2024).
They are further able to serve as visual simulators of the world, allowing simulation of the visual state
after a sequence of actions (Brooks et al., 2024; Yang et al., 2024c), and enabling visual planning to
solve long-horizon tasks (Du et al., 2023).

However, directly applying video models zero-shot for physical decision-making is challenging due
to embodiment grounding. While generated videos provide a rich set of visual goals for solving
new tasks, they do not explicitly provide actionable information on how to reach each visual goal.
To ground video models to actions, existing work has relied on training an inverse dynamics model
or goal-conditioned policy on a set of demonstrations from the environment (Black et al., 2023;
Du et al., 2024; 2023). Such an approach first requires demonstrations to be gathered in the target
environment and embodiment of interest, which demands human labor or specific engineering (e.g.
teleoperation or scripted policy). In addition, the learned policies may not generalize well to areas in
an environment that are out-of-distribution of training data.

Recently, (Ko et al., 2023) proposes an approach to directly regress actions from video models,
without requiring any action annotations. In (Ko et al., 2023), optical flow between synthesized
video frames is computed and used, in combination with a depth map of the first image, to compute a
rigid transform of objects in the environment. Robot actions are then inferred by solving for actions
that can apply the specified rigid transform on an object. While such an approach is effective on a set
of evaluated environments, it is limited in action resolution as the inferred object transforms can be
imprecise due to both inaccurate optical flow and depth, leading to a relatively low success rate in
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evaluated environments (Ko et al., 2023). In addition, it is difficult to apply this approach to many
robotic manipulation settings such as deformable object manipulation, where there are no explicit
object transforms to compute.

Policy
Env w/o Rewards

Replay Buffer

Training Signal

AddActions

Observation

Observation

Video Frame
As Goal

Video Model

Task Description

Figure 1: Grounding Video Model to Actions. Our ap-
proach learns to ground a large pretrained video model into
continuous actions through goal-directed exploration in an
environment. Given a synthesized video, a goal-conditioned
policy attempts to reach each visual goal in the video, with
data in the resulting real-world execution saved in a replay
buffer to train the goal-conditioned policy.

We propose an alternative manner to di-
rectly ground a video model to actions with-
out using annotated demonstrations. In our
approach, we learn a goal-conditioned pol-
icy, which predicts the actions to reach each
synthesized frame in a video. We learn the
policy in an online manner, where given
a specified task, we use each intermediate
synthesized frame as a visual goal for a
goal-conditioned policy from which we ob-
tain a sequence of actions to execute in an
environment. We then use the image ob-
servations obtained from execution in the
environment as ground-truth data to train
our goal-conditioned policy. We illustrate
our approach in Figure 1.

In practice, directly using synthesized im-
ages as goals for exploration often leads to
insufficient exploration. Agents often get stuck in particular parts of an environment, preventing
the construction of a robust goal-conditioned policy. To further improve exploration, we propose to
generate chunks of actions to execute in an environment given a single visual state. By synthesizing
and executing a chunk of actions we can explore the environment in a more directed manner, enabling
us to achieve a more diverse set of states. We further intermix goal-conditioned exploration with
random exploration to further improve exploration.

Overall, our approach has three contributions: (1) We propose goal-conditioned exploration as an
approach to ground video models to continuous actions. (2) We propose a set of methods to enable
robust exploration in an environment to learn a robust goal-conditioned policy, using chunked action
prediction and exploration with periodic randomized exploration. (3) We illustrate the efficacy of our
approach on a set of simulated manipulation and navigation environments.

2 RELATED WORK

Video Model in Decision making A large body of recent work has explored how video models can
be used in decision making (Yang et al., 2024d; McCarthy et al., 2024). Prior work has explored
how video models can act as reward functions (Escontrela et al., 2024; Huang et al., 2023; Chen
et al., 2021), representation learning (Seo et al., 2022; Wu et al., 2023; 2024; Yang et al., 2024b),
policies (Ajay et al., 2024; Du et al., 2024; Liang et al., 2024), dynamics models (Yang et al., 2024c;
Du et al., 2024; Zhou et al., 2024b; Brooks et al., 2024; Rybkin et al., 2018; Mendonca et al., 2023),
and environments (Bruce et al., 2024). Our work explores that given video generations, how we can
learn a policy and infer the actions to execute in an environment without any action labels, while
existing works (Baker et al., 2022; Bharadhwaj et al., 2024a; Black et al., 2023; Wen et al., 2023;
Zhou et al., 2024a; Wang et al., 2024) requires domain specific action data. Most similar to our work
is AVDC (Ko et al., 2023), which uses rigid object transformations computed by optical flow between
video frames as an approach to extract actions from generated videos. We propose an alternative
unsupervised approach to ground video models to continuous action by leveraging video-guided
goal-conditioned exploration to learn a goal-conditioned policy.
Learning from Demonstration without Actions. A flurry of work has studied the problem of robot
learning from demonstrations without actions. One line of work studies the problem of extrapolating
the control actions assuming that the expert state trajectories are provided (Torabi et al., 2018;
Radosavovic et al., 2021; Li et al., 2024), though collecting such ground-truth state-level data is
expensive and hard to scale. Some recent work explores learning from image/video robotic data
without actions (Seo et al., 2022; Wu et al., 2024; Mendonca et al., 2023; Ma et al., 2022; Wang
et al., 2023; Ma et al., 2023; Schmeckpeper et al., 2021), either by constructing a world model,
reward model, or representation model. However, these methods usually need additional finetuning
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on data or rewards from specific downstream environments. By contrast, our method uses action-free
demonstration videos to train a video generative model and leverages the generated frames as goals
to learn a goal-conditioned policy to complete a task. As a result, our policy learning requires neither
action labels or environment awards which can be challenging to obtain.
Robotic Skill Exploration. Typical robot skill exploration is formulated as an RL problem (Haarnoja
et al., 2018; Hafner et al., 2019) and assumes some form of environment rewards, but the design of
reward functions is highly task dependent and demands human labor. To this end, some recent work
explores robotic skill exploration without any rewards. One typical class of methods is developed
upon computing intrinsic exploration rewards to promote rare state visit. These methods can be
based on prediction error maximization (Pathak et al., 2017; Henaff, 2019; Shyam et al., 2019),
disagreement of an ensemble of world models (Hu et al., 2022; Sekar et al., 2020; Sancaktar et al.,
2022), entropy maximization (Pong et al., 2020; Pitis et al., 2020; Jain et al., 2023; Eysenbach et al.,
2019), counting (Bellemare et al., 2016), or relabeling (Ghosh et al., 2021). However, discrepancy,
counting, or relabeling based methods are limited to simple environment, short-horizon tasks or low-
dimensional state-space. We propose to use video models for direct exploration, as large pretrained
video models are a rich source of task-specific information. With efficient guidance from the video
model, we show that our method is able to collect high-quality data from the environment and
accomplish challenging long-horizon tasks conditioned on language instruction at test-time.

3 METHOD

In this section, we describe our method to ground video model to actions by unsupervised exploration
in the environments. First, in Section 3.1, we describe the pipeline of policy execution conditioned
on video frame and hindsight relabeling via environment rollouts. Next, we introduce a periodic
random action bootstrapping technique to secure the quality of video-guided exploration in Section
3.2. Finally, in Section 3.3, we propose a chunk-level action prediction technique to further enhance
the coverage, stability, and accuracy of the goal-conditioned policy. The pseudocode of our method is
provided in Algorithm 1.

3.1 LEARNING GOAL-CONDITIONED POLICIES THROUGH VIDEO-GUIDANCE AND
HINDSIGHT RELABELING

A key challenge in unsupervised skill exploration is that the possible underlying environment states
are enormous, making it difficult for an agent to discover and be trained on every valid state, especially
in the high-dimensional visual domain. Many relevant states for downstream task completion, such as
stacking blocks on top of each other or opening a cabinet, require a very precise sequence of actions
to obtain, which is unlikely to happen from random exploration.

Video models have emerged as a powerful source of prior knowledge about the world, providing
rich information about how to complete various tasks from large-scale internet data. We leverage
the knowledge contained in these models to help guide our exploration in an environment to solve
new tasks. To this end, we propose a novel method that uses a pre-trained video model fθ(xstart, c)
to guide the exploration and shrink the search space only to task-relevant states (xstart denote the
initial observation and c denote the corresponding task description). This concurrently benefits both
sides: the goal-conditioned policy obtains task-relevant goals so as can perform efficient exploration
centered around the task-relevant state space; on the other hand, the underlying information from
the video model is extracted to end effectors and enables effective decision-making and control in
embodied agents. Specifically, during exploration, we first leverage the video model to generate a
sequence of images based on the given image observation xstart and language task description c,

pred v = fθ(xstart, c), where xstart ∼ O and c ∼ T (1)

where O is the observation space and T is the task space. We then execute the actions predicted by
the goal-conditioned policy apred = π(a|xstart, xgoal) in the environment, where the goal xgoal is set to
each predicted video frame pred vi sequentially. Hence, we can obtain an episode of image action
pairs (xenv

1:t , a
pred
1:t ) of length t from the environment and these rollout data will be added to a replay

buffer R for policy training.

