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ABSTRACT

Model depth is a double-edged sword in deep learning: deeper models achieve
higher accuracy but require higher computational cost. To efficiently train models
at scale, progressive training – an effective strategy where model capacity scales
up during training, has emerged to significantly reduce computation with little
to none performance degradation. In this work, we study the depth expansion
of large-scale models through the lens of optimization theory and feature learn-
ing, offering insights on the initialization of new layers, hyperparameter transfer,
learning rate schedule, and timing of model expansion. Specifically, we propose
zero-layer single-stage progressive training for the optimal tradeoff between com-
putation and loss (and accuracy). For example, zero-layer progressive training on
GPT2 can save ≈ 80% compute, or equivalently accelerate by 5×, and achieve a
loss comparable to a fully trained 60-layer model with 7B parameters.

1 INTRODUCTION

Strong performance of deep learning models is highly correlated to model sizes, with larger model
having higher accuracy but also incurring higher computation cost to train, e.g. LLAMA-4 training
costs over 7M GPU hours and an estimated 2,000 tons of carbon emissions. This phenomenon leads
to a tradeoff between model utility (measured by loss or accuracy) and computational cost (measured
by floating point operation, or FLOP), and has motivated scaling laws to train compute-optimal large
language models Hoffmann et al. (2022); Kaplan et al. (2020).

To accelerate the training of large models, one direction is known as progressive training, or model
growth, or model reuse, which initially trains a small model (a.k.a. teacher or source model) and
then scales up to large models (a.k.a. student or grown model) during training. In contrast to the
fixed-size training, the progressive training formulates the model size as a time-dependent variable,
and it is clearly more efficient because the compute is 6BTN , proportional to the model size N . For
example, consider a progressive training that scales up the model size at iteration τ :

N(t) =

{
Nsmall if t < τ

Nlarge if t > τ
(1.1)

The fixed-size training requires 6BTNlarge FLOPs, whereas the progressive training requires
6B(τNsmall+(T −τ)Nlarge), which is significantly less if (I) τ is close to T and (II) Nsmall ≪ Nlarge.
As a brief preview, we will develop techniques to push τ ≈ 0.8T and to train the smallest zero-layer
models, hence accelerating by 5× in Figure 1.

A long list of research has contributed to the development of progressive training, especially on
initialization of large models, multi-stage training, training regime, and theory.

Initialization from precedented small models. Chen et al. (2015); Wang et al. (2023b); Yao
et al. study the function-preserving initialization, such that the large model has the same loss and
function as the small model at the moment of depth expansion. These works scale up the depth
of convolution networks and BERT by 2× and reduce the computation to ≈ 70% computation.
However, while function-preserving guarantees nice behavior during depth expansion, it does not
guarantee fast convergence after the expansion. Alternatively, without function-preserving, Chen
et al. (2021) linearly combines two layers to initialize a new layer; Gong et al. (2019); Yang et al.
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(2020); Du et al. (2024) stacks the old layers multiple times; Qin et al. (2021); Wang et al. (2023a)
propose learning-based methods that require extra training. These methods empirically scale up the
depth by 2 ∼ 4× and reduce the “grown v.s. target” computation to ≈ 55 ∼ 70% (e.g. Wang
et al. (2023a), Figure 1 in Chen et al. (2021), Figure 6 in Pan et al. (2024), and Figure 1 in Du et al.
(2024)). In contrast, we scale up the depth to 60× and reduce the computation to 20%.

Multi-stage training. Most works in progressive training expand the small models once like (1.1).
However, many works study multi-stage training and gradual stacking Reddi et al. (2023). For
instance, Gong et al. (2019); Shen et al. (2022); Qin et al. (2021); Pan et al. (2024); Yao et al. scale
up the sizes of BERT for 3 ∼ 4× during training, optionally freezing some of the layers at some
stages Agarwal et al. (2024); Yang et al. (2020). We note that none of these multi-stage methods
demonstrate the mixing behavior as we do.

Training regime. While most progressive training methods are tested on classification models like
BERT Devlin et al. (2019) and ViT Dosovitskiy et al. (2020), some recent papers have evaluated on
generative language models like GPT2 and reported 1.4 ∼ 2× speedup. As shown in Figure 1, our
method enjoys 5× speedup across different model sizes. We also note some papers that scale up
MoE (not in terms of depth though) but the speedup seems transient as discussed in Section 7.

