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ABSTRACT

In this paper we present a general framework for continuous–time gradient descent, often referred to
as gradient flow. We extend Hamiltonian gradient flows, which ascribe mechanical dynamics to neu-
ral network parameters and constitute a natural continuous–time alternative to discrete momentum–
based gradient descent approaches. The proposed Port-Hamiltonian Gradient Flow (PHGF) casts
neural network training into a system–theoretic framework: a fictitious physical system is coupled
to the neural network by setting the loss function as an energy term of the system. As autonomous
port–Hamiltonian systems naturally tend to dissipate energy towards one of its minima by construc-
tion, solving the system simultaneously trains the neural network. We show that general PHGFs are
compatible with both continuous–time data–stream optimization, where the optimizer processes a
continuous stream of data, as well as standard fixed–step optimization. In continuous–time, PHGFs
allow for the embedding of black–box adaptive–step ODE solvers and are able to stick to the en-
ergy manifold, thus avoiding divergence due to large learning rates. In fixed–step optimization,
on the other hand, PGHFs open the door to novel fixed–step approaches based on symplectic dis-
cretizations of the Port–Hamiltonian with similar memory footprint and computational complexity
as momentum optimizers.

Notation N and R denote the sets of natural and real numbers. Let L : Rn → R be a differentiable function. ∇L is
its transposed gradient, i.e. ∇L := ( ∂∂xL(x))

>.

1 INTRODUCTION

Similarly to how continuous neural architectures are built upon residual networks [1; 2], it is easy to observe that the
gradient descent dynamics

θs+1 = θs − γ∇Lθs (1)

resemble the Euler discretization of an ordinary differential equation

θ̇(s) = −∇Lθ(s) (2)
commonly referred to as gradient flow. There exists a long line of work on gradient flow [3], both as a theoretical
approach able to shine light on certain properties of neural networks [4] as well as a grounded approach to accelerate
convergence [5]. This work is concerned with a dynamical system perspective of gradient–flow, in line with Hamilto-
nian descent methods [6]. The ideas proposed in this paper build upon [7]. We introduce port–Hamiltonian gradient
flows (PHGF) and discuss leveraging the proposed method in a continuous time, data–stream optimization setting [8]
as well as a regular discretized setting which allows for a symplectic discretization of the port–Hamiltonian.

2 PORT–HAMILTONIAN GRADIENT FLOW

2.1 PRELIMINARIES AND BASIC ASSUMPTIONS

Let (T ,≥) and (S,≥) be linearly ordered sets, called respectively the data time and the parameter update time sets.
Typically T = K = N or T = K = R. Furthermore, let (X ,S) be a measure space. We consider the empirical risk
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minimization problem
min
θ∈Rd

Ex∈X [`θ(x)] (3)

being ` : Rd×X → R a non–convex function and x some random variable whose distribution is known only through
a stream of i.i.d. samples {xt}t∈T ⊂ X . We assume `(·)(x) and `θ(·) to be respectively smooth enough and S–
measurable such that ∂

∂θEx∈X [`θ(x)] = Ex∈X
[
∂
∂θ `θ(x)

]
. For the sake of compactness, from now on we write

Lθ := Ex∈X [`θ(x)]. We will first consider the non–stochastic case, i.e. Lθ is knows.

2.2 PORT–HAMILTONIAN GRADIENT FLOW

Port–Hamiltonian systems represent a general modeling framework capturing dynamic phenomena as the explicit
effect of some flow of energy within the system or with the external world [9; 10; 11]. In [7], port–Hamiltonian
systems are exploited for neural network training. In a similar fashion, we can define a general–purpose optimizer, the
port–Hamiltonian gradient flow (PHGF), in mechanical–like PH form, with realization

d

ds

[
θ
ω

]
=

[
0 Id
−Id −B

] [
∇θH
∇ωH

]
, B = B> > 0 (4)

where ω is introduced as generalized momentum, ω := Mθ̇ (M = M> � 0), and H is obtained from L by adding a
fictitious kinetic energy term, i.e.

H := Lθ +
1

2
ω>M−1ω

It holds,
d

ds
H = −∇>ω HB∇ωH = −ω>M−1BM−1ω ≤ 0 (5)

and, indeed, d
ds H = 0 ⇔ ω = 0. Therefore, if L is bounded from below, the system will dissipate all its energy and

θ will converge to a local minimizer θ∗ of Lθ (with null momentum), i.e.
∇Lθ∗ = 0, ∇2 Lθ∗ > 0, θ∗ = lim

s→∞
θ(s)

In practice, the optimal value is obtained by integrating the ODE “long enough”.