At the beginning of training, these data might not necessarily reach the exact goals given by the
video model, but are still effective to indicate the task-specific region, since the rollout results of apred

1:t
are relabeled and can reflect the ground-truth environment dynamics. Empirically, we observe the
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Algorithm 1 Grounding Video Model to Actions

1: Require: a frozen video diffusion model fθ(xstart, c), a goal conditioned policy to train
π(a|xstart, xgoal), a replay buffer R

2: Hyperparameters: horizon of policy π h, training iteration N , number of initial / additional
random action episodes nr / n′

r, video-guided / random action exploration frequency qv / qr
3: Sample nr episodes of random actions and add to replay buffer R
4: for i = 1→ N do
5: if i mod qv == 0 then # conduct video-guided exploration with frequency qv
6: Sample a task c′, obtain observation x0, and generate video pred v = fθ(x0, c

′)
7: Execute policy π(a|·, ·) in the environment where the goals are frames from pred v
8: Add the resulting image-action pairs from the video rollout to replay buffer R
9: end if

10: if i mod qr == 0 then # conduct periodic random action bootstrapping with frequency qr
11: Sample additional n′

r episodes of random actions and add to replay buffer R
12: end if
13: # train the policy with the data sampled from the replay buffer
14: (xi:i+h, ai:i+h) = sample a consecutive sequence of image-action pairs from replay buffer R
15: apred = π(a|xi, xi+h)
16: L = MSE(apred, ai:i+h)
17: end for
18: return goal-conditioned policy π

proposed video-guided exploration scheme is very effective, and we visualize the curve of number of
success versus total number of video-guided rollouts in Figure 8. Our overall training objective is

max
ϕ

E(xi:i+h,ai:i+h)∼R

[
log πϕ(ai:i+h|xi, xi+h)

]
(2)

where i is a randomly sampled temporal index inside a rollout episode, h denotes the horizon of the
policy, and ϕ represents the parameters of the goal-conditioned policy. Note that provided a video
model fθ trained on internet scale data, the video predictions can be easily generalized to a broad
observation space O and task space T , enabling the proposed guidance scheme directly applied to
various unseen scenarios.

3.2 PERIODIC RANDOM ACTION BOOTSTRAPPING
When a goal-conditioned policy is initialized from scratch, it is unable to effectively process the
frames provided by a video model and use them to guide exploration, as it is unable to process input
frames. Empirically, we found that a randomly initialized policy would often instead preferentially
output particular actions (ı.e. only move up) independent of goals given by the video model.

This significantly compromises the exploration because the policy will not explore the task-related
states as we expect. More importantly, though we can obtain ground-truth environment dynamics via
hindsight relabeling, the actions in the replay buffer R are output from the scratch policy itself. This
might result in an undesirable loop where only the previous outputs are used as the ground-truth and
these actions are irrelevant to completing the task.

To this end, inspired by random action sampling in RL setting (Sutton, 2018), we propose a novel
periodic random action bootstrapping method for grounding video model to actions. Specifically, we
first conduct random action exploration and append the resulting data to the replay buffer R before
the training starts, and periodically conduct extra random exploration during training. The process
can be denoted by

R ← air1:tr ∼ Uniform
[
alow, ahigh

]
for ir in [1, 2, ..., nr] (3)

where nr denotes the number of random action episodes, tr denotes the length of a random action
episode, alow and ahigh are the action limits. This proposed bootstrapping method can enhance the
exploration in two ways: the initial random actions serve as the basic world dynamics information
which enables the policy to reach the vicinity of goal states specified by video frames, ensuring
effective video-guided exploration; the periodic extra random exploration can further expand the
agent’s discovered state space and stabilize policy training. Please see Section 4.3 for ablation studies
and Appendix D.3 for implementation details.
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(a) Libero (b) Meta-World (c) Calvin (d) iTHOR
Figure 2: Environment Demonstrations. We evaluate our method on three robotic manipulation environments:
Libero, Meta-World, Calvin, and one visual navigation environment: iThor, with a total of 30 tasks. Images in (a)
and (c) denote the goal object states of a subset of tasks. Images in (b) are randomly sampled start observation of
a subset of tasks. In (d), we show the layout for each scene in the agent’s view from a specific position.
3.3 CHUNK LEVEL ACTION PREDICTION AND EXPLORATION

In current robot exploration frameworks, the policy usually predicts a single action as output and
explores the environment with a single action. However, this single action method can hinder diverse
exploration, as it might easily fall to a single modality or local minima, which significantly constrains
the covered state space. Moreover, single action prediction does not fully leverage the data coherency
and context information collected by the agent during consecutively interactions with the environment.
In addition, single action exploration requires one model forward pass for each action, resulting in a
larger computational burden and higher latency.

To tackle these issues, we propose to predict a sequence of actions with horizon h and explore the
environments using the predicted chunks of actions. On one hand, by modeling behavior over a
longer horizon, chunk-level action prediction can encourage more coherent action sequences and
mitigate myopic actions and compounding error, especially when the temporal distance to the goal
is large. On the other hand, exploration with action chunks can in turn collect more coherent data
from the environment, further facilitating the policy to capture the underlying environment dynamics.
In addition, we utilize chunk-level actions during random exploration. Specifically, we sample an
action mean am from a uniform distribution, and based on am, we sample a chunk of actions ac of
length lc from Gaussian distribution, where the i-th action is represented as aci ∼ N (am, σ). This
ensures consistent exploration and avoids the zero-mean random action issue that confines the agent
to a small vicinity near the start state.

Recent works have also employed action chunking (Bharadhwaj et al., 2024b; Zhao et al., 2023) in
behavior cloning. However, our application is different and we propose to use action chunking to
enable more effective unsupervised exploration. We illustrate how, in combination with video-guided
exploration, this action chunking allows for more coherent exploration, as well as enabling models
to make consistent plans to achieve video goals. In Section 4.3, we provide a study comparing
chunk-level prediction versus single action prediction in the Libero environment and empirically
show that the chunk-level design can substantially improve the resulting goal-reaching policy.

4 EXPERIMENTS

We present our experiment results across four simulated environments shown in Figure 2. In Section
4.1, we describe our results on three robotic manipulation environments: 8 tasks on Libero (Liu et al.,
2024), 6 tasks on MetaWorld (Yu et al., 2020), and 4 tasks on Calvin (Mees et al., 2022). Following
this, in Section 4.2, we show evaluation results on 4 different scenes and 12 targets on iTHOR (Kolve
et al., 2017) visual navigation environment. Finally, in Section 4.3, we present ablation studies on
the proposed chunk level action prediction and random action bootstrapping methods. We provide
more experiment results in Appendix A and B. We use the same demonstration data to train the
baseline methods and our video model, except that training the video model only requires the image
sequences of demonstrations, while most baseline methods need the corresponding action annotations
(highlighted by an asterisk). In evaluation, for manipulation tasks, the initial robot state and object
positions are randomized; for visual navigation tasks, we randomize the robot start position.
Implementation. For the video model, the inputs are the observation image and the task description.
We follow the lightweight video model architecture introduced in (Ko et al., 2023) and train one
video model from scratch for each environment. We deem that finetuning large text-conditioned
video models (Yang et al., 2024e; Chen et al., 2024; Saharia et al., 2022) or designing task-specific
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put-red-mug-left put-red-mug-right put-white-mug-left put-Y/W-mug-right Overall