Theory. Theoretical analysis in progressive training is largely lacking, except Agarwal et al.
(2024) on strongly-convex and smooth loss. In contrast, we give a convergence theory of convex and
Lipschitz continuous (non-smooth) loss and empirically validate its insights. Besides a convergence
theory, we also study feature learning and hyperparameter transfer for progressive training.

1.1 RELATED WORK

In addition to previous works in progrssive training, this work is closely related to convex opti-
mization in Section 4, feature learning theory in Section 3.2, and learning rate schedules (especially
warmup-stable-decay; WSD Xing et al. (2018); Hägele et al. (2024)).

1.2 CONTRIBUTIONS
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Figure 1 Zero-layer (red, 39M or 0.15B) and one-layer (blue, 46M or 0.27B) progressive training
can achieve significant speedup over fixed-sized training (black, 12-layer 124M or 60-layer 7B) on
GPT2 pre-trained on OpenWebText under WSD schedule. The difference in final validation loss is
< 0.5%. For full runs, the depth expansion takes place at 80% of iterations; for early stopped runs,
it takes place at 2% of iterations immediately after warmup.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To our best knowledge, we are the first to advocate zero-layer depth expansion (also one-layer variant
as a by-product) and to explore WSD schedule in progressive training. Here we summarize the
contributions of this work.

1. We analyze the depth expansion as an initialization problem and ensure the feature learning
by maximal update parameterization (muP). This approach allows hyperparameter transfer
(e.g. learning rate) throughout the progressive training, in contrast to Gu et al. (2020);
Yano et al. (2025). In fact, we show that preserving feature learning is in conflict with
function-preserving Chen et al. (2015); Wang et al. (2023b); Yao et al..

2. We reveal the important role of learning rate schedule, especially WSD schedule which
theoretically and empirically improves the convergence.

3. We discover the mixing behaviors of progressive training, which supports the mixing time
transfer and single-stage training, in contrast to Gong et al. (2019); Yang et al. (2020); Qin
et al. (2021); Shen et al. (2022); Pan et al. (2024).

4. We show that zero-layer progressive training has the best tradeoff between computational
cost and loss, in comparison to other progressive or fixed-size training (see Figure 8).
Specifically, zero-layer depth expansion is easy to implement and avoids the ordering prob-
lem when copying from old layers to new ones.

5. We analyze the convergence of progressive training under convex optimization to give in-
sights on initialization, learning rate schedule, and projected gradient descent.

2 EXPERIMENT SETTINGS

We use the GPT2 Radford et al. (2019) and ResNet He et al. (2016) model families as testbeds1.
For GPT2, we train on OpenWebText dataset Gokaslan et al. (2019) with 1024 sequence length,
following nanoGPT codebase Karpathy (2023). For ResNet, we train on ImageNet dataset with
224× 224 resolutions for 100 epochs.

Our main optimizer is Muon-NSGD, with 0.1 weight decay and without gradient clipping. The
Muon-NSGD is adapted from the original Muon Jordan et al. (2024) by (1) optimizing all 2D tensors
with Muon and other tensors with normalized SGD (NSGD), and (2) using a single learning rate for
Muon and NSGD. We use the cosine learning rate schedule and WSD schedule, that decay to 0 with
2% warm-up. Additional details are in Section B.

3 HOW TO EXPAND DEPTH?

3.1 DEPTH EXPANSION APPROACHES

We introduce multiple approaches to expand the depth of a residual neural network.

• [copying]: New layers are copied from the small model Chang et al. (2018); Gong et al.
(2019); Li et al. (2020).

• [random]: New layers are randomly initialized Wang et al. (2017); Chen et al. (2021).
• [zero]: New layers are initialized as zeros. This approach kills the gradient flow and makes

the new layers untrainable, hence invalidating the progressive training .
• [copying zero]: New layers are copied from the small model, except the normalization

sub-layers are initialized as zeros Shen et al. (2022)2.

To test these approaches in a minimalist manner, we expand zero/one-layer versions of GPT2 and
ResNet to multiple layers in Figure 2.

1For ResNet, the models are configured by 4 stages, e.g. ResNet50 has [3,4,6,3] and ResNet101 has
[3,4,23,3]. In each stage, the first layer has one shape, and each of the other layers has the same shape which
is different to the first layer. Hence the zero-layer analogy corresponds to ResNet14 with [1,1,1,1] and the
one-layer analogy corresponds to ResNet26 with [2,2,2,2].

