
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DEEP PROGRESSIVE TRAINING: SCALING UP DEPTH
CAPACITY OF ZERO-LAYER MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Model depth is a double-edged sword in deep learning: deeper models achieve
higher accuracy but require higher computational cost. To efficiently train models
at scale, progressive training – an effective strategy where model capacity scales
up during training, has emerged to significantly reduce computation with little
to none performance degradation. In this work, we study the depth expansion
of large-scale models through the lens of optimization theory and feature learn-
ing, offering insights on the initialization of new layers, hyperparameter transfer,
learning rate schedule, and timing of model expansion. Specifically, we propose
zero-layer single-stage progressive training for the optimal tradeoff between com-
putation and loss (and accuracy). For example, zero-layer progressive training on
GPT2 can save ≈ 80% compute, or equivalently accelerate by 5×, and achieve a
loss comparable to a fully trained 60-layer model with 7B parameters.

1 INTRODUCTION

Strong performance of deep learning models is highly correlated to model sizes, with larger model
having higher accuracy but also incurring higher computation cost to train, e.g. LLAMA-4 training
costs over 7M GPU hours and an estimated 2,000 tons of carbon emissions. This phenomenon leads
to a tradeoff between model utility (measured by loss or accuracy) and computational cost (measured
by floating point operation, or FLOP), and has motivated scaling laws to train compute-optimal large
language models Hoffmann et al. (2022); Kaplan et al. (2020).

To accelerate the training of large models, one direction is known as progressive training, or model
growth, or model reuse, which initially trains a small model (a.k.a. teacher or source model) and
then scales up to large models (a.k.a. student or grown model) during training. In contrast to the
fixed-size training, the progressive training formulates the model size as a time-dependent variable,
and it is clearly more efficient because the compute is 6BTN , proportional to the model size N . For
example, consider a progressive training that scales up the model size at iteration τ :

N(t) =

{
Nsmall if t < τ

Nlarge if t > τ
(1.1)

The fixed-size training requires 6BTNlarge FLOPs, whereas the progressive training requires
6B(τNsmall+(T −τ)Nlarge), which is significantly less if (I) τ is close to T and (II) Nsmall ≪ Nlarge.
As a brief preview, we will develop techniques to push τ ≈ 0.8T and to train the smallest zero-layer
models, hence accelerating by 5× in Figure 1.

A long list of research has contributed to the development of progressive training, especially on
initialization of large models, multi-stage training, training regime, and theory.

Initialization from precedented small models. Chen et al. (2015); Wang et al. (2023b); Yao
et al. study the function-preserving initialization, such that the large model has the same loss and
function as the small model at the moment of depth expansion. These works scale up the depth
of convolution networks and BERT by 2× and reduce the computation to ≈ 70% computation.
However, while function-preserving guarantees nice behavior during depth expansion, it does not
guarantee fast convergence after the expansion. Alternatively, without function-preserving, Chen
et al. (2021) linearly combines two layers to initialize a new layer; Gong et al. (2019); Yang et al.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(2020); Du et al. (2024) stacks the old layers multiple times; Qin et al. (2021); Wang et al. (2023a)
propose learning-based methods that require extra training. These methods empirically scale up the
depth by 2 ∼ 4× and reduce the “grown v.s. target” computation to ≈ 55 ∼ 70% (e.g. Wang
et al. (2023a), Figure 1 in Chen et al. (2021), Figure 6 in Pan et al. (2024), and Figure 1 in Du et al.
(2024)). In contrast, we scale up the depth to 60× and reduce the computation to 20%.

Multi-stage training. Most works in progressive training expand the small models once like (1.1).
However, many works study multi-stage training and gradual stacking Reddi et al. (2023). For
instance, Gong et al. (2019); Shen et al. (2022); Qin et al. (2021); Pan et al. (2024); Yao et al. scale
up the sizes of BERT for 3 ∼ 4× during training, optionally freezing some of the layers at some
stages Agarwal et al. (2024); Yang et al. (2020). We note that none of these multi-stage methods
demonstrate the mixing behavior as we do.

Training regime. While most progressive training methods are tested on classification models like
BERT Devlin et al. (2019) and ViT Dosovitskiy et al. (2020), some recent papers have evaluated on
generative language models like GPT2 and reported 1.4 ∼ 2× speedup. As shown in Figure 1, our
method enjoys 5× speedup across different model sizes. We also note some papers that scale up
MoE (not in terms of depth though) but the speedup seems transient as discussed in Section 7.

Theory. Theoretical analysis in progressive training is largely lacking, except Agarwal et al.
(2024) on strongly-convex and smooth loss. In contrast, we give a convergence theory of convex and
Lipschitz continuous (non-smooth) loss and empirically validate its insights. Besides a convergence
theory, we also study feature learning and hyperparameter transfer for progressive training.

1.1 RELATED WORK

In addition to previous works in progrssive training, this work is closely related to convex opti-
mization in Section 4, feature learning theory in Section 3.2, and learning rate schedules (especially
warmup-stable-decay; WSD Xing et al. (2018); Hägele et al. (2024)).

1.2 CONTRIBUTIONS

0 100000 200000 300000 400000 500000 600000
Iterations

2

4

6

8

10

12

Va
lid

at
io

n
lo

ss

GPT 0 12-layer (random)
GPT 0 12-layer (early stopped)
GPT 1 12-layer (copying)
GPT 1 12-layer (early stopped)
GPT 12-layer (fixed-size)

0.0 0.5 1.0 1.5 2.0
FLOPs 1e20

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

Va
lid

at
io

n
lo

ss

X speedup2.02.2/

GPT 0 12-layer (random)
GPT 1 12-layer (copying)
GPT 12-layer (fixed-size)

0 100000 200000 300000 400000 500000 600000
Iterations

2

4

6

8

10

12

Va
lid

at
io

n
lo

ss

GPT 0 60-layer (random)
GPT 0 60-layer (early stopped)
GPT 1 60-layer (copying)
GPT 1 60-layer (early stopped)
GPT 60-layer (fixed-size)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
FLOPs 1e21

2.5

3.0

3.5

4.0

4.5

Va
lid

at
io

n
lo

ss

X speedup4.44.8/

GPT 0 60-layer (random)
GPT 1 60-layer (copying)
GPT 60-layer (fixed-size)

Figure 1 Zero-layer (red, 39M or 0.15B) and one-layer (blue, 46M or 0.27B) progressive training
can achieve significant speedup over fixed-sized training (black, 12-layer 124M or 60-layer 7B) on
GPT2 pre-trained on OpenWebText under WSD schedule. The difference in final validation loss is
< 0.5%. For full runs, the depth expansion takes place at 80% of iterations; for early stopped runs,
it takes place at 2% of iterations immediately after warmup.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

To our best knowledge, we are the first to advocate zero-layer depth expansion (also one-layer variant
as a by-product) and to explore WSD schedule in progressive training. Here we summarize the
contributions of this work.