BC* 8.8±5.3 15.2±7.8 32.0±12.9 21.6±12.3 19.4±9.6
GCBC* 2.4±2.0 0.8±1.6 16.0±7.2 7.2±5.3 6.6±4.0
DP BC* 33.6±3.2 33.6±8.2 59.2±7.8 57.6±5.4 46.0±6.2
DP GCBC* 24.8±4.7 22.4±7.4 16.0±8.8 3.2±3.0 16.6±6.0
SuSIE* 18.4±2.0 32.0±8.4 43.2±4.7 25.6±11.5 29.8±6.6
AVDC 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0
Ours w/ SuSIE 23.2±3.0 60.0±6.7 68.8±4.7 67.2±8.9 54.8±5.8
Ours 38.4±15.3 40.8±7.8 51.2±3.9 38.4±8.6 42.2±8.9

put-choc-left put-choc-right put-red-mug-plate put-white-mug-plate Overall

BC* 19.2±9.3 12.8±9.3 7.2±5.3 20.0±11.3 14.8±8.8
GCBC* 4.8±1.6 4.0±4.4 2.4±3.2 7.2±6.4 4.6±3.9
DP BC* 42.4±5.4 50.4±5.4 32.8±9.3 71.2±5.3 49.2±6.4
DP GCBC* 45.6±6.0 32.0±8.8 7.2±4.7 5.6±4.1 22.6±5.9
SuSIE* 17.6±9.3 32.8±9.9 16.0±2.5 10.4±4.1 19.2±6.5
AVDC 1.3±1.9 0.0±0.0 0.0±0.0 0.0±0.0 0.3±0.5
Ours w/ SuSIE 44.0±7.6 54.4±5.4 66.4±12.0 36.0±7.6 50.2±8.2
Ours 70.4±12.8 79.2±3.9 72.8±6.4 25.6±11.5 62.0±8.7

Table 1: Quantitative results on 8 tasks of two different scenes in Libero. Note that methods marked with an
asterisk ‘*’ require ground-truth action demonstrations to train, while other methods do not. Ours w/ SuSIE uses
an image-editing model to generate subgoals guidance while Ours uses a video model.

Start Obs

Goal Conditioned Exploration Policy (Ours)

Video Model Prediction Behavior Cloning

AVDC
Figure 3: Qualitative Results of task ‘put the yellow and white mug to the right plate’ in Libero environment.
The start states of the robot and objects are randomized in test-time. Only a subset of the predicted video frames
are shown due to space limit. Our goal-conditioned policy shown in the bottom left is able to follow the video
prediction and finish the task. BC cannot accurately locate the target while AVDC can move to the mug but
without the skill of grasping concave objects.

video model might be an interesting future research direction. For the goal-conditioned policy,
we implement it with a CNN-based Diffusion Policy (Chi et al., 2023), which takes as input the
observation image and the goal image and outputs a chunk of actions. For detailed implementation of
our method and each baseline, please refer to Appendix D.

4.1 MANIPULATION

In this section, we aim to evaluate the goal-conditioned policy learned by the proposed unsupervised
exploration in tabletop manipulation environments with continuous action space. To better understand
the capability of the method, we investigate multi-task policy learning in Libero and Calvin, and
single-task policy learning in Meta-world. Note that methods highlighted by an asterisk require
ground-truth action labels to train, whereas our method only requires image demonstration sequences
to train the video model and self-supervised training for the policy model.

Libero (Liu et al., 2024) is a tabletop simulation of a Franka Robot, which features several dexterous
manipulation tasks. For each task in Libero, the agent is required to achieve the final state described
in a corresponding sentence, which identifies the target object and task completion state. The action
space consists of the delta position and orientation of the end effector and the applied force on the
gripper, resulting in a total dimension of 7.

6
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door-open door-close handle-press hammer assembly faucet-open Overall

BC* 64.0±4.4 76.0±0.0 49.6±3.2 4.8±3.9 8.0±2.5 88.8±3.0 48.5±2.8
GCBC* 64.8±6.9 93.6±2.0 50.4±6.5 4.8±1.6 8.0±2.5 95.2±1.6 52.8±3.5
DP BC* 73.6±4.8 94.4±2.0 52.0±8.4 7.2±3.0 0.8±1.6 82.4±2.0 51.7±3.6
DP GCBC* 68.0±0.0 96.0±4.0 36.0±0.0 14.0±2.0 5.6±2.0 80.0±0.0 49.9±1.3

AVDC 52.0±0.0 97.3±1.9 76.0±5.7 4.0±3.3 8.0±0.0 66.7±5.0 50.7±2.6
Ours 76.0±4.9 85.6±2.0 94.4±2.0 43.2±6.4 16.8±3.0 87.2±3.0 67.2±3.6

Table 2: Quantitative Results of 6 tasks in Meta-World. Methods marked with an asterisk ‘*’ require
ground-truth action demonstrations to train. AVDC uses the segmentation mask of the target object to compute
actions. Our method learns the policy by video-guided self-exploration in the environment without any external
supervision.

Start Obs

Video Model Prediction Behavior Cloning

Goal Conditioned Exploration Policy (Ours)AVDC
Figure 4: Qualitative Results of task Door-Open in Meta-World environment. The position of the box and
robot are randomized in test-time. Only a subset of the predicted video frames are shown due to space limit.
Our goal-conditioned policy can follow the subgoals given by the video frames and successfully finish the task.
BC misses the handle probably due to the out of training distribution box position and starts to predict random
actions. AVDC can move to the handle thanks to the exact given handle location. However, it begins to close the
door halfway, probably because of the incorrect flow prediction due to error accumulation or occlusion.

We include 8 tasks from two scenes in Libero as the testbed. In this environment, we aim to evaluate
multi-task learning capability of our method, hence we only train one policy model for all 8 tasks. The
video model is trained on the visual image sequences of the demonstrations provided in Libero, where
we use 20 episodes per task, thereby 160 demonstrations in total. We train BC, GCBC, SuSIE (Black
et al., 2023) on the same visual image sequences but with expert actions corresponding to each image.
Following the setting in AVDC, we provide it with the segmentation masks of the target objects,
while our method does not require such privilege information.

We present the quantitative results in Table 1 and qualitative results in Figure 3 and 6. Across 8 tasks,
our method is able to outperform the baselines by a margin, though without any access to expert action
data. We observe that BC-based methods tend to memorize and overfit to the training data, where
they fails to locate the target objects, while our method is more robust in test-time. In addition, though
knowing the exact positions of target objects in test-time, AVDC is unable to achieve any meaningful
results, probably because that AVDC uses hard-coded action primitives and planning procedural,
making it difficult to generalize to more complex manipulation task, for example, grasping concave
objects such as mugs. Note that our method can also be integrated with various forms of generative
models, as shown by Ours w/ SuSIE where we use an image-editing model to predict the subgoals for
exploration. Please refer to Appendix A for more results and Appendix C for failure analysis.

Meta-World (Yu et al., 2020) is a simulated robotic benchmark of a Sawyer robot arm with a set of
tabletop manipulation tasks that involve various object interactions and different tool use. The action
space consists of the delta position of the end effector and the applied force on the gripper, resulting
in a total dimension of 4.

We consider 6 tasks: door-open, door-close, handle-press, hammer, assembly, faucet-open. We
directly utilize the video model checkpoint provided in AVDC. To further validate the proposed
exploration approach, we conduct single-task exploration in this environment, where we train one
policy model for each task. Each learning-based baseline model is trained on the same demonstrations
used to train the video model, namely, 15 episodes per task. We present the quantitative results
in Table 2 and qualitative results in Figure 4. We observe that our policies can successfully learn
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Start Obs

Video Model Prediction Behavior Cloning

Goal Conditioned Exploration Policy (Ours)GCBC
Figure 5: Qualitative Results of task Open Drawer in Calvin environment. Our goal conditioned policy
successfully completes the task by following the subgoals in the video, while both BC and GCBC cannot put the
end effector to the handle and thus fail to open the drawer.

lightbulb led slider left open drawer Overall

BC* 47.2±21.1 48.8±9.9 67.2±14.2 36.0±18.8 49.8±16.0
GCBC* 1.6±2.0 38.4±13.0 32.0±6.2 22.4±7.8 23.6±7.3
DP BC* 70.4±2.0 79.2±3.9 68.8±4.7 56.8±1.6 68.8±3.0
DP GCBC* 35.2±3.0 44.0±5.7 40.0±3.6 17.6±7.4 34.2±4.9

Ours 100.0±0.0 86.4±5.4 83.2±3.0 68.0±3.6 84.4±3.0

Table 3: Quantitative Results of 4 Calvin tasks. Each task requires the agent
to manipulate objects located in different regions, especially in open drawer
where the policy need to cover the bottom right boundary of the environment.

GCBC

Ours

Figure 6: Qualitative Com-
parison of our method and
GCBC on Libero.

various manipulation skills and outperform all the counterparts in the average success rate despite
the absence of action labels for training. In addition, we also compare with training a single-task RL
with a zero-shot reward function in Appendix A.7.

Calvin (Mees et al., 2022) is a robotic simulation environment with multiple language-conditioned
tasks. This environment contains a 7-DOF Panda robot arm and various assets including a desk with
a sliding door, a drawer, an LED, and a lightbulb. The agent is required to complete tasks in the envi-
ronment given by a corresponding language description. The action space we use is same as Libero.