2Other approaches (Wang et al. (2023b); Tan et al. (2024) and Du et al. (2024) Gzero) copy all sub-layers but
initialize last linear sub-layer as zero, or mask them with zeros Yao et al.. All these approaches enforce zero
output of layer and are empirically similar.
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Figure 2 Convergence of zero/one-layer progressive training and fixed-size training. Left: ResNet
with depth expansion at 32-th epoch. Right: GPT2 with depth expansion at 50k iterations.

Takeaway 1: For zero/one-layer progressive training, random (for GPT2) and copying (for GPT2
and ResNet) are empirically the best initializations of new layers.

3.2 FEATURE LEARNING AND HYPERPARAMETER TRANSFER

To ensure feature learning and keep the representations non-trivial and stable, we require each
layer’s activation to have consistent element sizes: denoting l-th layer’s activation as Al ∈ Rnl ,
then ∥Al∥2/

√
nl ∼ ∥Al+1∥2/

√
nl+1. This requirement is principal in deep learning parametriza-

tion Mei et al. (2019); Yang & Hu (2020); Chizat & Bach (2018); Yang et al. (2022; 2023). For
linear layers Al+1 = AlWl, this translates to the spectral scaling condition by muP theory, i.e.
the spectral norm ∥Wl∥∗ ∼

√
nl+1/nl for all layers throughout the training. Importantly, muP

allows zero-shot hyperparameter transfer across model sizes, so that the optimal hyperparameters
(e.g. learning rate) are the same for small and large models. We highlight that muP is particularly
desirable in progressive training, because it smoothly transfers the optimal hyperparameters and
guarantees consistent training dynamics before and after the model expansion.
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Figure 3 Validation (solid) and training loss (dashed) at different learning rates of Muon-NSGD.

As a matter of fact, we see that only copying and random satisfy muP condition, but not zero or
copying zero, since any zero sub-layer will have ∥Wl∥∗ = 0 ̸∼

√
nl+1/nl. Consequently, there

is a conflict between muP condition and function-preserving (FPI). Here function-preserving means
the large model has exactly the same loss as the small model Chen et al. (2015); Shen et al. (2022);
Wang et al. (2023b), hence no loss spikes. In the context of residual neural network x → x+ F (x),
it must hold that the new layer has zero output F (x) = 0, thus incompatible with muP.

Table 1 Summary of initialization approaches in progressive training.

function-preserving trainability feature learning
copying no high yes
random no high yes

zero/copying zero yes low no

Takeaway 2: For residual neural networks, zero initialziation =⇒ FPI =⇒ not muP. As il-
lustrated in Figure 2, FPI approaches converge much slower than muP approaches. Hence we
encourage using muP approaches to enable feature learning and hyperparameter transfer.
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3.3 WHERE TO EXPAND?

For zero-layer expansion, only random initialization works; for one-layer expansion, random and
copying both work; however, for multi-layer expansion, we must consider the ordering in depth
expansion. We consider three variants of copying initialization: suppose we expand 3 to 6 layers,

• [copying last], copying only the last layer, e.g. [1, 2, 3] → [1, 2, 3, 3, 3, 3].
• [copying stack], copying and stacking all layers, e.g. [1, 2, 3] → [1, 2, 3, 1, 2, 3].
• [copying inter], copying and interpolating all layers, e.g. [1, 2, 3] → [1, 1, 2, 2, 3, 3].

We note that copying inter is adopted by Chang et al. (2018); Pan et al. (2024); Dong et al. (2020);
Qin et al. (2022), as well as Wang et al. (2023b) if some sub-layers are zeros; copying stack is
adopted by Gong et al. (2019); Li et al. (2020); Fu et al. (2023), as well as Shen et al. (2022); Du
et al. (2024) if some sub-layers are zeros.

To test these variants, we experiment with deeper models such as ResNet50 and GPT 6-layer in
Figure 4. We observe that copying all layers is consistently better than only copying one layer
(copying last), whereas copying inter and copying stack are almost indistinguishable.
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Figure 4 Convergence of multi-layer progressive training and fixed-size training. Left: ResNet
with depth expansion at 32/64-th epoch. Right: GPT2 with depth expansion at 30/70k iterations.