1. We analyze the depth expansion as an initialization problem and ensure the feature learning
by maximal update parameterization (muP). This approach allows hyperparameter transfer
(e.g. learning rate) throughout the progressive training, in contrast to Gu et al. (2020);
Yano et al. (2025). In fact, we show that preserving feature learning is in conflict with
function-preserving Chen et al. (2015); Wang et al. (2023b); Yao et al..

2. We reveal the important role of learning rate schedule, especially WSD schedule which
theoretically and empirically improves the convergence.

3. We discover the mixing behaviors of progressive training, which supports the mixing time
transfer and single-stage training, in contrast to Gong et al. (2019); Yang et al. (2020); Qin
et al. (2021); Shen et al. (2022); Pan et al. (2024).

4. We show that zero-layer progressive training has the best tradeoff between computational
cost and loss, in comparison to other progressive or fixed-size training (see Figure 8).
Specifically, zero-layer depth expansion is easy to implement and avoids the ordering prob-
lem when copying from old layers to new ones.

5. We analyze the convergence of progressive training under convex optimization to give in-
sights on initialization, learning rate schedule, and projected gradient descent.

2 EXPERIMENT SETTINGS

We use the GPT2 Radford et al. (2019) and ResNet He et al. (2016) model families as testbeds1.
For GPT2, we train on OpenWebText dataset Gokaslan et al. (2019) with 1024 sequence length,
following nanoGPT codebase Karpathy (2023). For ResNet, we train on ImageNet dataset with
224× 224 resolutions for 100 epochs.

Our main optimizer is Muon-NSGD, with 0.1 weight decay and without gradient clipping. The
Muon-NSGD is adapted from the original Muon Jordan et al. (2024) by (1) optimizing all 2D tensors
with Muon and other tensors with normalized SGD (NSGD), and (2) using a single learning rate for
Muon and NSGD. We use the cosine learning rate schedule and WSD schedule, that decay to 0 with
2% warm-up. Additional details are in Section B.

3 HOW TO EXPAND DEPTH?

3.1 DEPTH EXPANSION APPROACHES

We introduce multiple approaches to expand the depth of a residual neural network.

• [copying]: New layers are copied from the small model Chang et al. (2018); Gong et al.
(2019); Li et al. (2020).

• [random]: New layers are randomly initialized Wang et al. (2017); Chen et al. (2021).
• [zero]: New layers are initialized as zeros. This approach kills the gradient flow and makes

the new layers untrainable, hence invalidating the progressive training .
• [copying zero]: New layers are copied from the small model, except the normalization

sub-layers are initialized as zeros Shen et al. (2022)2.

To test these approaches in a minimalist manner, we expand zero/one-layer versions of GPT2 and
ResNet to multiple layers in Figure 2.

1For ResNet, the models are configured by 4 stages, e.g. ResNet50 has [3,4,6,3] and ResNet101 has
[3,4,23,3]. In each stage, the first layer has one shape, and each of the other layers has the same shape which
is different to the first layer. Hence the zero-layer analogy corresponds to ResNet14 with [1,1,1,1] and the
one-layer analogy corresponds to ResNet26 with [2,2,2,2].

2Other approaches (Wang et al. (2023b); Tan et al. (2024) and Du et al. (2024) Gzero) copy all sub-layers but
initialize last linear sub-layer as zero, or mask them with zeros Yao et al.. All these approaches enforce zero
output of layer and are empirically similar.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Lo
ss

GPT 0-layer (fixed size)
GPT 0 12-layer (random)
GPT 1-layer (fixed size)
GPT 1 12-layer (zero)
GPT 1 12-layer (copying_zero)
GPT 1 12-layer (random)
GPT 1 12-layer (copying)
GPT 12-layer (fixed size)

50000 100000 150000 200000 250000
Iterations

100

101

Lo
ss

ResNet26
zero
copying_zero
random
copying
ResNet50

Figure 2 Convergence of zero/one-layer progressive training and fixed-size training. Left: ResNet
with depth expansion at 32-th epoch. Right: GPT2 with depth expansion at 50k iterations.

Takeaway 1: For zero/one-layer progressive training, random (for GPT2) and copying (for GPT2
and ResNet) are empirically the best initializations of new layers.

3.2 FEATURE LEARNING AND HYPERPARAMETER TRANSFER

To ensure feature learning and keep the representations non-trivial and stable, we require each
layer’s activation to have consistent element sizes: denoting l-th layer’s activation as Al ∈ Rnl ,
then ∥Al∥2/

√
nl ∼ ∥Al+1∥2/

√
nl+1. This requirement is principal in deep learning parametriza-

tion Mei et al. (2019); Yang & Hu (2020); Chizat & Bach (2018); Yang et al. (2022; 2023). For
linear layers Al+1 = AlWl, this translates to the spectral scaling condition by muP theory, i.e.
the spectral norm ∥Wl∥∗ ∼

√
nl+1/nl for all layers throughout the training. Importantly, muP

allows zero-shot hyperparameter transfer across model sizes, so that the optimal hyperparameters
(e.g. learning rate) are the same for small and large models. We highlight that muP is particularly
desirable in progressive training, because it smoothly transfers the optimal hyperparameters and
guarantees consistent training dynamics before and after the model expansion.