Note that, when training neural networks on finite datasets (i.e. T is a finite set, | T | = m), the above result corre-
sponds to the full–batch case: ∇θH = 1

m

∑m
t=0∇θ`θ(xt).

Figure 1: Nonlinear classification problem performed by a
neural network trained with PHGF. As the energy is dissi-
pated, the parameters converge with null momenta and the
network is able to separate the data features.

On centennial adaptation rules: black–box ODE
solvers Adaptive optimizers such as RMSProp [12],
Adam [13] and RAdam [14] rely on handcrafted heuris-
tics aimed at accelerating convergence by a rescaling
of per–parameter learning rates. However, from a dy-
namical system perspective, iterating different adaptive
methods can be seen as solving the ODE (2) with some
adaptive–step numerical differential equation solver. So
why not exploit over one hundred years of results in
the solution of differential equations to seek adaptation
rules?

Coming back to the port–Hamiltonian optimizer in dif-
ferential form (4), it can be noticed how the power bal-
ance equation (5) provides the rate of decay (or, more
technically, dissipation) of the Hamiltonian function H.
Thus, in a interval [0, s], the net decrement ofH is

H(s)−H(0) = −
∫ s

0

ω(τ)>M−1BM−1ω(τ)dτ (6)

While we have no control on H(0), which solely de-
pends on how θ is initialized, by choosing M and B, we
can accurately control how the system dissipates energy,
i.e. the rate of convergence towards a local minimizer of
E [L(θ,x)]. In practice, when the ODE is solved with
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numerical schemes, the properties of convergence and control of the energy decay rate can be preserved out–of–the–
box. To achieve this, fixed–step discretizations require a sufficiently small step size or learning rate, as is the case for
SGD, whereas adaptive–step solvers can be used directly in conjunction with higher learning rates than possible in the
fixed–step setting.

Going stochastic: gradient flow with port–Hamiltonian systems In a stochastic setting the data and parameter
updates time coincide, i.e. s ≡ t. In this case, at each instant, only the gradient ∇`θ(t)(xt) is available to the
optimizer, i.e. an estimate of Ex∈X

[
∇θ`θ(t)(x)

]
. Note that, in general, the above results on convergence translate

(in expectation) to this stochastic case only if ∇θ`θ(t)(xt) is an unbiased estimate of the gradient at each instant
t [15]. This can be achieved by uniform i.i.d data sampling as in discrete stochastic gradient methods. From a
dynamical systems perspective, in fact, this is justified by following the results on continuous versions of gradient
descent [3; 16]. Let χ := (θ,ω). In the full stochastic setting, symmetrically to [3], a port–Hamiltonian gradient flow
can be represented symbolically by stochastic differential equation (SDE) in the form

dχ = F∇χH(χ)dt+ g(χ)dw

where w(t) denotes a multivariate Wiener process, F is the system matrix in (4) and g : R2d → R2d is appropriately
chosen function. Then, under mild assumptions [17; 8], passivity and thus convergence in expectation of the SDE
above is guaranteed once again by the port–Hamiltonian structure.

You don’t always need to adapt: symplectic port–Hamiltonian discretizations In practice, while solving (4)
in the stochastic setting, traditional black–box adaptive ODE solvers require either significant computation and low
tolerances due to the stiffness caused by the data stream. Similarly, SDE solvers cannot be employed directly since
∇χH(χ) and the true form of g(χ) are not available.

Can we reduce the computational burden without sacrificing convergence?

A simple possible solution is exploiting the PH structure of the optimizer and adopt symplectic integrators, which
preserve energetic properties of the discretized model (e.g. energy balance) [18; 19].

2.3 SYMPLECTIC DISCRETIZED PHGF

The PHGF framework is compatible with standard fixed step discretizations of gradient flow methods. Here, the
port–Hamiltonian formulation naturally leads to energy–preserving, symplectic discretizations. The full derivation of
various symplectic PHGF schemes are reported in the appendix.