Takeaway 3: Copying inter and copying stack are similarly performing for multi-layer depth
expansion, but they are invalid for zero-layer depth expansion and equivalent for one-layer depth
expansion (e.g. from [1] → [1, 1, 1, 1, 1, 1]).

4 A CONVERGENCE THEORY FOR PROGRESSIVE TRAINING

We analyze the convergence of progressive training under convex and G-Lipschitz loss L. In fact, al-
though deep learning is non-convex, its training dynamics is similar to convex optimization Schaipp
et al. (2025); Defazio & Mishchenko (2023); Lee et al. (2019); Bu et al. (2021); Jacot et al. (2018);
Allen-Zhu et al. (2019); Leclerc & Madry (2020); Bu & Xu (2024) and our analysis offers useful
insights for the training recipe in Section 7.

We denote the small model before depth expansion as wt, the large model after depth expansion as
Wt, and the corresponding minima as w∗ and W∗. For any iteration trained with SGD, wt+1 =
wt − ηt+1

∂L
∂wt

, the classical analysis gives

∥wt+1 −w∗∥2 ≤ ∥wt −w∗∥2 − 2ηt+1(L(wt)− L(w∗)) + η2t+1G
2 (4.1)

and equivalently, for the large model training with the same learning rate schedule,

∥Wt+1 −W∗∥2 ≤ ∥Wt −W∗∥2 − 2ηt+1(L(Wt)− L(W∗)) + η2t+1G
2 (4.2)

Now for the progressive training with depth expansion at t = τ , we use telescoping sum (4.1) from
t = 0 → τ − 1 and (4.2) from t = τ → T − 1 to obtain

∥wτ −w∗∥2 + ∥WT −W∗∥2 ≤∥w0 −w∗∥2 + ∥Wτ −W∗∥2 +
T−1∑
t=0

η2t+1G
2

+ 2

τ−1∑
t=0

ηt+1(L(w
∗)− Lt) + 2

T−1∑
t=τ

ηt+1(L(W
∗)− Lt)

5
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where Lt = L(wt) for t < τ , and Lt = L(Wt) otherwise.

Dividing by 2
∑T−1

t=0 ηt+1 and re-arranging give∑T−1
t=0 ηt+1Lt∑T−1
t=0 ηt+1

≤
∑τ−1

t=0 ηt+1L(w
∗) +

∑T−1
t=τ ηt+1L(W

∗)∑T−1
t=0 ηt+1

+
G2

∑T−1
t=0 η2t+1

2
∑T−1

t=0 ηt+1

+
∥w0 −w∗∥2 − ∥WT −W∗∥2 + ∥Wτ −W∗∥2 − ∥wτ −w∗∥2

2
∑T−1

t=0 ηt+1

On the left hand side, we apply the Jensen’s inequality to get

L(W̄progressive
T ) ≤

∑T−1
t=0 ηt+1Lt∑T−1
t=0 ηt+1

where W̄progressive
T =

∑τ−1
t=0 ηt+1[wt,0] +

∑T−1
t=τ ηt+1Wt∑τ−1

t=0 ηt+1

is the running average of iterates, and we have used L([wt,0]) = L(wt) for residual networks.

On the right hand side, we throw away −∥WT −W∗∥2 because it is small and negative. We obtain

L(W̄progressive
T ) ≤

∑τ−1
t=0 ηt+1L(w

∗) +
∑T−1

t=τ ηt+1L(W
∗)∑T−1

t=0 ηt+1

+
G2

∑T−1
t=0 η2t+1

2
∑T−1

t=0 ηt+1

+
∥w0 −w∗∥2 + ∥Wτ −W∗∥2 − ∥wτ −w∗∥2

2
∑T−1

t=0 ηt+1

(4.3)

We can easily recover the fixed-size large model training from scratch by setting τ = 0:

L(W̄fixed-size
T ) ≤ L(W∗) +

G2
∑T−1

t=0 η2t+1

2
∑T−1

t=0 ηt+1

+
∥W0 −W∗∥2

2
∑T−1

t=0 ηt+1

(4.4)

Subtracting (4.3) from (4.4), we would like such difference to be ⪅ 0, and we write it as∑τ
t=1 ηt(L(w