10 3 10 2 10 1

learning rate

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Lo
ss

GPT 0-layer
GPT 1-layer
GPT 2-layer
GPT 6-layer
GPT 12-layer

10 3 10 2 10 1

learning rate

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Lo
ss

ResNet26
ResNet50
ResNet101

Figure 3 Validation (solid) and training loss (dashed) at different learning rates of Muon-NSGD.

As a matter of fact, we see that only copying and random satisfy muP condition, but not zero or
copying zero, since any zero sub-layer will have ∥Wl∥∗ = 0 ̸∼

√
nl+1/nl. Consequently, there

is a conflict between muP condition and function-preserving (FPI). Here function-preserving means
the large model has exactly the same loss as the small model Chen et al. (2015); Shen et al. (2022);
Wang et al. (2023b), hence no loss spikes. In the context of residual neural network x → x+ F (x),
it must hold that the new layer has zero output F (x) = 0, thus incompatible with muP.

Table 1 Summary of initialization approaches in progressive training.

function-preserving trainability feature learning
copying no high yes
random no high yes

zero/copying zero yes low no

Takeaway 2: For residual neural networks, zero initialziation =⇒ FPI =⇒ not muP. As il-
lustrated in Figure 2, FPI approaches converge much slower than muP approaches. Hence we
encourage using muP approaches to enable feature learning and hyperparameter transfer.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.3 WHERE TO EXPAND?

For zero-layer expansion, only random initialization works; for one-layer expansion, random and
copying both work; however, for multi-layer expansion, we must consider the ordering in depth
expansion. We consider three variants of copying initialization: suppose we expand 3 to 6 layers,

• [copying last], copying only the last layer, e.g. [1, 2, 3] → [1, 2, 3, 3, 3, 3].
• [copying stack], copying and stacking all layers, e.g. [1, 2, 3] → [1, 2, 3, 1, 2, 3].
• [copying inter], copying and interpolating all layers, e.g. [1, 2, 3] → [1, 1, 2, 2, 3, 3].

We note that copying inter is adopted by Chang et al. (2018); Pan et al. (2024); Dong et al. (2020);
Qin et al. (2022), as well as Wang et al. (2023b) if some sub-layers are zeros; copying stack is
adopted by Gong et al. (2019); Li et al. (2020); Fu et al. (2023), as well as Shen et al. (2022); Du
et al. (2024) if some sub-layers are zeros.

To test these variants, we experiment with deeper models such as ResNet50 and GPT 6-layer in
Figure 4. We observe that copying all layers is consistently better than only copying one layer
(copying last), whereas copying inter and copying stack are almost indistinguishable.

0 20000 40000 60000 80000 100000
Iterations

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Lo
ss

GPT 6-layer
copying_last
copying_stack
copying_inter
GPT 12-layer

0 20000 40000 60000 80000 100000
Iterations

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Lo
ss

GPT 6-layer
copying_last
copying_stack
copying_inter
GPT 12-layer

50000 100000 150000 200000 250000
Iterations

100

6 × 10 1

2 × 100

3 × 100

4 × 100

Lo
ss

ResNet50
copying_last
copying_stack
copying_inter
ResNet101

50000 100000 150000 200000 250000
Iterations

100

6 × 10 1

2 × 100

3 × 100

4 × 100

Lo
ss

ResNet50
copying_last
copying_stack
copying_inter
ResNet101

Figure 4 Convergence of multi-layer progressive training and fixed-size training. Left: ResNet
with depth expansion at 32/64-th epoch. Right: GPT2 with depth expansion at 30/70k iterations.

Takeaway 3: Copying inter and copying stack are similarly performing for multi-layer depth
expansion, but they are invalid for zero-layer depth expansion and equivalent for one-layer depth
expansion (e.g. from [1] → [1, 1, 1, 1, 1, 1]).

4 A CONVERGENCE THEORY FOR PROGRESSIVE TRAINING

We analyze the convergence of progressive training under convex and G-Lipschitz loss L. In fact, al-
though deep learning is non-convex, its training dynamics is similar to convex optimization Schaipp
et al. (2025); Defazio & Mishchenko (2023); Lee et al. (2019); Bu et al. (2021); Jacot et al. (2018);
Allen-Zhu et al. (2019); Leclerc & Madry (2020); Bu & Xu (2024) and our analysis offers useful
insights for the training recipe in Section 7.

We denote the small model before depth expansion as wt, the large model after depth expansion as
Wt, and the corresponding minima as w∗ and W∗. For any iteration trained with SGD, wt+1 =
wt − ηt+1

∂L
∂wt

, the classical analysis gives

∥wt+1 −w∗∥2 ≤ ∥wt −w∗∥2 − 2ηt+1(L(wt)− L(w∗)) + η2t+1G
2 (4.1)

and equivalently, for the large model training with the same learning rate schedule,

∥Wt+1 −W∗∥2 ≤ ∥Wt −W∗∥2 − 2ηt+1(L(Wt)− L(W∗)) + η2t+1G
2 (4.2)

Now for the progressive training with depth expansion at t = τ , we use telescoping sum (4.1) from
t = 0 → τ − 1 and (4.2) from t = τ → T − 1 to obtain

∥wτ −w∗∥2 + ∥WT −W∗∥2 ≤∥w0 −w∗∥2 + ∥Wτ −W∗∥2 +
T−1∑
t=0

η2t+1G
2

+ 2

τ−1∑
t=0

ηt+1(L(w
∗)− Lt) + 2

T−1∑
t=τ

ηt+1(L(W
∗)− Lt)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where Lt = L(wt) for t < τ , and Lt = L(Wt) otherwise.

Dividing by 2
∑T−1

t=0 ηt+1 and re-arranging give∑T−1
t=0 ηt+1Lt∑T−1
t=0 ηt+1

≤
∑τ−1

t=0 ηt+1L(w
∗) +

∑T−1
t=τ ηt+1L(W

∗)∑T−1
t=0 ηt+1

+
G2

∑T−1
t=0 η2t+1

2
∑T−1

t=0 ηt+1

+
∥w0 −w∗∥2 − ∥WT −W∗∥2 + ∥Wτ −W∗∥2 − ∥wτ −w∗∥2

2
∑T−1

t=0 ηt+1

On the left hand side, we apply the Jensen’s inequality to get

L(W̄progressive
T) ≤

∑T−1
t=0 ηt+1Lt∑T−1
t=0 ηt+1

where W̄progressive
T =

∑τ−1
t=0 ηt+1[wt,0] +

∑T−1
t=τ ηt+1Wt∑τ−1

t=0 ηt+1

is the running average of iterates, and we have used L([wt,0]) = L(wt) for residual networks.