We consider 4 tasks: turn on lightbulb, turn on led, move slider left, and open drawer. These tasks
involve different manipulation skills and different operation areas in the workspace, allowing us to
validate skill learning and spatial coverage capability of our goal-conditioned policy. For example, to
move slider left, the agent has to drag the handle from the central area to the upper left corner. We
present the quantitative results in Table 3 and qualitative results in Figure 5. We do not report AVDC
in the above table, as we found it performed very poorly in the above environments. Even without
any action data or rewards, our policy is able to cover the majority of the space and outperform all the
baselines, especially for the challenging open drawer task, where the agent must move downwards
below the table and pull toward the bottom right boundary of the environment.

4.2 VISUAL NAVIGATION

In addition to tabletop-level robot arm manipulation tasks, we evaluate the proposed method in a
room-level visual navigation setting with discrete actions.

iTHOR (Kolve et al., 2017) is a room-level vision-based simulated environment, where agents can
navigate in the scenes and interact with objects. We adopt the iTHOR visual object navigation
benchmark, where agents are required to navigate to the specific type of objects given by a natural
language input. The action space consists of four actions: Move Ahead, Turn Left, Turn Right, and
Done. We incorporate 4 different scene types: Kitchen, Living Room, Bedroom, and Bathroom, with
3 targets in each scene. Following (Ko et al., 2023), the video model is trained on 20 demonstration
image sequences per task. BC and GCBC are also trained on the same demonstrations while with
access to corresponding actions. Since the navigation actions are discrete and episode lengths
(typically < 20) are much shorter than robot arm manipulation tasks, we find that predicting a single
action suffices. Our method uses the same ResNet+MLP model architecture as BC-based baselines.
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Start Obs

Video Model Prediction Behavior Cloning

Goal Conditioned Exploration Policy (Ours)AVDC
Figure 7: Qualitative Results of Navigation to Bread in iTHOR environment. The start position of the
agent is randomized in test-time. Only a subset of the predicted video frames are shown due to space limit. In
navigation task with a moving camera, the video model can still generate realistic frames that respect the the
actual scene layout. Our goal-conditioned policy is able to follow the video frames and reach the bread shown in
the middle of the frame. However, BC turns to the other way, and AVDC cannot correctly infer the required
actions and miss the target. Kitchen Living Room

Method Toaster Spatula Bread Overall Painting Laptop Television Overall

BC* 48.0±2.4 56.0±3.7 36.0±6.6 46.7±4.3 36.0±12.4 45.0±11.0 49.0±4.9 43.3±9.4
GCBC* 52.0±5.1 49.0±6.6 39.0±5.8 46.7±5.9 27.0±8.1 49.0±5.8 58.0±8.7 44.7±7.6
AVDC 10.0±4.1 13.3±4.7 13.3±2.4 12.2±3.7 8.3±2.4 13.3±8.5 20.0±4.1 13.9±5.0

Ours 45.0±3.2 56.0±4.9 44.0±5.8 48.3±4.6 29.0±4.9 42.0±6.0 57.0±5.1 42.7±5.3

Bedroom Bathroom

Method Blinds DeskLamp Pillow Overall Mirror ToiletPaper SoapBar Overall

BC* 67.0±2.4 40.0±7.1 81.0±5.8 62.7±5.1 48.0±6.8 51.0±13.2 45.0±4.5 48.0±8.1
GCBC* 52.0±8.1 22.0±2.4 72.0±6.0 48.7±5.5 43.0±16.0 64.0±9.2 55.0±11.8 54.0±12.3
AVDC 30.0±4.1 13.3±4.7 36.7±2.4 26.7±3.7 10.0±4.1 1.7±2.4 6.7±2.4 6.1±2.9

Ours 57.0±5.1 24.0±3.7 72.0±7.5 51.0±5.4 36.0±9.2 75.0±4.5 47.0±7.5 52.7±7.0

Table 4: Quantitative Results on iThor Navigation. We report the success rates across 4 different scenes and
12 targets. Though without access to action labels, our method is on par with the BC and GCBC trained on
expert demonstrations and outperforms AVDC which also does not require expert action labels.

We present the quantitative results in Table 4. Our method outperforms the no expert data baseline
AVDC by 36% on average and surpasses all baselines in the Kitchen scene while performing on
par with BC-based baselines in other scenes. Qualitative results are shown in Figure 7 and 15. Our
goal-conditioned policy is able to reliably synthesize discrete actions that follow the generated video
plan. In contrast, the actions inferred by AVDC are incorrect: the agent keeps rotating right and
misses the target, whereas the underlying actions in the video should be moving ahead and then
rotating right, probably because that the drastic change in observation poses challenges for optical
flow prediction. BC predicts a wrong action at the first step, where the agent directly rotates to the
opposite side and navigates to the target Spatula, likely due to its limited generalizability – directly
mimicking the similar actions in the training demonstrations at this position.

4.3 ABLATION STUDIES

In this section, we ablate the effectiveness of design choices described in Section 3. We provide
additional studies in Appendix A, including training with different amounts of data, video exploration
frequency qv , and different horizons of the video model and goal-conditioned policy.
Random Action Bootstrapping. We conduct ablation studies on the importance of the random
action bootstrapping technique. We first present the training-time exploration efficiency in Figure
8. As shown by w/o rand, the no random action method tends to collapse and can hardly achieve
any task success during the exploration. Since the task completion data cannot be collected from the
environment, w/o rand cannot obtain any meaningful results in test-time, which is reflected in Table
5. In contrast, as shown by the blue, red, and orange lines in Figure 8, the model is able to obtain
significantly more task success after we apply random action bootstrapping. The performance of
w/o extra rand decreases through time in Scene 1, showing that extra random exploration is able to
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Figure 8: Line Chart of Number of Success versus Number of
Total Exploration Rollouts During Training. Both ours, w/o extra
rand, single action can effectively complete tasks during exploration
and are also consistent to their test-time performance.

Method Scene 1 Scene 2
w/o rand 0.0±0.0 0.0±0.0
w/o video 0.0±0.0 0.0±0.0
w/o extra rand 28.0±5.0 61.6±9.6
single action 16.4±5.4 41.0±5.8
Ours 42.2±8.9 62.0±8.7

Table 5: Ablation Studies on Exploration
in Libero environment. We report experi-
ment results of w/o any random bootstrap-
ping, w/o video-guided exploration, w/ ini-
tial but w/o extra random bootstrapping, us-
ing a single action prediction model along
with our proposed approach.

stabilize training, and its performance is similar to ours in Scene 2, probably because the manipulation
region for Scene 2 focuses on the center area of the table (see Figure 11) and the initial random
actions suffice. Besides, we observe that the slope of the curve gradually become stable after just 250
rollout attempts, which means that the success rate of exploration can easily converge, showing the
efficiency of the proposed video-guided exploration scheme.
Chunk-level Action Prediction. We compare the performance of the proposed chunk-level action
prediction model v.s. single action prediction model. We use the same setup as BC (ResNet18+MLP)
for the single action prediction baseline. We first present a line chart of the number of success during
exploration v.s. total number of exploration rollouts in Figure 8. Both the chunk-level method and
the single action method achieve non-trivial numbers of success during exploration. However, we
can see that the chunk-level model consistently obtains higher success rates (i.e., steeper slope) in
the exploration phase, which facilitates the policy learning because the training data contains more
trajectories that successfully complete the tasks. In Table 5, we present the test-time success rate of
the two methods in Libero. Similar to the exploration phase, the chunk-level action prediction model
achieves higher success rates by 25.8% and 21.0%, respectively.
Video Guided Environment Exploration. We further compare the performance of purely random
action exploration versus with video-guided exploration, as shown by w/o video in Table 5, where
we replace the video-guided exploration in Algorithm 1 by random exploration. Unsurprisingly, the
purely random exploration baseline fails across all tasks. We hypothesize that without guidance from
the video model, the agent can hardly discover the necessary states to complete the tasks, probably
due to the long temporal distance between the start and goal states and the fact that the relevant state
space for task completion only accounts for a tiny subset of the infinite possible states.