∗)− L(W∗))∑T
t=1 ηt

+
∥w0 −w∗∥2 − ∥W0 −W∗∥2 + ∥Wτ −W∗∥2 − ∥wτ −w∗∥2

2
∑T

t=1 ηt

We view the large model as the concatenation of a small model and extra parameters Wt = [wt,xt]
for t = 0, τ , and simplify the analysis by assuming W∗ = [w∗,x∗]. We now obtain

L(W̄progressive
T )− L(W̄fixed-size

T ) ≤
∑τ

t=1 ηt∑T
t=1 ηt

(L(w∗)− L(W∗)) +
∥xτ − x∗∥2 − ∥x0 − x∗∥2

2
∑T

t=1 ηt
(4.5)

From the viewpoint of large model, we can mathematically view the progressive training as projected
gradient descent (PGD) that masks deeper layers to zero, followed by an instant teleportation of xτ

from zero to good initialization, then continued with SGD. In words, the effectiveness of progressive
training comes from both optimizers (PGD and SGD) and teleportation of deeper layers.

Taking a closer look at (4.5), we can optimize this difference via the following factors.

• Initialization strategy of xτ : given that x0 is randomly initialized, (1) if we randomly
initialize new layers, then the second term is zero; (2) if we initialize better than random
(e.g. copying), then the second term is negative and the difference is improved. This
analysis is visualized in Figure 2.

• Learning rate schedule ηt: to minimize
∑τ

t=1 ηt∑T
t=1 ηt

, we prefer smaller ηt for t ≤ τ than for
t > τ , contrary to learning rate decay but consistent with WSD schedule, where ηt remains
constant during most iterations (see Figure 5).

To validate our insights on learning rate schedules, we experiment cosine and WSD schedules each
with optimally tuned learning rate in Figure 5. We expand small models to large models at every
10% of total training horizon. For ResNet, the small model can still catch up with large model when
τ ≈ 0.8T under WSD schedule, but it fails to catch up around τ ≥ 0.7T under cosine schedule;
for GPT, the small model can catch up until τ ≈ 0.8T under WSD schedule, but it fails around
τ ≥ 0.5T under cosine schedule.
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Figure 5 Loss and FLOPs of zero-layer progressive training and fixed-size training, where WSD
schedule significantly enhances the progressive training.

Takeaway 4: Progressive training is indeed “PGD + initialization of new layers + SGD”, whose
effectiveness relies on good initialization (e.g. random) and learning rate schedule (e.g. WSD).

5 WHEN TO EXPAND DEPTH?

To determine the timing of depth expansion, we need to understand the mixing time, which is the
time until the loss of progressive training is close to the fixed-size large model training. To be
specific, we define tmix such that L(Wfixed-size

τ+tmix
) ≈ L(Wprogressive

τ+tmix
). Clearly, if the mixing time is

short, then we can expand the models at later stage and save more compute.

5.1 PERSPECTIVES MATTER TO MIXING BEHAVIORS

We highlight that the mixing behaviors of progressive training (e.g. Figures 5, 9,10) have not been
clearly observed in the literature, possibly due to the difference in perspectives of comparison.

In figures of Wang et al. (2023a); Chen et al. (2021); Pan et al. (2024); Du et al. (2024), the com-
parison is between the grown model and the target model, while our comparison is based on the
entire training (source and grown models). Such a perspective omits the computational cost of small
models and the stated speedup must be discounted in our context. We re-plot Figure 5 (GPT un-
der WSD schedule) from their perspective and no longer observe the mixing behaviors in Figure 6.
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Figure 6 Different perspectives of Figure 5 to
compare progressive training and fixed-size train-
ing. Left: only comparing the grown model and
target model. Right: matching the pre-growth loss
of source model to target model.
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Figure 7 Only comparing the grown model
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124M model. Right: 7B model.

Another perspective is to “overlay the loss curve for the grown model over the target model”. Shen
et al. (2022) suggest that the convergence rate of grown model is “the same as the target model
trained from scratch”, and that the training dynamics is preserved. However, we claim that our
method significantly improves the training dynamics instead of preserving it, as shown in Figure 6
by comparing the dashed orange curve and the solid black curve.
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Takeaway 5: The mixing behaviors of loss and training dynamics are the highlight of our depth
expansion, and only observable via the comparison between the entire progressive training and
the fixed-size training from scratch.