On the right hand side, we throw away −∥WT −W∗∥2 because it is small and negative. We obtain

L(W̄progressive
T) ≤

∑τ−1
t=0 ηt+1L(w

∗) +
∑T−1

t=τ ηt+1L(W
∗)∑T−1

t=0 ηt+1

+
G2

∑T−1
t=0 η2t+1

2
∑T−1

t=0 ηt+1

+
∥w0 −w∗∥2 + ∥Wτ −W∗∥2 − ∥wτ −w∗∥2

2
∑T−1

t=0 ηt+1

(4.3)

We can easily recover the fixed-size large model training from scratch by setting τ = 0:

L(W̄fixed-size
T) ≤ L(W∗) +

G2
∑T−1

t=0 η2t+1

2
∑T−1

t=0 ηt+1

+
∥W0 −W∗∥2

2
∑T−1

t=0 ηt+1

(4.4)

Subtracting (4.3) from (4.4), we would like such difference to be ⪅ 0, and we write it as∑τ
t=1 ηt(L(w

∗)− L(W∗))∑T
t=1 ηt

+
∥w0 −w∗∥2 − ∥W0 −W∗∥2 + ∥Wτ −W∗∥2 − ∥wτ −w∗∥2

2
∑T

t=1 ηt

We view the large model as the concatenation of a small model and extra parameters Wt = [wt,xt]
for t = 0, τ , and simplify the analysis by assuming W∗ = [w∗,x∗]. We now obtain

L(W̄progressive
T)− L(W̄fixed-size

T) ≤
∑τ

t=1 ηt∑T
t=1 ηt

(L(w∗)− L(W∗)) +
∥xτ − x∗∥2 − ∥x0 − x∗∥2

2
∑T

t=1 ηt
(4.5)

From the viewpoint of large model, we can mathematically view the progressive training as projected
gradient descent (PGD) that masks deeper layers to zero, followed by an instant teleportation of xτ

from zero to good initialization, then continued with SGD. In words, the effectiveness of progressive
training comes from both optimizers (PGD and SGD) and teleportation of deeper layers.

Taking a closer look at (4.5), we can optimize this difference via the following factors.

• Initialization strategy of xτ : given that x0 is randomly initialized, (1) if we randomly
initialize new layers, then the second term is zero; (2) if we initialize better than random
(e.g. copying), then the second term is negative and the difference is improved. This
analysis is visualized in Figure 2.

• Learning rate schedule ηt: to minimize
∑τ

t=1 ηt∑T
t=1 ηt

, we prefer smaller ηt for t ≤ τ than for
t > τ , contrary to learning rate decay but consistent with WSD schedule, where ηt remains
constant during most iterations (see Figure 5).

To validate our insights on learning rate schedules, we experiment cosine and WSD schedules each
with optimally tuned learning rate in Figure 5. We expand small models to large models at every
10% of total training horizon. For ResNet, the small model can still catch up with large model when
τ ≈ 0.8T under WSD schedule, but it fails to catch up around τ ≥ 0.7T under cosine schedule;
for GPT, the small model can catch up until τ ≈ 0.8T under WSD schedule, but it fails around
τ ≥ 0.5T under cosine schedule.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 0-layer (cosine schedule)
GPT 12-layer (cosine schedule)

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 0-layer (WSD schedule)
GPT 12-layer (WSD schedule)

1.5 2.0 2.5 3.0 3.5 4.0
FLOPs 1e19

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n
lo

ss

cosine schedule
WSD schedule

50000 100000 150000 200000 250000
Iterations

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

Va
lid

at
io

n
lo

ss

ResNet14 (WSD schedule)
ResNet50 (WSD schedule)

50000 100000 150000 200000 250000
Iterations

40

45

50

55

60

65

70

75

80

Va
lid

at
io

n
ac

cu
ra

cy
ResNet14 (WSD schedule)
ResNet50 (WSD schedule)

1.5 2.0 2.5 3.0 3.5 4.0
FLOPs 1e19

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Va
lid

at
io

n
lo

ss

75.25

75.50

75.75

76.00

76.25

76.50

76.75

77.00

77.25

Va
lid

at
io

n
ac

cu
ra

cy

Figure 5 Loss and FLOPs of zero-layer progressive training and fixed-size training, where WSD
schedule significantly enhances the progressive training.

Takeaway 4: Progressive training is indeed “PGD + initialization of new layers + SGD”, whose
effectiveness relies on good initialization (e.g. random) and learning rate schedule (e.g. WSD).

5 WHEN TO EXPAND DEPTH?

To determine the timing of depth expansion, we need to understand the mixing time, which is the
time until the loss of progressive training is close to the fixed-size large model training. To be
specific, we define tmix such that L(Wfixed-size

τ+tmix
) ≈ L(Wprogressive

τ+tmix
). Clearly, if the mixing time is

short, then we can expand the models at later stage and save more compute.

5.1 PERSPECTIVES MATTER TO MIXING BEHAVIORS

We highlight that the mixing behaviors of progressive training (e.g. Figures 5, 9,10) have not been
clearly observed in the literature, possibly due to the difference in perspectives of comparison.

In figures of Wang et al. (2023a); Chen et al. (2021); Pan et al. (2024); Du et al. (2024), the com-
parison is between the grown model and the target model, while our comparison is based on the
entire training (source and grown models). Such a perspective omits the computational cost of small
models and the stated speedup must be discounted in our context. We re-plot Figure 5 (GPT un-
der WSD schedule) from their perspective and no longer observe the mixing behaviors in Figure 6.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
FLOPs 1e19

2.8

2.9

3.0

3.1

3.2

3.3

3.4

3.5

Va
lid

at
io

n
lo

ss

GPT 12-layer

20000 40000 60000 80000 100000
Iterations

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Va
lid

at
io

n
lo

ss GPT 0 12-layer (/T = 0.5)
GPT 12-layer
Pre-growth
Post-growth

Figure 6 Different perspectives of Figure 5 to
compare progressive training and fixed-size train-
ing. Left: only comparing the grown model and
target model. Right: matching the pre-growth loss
of source model to target model.