5 DISCUSSION

Limitations. Our approach has several limitations. First, since the approach relies on goal-
conditioned random exploration and without access to action labels, for tasks that require very
precise manipulation (i.e. stacking a block tower in millimeter precision), our random exploration
procedure may not find the precise set of actions. In such settings, having a random exploration
primitive (i.e. stacking a block on top of another) on which we do goal-conditioned policy learning
may help us find such precise actions. In addition, purely random exploration in the physical world
might pose additional requirements for the workbench, as sampled actions or the initial actions
outputted by the learned goal-conditioned policy may cause undesired contacts between the robot and
the external environment. This can be partially mitigated by integrating hard-coded safety constraints
and is also a further direction of future work. Moreover, our method might demand more training
computation compared to direct behavior cloning from expert demonstrations, due to the cost of video
model and additional training iterations. Finally, our method usually requires dozens of video-guided
rollouts to obtain a competent policy for a task. While resetting an environment is easy in simulation,
this might demand additional work in real-world experiments. Combining our approach with a policy
that can reset environment states would be an interesting direction for future.
Conclusion. In this paper, we have presented a self-supervised approach to ground generated videos
into actions. As generative video models become increasingly more powerful, we believe that they
will be increasingly useful for decision-making, providing powerful priors on how various tasks
should be accomplished. As a result, the question of how we can accurately convert generated video
plans to actual physical execution will become increasingly more relevant, and our approach points
towards one direction to solve this question, through online interaction with the agent’s environment.
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A ADDITIONAL QUANTITATIVE RESULTS

In this section, we provide additional quantitative experiment results. In Section A.1, we compare
our methods with BC trained on more demonstration data. Next, in Section A.2, we investigate the
effect of training the video model with different amounts of demonstration data. In Section A.3,
we experiment our proposed method with video models of different horizons. In Section A.4, we
study the exploration performance with different video exploration frequency qv . Following this, in
Section A.5, we conduct experiments on different horizons of the goal-conditioned policy we use in
exploration.

A.1 BC WITH MORE DATA

We provide comparison of our policy learned by unsupervised exploration and plain BC with
increasing amount of training data. To train these BC baselines, We use the official demonstrations
provided by Libero. For example, BC 10 means that we use 10 demonstrations per task to train
the BC model (resulting in 80 demonstrations in total). The reported results are average across 5
checkpoints. Note that our policy does not need any action labels and directly learn how to ground the
goals given by the video model via exploration in the environment. The video model is trained with
20 demonstrations, which only requires images. That said, this is not a completely fair comparison,
but we include this comparison to better illustrate the difficulty of the tasks.

We report the results in Table 6. The success rate of our method even outperforms BC trained with
50 demonstrations per task, while our policy is learned purely by exploration, which indicates that
efficacy of the proposed exploration method. We also observe that though the success rate of BC
generally increases over more training data, BC 20 is able to slightly outperform BC 30 in Scene
1 while BC 30 slightly outperforms BC 40 in Scene 2. Since the BC model is trained on 8 tasks,
the heterogeneous task structures can result in fluctuation in the success rate (the model might bias
towards some specific tasks).

put-red-mug-left put-red-mug-right put-white-mug-left put-Y/W-mug-right Overall

BC 10 2.4±3.2 8.8±6.9 23.2±12.0 5.6±4.1 10.0±6.5
BC 20 8.8±5.3 15.2±7.8 32.0±12.9 21.6±12.3 19.4±9.6
BC 30 9.6±4.1 14.4±9.0 28.0±9.1 15.2±11.1 16.8±8.3
BC 40 8.0±5.1 11.2±5.3 44.8±19.8 21.6±12.0 21.4±10.6
BC 50 12.8±8.9 20.0±12.9 40.0±12.1 18.4±6.0 22.8±10.0
Ours 38.4±15.3 40.8±7.8 51.2±3.9 38.4±8.6 42.2±8.9

put-choc-left put-choc-right put-red-mug-plate put-white-mug-plate Overall

BC 10 3.2±3.0 4.0±5.1 2.4±4.8 6.4±4.1 4.0±4.2
BC 20 19.2±9.3 12.8±9.3 7.2±5.3 20.0±11.3 14.8±8.8
BC 30 13.6±12.0 31.2±15.9 5.6±6.0 16.8±10.6 16.8±11.1
BC 40 13.6±5.4 28.0±10.4 7.2±6.4 12.8±5.3 15.4±6.9
BC 50 19.2±9.3 24.0±10.4 12.8±7.8 24.8±4.7 20.2±8.0
Ours 70.4±12.8 79.2±3.9 72.8±6.4 25.6±11.5 62.0±8.7

Table 6: BC with Different Amount of Data in Libero Environment.
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A.2 VIDEO MODEL WITH DIFFERENT AMOUNTS OF DATA

We investigate the effects of training the video model with different amounts of demonstration data.
For the result shown in Table 1 in the main paper, we use 20 demonstrations per task to train the
video model. In this section, we provide two ablation studies that use 10 demonstrations per task and
50 demonstrations per task, as shown in Table 7 below.

The performance of our method increases in both scenes as with more training data. While the
performance uniformly increases in Scene 1, we observe that in some specific tasks of Scene 2, the
performance slightly decreases. This might be due to the learning capacity of the underlying goal
reaching policy, since we only train one policy model for all eight tasks. In general, we believe that
by scaling up the data size, data diversity, and model complexity can further buttress the performance.

put-red-mug-left put-red-mug-right put-white-mug-left put-Y/W-mug-right Overall

train size 10 18.4±8.2 31.2±4.7 22.4±2.0 44.8±5.9 29.2±5.2
train size 20 38.4±15.3 40.8±7.8 51.2±3.9 38.4±8.6 42.2±8.9
train size 50 40.0±10.7 54.4±9.0 69.6±14.9 57.6±9.7 55.4±11.1

put-choc-left put-choc-right put-red-mug-plate put-white-mug-plate Overall

train size 10 68.0±6.7 78.4±4.1 63.2±6.4 19.2±5.3 57.2±5.6
train size 20 70.4±12.8 79.2±3.9 72.8±6.4 25.6±11.5 62.0±8.7
train size 50 67.2±5.9 84.8±6.4 67.2±6.9 52.0±11.3 67.8±7.6

Table 7: Training the Video Model with Different Amount of Data.

A.3 VIDEO MODEL WITH DIFFERENT HORIZONS

We study the effect of different video model horizons in this section. We follow the training procedure
of the video model in (Ko et al., 2023): during training, given a start image observation, we uniformly
sample h images between the start image and the final task completion image and use these h images
as supervision signals. That said, a longer video horizon h will generate a denser subgoal sequence.
Following (Ko et al., 2023), we set horizon h = 7 across all our experiments except for this ablation
study in Table 8.

As shown in Table 8, our method is able to maintain a similar performance across different video
horizons. We observe that performance decreases when video horizon is set to 9. One potential
reason is that the modeling complexity increases when we increase the prediction horizon, while we
keep the same video model architecture, suggesting that we should learn video models over a sparser
set of video frames.

put-red-mug-left put-red-mug-right put-white-mug-left put-Y/W-mug-right Overall

Video Horizon 7 38.4±15.3 % 40.8±7.8 % 51.2±3.9 % 38.4±8.6 % 42.2±8.9 %
Video Horizon 8 28.8±3.0 % 59.2±5.3 % 52.0±8.8 % 54.4±9.3 % 48.6±6.6 %
Video Horizon 9 17.6±5.4 % 65.6±9.7 % 38.4±8.6 % 30.4±3.2 % 38.0±6.7 %

put-choc-left put-choc-right put-red-mug-plate put-white-mug-plate Overall

Video Horizon 7 70.4±12.8 % 79.2±3.9 % 72.8±6.4 % 25.6±11.5 % 62.0±8.7 %
Video Horizon 8 46.4±6.5 % 69.6±10.9 % 64.0±4.4 % 31.2±8.5 % 52.8±7.6 %
Video Horizon 9 52.0±6.7 % 70.4±3.2 % 68.8±6.9 % 13.6±7.8 % 51.2±6.2 %

Table 8: Video Model with Different Horizons.
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A.4 DIFFERENT VIDEO EXPLORATION FREQUENCY

In this section, we study the effect of video exploration frequency. For example, when qv is set to 200,
we conduct one video-guided exploration for each task every 200 training iterations. The trade-off
between smaller and larger qv is that: if qv is small, the agent will conduct exploration in a higher
frequency, where the replay buffer will refresh faster and contain more latest rollout data. If qv is
large, the agent conducts exploration less frequently, which might enable the agent to better fit and
digest the existing data in the replay buffer. We provide ablation studies on 5 different qv on Libero
environment, as shown in Figure 9.

Figure 9: Different Video Exploration Frequency qv . qv = 200 indicates that we conduct one video-guided
exploration for each task every 200 training iterations. Thus, the agent will conduct with more exploration with
lower qv while less exploration with higher qv . Our method performs steadily across different values of qv .

Figure 9 shows that our method perform steadily across various qv , ranging from 100 to 800. Note that
when qv is set to 800, the video exploration is four times smaller than our default setting (qv = 200),
which means that our method can achieve a comparable performance with much fewer environment
interactions.