5.2 SENSITIVITY TO τ UNDER DIFFERENT SCHEDULES

Interestingly, in Figure 5, the mixing time tmix(τ) is highly sensitive to the timing of depth expansion
τ for cosine schedule, but robust to τ for WSD schedule. For example, expanding GPT 1-layer at
10% horizon (blue curve) and expanding at 60% horizon (brown curve) both need ≈ 16B tokens
or 30k iterations to mix with 12-layer training. However, expanding at 80% horizon (grey curve)
cannot mix well as the learning rate has decayed. The same patterns hold for ResNet as well.

As a consequence, we determine the timing of depth expansion as total duration of constant learning
rates minus mixing time in Figure 1. To be more precise, our WSD uses 2% warmup, 10% decay,
and 528k iterations with constant learning rate. We subtract ≈ 40k iterations of mixing time from it
(derived from Figure 5 or the early stopped run), and set the timing of depth expansion at t =480k.

Takeaway 6: During the stable phase of WSD schedule, the mixing time is almost unaffected by
the timing of depth expansion. Hence we can transfer the mixing time at early iterations until the
decaying phase (see Figure 1).

6 WHICH TO EXPAND DEPTH?

While we can expand the depth of any small model, we show the following through 150 runs (3
large model sizes, 5 small model sizes, 10 expansion times) in Figure 8.

Takeaway 7: It is the most computationally efficient to (I) scale up from the zero-layer models
and (II) scale up only once, i.e. use single-stage progressive training.

As we see in Figure 8, the zero-layer progressive training almost captures the loss-compute tradeoff
from a Pareto-optimal viewpoint, especially in contrast with the progressive training from more than
2 layers. Additionally, the latest timing of expansion that still allows the progressive training to mix
with the fixed-size training is not sensitive to small model sizes. In other words, expanding from 1-
layer or from 6-layer at τ/T ≈ 0.6 is similarly effective, but the latter is much more computationally
expensive.
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Figure 8 Loss-compute tradeoff (validation loss v.s. FLOPs) of depth expansion from small mod-
els to {12, 24, 36}-layer GPT2 with {124M, 400M, 1B} parameters.
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Another insight from the loss-compute tradeoff is that, it suffices to use single-stage expansion, i.e.
we do not need multi-stage expansion such as 1 → 12 → 24 (if our target model is 24-layer). The
reason lies in the mixing behaviors such that 1 → 12 → 24 can be decomposed to two single-stage
expansions 1 → 12 and 12 → 24. Therefore, the loss curves of 1 → 12 → 24 and 1 → 12 mix in
the first stage (the loss is the same as 12-layer fixed-size training), and those of 1 → 12 → 24 and
12 → 24 mix in the second stage (the loss is the same as 24-layer fixed-size training). As a result,
multi-stage training achieves the same loss with worse efficiency than single-stage training, in sharp
contrast to Gong et al. (2019); Yao et al. where the mixing behaviors are not observed.

7 DEEP PROGRESSIVE TRAINING RECIPE

We summarize our progressive training recipe, leveraging the theoretical insights and empirical
evidences in previous sections.

1. Train zero-layer model and then expand depth by random initialization3.
2. Train models with Muon-NSGD or muP-equipped optimizers, and employ the same hyper-

parameters before and after depth expansion.
3. Train models with WSD learning rate schedule and expand depth during the stable phase.
4. The timing of depth expansion τ (or equivalently the mixing time tmix) can be determined

by two small-scale runs: one fixed-size training and one progressive training (τ at the end
of warmup), both early stopped when their losses are mixing.

We further validate our recipe with MoE Wolfe (2024); Xue et al. (2024) on OpenWebText dataset,
and we observe the same patterns as dense models such as the mixing behaviors. We emphasize that
our approach is different and orthogonal to existing works that upcycle MoE He et al. (2024), which
scale up a small dense model to a large MoE without increasing the depth, rather than a shallow
MoE to a deep MoE. This upcycling approach has reported some negative results Muennighoff
et al.; Komatsuzaki et al.; Nakamura et al.; Liew et al.; Wei et al. (2024), because the grown MoE
becomes worse than the MoE trained from scratch after a few hundred billion tokens.
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Figure 9 Loss and FLOPs of zero-layer progressive training and fixed-size training for MoE.

Takeaway 8: Zero-layer progressive training is effective on various model architectures including
ResNet, GPT2 and MoE.