0.0 0.5 1.0 1.5 2.0
FLOPs 1e20

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

4.75

Va
lid

at
io

n
lo

ss

5.0X speedup

GPT 0 12-layer (random)
GPT 1 12-layer (copying)
GPT 12-layer (fixed-size)

0.00 0.25 0.50 0.75 1.00 1.25 1.50
FLOPs 1e21

2.5

3.0

3.5

4.0

4.5

Va
lid

at
io

n
lo

ss

5.0X speedup

GPT 0 60-layer (random)
GPT 1 60-layer (copying)
GPT 60-layer (fixed-size)

Figure 7 Only comparing the grown model
and target model of Figure 1 to compare pro-
gressive training and fixed-size training. Left:
124M model. Right: 7B model.

Another perspective is to “overlay the loss curve for the grown model over the target model”. Shen
et al. (2022) suggest that the convergence rate of grown model is “the same as the target model
trained from scratch”, and that the training dynamics is preserved. However, we claim that our
method significantly improves the training dynamics instead of preserving it, as shown in Figure 6
by comparing the dashed orange curve and the solid black curve.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Takeaway 5: The mixing behaviors of loss and training dynamics are the highlight of our depth
expansion, and only observable via the comparison between the entire progressive training and
the fixed-size training from scratch.

5.2 SENSITIVITY TO τ UNDER DIFFERENT SCHEDULES

Interestingly, in Figure 5, the mixing time tmix(τ) is highly sensitive to the timing of depth expansion
τ for cosine schedule, but robust to τ for WSD schedule. For example, expanding GPT 1-layer at
10% horizon (blue curve) and expanding at 60% horizon (brown curve) both need ≈ 16B tokens
or 30k iterations to mix with 12-layer training. However, expanding at 80% horizon (grey curve)
cannot mix well as the learning rate has decayed. The same patterns hold for ResNet as well.

As a consequence, we determine the timing of depth expansion as total duration of constant learning
rates minus mixing time in Figure 1. To be more precise, our WSD uses 2% warmup, 10% decay,
and 528k iterations with constant learning rate. We subtract ≈ 40k iterations of mixing time from it
(derived from Figure 5 or the early stopped run), and set the timing of depth expansion at t =480k.

Takeaway 6: During the stable phase of WSD schedule, the mixing time is almost unaffected by
the timing of depth expansion. Hence we can transfer the mixing time at early iterations until the
decaying phase (see Figure 1).

6 WHICH TO EXPAND DEPTH?

While we can expand the depth of any small model, we show the following through 150 runs (3
large model sizes, 5 small model sizes, 10 expansion times) in Figure 8.

Takeaway 7: It is the most computationally efficient to (I) scale up from the zero-layer models
and (II) scale up only once, i.e. use single-stage progressive training.

As we see in Figure 8, the zero-layer progressive training almost captures the loss-compute tradeoff
from a Pareto-optimal viewpoint, especially in contrast with the progressive training from more than
2 layers. Additionally, the latest timing of expansion that still allows the progressive training to mix
with the fixed-size training is not sensitive to small model sizes. In other words, expanding from 1-
layer or from 6-layer at τ/T ≈ 0.6 is similarly effective, but the latter is much more computationally
expensive.

1.5 2.0 2.5 3.0 3.5 4.0
FLOPs 1e19

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

GPT 0 12-layer
GPT 1 12-layer
GPT 2 12-layer
GPT 6 12-layer
GPT 9 12-layer

0.2 0.4 0.6 0.8 1.0
FLOPs 1e20

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

GPT 0 24-layer
GPT 1 24-layer
GPT 2 24-layer
GPT 6 24-layer
GPT 12 24-layer

0.5 1.0 1.5 2.0 2.5
FLOPs 1e20

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

GPT 0 36-layer
GPT 1 36-layer
GPT 2 36-layer
GPT 6 36-layer
GPT 18 36-layer

1.5 2.0 2.5 3.0 3.5 4.0
FLOPs 1e19

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

GPT 0 12-layer
GPT 1 12-layer
fixed-size 1,2,6,9,12-layer

0.2 0.4 0.6 0.8 1.0
FLOPs 1e20

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

GPT 0 24-layer
GPT 1 24-layer
fixed-size 1,2,6,12,24-layer

0.5 1.0 1.5 2.0 2.5
FLOPs 1e20

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Lo
ss

GPT 0 36-layer
GPT 1 36-layer
fixed-size 1,2,6,18,36-layer

Figure 8 Loss-compute tradeoff (validation loss v.s. FLOPs) of depth expansion from small mod-
els to {12, 24, 36}-layer GPT2 with {124M, 400M, 1B} parameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Another insight from the loss-compute tradeoff is that, it suffices to use single-stage expansion, i.e.
we do not need multi-stage expansion such as 1 → 12 → 24 (if our target model is 24-layer). The
reason lies in the mixing behaviors such that 1 → 12 → 24 can be decomposed to two single-stage
expansions 1 → 12 and 12 → 24. Therefore, the loss curves of 1 → 12 → 24 and 1 → 12 mix in
the first stage (the loss is the same as 12-layer fixed-size training), and those of 1 → 12 → 24 and
12 → 24 mix in the second stage (the loss is the same as 24-layer fixed-size training). As a result,
multi-stage training achieves the same loss with worse efficiency than single-stage training, in sharp
contrast to Gong et al. (2019); Yao et al. where the mixing behaviors are not observed.

7 DEEP PROGRESSIVE TRAINING RECIPE

We summarize our progressive training recipe, leveraging the theoretical insights and empirical
evidences in previous sections.

1. Train zero-layer model and then expand depth by random initialization3.
2. Train models with Muon-NSGD or muP-equipped optimizers, and employ the same hyper-

parameters before and after depth expansion.
3. Train models with WSD learning rate schedule and expand depth during the stable phase.
4. The timing of depth expansion τ (or equivalently the mixing time tmix) can be determined

by two small-scale runs: one fixed-size training and one progressive training (τ at the end
of warmup), both early stopped when their losses are mixing.