A.5 DIFFERENT POLICY HORIZON FOR OUR GOAL CONDITIONED POLICY

In this section, we study the effect of using different horizons for the diffusion policy based goal-
conditioned policy. We set the policy horizons to 12, 16, 20, 24 with the same CNN-based architecture.
We observe that the policy learned by the proposed exploration pipeline is robust to the different
horizons value, and obtain the highest success rate when horizon = 16, which also conforms to the
reported results in Diffusion Policy (Chi et al., 2023). Please refer to Table 9 for quantitative results.

put-red-mug-left put-red-mug-right put-white-mug-left put-Y/W-mug-right Overall

Horizon=12 21.6±7.4 % 56.8±4.7 % 43.2±9.9 % 47.2±6.9 % 42.2±7.2 %
Horizon=16 38.4±15.3 % 40.8±7.8 % 51.2±3.9 % 38.4±8.6 % 42.2±8.9 %
Horizon=20 13.6±6.0 % 50.4±7.8 % 48.0±7.2 % 37.6±7.0 % 37.4±7.0 %
Horizon=24 21.6±6.0 % 36.8±4.7 % 40.8±8.5 % 48.8±8.5 % 37.0±6.9 %

put-choc-left put-choc-right put-red-mug-plate put-white-mug-plate Overall

Horizon=12 62.4±10.3 % 80.0±7.2 % 56.0±7.2 % 25.6±8.6 % 56.0±8.3 %
Horizon=16 70.4±12.8 % 79.2±3.9 % 72.8±6.4 % 25.6±11.5 % 62.0±8.7 %
Horizon=20 64.8±14.2 % 76.0±5.1 % 68.8±15.3 % 18.4±6.0 % 57.0±10.1 %
Horizon=24 60.0±12.1 % 68.8±10.6 % 37.6±13.8 % 20.8±7.3 % 46.8±10.9 %

Table 9: Different Horizons for the Goal Conditioned Policy.
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A.6 DIFFERENT TRAINING TIMESTEPS

In this section, we investigate the model performance at different training timesteps on Libero
environment, specifically, when the model is trained for 40k, 80k, 120k, 160k, and 200k steps. We
set the video exploration frequency qv to 200 in this experiment. We observe that the overall success
rate of the two scenes stabilize after 80k training steps. However, the per-task success rate oscillates
through further training. This might be caused by the recent collected data in the replay buffer (which
is used for training) and the task level interference.

put-red-mug-left put-red-mug-right put-white-mug-left put-Y/W-mug-right Overall

40k 34.4±7.4 37.6±12.0 28.8±4.7 32.0±10.4 33.2±8.6
80k 63.2±9.3 72.0±6.7 48.8±6.9 42.4±4.1 56.6±6.7
120k 47.2±8.5 56.0±4.4 58.4±9.3 38.4±4.8 50.0±6.8
160k 33.6±7.4 43.2±5.9 53.6±6.5 33.6±10.9 41.0±7.7
200k 38.4±15.3 40.8±7.8 51.2±3.9 38.4±8.6 42.2±8.9

put-choc-left put-choc-right put-red-mug-plate put-white-mug-plate Overall

40k 13.6±9.0 14.4±6.0 9.6±6.0 5.6±2.0 10.8±5.7
80k 47.2±6.9 58.4±8.6 68.8±6.9 15.2±5.9 47.4±7.1
120k 51.2±3.0 70.4±8.6 68.0±6.7 23.2±8.2 53.2±6.6
160k 66.4±8.6 74.4±5.4 75.2±5.3 16.0±8.0 58.0±6.8
200k 70.4±12.8 79.2±3.9 72.8±6.4 25.6±11.5 62.0±8.7

Table 10: Performance at Different Training Steps in Libero Environment.

A.7 COMPARISON TO RL WITH ZERO-SHOT REWARD

In this section, we compare our method to a reinforcement learning baseline. Since our method do not
have access to environment rewards, we leverage a foundational zero-shot robotic model to generate
the rewards. Specifically, we adopt DrQ (Kostrikov et al., 2020; Yarats et al., 2021) and LIV (Ma
et al., 2023) as the RL method and foundation model respectively. We use the potential based reward
defined in LIV.

We present the results in Table 11. We see that DrQ+LIV fails to make meaningful progress in five
out of six tasks, achieving only an 8% success rate in the handle-press task. We observe that one
probable cause is that the generated reward signals are ambiguous, which hinders the RL method to
learn. For instance, it is challenging for the model to generate a significant positive reward upon task
completion and the rewards may oscillate even when positive progress is being made.

door-open door-close handle-press hammer assembly faucet-open Overall

DrQ + LIV 0.0±0.0 0.0±0.0 8.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 1.3±0.0
Ours 76.0±4.9 85.6±2.0 94.4±2.0 43.2±6.4 16.8±3.0 87.2±3.0 67.2±3.6

Table 11: Quantitative Comparison to DrQ+LIV on 6 tasks from Meta-World.
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A.8 POLICY ROBUSTNESS TO VIDEO MODELS OF DIFFERENT SAMPLING RATES

In this section, we study the robustness of the resulting goal-conditioned policy learned by exploration
to the video models of different sampling rates. Specifically, once the policy is trained, we replace
the training-time video model with video models of different sampling rates while remain using the
same policy.

Following the video model design in Ko et al. (2023), we use the Number of Frames to Goal to denote
the sampling rate of the video model. For example, Number of Frames to Goal = 9 indicates that the
video model is designed to uniformly generate 9 frames from the initial observation to the goal state,
that is, compared to a 7-frame video model, the sampling rate is denser (i.e., the temporal distance
between two adjacent frames is smaller).

We present the policy success rate in Table 12. In this table, the policy is trained with a 7-frame video
model (marked with an asterisk) while the number of frames to goal of the test-time video model
varies from 5 to 9. The policy consistently achieves high performance across video models with
different sampling rates, demonstrating its robustness to variations in the sampling rate during testing.
This is probably because of the robust policy training enabled by the combination of random action
bootstrapping and video-guided exploration.

We observe that the 6-frame video model attains the highest success rate, even surpassing the training-
time 7-frame model. This improvement is likely due to the better quality of the synthesized video
frames, as modeling a greater or denser number of frames increases complexity while we keep the
video model size unchanged in this experiment.

# Frames to Goal put-red-mug-left put-red-mug-right put-white-mug-left put-Y/W-mug-right Overall

5 32.8±12.0 46.4±10.3 66.4±5.4 41.6±4.8 46.8±8.1
6 38.4±4.8 48.0±8.8 68.8±4.7 36.0±6.7 47.8±6.2
7* 38.4±15.3 40.8±7.8 51.2±3.9 38.4±8.6 42.2±8.9
8 39.2±6.4 51.2±13.7 65.6±4.8 25.6±5.4 45.4±7.6
9 32.8±5.3 44.0±8.8 36.8±9.9 28.8±5.9 35.6±7.5

# Frames to Goal put-choc-left put-choc-right put-red-mug-plate put-white-mug-plate Overall

5 62.4±4.1 76.8±11.7 66.4±4.1 59.2±10.6 66.2±7.6
6 64.8±6.9 72.0±12.4 74.4±9.3 58.4±9.3 67.4±9.5
7* 70.4±12.8 79.2±3.9 72.8±6.4 25.6±11.5 62.0±8.7
8 52.0±12.1 84.8±8.2 68.0±8.4 26.4±10.9 57.8±9.9
9 59.2±13.9 76.0±8.8 74.4±9.7 20.8±7.3 57.6±9.9

Table 12: Policy Performance with Video Models of Different Sampling Rates at Test Time. All results in
the table are from the same goal-conditioned policy but with video models of different sampling rates (identified
by the number of intermediate frames from initial observation to the goal state). The policy uses a video model
of # Frames to Goal = 7 to conduct video-guided exploration during training, but is evaluated with video models
of different numbers of to-goal frames at test time. The policy performs consistently and is robust to various
sampling rates at test time.

B ADDITIONAL QUALITATIVE RESULTS

In this section, we present additional qualitative results in both tabletop manipulation environment
and visual navigation environment. For extra results and side-by-side qualitative comparison on our,
please refer to our website.