8 CONCLUSION

We show that zero-layer (and one-layer) progressive training can significantly accelerate large-scale
training, if it is equipped with good initialization method and learning rate schedule. This work
demonstrates the amazing benefit of theoretical insights in progressive training, drawing tools from
feature learning and optimization theory. We expect future works to continue pushing the efficiency
frontier, e.g. by scaling up both width and depth.

3Alternatively, train one-layer model and expand by copying , e.g. w → [w,w,w].
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A DEPTH EXPANSION APPROACHES

We summarize the depth expansion approaches with respect to the depth of source models.

Table 2 Applicability of depth expansion approaches. Merged cells indicate that multiple ap-
proaches are equivalent for a source model.

zero-layer one-layer more than two-layer
random Yes Yes Yes

copying inter
No Yes

Yes
copying stack Yes
copying last Yes

zero Yes Yes Yes

We note that zero-layer or one-layer depth expansion significantly simplifies the copying ap-
proaches, as there is no ordering such as stacking or interpolation. In Appendix H of Du et al.
(2024), the search space of ordering is enormous but necessary, since a proper ordering indeed im-
proves the progressive training. This aligns with our results that copying all layers is better than
copying only the last layer. However, it is debatable which of copying inter and copying stack is
more advantageous, e.g. Pan et al. (2024) claims that copying inter is more stable but Du et al.
(2024) demonstrates that copying stack converges better.

We highlight that such debate is completely avoided for zero-layer or one-layer progressive training.

B EXPERIMENT SETTINGS

Default batch size is 512 and decaying is 20% for WSD schedule, except for the long runs in Figure 1
where batch size is 64 and decaying is 10%. For WSD schedule, the learning rate is 0.01 as shown
to be optimal in Figure 3 (only here GPT2 are trained for 25k iterations); for cosine schedule, the
learning rate is 0.05.

Regarding the optimizer, Muon-NSGD uses Muon Jordan et al. (2024) and NSGD as in Boreiko
et al. (2025): denoting W as a layer’s parameter, we orthogonalize each layer by

Muon:Wt+1 = (1− ηλ)Wt − η · NS(mt)

NSGD:Wt+1 = (1− ηλ)Wt − η ·mt/∥mt∥2

where NS is the Newton-Schulz matrix iteration, mt is the momentum, and λ is the weight decay.

For GPT2 models, we always keep n embd/n head=64. Different depth uses different n head: 12-
layer uses 12 heads; 24-layer uses 16 heads; 36-layer uses 20 heads; 60-layer uses 48 heads.

For MoE models, we use the same configurations as GPT2 (12-layer). Additionally, we use 8
experts, auxiliary loss, and router z loss.

C ADDITIONAL EXPERIMENTS

C.1 MIXING BEHAVIORS ACROSS MODEL SIZES

In Figure 10, we consistently observe the mixing behaviors on hundreds of runs, from various small
models to various large models. Specifically, the mixing time is empirically robust to model sizes.

C.2 CHOOSING OPTIMIZER AND LEARNING RATE SCHEDULE

In Figure 12, we train 100k iterations with two optimizers and two learning rate schedules. The same
schedule is used before and after expansion, without changing the learning rate. We observe that
Muon-NSGD with WSD schedule achieves best loss at all FLOPs (also at any timing of expansion
τ/T ). This is consistent with our theory.
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Figure 10 Scaling up by depth expansion from {0, 1, 2, 6, 18} layers to {12,24,36} layers GPT2
with {124M, 400M, 1B} parameters.
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Figure 11 Final loss of depth expansion at different timing, from {0, 1, 2, 6, 18} layers to
{12,24,36} layers GPT2 with {124M, 400M, 1B} parameters..
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Figure 12 Loss-compute tradeoff (validation loss v.s. FLOPs) of zero-layer depth expansion under
different optimizers and learning rate schedules. The target model is 12-layer GPT2. For WSD
schedule, AdamW uses 0.001 learning rate and Muon-NSGD uses 0.01 learning rate. For cosine
schedule, the learning rates are doubled.

C.3 MIXING NEEDS DATA, NOT ITERATIONS

Importantly, we observe that the mix-
ing time is measured by data size, i.e.
images or tokens processed, not by it-
erations. In Figure 13, we compare a
progressive training with constant batch
size to another one with 4× batch size
after the depth expansion. The final loss
is similar although large-batch training
takes much fewer iterations.
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Figure 13 Progressive training needs sufficient data to
mix with fixed-size large model training, largely unaf-
fected by batch size or iterations.
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