We further validate our recipe with MoE Wolfe (2024); Xue et al. (2024) on OpenWebText dataset,
and we observe the same patterns as dense models such as the mixing behaviors. We emphasize that
our approach is different and orthogonal to existing works that upcycle MoE He et al. (2024), which
scale up a small dense model to a large MoE without increasing the depth, rather than a shallow
MoE to a deep MoE. This upcycling approach has reported some negative results Muennighoff
et al.; Komatsuzaki et al.; Nakamura et al.; Liew et al.; Wei et al. (2024), because the grown MoE
becomes worse than the MoE trained from scratch after a few hundred billion tokens.

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

nanoMOE 0-layer
nanoMOE 12-layer

1.5 2.0 2.5 3.0 3.5 4.0
FLOPs 1e19

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n
lo

ss

WSD schedule

Figure 9 Loss and FLOPs of zero-layer progressive training and fixed-size training for MoE.

Takeaway 8: Zero-layer progressive training is effective on various model architectures including
ResNet, GPT2 and MoE.

8 CONCLUSION

We show that zero-layer (and one-layer) progressive training can significantly accelerate large-scale
training, if it is equipped with good initialization method and learning rate schedule. This work
demonstrates the amazing benefit of theoretical insights in progressive training, drawing tools from
feature learning and optimization theory. We expect future works to continue pushing the efficiency
frontier, e.g. by scaling up both width and depth.

3Alternatively, train one-layer model and expand by copying , e.g. w → [w,w,w].

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Naman Agarwal, Pranjal Awasthi, Satyen Kale, and Eric Zhao. Stacking as accelerated gradient
descent. arXiv preprint arXiv:2403.04978, 2024. 2

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International conference on machine learning, pp. 242–252. PMLR, 2019.
5

Valentyn Boreiko, Zhiqi Bu, and Sheng Zha. Towards understanding of orthogonalization in muon.
In High-dimensional Learning Dynamics 2025, 2025. URL https://openreview.net/
forum?id=ppmyFtr9EW. 14

Zhiqi Bu and Shiyun Xu. Gradient descent with generalized newton’s method. In The Thirteenth
International Conference on Learning Representations, 2024. 5

Zhiqi Bu, Shiyun Xu, and Kan Chen. A dynamical view on optimization algorithms of overparam-
eterized neural networks. In International conference on artificial intelligence and statistics, pp.
3187–3195. PMLR, 2021. 5

Bo Chang, Lili Meng, Eldad Haber, Frederick Tung, and David Begert. Multi-level residual net-
works from dynamical systems view. In International Conference on Learning Representations,
2018. 3, 5

Cheng Chen, Yichun Yin, Lifeng Shang, Xin Jiang, Yujia Qin, Fengyu Wang, Zhi Wang, Xiao
Chen, Zhiyuan Liu, and Qun Liu. bert2bert: Towards reusable pretrained language models. arXiv
preprint arXiv:2110.07143, 2021. 1, 2, 3, 7

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015. 1, 3, 4

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. Advances in neural information processing sys-
tems, 31, 2018. 4

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Inter-
national Conference on Machine Learning, pp. 7449–7479. PMLR, 2023. 5

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019. 2

Chengyu Dong, Liyuan Liu, Zichao Li, and Jingbo Shang. Towards adaptive residual network
training: A neural-ode perspective. In International conference on machine learning, pp. 2616–
2626. PMLR, 2020. 5

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020. 2

Wenyu Du, Tongxu Luo, Zihan Qiu, Zeyu Huang, Yikang Shen, Reynold Cheng, Yike Guo, and
Jie Fu. Stacking your transformers: A closer look at model growth for efficient llm pre-training.
Advances in Neural Information Processing Systems, 37:10491–10540, 2024. 2, 3, 5, 7, 14

Cheng Fu, Hanxian Huang, Zixuan Jiang, Yun Ni, Lifeng Nai, Gang Wu, Liqun Cheng, Yanqi Zhou,
Sheng Li, Andrew Li, et al. Triple: revisiting pretrained model reuse and progressive learning for
efficient vision transformer scaling and searching. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 17153–17163, 2023. 5

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019. 3

10

https://openreview.net/forum?id=ppmyFtr9EW
https://openreview.net/forum?id=ppmyFtr9EW
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of
bert by progressively stacking. In International conference on machine learning, pp. 2337–2346.
PMLR, 2019. 1, 2, 3, 5, 9

Xiaotao Gu, Liyuan Liu, Hongkun Yu, Jing Li, Chen Chen, and Jiawei Han. On the transformer
growth for progressive bert training. arXiv preprint arXiv:2010.12562, 2020. 3

Alex Hägele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, et al. Scaling laws
and compute-optimal training beyond fixed training durations. Advances in Neural Information
Processing Systems, 37:76232–76264, 2024. 2

Ethan He, Abhinav Khattar, Ryan Prenger, Vijay Korthikanti, Zijie Yan, Tong Liu, Shiqing Fan,
Ashwath Aithal, Mohammad Shoeybi, and Bryan Catanzaro. Upcycling large language models
into mixture of experts. arXiv preprint arXiv:2410.07524, 2024. 9

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016. 3

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. In Proceedings of the 36th International Conference
on Neural Information Processing Systems, pp. 30016–30030, 2022. 1

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.
5

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL https:
//kellerjordan.github.io/posts/muon/. 3, 14

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020. 1

Andrej Karpathy. nanogpt. https://github.com/karpathy/nanoGPT, 2023. 3

Aran Komatsuzaki, Joan Puigcerver, James Lee-Thorp, Carlos Riquelme Ruiz, Basil Mustafa,
Joshua Ainslie, Yi Tay, Mostafa Dehghani, and Neil Houlsby. Sparse upcycling: Training
mixture-of-experts from dense checkpoints. In The Eleventh International Conference on Learn-
ing Representations. 9

Guillaume Leclerc and Aleksander Madry. The two regimes of deep network training. arXiv preprint
arXiv:2002.10376, 2020. 5

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. Advances in neural information processing systems, 32, 2019. 5