B.1 LIBERO

In this section, we provide additional qualitative results of our method on 8 tasks in Libero environ-
ment, as shown in Figure 10 and 11. For each episode, we show the generated video in the first row
and the rollout results of our goal conditioned policy learned by self-supervised exploration in the
second row.
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put the red mug on the left plate

Start Obs

Start Obs

Start Obs

Start Obs

put the red mug on the right plate

put the white mug on the left plate

put the yellow and white mug on the right plate

Figure 10: Additional Qualitative Results of the Generated Videos and Our Policy Rollout on Libero
Scene 1. We present qualitative results of four tasks in Libero Scene 1. For each task, results are displayed in 2
rows: the first row of images are the generated video from the video model conditioned on the start observation
image and task description, and the second row of images are the rollout of our policy conditioned on the
corresponding frames from the generated video. The task description provided to the video model are shown
below the respective images.
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put the chocolate pudding to the left of the plate

Start Obs

Start Obs

Start Obs

Start Obs

put the chocolate pudding to the right of the plate

put the red mug on the plate

put the white mug on the plate

Figure 11: Additional Qualitative Results of the Generated Videos and Our Policy Rollout on Libero
Scene 2. We present qualitative results of four tasks in Libero Scene 2. For each task, results are displayed in 2
rows: the first row of images are the generated video from the video model conditioned on the start observation
image and task description, and the second row of images are the rollout of our policy conditioned on the
corresponding frames from the generated video. The task description provided to the video model are shown
below the respective images.

B.2 META-WOLRD

In this section, we provide additional qualitative results of our method on 6 tasks in Meta-World
environment, as shown in Figure 12 and 13. For each episode, we show the generated video in the
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first row, and the rollout results of our goal conditioned policy learned by self-supervised exploration
in the second row.

Door Open

Start Obs

Start Obs

Start Obs

Start Obs

Door Close

Handle Press

Hammer

Figure 12: Additional Qualitative Results of the Generated Videos and Our Policy Rollout of 4 tasks on
Meta-World. We present qualitative results of four tasks in Meta-World Environment. For each task, results
are displayed in 2 rows: the first row of images are the generated video from the video model conditioned on
the start observation image and task description, and the second row of images are the rollout of our policy
conditioned on the corresponding frames from the generated video. The task prompts provided to the video
model are shown below the respective images.
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Faucet Open

Start Obs

Start Obs

Assembly

Figure 13: Additional Qualitative Results of the Generated Videos and Our Policy Rollout of 2 tasks on
Meta-World. We present qualitative results of four tasks in Meta-World Environment. For each task, results
are displayed in 2 rows: the first row of images are the generated video from the video model conditioned on
the start observation image and task description, and the second row of images are the rollout of our policy
conditioned on the corresponding frames from the generated video. The task prompt provided to the video model
are shown below the respective images.
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B.3 CALVIN

In this section, we provide additional qualitative results of our method on 4 tasks in Calvin environ-
ment, as shown in Figure 14. For each episode, we show the generated video in the first row, and the
rollout results of our goal conditioned policy learned by self-supervised exploration in the second
row.

Turn on Lightbulb

Start Obs

Start Obs

Start Obs

Start Obs

Turn on Led

Move Slider Left

Open Drawer
Figure 14: Additional Qualitative Results of the Generated Videos and Our Policy Rollout of 4 tasks on
Calvin. We present qualitative results of four tasks in Calvin Environment. For each task, results are displayed in
2 rows: the first row of images are the generated video from the video model conditioned on the start observation
image and task description, and the second row of images are the rollout of our policy conditioned on the
corresponding frames from the generated video. The task prompt provided to the video model are shown below
the respective images.
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B.4 ITHOR VISUAL NAVIGATION

Start Obs 14

Start Obs 21

Start Obs 7

Start Obs 0

iTHOR Living Room FloorPlan201-- Television

Figure 15: Four Consecutive Policy Rollout for one Evaluation Episode in a Living Room Scene of iTHOR.
In each rollout, the first row of images are the generated video from the video model conditioned on the start
observation image (shown in the leftmost column) and task description (name of the target). The second row of
images are the rollout of our policy conditioned on the corresponding frames from the generated video. The
names of the scene and target are shown at the bottom. Due to the long spatial distance, the agent takes more
than 20 actions to navigate to the television, which corresponds to the four videos above. The last observation of
the previous rollout is fed to the video model to generate future subgoals, as indicated by the dashed arrows.
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In this section, we provide additional qualitative results of the generated videos and our goal con-
ditioned policy learned by self-supervised exploration in a Living Room Scene (FloorPlan201) of
iTHOR visual navigation environments, as shown in Figure 15. Starting at Start Obs 0, the agent is
tasked to navigate to the television at the other end of the room, which typically requires more than
20 actions to reach. While the horizon of the video model is only 7, we consecutively generate future
subgoals by feeding the last observation image to the video model as condition (indicated by the
dashed arrows). With four video predictions and 26 actions, the agent successfully navigates to the
television, showing the long and consecutive rollout capability of our policy.

C FAILURE MODE ANALYSIS

In the previous section, we demonstrate that our method is able to achieve non-trivial performance
in various robotic environments. However, the method still poses some limitations, which lead to
failure. In this section, we provide analysis into the failure mode of our method. We categorize the
causes to video model based and policy learning based.

C.1 VIDEO MODEL

The performance of the video model is one influential factor of the success rate because that if an
incorrect subgoal is given, even though the policy is accurate enough, the task cannot be completed.

Hallucination is a common issue for generative models (Yang et al., 2024a; Ji et al., 2023). We also
observe some extent of hallucination in our video model. We present some visualizations in Figure
16.

In Table 1, Ours and Ours w/ SuSIE only achieve 25.6% and 36.0% on the task ‘put the white
mug on the plate’. We observe that one major cause of this relatively low performance is the
heavy hallucination in the generated video of this task, as shown in the first row of Figure 16. We
hypothesize that this might partially due to the dataset imbalance problem, as we have two tasks
involving chocolate pudding while only one for white mug in this scene, considering that only 20
demonstrations are provided for each task.

Start Obs Hallucination in Video Model of ‘put the white mug on the plate’

Hallucination in Video Model of ‘put the yellow and white mug on the right plate’Start Obs

Figure 16: Failure Mode: Video Model Hallucination. In the first row, the given prompt to the video model is
‘put the white mug on the plate’. Though the first four frames generated by the video model are on the right path
for achieving the goal, the white mug is suddenly replaced by the chocolate pudding in the following frames,
which will subsequently confuse the policy. In the second row, the given prompt to the video model is ‘put the
yellow and white mug on the right plate’. Similarly, the agent in the video frames first correctly approaches the
yellow and white mug, but the yellow and white mug is replaced by a red mug in the intermediate frames.

Mismatch of Task and Generated Videos Given a specific task description, we observe that the
video model might generate a video that is actually for completing another task. For example, given
the task description of ‘put the chocolate pudding to the left of the plate’, the video model might
generate a video that ‘put the chocolate pudding to the right of the plate’. One potential cause is the
relatively close embedding distance between these two sentences as well as the corresponding videos,
making the model generate a similar but incorrect video. We provide some visualizations in Figure
17.
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We believe that these issue can be mitigated by multiple ways, such as improving the video model
architecture, scaling up the training data, finetuning from existing pre-trained large video model, or
using the environment interaction feedback to correct the video model, which might be interesting
future research directions.

Start Obs Mismatch Video Prediction of ‘put the white mug on the left plate’

Mismatch Video Prediction of ‘put the chocolate pudding to the left of the plate’Start Obs

Figure 17: Failure Mode: Mismatch of the Task and the Generated Video. In the first row, the given prompt
to the video model is ‘put the white mug on the left plate’, while the generated video puts the red cup to the left
plate. In the second row, the given prompt to the video model is ‘put the chocolate pudding to the left of the
plate’, while the generated video puts the chocolate pudding to the right of the plate.

Policy Failure: Mug Displacement

Video Model Prediction

Figure 18: Failure Mode: Precision, Libero.
A failure case of ‘put the red mug on the left
plate’ in Libero Scene 1. We only show the
results of the last three subgoals. Though
the goal conditioned policy is able to suc-
cessfully put the red mug on the left plate
in the last frame, a slight displacement is in-
troduced (see the rightmost column), which
results in task failure.

Policy Failure: Nut Touches the Peg

Video Model Prediction

Figure 19: Failure Mode: Precision, Meta-
World. A failure case of the assembly task.
We only show the results of the last three sub-
goals. In this episode, the goal conditioned
policy exactly follows the subgoals in the first
two frames, but in the last frame (the right-
most column), the nut touches the peg due to
slight precision error and hence fails to insert
the nut into to peg, resulting in task failure.

C.2 POLICY LEARNING

Policy learning is particularly challenging in our unsupervised setting, since we assume no action
demonstrations nor rewards. Generally, we observe that the learned policy is able to follow the video
model, but there remain challenges for the policy to handle fine-grained tasks that require precise
control. For example, our policy achieves 94.4% at handle press task, while only achieves 16.8% at
assembly task in Meta-World. In Figure 18 and Figure 19, we provide some qualitative results of
failure cases in Libero and Meta-World.