Definition 1 Störmer–Verlet Port–Hamiltonian Gradient Flow (SV–PHGF)

Assume to be given by an oracle, for all t ∈ T , the gradient ∇θ`θt(xt). The SV–PHGF iterative update rule is then
given by

ωt+1 =
2− γ
2 + γβ

ωt −
2γ

2 + γβ
∇θ`θt(xt)

θt+1 = θt + γM−1ωt+1

(7)

SV–PHGF leverages separability by construction of the generalized energyHt := `θt(xt)+
1
2ω
>
t M

−1ωt to adapt the
Störmer–Verlet [20] implicit second order method. More specifically, separability allows for an explicit implementa-
tion of the Störmer–Verlet method that eliminates leapfrogging and requires a single backward call per update step.
We consider a simple choice of the dissipation matrix B := βId and identity inertia matrix M, though the framework
allows for different designs to speed convergence or introduce coupling terms between parameters.

3 EXPERIMENTS

We evaluate PHGF in a continuous data–stream setting as well as a regular discretized setting. We include more details
on the experimental setup as supplementary material.

Symplectic PHGF We follow the setup of [14] and perform a comparison of Adam [13], RAdam [14], and SV–
PHGF on MNIST. More specifically, we include two versions for both Adam and RAdam: the first using default
hyperparameters, i.e. learning rate lr = 10−2, β1 = 0.9, β2 = 0.999, whereas the second with optimized variants
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obtained through a 500 run Optuna [21] randomized hyperparameter search for both learning rates and betas. For a
clear comparison of the intrinsic properties of different approaches, no learning rate scheduling is introduced. Fig. 4
shows mean results for 10 runs. The symplectic nature of SV–PHGF allows it to accurately track the energy dissipation
and leads to no oscillations in the loss at convergence.

Hybrid data–stream A different approach involves utilizing continuous PHGFs alongside batch training by inte-
grating (4) for a finite time after each batch is sampled. In this setting, the learning rate assumes the role of per–step
integration time i.e. integration interval for the ODE (4) defining the PHGF for a single sample or batch of the
dataset. Fig. 2 shows the MNIST test accuracy of a 1 million parameter, 2 layer fully–connected neural network
after 1 epoch of training with PHGFs coupled with the Dormand–Prince [22] solver. With sufficiently large β, the
proposed method is generally robust to values of the learning rate that would result in instability and divergence for
standard discrete gradient–based optimizers. This property allows for two distinct modes of operation for the PHGF:
with long integration intervals the ODE always reaches a local minimizer for the energy calculated with a single batch
or sample, which in turn promotes a parameter state space trajectory that moves from one energy local minima to
another. On the other hand, short integration yields parameter dynamics more similar to those of momentum SGD.
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Figure 2: MNIST test accuracy after a single
epoch of hybrid PHGF training. The method is
robust to a wide range of learning rates.

4 DISCUSSION

Deep learning optimizers as discretizations of PHGFs Contin-
uous versions of commonly used deep learning optimizers such as
Adam [23] can be adapted to the Port–Hamiltonian formulation and
are therefore Port–Hamiltonian Gradient Flows. As a result, the pro-
posed formalism can be leveraged to either inspire new optimization
approaches equipped with implicit convergence guarantees, or to of-
fer improvements to existing solutions.

On the design of inertia matrix and choice of ODE solvers De-
pending on the choice of ODE solver, PHGF yields different opti-
mizers with no changes required to the formulation. Moreover, the
design of ad–hoc inertia matrices M allow for the introduction of interconnections between parameters via coupling
terms, which can affect convergence dynamics.

5 CONCLUSION

We introduce Port–Hamiltonian Gradient Flows (PHGF), a novel optimization framework inspired by the port–
Hamiltonian framework equipped with implicit convergence guarantees. In continuous data–stream optimization
settings, PHGFs can be coupled with black–box ODE solvers to yield different optimizers. Moreover, PHGFs are
naturally compatible with computationally efficient fixed–step symplectic discretizations.
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Figure 4: Time per optimization step on MNIST and CIFAR10.

A APPENDIX

A.1 COMPUTATIONAL EFFICIENCY OF SYMPLECTIC PHGF

We perform a comparison of the time per step of different optimizers: SGD with momentum, SV–PHGF, Adam and
RAdam on both MNIST and CIFAR10. All methods are tasked with optimizing the same architecture: a 2 layer
fully–connected neural network with 1 million parameters for MNIST and a ResNet 56 with 1 million parameters
for CIFAR10. As shown in Figure 4, SV–PHGF is computationally more efficient than both Adam and RAdam. As
MNIST was trained with batch size 128 and CIFAR10 256, the result shows how the difference between optimizers
remains significant for larger batches.
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