Bei Li, Ziyang Wang, Hui Liu, Yufan Jiang, Quan Du, Tong Xiao, Huizhen Wang, and Jingbo Zhu.
Shallow-to-deep training for neural machine translation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 995–1005, 2020. 3, 5

Seng Pei Liew, Takuya Kato, and Sho Takase. Scaling laws for upcycling mixture-of-experts lan-
guage models. In Forty-second International Conference on Machine Learning. 9

Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Mean-field theory of two-layers neural
networks: dimension-free bounds and kernel limit. In Conference on learning theory, pp. 2388–
2464. PMLR, 2019. 4

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Evan Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. In The Thirteenth International Conference on Learning Representations. 9

11

https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Taishi Nakamura, Takuya Akiba, Kazuki Fujii, Yusuke Oda, Rio Yokota, and Jun Suzuki. Drop-
upcycling: Training sparse mixture of experts with partial re-initialization. In The Thirteenth
International Conference on Learning Representations. 9

Yu Pan, Ye Yuan, Yichun Yin, Jiaxin Shi, Zenglin Xu, Ming Zhang, Lifeng Shang, Xin Jiang, and
Qun Liu. Preparing lessons for progressive training on language models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 18860–18868, 2024. 2, 3, 5, 7, 14

Yujia Qin, Yankai Lin, Jing Yi, Jiajie Zhang, Xu Han, Zhengyan Zhang, Yusheng Su, Zhiyuan Liu,
Peng Li, Maosong Sun, et al. Knowledge inheritance for pre-trained language models. arXiv
preprint arXiv:2105.13880, 2021. 2, 3

Yujia Qin, Jiajie Zhang, Yankai Lin, Zhiyuan Liu, Peng Li, Maosong Sun, and Jie Zhou. Elle:
Efficient lifelong pre-training for emerging data. In Findings of the Association for Computational
Linguistics: ACL 2022, pp. 2789–2810, 2022. 5

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019. 3

Sashank J Reddi, Sobhan Miryoosefi, Stefani Karp, Shankar Krishnan, Satyen Kale, Seungyeon
Kim, and Sanjiv Kumar. Efficient training of language models using few-shot learning. In Inter-
national Conference on Machine Learning, pp. 14553–14568. PMLR, 2023. 2

Fabian Schaipp, Alexander Hägele, Adrien Taylor, Umut Simsekli, and Francis Bach. The surpris-
ing agreement between convex optimization theory and learning-rate scheduling for large model
training. arXiv preprint arXiv:2501.18965, 2025. 5

Sheng Shen, Pete Walsh, Kurt Keutzer, Jesse Dodge, Matthew Peters, and Iz Beltagy. Staged training
for transformer language models. In International Conference on Machine Learning, pp. 19893–
19908. PMLR, 2022. 2, 3, 4, 5, 7

Zhen Tan, Daize Dong, Xinyu Zhao, Jie Peng, Yu Cheng, and Tianlong Chen. Dlo: Dynamic layer
operation for efficient vertical scaling of llms. arXiv preprint arXiv:2407.11030, 2024. 3

Peihao Wang, Rameswar Panda, Lucas Torroba Hennigen, Philip Greengard, Leonid Karlinsky,
Rogerio Feris, David Daniel Cox, Zhangyang Wang, and Yoon Kim. Learning to grow pretrained
models for efficient transformer training. arXiv preprint arXiv:2303.00980, 2023a. 2, 7

Yite Wang, Jiahao Su, Hanlin Lu, Cong Xie, Tianyi Liu, Jianbo Yuan, Haibin Lin, Ruoyu Sun, and
Hongxia Yang. Lemon: Lossless model expansion. In The Twelfth International Conference on
Learning Representations, 2023b. 1, 3, 4, 5

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Growing a brain: Fine-tuning by increasing
model capacity. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 2471–2480, 2017. 3

Tianwen Wei, Bo Zhu, Liang Zhao, Cheng Cheng, Biye Li, Weiwei Lü, Peng Cheng, Jianhao Zhang,
Xiaoyu Zhang, Liang Zeng, et al. Skywork-moe: A deep dive into training techniques for mixture-
of-experts language models. arXiv preprint arXiv:2406.06563, 2024. 9

Cameron Wolfe. nanomoe: Minimal mixture of experts implementation. https://github.
com/wolfecameron/nanoMoE, 2024. 9

Chen Xing, Devansh Arpit, Christos Tsirigotis, and Yoshua Bengio. A walk with sgd. arXiv preprint
arXiv:1802.08770, 2018. 2

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang
You. Openmoe: An early effort on open mixture-of-experts language models. arXiv preprint
arXiv:2402.01739, 2024. 9

Cheng Yang, Shengnan Wang, Chao Yang, Yuechuan Li, Ru He, and Jingqiao Zhang. Progressively
stacking 2.0: A multi-stage layerwise training method for bert training speedup. arXiv preprint
arXiv:2011.13635, 2020. 1, 2, 3

12

https://github.com/wolfecameron/nanoMoE
https://github.com/wolfecameron/nanoMoE

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522, 2020. 4

Greg Yang, Edward J Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick Ry-
der, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tensor programs v: Tuning large neural
networks via zero-shot hyperparameter transfer. arXiv preprint arXiv:2203.03466, 2022. 4

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023. 4

Kazuki Yano, Sho Takase, Sosuke Kobayashi, Shun Kiyono, and Jun Suzuki. Efficient con-
struction of model family through progressive training using model expansion. arXiv preprint
arXiv:2504.00623, 2025. 3

Yiqun Yao, Zheng Zhang, Jing Li, and Yequan Wang. Masked structural growth for 2x faster lan-
guage model pre-training. In The Twelfth International Conference on Learning Representations.
1, 2, 3, 9

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DEPTH EXPANSION APPROACHES

We summarize the depth expansion approaches with respect to the depth of source models.