In Figure 18, we present a failure case of the task ‘put the red mug on the left plate’ in Libero. In this
task, the agent needs to put the red mug at the center of the left plate within a small tolerance. One
major reason of the policy’s failure is that the mug is not precisely placed at the center, as shown in
the rightmost column.
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In Figure 19, we present a failure case of the task assembly in Meta-World. In this task, the agent
needs to pick up a nut and precisely place it onto a peg. While the policy seems to exactly follow the
given subgoals, it fails to insert the nut at the last frame where the nut undesirably touches the peg.

One potential way to increase the performance is to design some replanning strategies. Another
interesting direction to improve the policy is to better leverage the geometric information. Currently,
our policy only takes one 2D observation image as input. Using a complementary 3D point-cloud for
observation input is likely to be beneficial (Ze et al., 2024; Ling et al., 2023) for fine-grained tasks. In
addition, incorporating some action primitive in the random exploration phrase, learning or defining
some manipulation primitives for precise control task might also be helpful.

D IMPLEMENTATION DETAILS

In this section, we describe the implementation of our proposed method and baselines.

Software: The computation platform is installed with Red Hat 7.9, Python 3.9, PyTorch 2.0, and
Cuda 11.8

Hardware: For each of our experiments, we used 1 NVIDIA RTX 3090 GPU or a GPU of similar
configuration.

D.1 MODEL ARCHITECTURES

For the architecture of the video model, we adopt the same design from AVDC (Ko et al., 2023), which
uses 3D UNet as video denoiser and CLIP to encode language features. In tabletop manipulation
tasks, We instantiate the goal-conditioned policy by a diffusion policy (Chi et al., 2023), which use
ResNet18 as image encoder and 1D UNet to denoise the action trajectory. Following the default
setup in (Chi et al., 2023), we set the horizon to 16 across all other experiments. Finally, for iTHOR
environment, since the action space is discrete and the required number of actions to reach goal is
smaller, we use a ResNet18 with a 3-layer MLP with ReLU activation as the goal-conditioned policy
with an output horizon of 1.

D.2 TRAINING DETAILS

Training Pipeline In training, we randomly sample sequences of image-action pairs of horizon h
from the replay buffer. We provide detailed hyperparameters for training our model in Table 13 and
14. We do not apply any hyperparameter search nor learning rate scheduler. For Libero environment,
the training time of our model is approximately 36 hours for a full 200k training steps. However, the
performance can gradually saturate with much fewer steps, approximately within 12 hours. For the
Meta-World and iThor environments, the training time of our model is approximately one day; for
Calvin, the training time of our model is around 15 hours. For these environments, we also observe
that the performance can gradually saturate within much less time.

Hyperparameters Value

Horizon 16
Diffusion Time Step 100

Probability of Condition Dropout 0.2
Iterations 200K

Batch Size 64
Optimizer Adam

Learning Rate 1e-4

Table 13: Hyperparameters of our Goal-conditioned Policy in Libero, Meta-World, and Calvin.
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Hyperparameters Value

Horizon 1
Image Encoder ResNet18

MLP size [(1024, 256), (256, 128), (128, 4)]
Activation ReLu
Iterations 100K

Batch Size 64
Optimizer Adam

Learning Rate 1e-4

Table 14: Hyperparameters of our Goal-conditioned Policy in iTHOR.

D.3 RANDOM ACTION BOOTSTRAPPING DETAILS

Random Action Bootstrapping. We provide detailed hyperparameters for random action bootstrap-
ping in Table 15, where we use the same notations as in Section 3 and Algorithm 1.

In Table 15, # of Initial Episodes nr and # of Addition Episodes n′
r are with respect to one task for

tabletop manipulation and with respect to one scene in iTHOR navigation. In Libero, the policy
learns all 8 tasks concurrently; In Meta-World, the policy learns each task separately; In Calvin, the
policy learns all 4 tasks concurrently; In iTHOR, the policy learns all 4 scenes (12 tasks) concurrently.
In addition, before video-guided exploration, we first warm-start the policy by training it solely on
the initial random action episodes for Nr steps.

We use the first in, first Out convention to implement the replay buffer. The replay buffer is shared
across tasks if doing multi-task exploration, thus the replay buffer size is relatively larger for multi-task
setting.

Libero Meta-World Calvin iTHOR

Warm-start steps Nr 10k 10k 10k 10k
Episode Length 120 120 120 50

Action Chunk Size lc 24 24 24 1
# of Initial Episodes nr 50 200 100 100
Periodic Frequency qr 500 500 500 500

# of Addition Episodes n′
r 2 10 4 2

Replay Buffer Size 1200 500 1200 1200

Table 15: Hyperparameters for Random Action Bootstrapping in each Environment. Same notations are used as
in Section 3 and Algorithm 1. nr and n′

r represent number of random action exploration per task.

In Table 16, we provide the values of alow and ahigh for sampling random actions, which are introduced
in Section 3.2. For visual navigation tasks, since the action space is discrete, we sample from the four
possible actions {Move Ahead, Turn Left, Turn Right, Done} with uniform probability during the
random action bootstrapping.

Libero Meta-World Calvin

alow [-1,-1,-1,-0.01,-0.01,-0.01] [-1,-1,-1] [-1,-1,-1,-1,-1,-1,-1]
ahigh [1,1,1,0.01,0.01,0.01] [1,1,1] [1,1,1,1,1,1]

Table 16: Values of alow and ahigh for Random Action Sampling. The gripper action is discretized to -1 and 1
(close and open) hence not included in the table. In Libero environment, a smaller value in the orientation action
space is set for more efficient random action bootstrapping.
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D.4 TASK SUCCESS METRIC

In this section, we describe the metric to evaluate whether a task is successfully completed. Specifi-
cally, the simulation environment will check the state of the target object in manipulation tasks or
check the agent state in visual navigation tasks after executing an action. For manipulation tasks, if
the target object is within the range of the specified goal state, the environment will return a success;
for navigation tasks, if the target object is within a certain distance and in the view of the agent and
the agent executes a ’Done’ action, the environment will return a success.

During a rollout, if a success is returned, this rollout will be counted as success and terminated;
otherwise, if we have finished a rollout (i.e., have sequentially executed all the synthesized video
frames) and no success is returned, this episode will be counted as a failed rollout.

D.5 IMPLEMENTATION OF BASELINES

Behavior Cloning (BC). For BC, the observed image is first fed to a ResNet-18 (He et al., 2016) to
encode visual information. The vision feature vector is then fed into a 3-layer MLP to predict the
next action. For multi-task BC, we concatenate the vision feature with task language description
feature encoded by CLIP, and feed the concatenated feature to a 3-layer MLP to predict an action.
We use MSE as loss and train for 100k steps with a batch size of 64.

Diffusion Policy Behavior Cloning (DP BC). For DP BC, following (Chi et al., 2023), we use a
1D convolutional neural network as trajectory denoiser and use a ResNet-18 to encode the image
observation. We set the diffusion denoising timestep to 100, horizon to 16, and train for 200k
iterations with a batch size of 64.

Goal-conditioned Behavior Cloning (GCBC). For GCBC, we concatenate the start image and goal
image and feed it to ResNet-18 to encode the visual observation. Similarly, the visual feature is then
fed to a 3-layer MLP to predict the next action. We use MSE as loss and train for 100k steps with a
batch size of 64. In test-time, given a task, similar to our proposed method, we use the same video
model to generate subgoals for GCBC to complete the task.

Diffusion Policy Goal-conditioned Behavior Cloning (DP GCBC). For DP GCBC, we use an
additional ResNet-18 image encoder to encode the goal image, and otherwise the model architecture
is the same as DP BC. Note that the model for this baseline is also identical to the model we use
in our proposed method. The goal image feature will then be concatenated with observation image
features to condition the denoiser network. We set the diffusion denoising timestep to 100, horizon to
16, and train for 200k iterations with a batch size of 64.

AVDC. For AVDC, we directly adopt the official codebase (Ko et al., 2023). In Meta-world, we
directly use the video model provided in the codebase, which is also the same video model for our
method. In AVDC paper, the results are averaged across three different camera views, while our
method only uses one camera view. Thus, for AVDC we report results on the same camera view
as our method. In iTHOR, we notice that the video model resolution in the codebase is only (64,
64), which is too blurry to identify the target objects. Therefore, we train our video model with a
resolution of (128, 128). Since AVDC does not experiment with Libero, we train our video model in
this environment.

SuSIE. For SuSIE, we first train an image-editing diffusion model using the same video demonstration
data to train the video model. The image-editing diffusion model also takes as input an observation
image and a task description, but outputs the next subgoal image. We then use image-editing model
to generate subgoal to guide our exploration, keeping all other hyperparameters the same.
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