Table 2 Applicability of depth expansion approaches. Merged cells indicate that multiple ap-
proaches are equivalent for a source model.

zero-layer one-layer more than two-layer
random Yes Yes Yes

copying inter
No Yes

Yes
copying stack Yes
copying last Yes

zero Yes Yes Yes

We note that zero-layer or one-layer depth expansion significantly simplifies the copying ap-
proaches, as there is no ordering such as stacking or interpolation. In Appendix H of Du et al.
(2024), the search space of ordering is enormous but necessary, since a proper ordering indeed im-
proves the progressive training. This aligns with our results that copying all layers is better than
copying only the last layer. However, it is debatable which of copying inter and copying stack is
more advantageous, e.g. Pan et al. (2024) claims that copying inter is more stable but Du et al.
(2024) demonstrates that copying stack converges better.

We highlight that such debate is completely avoided for zero-layer or one-layer progressive training.

B EXPERIMENT SETTINGS

Default batch size is 512 and decaying is 20% for WSD schedule, except for the long runs in Figure 1
where batch size is 64 and decaying is 10%. For WSD schedule, the learning rate is 0.01 as shown
to be optimal in Figure 3 (only here GPT2 are trained for 25k iterations); for cosine schedule, the
learning rate is 0.05.

Regarding the optimizer, Muon-NSGD uses Muon Jordan et al. (2024) and NSGD as in Boreiko
et al. (2025): denoting W as a layer’s parameter, we orthogonalize each layer by

Muon:Wt+1 = (1− ηλ)Wt − η · NS(mt)

NSGD:Wt+1 = (1− ηλ)Wt − η ·mt/∥mt∥2

where NS is the Newton-Schulz matrix iteration, mt is the momentum, and λ is the weight decay.

For GPT2 models, we always keep n embd/n head=64. Different depth uses different n head: 12-
layer uses 12 heads; 24-layer uses 16 heads; 36-layer uses 20 heads; 60-layer uses 48 heads.

For MoE models, we use the same configurations as GPT2 (12-layer). Additionally, we use 8
experts, auxiliary loss, and router z loss.

C ADDITIONAL EXPERIMENTS

C.1 MIXING BEHAVIORS ACROSS MODEL SIZES

In Figure 10, we consistently observe the mixing behaviors on hundreds of runs, from various small
models to various large models. Specifically, the mixing time is empirically robust to model sizes.

C.2 CHOOSING OPTIMIZER AND LEARNING RATE SCHEDULE

In Figure 12, we train 100k iterations with two optimizers and two learning rate schedules. The same
schedule is used before and after expansion, without changing the learning rate. We observe that
Muon-NSGD with WSD schedule achieves best loss at all FLOPs (also at any timing of expansion
τ/T). This is consistent with our theory.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100
Va

lid
at

io
n

lo
ss

GPT 0-layer
GPT 12-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 0-layer
GPT 24-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 0-layer
GPT 36-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 1-layer
GPT 12-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 1-layer
GPT 24-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 1-layer
GPT 36-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 2-layer
GPT 12-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 2-layer
GPT 24-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 2-layer
GPT 36-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 6-layer
GPT 12-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 6-layer
GPT 24-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 6-layer
GPT 36-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 9-layer
GPT 12-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 12-layer
GPT 24-layer

20000 40000 60000 80000 100000
Iterations

101

3 × 100

4 × 100

6 × 100

Va
lid

at
io

n
lo

ss

GPT 18-layer
GPT 36-layer

Figure 10 Scaling up by depth expansion from {0, 1, 2, 6, 18} layers to {12,24,36} layers GPT2
with {124M, 400M, 1B} parameters.

0.0 0.2 0.4 0.6 0.8 1.0
Timing of expansion /T

2.8

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
lo

ss

GPT 0 12-layer
GPT 1 12-layer
GPT 2 12-layer
GPT 6 12-layer
GPT 9 12-layer
GPT 12-layer (fixed size)

0.0 0.2 0.4 0.6 0.8 1.0
Timing of expansion /T

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
lo

ss

GPT 0 24-layer
GPT 1 24-layer
GPT 2 24-layer
GPT 6 24-layer
GPT 12 24-layer
GPT 24-layer (fixed size)

0.0 0.2 0.4 0.6 0.8 1.0
Timing of expansion /T

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n
lo

ss

GPT 0 36-layer
GPT 1 36-layer
GPT 2 36-layer
GPT 6 36-layer
GPT 18 36-layer
GPT 36-layer (fixed size)

Figure 11 Final loss of depth expansion at different timing, from {0, 1, 2, 6, 18} layers to
{12,24,36} layers GPT2 with {124M, 400M, 1B} parameters..

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1.5 2.0 2.5 3.0 3.5 4.0
FLOPs 1e19

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n
lo

ss

Muon-NSGD, WSD schedule
Muon-NSGD, cosine schedule
AdamW, WSD schedule
AdamW, cosine schedule

Figure 12 Loss-compute tradeoff (validation loss v.s. FLOPs) of zero-layer depth expansion under
different optimizers and learning rate schedules. The target model is 12-layer GPT2. For WSD
schedule, AdamW uses 0.001 learning rate and Muon-NSGD uses 0.01 learning rate. For cosine
schedule, the learning rates are doubled.

C.3 MIXING NEEDS DATA, NOT ITERATIONS

Importantly, we observe that the mix-
ing time is measured by data size, i.e.
images or tokens processed, not by it-
erations. In Figure 13, we compare a
progressive training with constant batch
size to another one with 4× batch size
after the depth expansion. The final loss
is similar although large-batch training
takes much fewer iterations.

0 5000 10000 15000 20000 25000
Iterations

3 × 100

4 × 100

6 × 100

Lo
ss

GPT 6 12-layer(B=0.5M)
GPT 6 12-layer(B=0.5 2M)
GPT 12-layer(B=0.5M)

0 2 4 6 8 10 12
Tokens(B)

2.9

3.0

3.1

3.2

3.3

3.4

3.5

3.6

Lo
ss

GPT 6 12-layer(B=0.5M)
GPT 6 12-layer(B=0.5 2M)
GPT 12-layer, B=0.5M

Figure 13 Progressive training needs sufficient data to
mix with fixed-size large model training, largely unaf-
fected by batch size or iterations.

16

	Introduction
	Experiment settings
	How to expand depth?
	A convergence theory for progressive training
	When to expand depth?
	Which to expand depth?
	Deep progressive training recipe
	Conclusion
	Depth expansion approaches
	Experiment settings
	Additional experiments

